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THE Z/2 Z COHOMOLOGY
OF THE UNIVERSAL ORDINARY DISTRIBUTION

BY

DANIEL S. KUBERT (*)

RESUME. — Nous donnons la structure de certains groupes de cohomologie associes
a la distribution universelle ordinaire Uk (N) sur QVZ^ Le sous-groupe ± id de GL^ (S)
opere sur £/*. Soit N > 1 et impaire, ou bien 4 | N. Alors, pour i == 0, 1, le groupe
Hi(± id, U^N)) est un GLk WN Z)-module trivial, de Z/2 Z-rang egal a 2V(N)-1,
ou v (N) est le nombre de facteurs premiers distincts de N. Les applications naturelles
de H1 (± id, ^(TV)) dans ^ r l(± id, (/k) sont injectives. Des resultats semblables sont
aussi obtenus quand TV == 2M, M impair, ainsi que d'autres resultats sur la structure
de ces groupes de cohomologie, qui sont importants pour determiner la 2-torsion dans
le groupe des classes de diviseurs cuspidaux sur les courbes modulaires, ainsi que la
2-torsion dans les groupes de classes d'ideaux dans les corps cyclotomiques.

ABSTRACT. — We work out the structure of certain cohomology groups associated
to Uk(N), the universal ordinary distribution on Qk/Zk. The subgroup ± id of
GLk (Z) acts on U'1. Let N > 1, N odd, or let 4 | N. Then for i = 0, 1 the group
Hi(± id, U k ( N ) ) is a trivial GLk WN Z)-module of Z/2Z-rank equal to 2V<N)-1,
where v ( N ) is the number of distinct prime factors of N. The natural maps of
H l (± id. If" (N)) into H l (± id, U^) are injective. Similar results are also obtained
when N = 2M, with M odd, as well as other results on the structure of such cohomology
groups, which are important to determine the 2-torsion in the group of cuspidal divisor
classes on modular curves, and 2-torsion in ideal class groups in cyclotomic fields.

In this paper, we continue to develop the ideas of [K 3], where we
analysed the structure of the universal ordinary distribution V^ associated
with the group (Q/Z)^. We know that U1^ is a GL^ (Z)-module, and we
may, in particular, consider it as a group with ±id acting upon it. We
may then calculate the ±id-cohomology of U1^.

(*) Texte recu le 16 mai 1978.
Supported by N.S.F. grant, Sloan Fellow.
Daniel S. KUBERT, Mathematics Department, Cornell University, Ithaca, N.Y. 14853

(Etats-Unis).
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204 D. S. KUBERT

We use the same notation as in [K 3]. Thus U^ is the injective limit
of the level groups U^ (N), and H * (±id, U") is the injective limit
of the groups H* (±id, U^N)). First we shall study the groups
H * ( ± l d , U ' t ( N ) ) . The method used will be a genezalization of
SINNOTT'S [S]. Then we shall study the maps between the level groups
which will depend on certain relative cohomology groups.

1. The rational distribution

Let A: be a positive integer. We define the universal ordinary distribution
on (Q/Z)* as the free abelian group on (Q/Z)" modulo the distribution
relations, which are generated by

< 1 - 1 ) Lv»=<,W-(a),

with a, be (Q/Z)*, and N any postive integer. We denote the universal
ordinary distribution by U'1. It is, in a natural way, a GL^ (Z)-module,
since GL^CL) leaves invariant the group generated by the distribution
relations. We define U'1 ( N ) as the image of ( ( l / N ) Z/Z)* in U'1. There
is a canonical model for U* which we have described in [K 3], and which
we called the rational distribution. It is denned as follows.

Let Q* ( N ) be the free Q-vector space generated by the primitive elements
of ( ( l / N ) Z/Z)". Then Q* ( N ) is a module over GL^ (Z), via the action
of 04 (Z/N Z). Let M \ N. Then we have an injection

(L2) i: Q'CAO^Q^N),
>\

as GLk (Z)-modules, which is defined as follows. If x is a primitive element
of ((1/M) Z/Z^ we set

W^WM^^OO,

where^ is a primitive element of ((1/AQ Z/Z)^ The map is clearly a
GLk (Z)-morphism.

We define a map
r\N): U\N)^^(N\

as follows. Given a e ( l / N ) Z k / Z \ let f(a) be the order of a in
((l/AQZ/Z)^ We define

(1.3) X(a)={b(=Zk/NZk such that b is primitive,
and ( N / f (a)) b = N a mod N Z^ }.
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Z/2Z COHOMOLOGY 205

Dividing by TV yields a subset of (I/TV) Zk/Zk, which can be described as

—X(a)=\xe[ —Z/Z) such that x is primitive,
^ I \N )

and(N//(a))x=a}.
For simplicity, we abbreviate:

^ W = ( - Z/Z ̂  and Z^ (N) = primitive elements in Z (TV).

We have a bijection
Z^W-KZ/TVZ^,

obtained by the map x —> N x. Write

^ILi^"^.
Then we define an element Sp ( N ) e Endo (Qfc (TV)) by putting

(1.4) s,(N)(x)=^(y\

where the sum is taken over those elements y e Z * (N) such that

py==xmod^Z\

Then S p ( N ) commutes with the action of GL^(Z). Moreover, if p ^ q
are two primes dividing N, then S p ( N ) , Sq(N) commute.

If X is a subset of Z * (TV) we let

5(X)=LcexM.
We define an element jp (N) e Endg (Q^ (TV)) by

"-^ ^^-"'-IZ.OTT''^-
Then we define r ( N ) by

(1.6) ^W(a)=(r[p|/(a)Yp(N)).5(X(a)).

It is shown in [K3] that r ( N ) satisfies the distribution relations, and
is consistent with injective limits. We thus get a map

r: U^lim^Q^N),

which is in fact an isomorphism of GL^ (Z)-modules after tensoring
with Q (see [K 3]).

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



206 D. S. KUBERT

Let C k ( N ) be the non-split Cartan subgroup of GLj,WNZ) that
we considered in [K3]. By definition, C^AO is isomorphic to the
units in the ring s^ (N):

^W=rLiNO^,
where o^ is the ring of integers of the unramified extension of Qp, of degree
k, together with a choice of basis for ^ ( N ) as Z/^/Z-module. Then
C k ( N ) acts simply transitively on Z^ (N) and we may identify the group
ring Q [C^)] with ( ^ ( N ) as C* (AO-modules. We also write

^W/o(N)=n^Op/o,

Under the present identification, we now have
(1.7) X (a) == { c e C (N) such that (Nff (a)) Cp = (N a\ mod p"(p)}.
where ( N c ^ e ^ ^ N ) and (Na)p is the p-ih component. We also define
(1.8) Xp(N) = [c = (c^eC(N) such that if q ̂  p,

then Cq E= p~1 mod ̂ "(q) o^ }.
Then we have

(1.9) rW^^Z^ai.^^-^^V

We fix N and ^ in what follows. Since r ( N ) is an isomorphism, by
[K 3], we identify ^ (N) with its image under r (N). We shall describe
a set of generators for V^ (N) as a C (^)-module. We say that M \ N
is admissible if (M,N/M) = 1. Then the distribution relations show
that V^ (N) is generated as a Z-module by r (N) b, where/(6) is admissible.
For any element ce C ( N ) we have

cr(N)(b)=r(N)(cb).
From this we conclude that the family of elements

\ r(N)— for M admissible, M\N\,
[ M J

generates (/fc (N) as a C(7V)-module. Here 1/M means the element with
^-component 1/M for each p \ N.

Let the integral group ring be R ( N ) = Z [C (N), R^ (N) = Q [C (AQ].
Let

(1.10) U, = s (X ( y ^IN)) R (N) + (l - 5(ZP(N))} R (N).v \^p\ }
In [K 3], we showed the following Proposition.
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Z/2Z COHOMOLOGY 207

PROPOSITION 1.11:
(i) Uk(N)=Y[,^U^
(ii) ^®Q=^o(^) .
We may reinterpret this Proposition as follows. We identify R(N)

with the free Z-module on Z*(W). Given p\N, we define an
endomorphism tp of R ( N ) by

(1.12) t;(x)=^(y),

with the sum taken for y = xmod (l/^w(p))Zk and .yeZ*(AO. Then
the endomorphisms ^ commute with GLj, (Z), and y^, and

(1-13) U,=--t,R(N)+y,R(N).

Set ^ = Y[p, where the product is taken over all primes p dividing N..
If r | N, set

(1.14) ^=rL|r^, U,=R(N), U^U^N).
I f p ^ r, it follows that

(1.15) U^=t,U,+y,U,

2. Structure of H * (±id, U^N))

In this section we determine the structure of ^*(±id, U 1 ' ( N ) ) as a
(71̂  (AO-module. We make the assumption that either N is odd or 4\N.
When A: = 1 and N is odd, then U^ (2 AQ = V^ (N). We will discuss
^ (2 7\Q in general in a latter section. Our analysis follows closely that
of SINNOTT in [S].

Let r | N. We define the subgroup C, of C k ( N ) by

(2.1) C,=ceCk (N) such that Cp = 1 mod p"(p) if p ) ( r .
Then

-C^)-^
Set r ' = AYr. Set

(2.2) A?=f^(±id, C/^').

Then ̂  is a CC^O-module, and for r = A^, it is a 04 (Z)-module. We
have
(2?3) C(N)=C,xC,. for r lJV.

We recall the following Lemma.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



208 D. S. KUBERT

LEMMA 2.4. - Let H and K be finite groups. If A is a free
Hx K-module, then AH and A/A11 are free K-modules.

Proof. - See [S] for a proof.
LEMMA 2.5. — I f p | N, p )( r, then

^=5(C,)l/,+Y,^.
Proof. — We have

^^^C^^+fl-5^)^,
V \ A p\ /

Let Ep be the idempotent of Rq (N) associated with Cy Then

[/^=Ker(l-^)|^.

The endomorphism jp may be identified with the element
5oy
KP

of R^ (N). But (1 ~e^) s (€„) U, = 0 and (1 -s^) Yp = (1 -8p). So
(l-e^)l/^=(l-e^)^,

and the Lemma follows.
LEMMA 2.6. — Let rs [ N. Then Uy is free as a C^-module.
If rs ^ N, then Uy is free as a ± Cs-module.
Proof. - We induct on r. When r = 1, then Uy = R(N), which is

free over any subgroup of C(N).
Suppose now the Theorem is true for r, and let p | N, p )( r. We prove

that the Theorem is true for rp. Let s \ N be such that (rp, s) = 1. Set
7= (1-8^) [7^ =(1-8^) 17,

We then have the exact sequences
(2.7) O^U^-^U, ->y-)-0

o->i/^-^->y->o.
By induction, Uy is a free Cp x C^-module. Thus by Lemma 2.4, U^ and
V are free Cg-modules. Since Uy is a free Cp-module, it follows that

U^ =s(Cp)U^

and from Lemma 2.5 we have

l/^=5(Cp)[/,+y^(C^)[7,

TOME 107 - 1979 — N° 2



Z/2 Z COHOMOLOGY 209

Now jp ^ (Cp) = (1 -\) s (Cp), where ̂  e C (N),

\=p~1 mod ^n (€) for all q ^= p.
So

[7^ = U^ and [/^ w U^ @ Y,

which is a free C^-module.
Suppose now that rps i=- N. By induction, Uy is a free ± C, Cp-module.

Since ± C, n Cp = 1 (here we use the fact that if 2 | N then 4 | ̂  and
rps ^ N\ we find that £/^ and Y are free ±C,-modules. The Lemma
follows from (2.7) and the equality

U^ = ^cp.

COROLLARY 2.8. - Let r \ N, s | (N/r), and rs + N. Then

^(±id, l/^)=0 for ^=0,1.

Proof. — From Lemma 2.4 we find that U^ is a free ± id-module,
whose cohomology is well known to be trivial.

COROLLARY 2.9:
(i) C ( N ) acts trivially on A^.

(ii) GLk(Z/NZ) acts trivially on ^(±id, £^(^0).
Proof. — For (i), we need only show that Cp acts trivially on A^,

since Cp generates C ( N ) . By definition,

A?=^(±id,[/^).

So if p )( r, the result is obvious. Suppose p \ r. Then

U,=s(Cp)U^p+ypU^

Let c e Cp. Then (c-1) s (Cp) = 0, and (c-1) y^ = c-1. Thus

(c -l)^c= U^p,

and we have a commutative diagram:

Taking C^-invariants, we see that (i) follows immediately from
Corollary 2.8.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE 14



210 D. S. KUBERT

To prove (ii), we use (1.15). The group GL^WNZ) is the direct
product of the groups Gp of those elements g such that g •= \ mod (N/p" °°).
So suppose g e Gp. Then

(g~ 1)^=0, (g-l)y^=g-l.
So we have the commutative diagram

U^N)——ff-1——> U^N)

and since ^(±id, £/^) = 0 by Corollary 2.8, (ii) follows.
Thus to determine the structure of Hq(±id, £^0^)), it suffices to

determine the order of ^rg(±id, Uk(N)). By rank we shall mean
Z/2 Z-rank.

PROPOSITION 2.10:
(i) I f N > 1 then

rankfl^id, U\N)) =T'1,

where v == v(N) is the number of distinct prime factors of N.
(ii) H°(±id, U^l)) w Z/2 Z, H1 (±id, U^l)) = 0.
Proof. - Note that (ii) follows from the fact that Uk(l) is the free

Z-module on (0). To prove (i), we used the following Proposition.

PROPOSITION 2.11:
(i) Let r \ N, r > 1. Then

rank.4^2^'1.

(ii) A\ = Z/2Z and A\ = 0.
Proof. — The proof of (ii) is clear since

A<i=Hq(±id,R(N)cm),
R (Nf m =Z[s (C (N))] and ( -1) s (C (N)) == 5 (C (N)).

The proof of (i) will follow by induction from the following Lemma.
LEMMA 2.12. — Let rp [ N, p prime, and r ^ 1. There is an exact

sequence
O-^A^A^-^A^^O.
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Z/2 Z COHOMOLOGY 211

Proof. — We know that Yp U, <= (7,p. So from (2.7) we have the
diagram

Q-^U^^ [7,i^y^0
(2.13) |/ ^ ^

o^t/^-^^-^r^o
1 Sp

The vertical maps are induced by y?. Since

(l--c^=(l-^),

it follows that A is the identity map. Now as in Lemma 6,

U^ = U^ = 5(C,) [7, and j, U^ = (1 -^) [7 ,̂

so/is multiplication by 1—^p. Set r ' = N / r p . [^ Then, since Lemma 2.6
shows that Uy, U y p , U^ are free (^-modules, ' we \ may take
Cy,-invariants to get the diagram

0 -, L "̂ -> l/̂  ̂ -^ Y^' -> 0

(2.14) 1-^| -J [ i d

0 -> l/^1- -> (7?;' ——^y01" -> 0
1 — Ep

Taking cohomology, and omitting ±id for the sake of typographical
brevity, we get

^-l(yC^__^_ o ^^(Y^)—-^4'1-^)

(2.15) i d ) 1-xJ [ id I 1-^|^-1 (yc^ _^ _, ̂  _, ̂  y^) —>Ar1

The zeros occur because U^' is a free ± id-module. By Corollary 2.9
we know that the maps 1 — 'kp are the zero maps. Thus A^ injects into A^,
and A^ surjects onto ^(V^). The top row shows that Hq(Ycrf)
is isomorphic to A^1, which completes the proof of the Lemma.

Summarizing, we obtain the following Theorem.
THEOREM 2.16. - Let N be an integer > 1. Then 7^(±id, U k ( N )

is a trivial GLj, WN Z)-module of Z/2 Z-rank equal to 2V(N)'•1, where
v ( N ) is the number of prime factors of N.

3. The relative cohomology groups

In this paper, we wish to determine what happens when we take the
injective limit of the groups H'1 (±id, U^ (N)). Since we take cohomology

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



212 D. S. KUBERT

only with respect to the group ±id, we shall often omit this reference to
±id for typographical simplicity.

To determine the injective limit, we clearly may restrict our attention
again to the cases when N is odd, or when N is divisible by four. We
begin with an interpretation of the groups A'1.

PROPOSITION 3.1. - Let r\N and let M =Y[p^pn ^P\ Then
(i) l/^C/^cr^N);

(ii) A?=^(±id, U\M)\

Proof. — Note that (ii) follows immediately from (i). From Lemma 2.6
we know that U, is a free C^-module, so

U^=s(C^)U,
Now

Ur = IL | r U, and s(C^) = FI^r^C,).
So

U^=T[^rU,x^^s(C,)R(N).
Since s (Cp) R ( N ) <= Up , and since

^(N)=rLiN^,
it is clear that U^ c Uk (N). The above decomposition shows, in
fact, by immediate inspection, that it is exactly U1' (M).

Proposition 3.1 shows that U^ is actually a GLj, (Z)-module, and
that in Corollary 2.9 we may conclude that G'Z^(Z) acts trivially on ^€.

Let us now reflect on Lemma 2.12. From (2.14) we see that the map
from A^ to A^ arises from the inclusion of U^' in £/^\

In the light of Proposition 3.1, this says that if p \ N , p )( M, then the
inclusion

U\M)ci U^p^^M),

induces an injection of cohomology groups. By induction, we may
conclude the following.

PROPOSITION 3.2. -- If M is an admissible divisor of N, then we have
an injection

0->^(±id, ^(M^-^^id, U\N)).

This Proposition leads one to suspect that not much collapse occurs
in passing to the injective limit. Theorem 2.16 suggests that if M\ N,
and if M, TV have the same prime factors (again we assume that if 2 | M
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Z/2Z COHOMOLOGY 213

then 4 | M) then the natural maps on the cohomology groups are isomor-
phisms. We shall now show that this, in fact, is true.

PROPOSITION 3.3. — Let M | N be such that M, N have the same prime
factors. Also assume that if 2 | M, but 4 )( M, then 4 )( N. Then we
have an isomorphism

J^(±id, L^M^^did, U'(iV)).

Proof. — The proof follows immediately from the fact that under the
conditions of Proposition 3.3, the factor group (/fe (N)l U1' (M) can be
resolved by a finite chain of acyclic ± id-modules. We may use of the
following Lemma.

LEMMA 3.4. — Let F be a free (±id)-mo^fe, and let G be any
did)-module. Then for any positive integer q, we have

f f ^ (±id ,F®G)=0.

Proof. — We may clearly assume that F = Z[±id]. Then we may
represent elements of F ® G by

z = (id) ® x+(-id) (x) y ,

with x, y e G. The element is 0 if and only if x = 0 and y = 0. Suppose
z e F 0 G is such that (-id)z = z, and z is represented as above. Then

(id)®(x-(-id)^)+(-id)®(j;-(-id)x)=0.

So ̂  = (-id)jc and z = (id) (x) x+(—id) (id 00 x), and z is a coboundary.
Thus j^0 (F ® (7) = 0. A similar argument shows that H1 (F (x) G) = 0.

We now wish to prove Proposition 3.3. By induction we may assume
that p | M and N == p M (here if p = 2 then 4 | M). Let

N=n^0.
We define D ( N ) to be the set of positive divisors of N. Given a subset S
of D ( N ) , we define £/5 to be the group generated by Uy, where re 5'.
We say that S is normal if r e 5' and r ' \ r imply that r ' e S. If 5' c: 5"
are normal, we say the pair (S', S ' ) is normal if for all r e 5", r ' \ r, and
r ' 7^ r implies that r ' e S. It suffices to show that if S and 5" are a normal
pair, then there is an isomorphism

(3.5) H^WwH^Us.).

Indeed, we may produce a sequence { 5', }, i == 1, . . . , n such that

5,^=35,, 5o=D(N), ^=D(N),
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214 D. S. KUBERT

and (Si, 5'f+i) is a normal pair. We do this as follows. If S c: 5" are
each normal, then there exists a sequence { S,} with (S,, S^^) normal,
such that So = S and ̂  = 5". If not, there would be a minimal element T
under inclusion for which this is not true. Then if we set

T ' = [ r ' such that r ' \ r for reT, r' ̂  r},

then T' u S is normal, and T ' u S is properly contained in T. So there
is a normal chain from S to T7 u 5'. But (T' u 5, T) is a normal pair,
which yields a contradiction.

To prove (3.5) we may choose 5" to be S u (m), where, m is such that
if m' | m, m' ^ m, then w' e 5'. This will suffice by induction. Since
M a S, m must be of the form

m=rLi.r^
where m (/) ^ n (/) and m(p) = n (p).

Let w be a positive integer. We define:

D'(m) = (m'eD(m) such that m' ̂  m},
[7'(m)=[/^.

Then we have a surjective homomorphism

(3-6) P : UWIU^m^Us^^lUs.
We now give a nice description of U (m)l U ' (m). We have an isomorphism

zcc^m^^nq.zEc^r^)].
We define G^ c C^ (/OT (0) for / 1 m to be

G^ceC'Cr^such that c== Imodi"1^1}.

We then set
V, =Z[Ck(lm(l))']|ls(Gt)Z[Ck(lm(l))}.

We now describe a map

i: (8)^-^(m)/£7'(m).

Let Fk(m) be the free abelian group on Z*(w). Division by m from
C^ (w) to Z* (w) induces an isomorphism

Z[Ck(m)~\^Fk(m).
This gives rise to a natural homomorphism

i: Zl^m^l/Cm^C/'Cm).
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Z/2Z COHOMOLOGY 215

From the distribution relations and the fact that the image of i is in
U(m)IU' (m), it is immediate that i is trivial on

s(^)®®^.
Hence i factors through a homomorphism i on (§); j ^ Vi.

PROPOSITION 3.7:
(i) The map i is an isomorphism,
(ii) The map p is an isomorphism.
Proof. — It is clear that Vi is torsion free. For, given a coset of (7;,

there is only one relation imposed on it, that the sum of its elements in
the group ring is zero. Thus ®l\mvl ts torsion free. Since C* (m)
acts simply transitively on Z* (m), which generates U(m)/U'(m), we
know that i is surjective.

Thus p o i is surjective, and it suffices to show that

(x),,^ and Us^^lUs,

have the same Z-rank. Since p o i is surjective, it is clear that

rank (g), | ̂ V\ ̂  rank Us u (m)/^s-

To show the opposite inequality we tensor with C and examine the character
decomposition. The space

C®(x),|^,

has a non-trivial ^-component if and only if % is a primitive character of
C^ (m). On the other hand,

U^^CwC^C^m)],

and therefore has a non-trivial ^-component for each character of C^ (m).
Now U(m) ® C injects into Ug^^ ® C since U(m) injects into ^su(m)*
Thus C/su(m) has non-trivial ^-component if % is a character of C^ with
conductor m. But t/s ® C has trivial ^-component for such a character,
and thus

rank Us ̂  ̂ fUs > rank ®,, „ V,.

This concludes the proof of Proposition 3.7.
To prove Proposition 3.3, it suffices to show that ®i \mVi is acyclic.

By Lemma 3.4, it is enough to prove that Vp is a free module with respect
to the group ±id. Recall that m (p) = n (p) > 1 since p \ M and

N=-pM=^^l^\
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We claim that -id does not belong to Gp. I f p ^ 2 then n (/?)-! > 0,
and

-l^lmodj/1^-1.

If p = 2, then ^Cp)-l ^ 2, and again -1^1 mod//10^-1. That F
is a free module respect to the group ±id now follows immediately from
Lemma 2.4. This concludes the proof of Proposition 3.3.

Thus in order to determine what happens as we pass to the injective
limit we may restrict our attention to values of N which are either odd and
square-free, or 4 times an odd square-free number. We determine the
structure of the injective limit of the cohomology groups by analysing
the relative cohomology groups using Theorem 2.16.

So in what follows, we assume that N is a square-free odd number,
or four times a square-free odd number. Given N, we have defined the
group U ' (N) as the group generated by the level groups of lower level M,
where M \ N but M ̂  N. In what follows we modify this definition
slightly in the case that 4 | N. We then define U ' (N ) as the group generated
by the groups of level M where M \ N, M ̂  N, and either M is odd or
4 | M. We also change the definition of G^ and set G^ == C^ (4).

In addition, we make a slight alteration of the definitions of D ( N )
i f 4 | M We set:

D ( N ) = collection of M \ N such that either M is odd or 4 | M.
We make the obvious alternations in the definition of a normal subset
and normal pair, which is consistent with the above. Then we have the
following analogue of Proposition 3.7.

PROPOSITION 3.8:
(i) There is an isomorphism

^ ^p^Vp^UW/U^N).
(ii) Let S be a normal subset of D (N), and let M\N be such that M

is either odd or 4 | M. Suppose M^S and also that (S, Su (M)) is a
normal pair. Then there is a natural isomorphism

p: U(M)IU\M)^Us^M)IUs.

The proof is essentially the same as that for Proposition 3.7, and we
leave the details to the reader.

We now calculate the cohomology of U ( N ) / U ' ( N ) . We let v ( N )
be the number of prime factors of N. Let N > 1.
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PROPOSITION 3.9:
(i) I f v ( N ) is odd, then

H°(±ld, U(N)IU\N)) = 0, ^(±id, U(N)IU\N)) w Z/2Z.
(ii) I f v ( N ) is even, then

H°(±id, U(N)IU\N)) w Z/2Z, H\±id, U(N)IU\N)) = 0.
Proof. — By our assumption that N is either square-free or four times

a square free number, and our redefinition of G^, we see that G — C k (/?"(p))
for each p \ N. So

V, =Z[Ck(pn(p))]|s(C(pn(py))Z[C(pn(p))].

Thus a free Z-basis for Vp consists of the elements of €(?" (p)) excluding 1.
Set Gp = Gp-{ ±id}. Then Gp generates a free (±id)-submodules
of Vp which we call Vp. If W is any (±id)-module, we obtain and exact
sequence

0 -^ Vp ®W ->Vp ®W -> F -> 0.
Now by Lemma 3.4,

^'OO®^
is acyclic, and thus H * (Vp ® W) w H^ (F). We see that F w Z ® W,
where Z is Z thought of as a module over +id, with —id acting through
usual multiplication. By induction, we thus see that

H^^p^wH^^^h
where (g^ m Z means Z tensored with itself v (N) times. Since

(C)V(N)^C^ if v(N) is odd,
\wZ with trivial action of —id if v(N) is even,

the Proposition follows.
We conclude this section with a description of these cohomology groups.

We may write the set Z*(7^) of primitive elements, which generate
U ( N ) I U ' (N), as a product

^w^piN^o^).
Now we may decompose Z* (p" (p)) as a disjoint union

z+(p^W Q/̂ ),
where x belongs to Z"^ (/?"(p)) if and only if

-jceZ-O/^).
Then we have the following Proposition.
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PROPOSITION 3.10. - The element s ([]? | N z + (/?n (p))) generates
^^(U^N^U^N)).

We outline the proof and leave the details to the reader. First one
shows that the element s (]~]p ( ^ Z + (/?"(p))) is a cocycle by using the
fact that

Z*^^) = Z+ O^HZ- (p"^),

and applying the distribution relations. It is then easy to see that under
the map sending U ( N ) I U ' ( N ) to (g)^^ Z, the above element goes to a
generator, which also generates

^^((g^Z).

4. The injective limit
We shall now calculate the structure of the injective limit of the cohomo-

logy groups. From Corollary 2.9, we have the following Proposition.
PROPOSITION 4.1. - JiT^id, U^ is a trivial GLj, (Z )-module.
The basic Theorem is the following.
THEOREM 4.2. — Let N be square-free or four times a square free

number. Then:
(i) ^(±id, U{N))->Hq(±\^ U ( N ) / U f ( N ) ) is surjective.

(ii) For each M e D ( N ) such that v (M) = q mod 2, let a^ be the gene-
rator of H11 (U(M)1 V (M)). Let a^ be a pull-back of a^ to H11 (U(M))
{this exists by (i)). Then the image of the family {a^ } in H^ (U(N))
is a free Z-basis for this group.

Proof. - We use Theorem 2.16. We know that H^U^N)) has
Z/2 Z-rank equal to 2V(AO~1. The Theorem is clearly true when N == 1.
Our method of proof is to form a chain S^ c S^^ S^ c: D(N), where

5o=£/(l), S,=D(N),

such that (5'f, S^^) is a normal pair, and such that 5',-n = S u (M)
for some M in D (N). Thus /z = 2 V ( N ) —L From the exact sequence

^ H^Us) -. i^(^) ̂  H9 (U(M)IU '(M)) -^,
we find that

(4.3) rankJ^(^) ̂  rank^(^)+rank^(l7(M)/C7'(M)),

with equality occurring above if and only if H9 (Us) —> H^ (Us^) ls

injective, and
H^Us^) -> H^UWIU' (M)\
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is surjective. From Proposition 3.9 we see that

rank ̂ ([/s^)< rank f^([/s,)+l if v(M)=^mod2
and

rank^(l7^^)^rank^(l7s,) if v(M)^qmod2.

Thus by induction we find that

mT±H9(U(N))^2vm~l,

with equality holding if and only if for each i, the map

H^US^H^U^) isinjective,
and

H{lW^,)^Hq(U(M)|Uf(M)) is surjective.

Since H q ( U ( N ) ) has rank 2vm~•l, we conclude that we must have
equality in all cases. When M = N, 5^ = D (N), so Us = U(N).
This implies part (i) of the Theorem.

We now prove (ii). We actually prove a stronger result by induction.
Let S be a normal subset of D (N). We claim that H11 (Us) has as a free
basis the image of the collection { oc^ }, where M e S and v (M) == q mod 2.
This is clearly true for S = { 1 }. Suppose that (5', S u (M)) is a normal
pair. Then the above exact sequences say that H11 (Us) injects in
Hq (us u (M))' an(^ ^M generates the cokernel. Thus the Theorem follows.

We now have a fairly good description of H^ (V^). It is trivial as a/<
GLj, (Z)-module. It is a filtered Z/2 Z-vector space with the filtration
index consisting of square-free odd numbers, or four times square free
odd numbers N such that v ( N ) = ^mod2. To each such N we may
associate a subspace Aq(N) and an element ^eAq(N) such that the
elements { ajv } give a basis for H11 (U^.

5. The groups H^iid, U k ( 2 N ) )

In this section, we assume that N is a square-free odd number. Then,
by Proposition 3.3, the only group that remains to be considered is the
group H q ( U k ( 2 N ) ) . When k = 1, U ( 2 N ) is identical to U(N),
and there is nothing to consider. However, when k > 1, U ( 2 N ) will
properly contain U(N), and Hq (Uk(2N)) will not equal Hq(Uk(N)).

We begin by analyzing the relative cohomology groups. We define
D (2 N) to consist of all divisors of 2 N, and we define U ' ( I N ) to be the
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group generated by the groups U(M), where M properly divides I N .
If p is a prime dividing 2 N, we define

7^=Z[C(p)]/s(C(p))Z[C(p)].

Then we have the following Proposition.
PROPOSITION 5.1. - As a GLk (Z)-module, we have an isomorphism

®p\2^wU{2N)IU\lN).

The proof is identical to that of Proposition 3.7. We now analyze the
above tensor product, in Proposition 5.1. Note that -id acts trivially
on C (2), since -1 == 1 as an element of C (2). Let

C'(2)=C(2)-{id}.
Then we have an isomorphism

V^Z[C(2)],

where the right hand side is the free abelian group on C'(2), with -id
acting trivially. So

®p|2N^^©^C'(2)(Z®(8)p|N^),

where Z is the abelian group of integers, considered as a trivial
(±id)-module. But

Z®®plN^,,

is isomorphic to (x) Vp as a (±id)-module. So using Propositions 3.8
and 3.9, we have the following Proposition.

PROPOSITION 5.2:

H^ (U (2 NW (2 N)) == 0 if q ^ v (N) mod 2.
H ^ U ^ N ^ U ' ^ N ) ) w (Z/2Z)[C(2)]/^(C(2))(Z/2Z)[C(2)]

^ (7.4 (Z)-module if q - = v { N ) mod 2.
The proof of this is clear from the above. As a group,

H^^p^NVp)^ ©.eC^^C^CN)/^^)).

This fact proves the first statement. If q = v(N)mod2, it also shows
that the second statement is true, considering the objects as vector spaces.
To prove the isomorphism as GL^ (Z)-modules, it is obvious that the/^
subgroup of G^ (Z) which is trivial (mod 2) acts trivially on both

(Z/2 Z) [C (2)]/s (C (2)) (Z/2 Z) [C (2)]
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and on
®.eC-(2)^(^W/C/'(N)).

This is so in the second case because the group fixes each direct summand
which is 1-dimensional by Proposition 3.9. This reduces the question
to the action of GLj, (Z^). One observes by direct inspection that the
action is the same in both cases.

We wish to prove the analogue of Theorem 4.2. We approach it a bit
differently. We first prove the following result.

PROPOSITION 5.3. — We have the following exact sequence:
JT (17 (2 N)) -> W1 {U (2 N)iV (2 N)) -> 0.

We use Theorem 4.2 (i) in the proof. If q i=. v (N) mod 2, then there
is nothing to prove. So assume q = v ( N ) mod 2. Let o^ be the gene-
rator of H ^ U ^ N ^ U ' ^ N ) ) , and let o^ be a pull back in H^ (U(N)),
which exists by Theorem 4.2 (i).

Since C(2) is in natural bijection with Z* (2), we let Z'(2) be the
subset of Z* (2) corresponding to C' (2). Instead of dealing with elements
x e C ' (2), we deal with the corresponding elements, also denoted by x,
in Z / (2). Then there is a map

t : U(N)-.U(2N),
defined by translation. That is, if y e Z* (N), define

tW(y)=^+y).
To show that this map extends to a map from U ( N ) to U(2 N ) , we must
only show that t (x) takes distribution relations to distribution relations.
The distribution relations of level N are generated by ^Mb=a(f))~(a)9
where Mf(a) \ N, and f(a) is the denominator of a, i. e. the order of a
in ( \ I N ) Z^/Z^ Then

ZM^a^+^-^+^-ZMft-.+a^-^+a),

since M is odd (7V^ is odd, remember), and x has denominator equal to 2,
so MX = x. One then sees easily that t(x) maps H^ ( U ( N ) I U ' (N))
isomorphically onto the x-direct summand of H ' 1 (U(2 N ) I U ' (2 N)),
which is generated by the image of

t(x)^)eHq(U(2N)).
This proves the Proposition.

Suppose then that (S, S u (M)) is a normal pair, and S, S u (M) are
contained in D (2 N).

Then we have the following Corollary.
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COROLLARY 5.4. — The sequence is exact

0 ̂  H\Us) ̂  H^Us , (M)) -> Hq(U(M)|U\M)) -. 0.

Proof. — The right end of the exact sequence follows from the fact
that U(M)IU'(M) is isomorphic to ^SU(M)/^S? combined with
Theorem 4.2 and Proposition 5.3.

To prove the left end of the sequence, we must show that the image
of Hq~l(U(M)/U/ (M)) under the boundary map is zero. But replacing
q by q— 1 and using Proposit'on 5.3, we see that the kernel of the boundary
map is the whole group. This proves the Corollary.

We now obtain the new Corollary.
COROLLARY 5.5:
(i) rank H° (±id, £7^(2)) =2k- .,

rank H1 (± id, ^(2)) =0.
(ii) I f N > 1, Nodd, then

rank^(±id, U^IN)) = (2ft-l)2vw-l.

Proof. — The first statement is a simple calculation.
To prove the second statement, by Proposition 3.3 we may assume

that N is square-free. One then uses Corollary 5.4 and Proposition 5.2.
From Proposition 5.2 we see that if q = v ( N ) mod 2, then

rank 7^(17 (2J^O/[//(2N)) = 0.

Forming a normal chain from U(\) to U ( 2 N ) , one may then calculate
the rank of H9 (U(2 N)). One gets a contribution of 1 for each divisor
M of N with v (M) ^ q mod 2, and then 2 M produces a contribution of
f—2 to the rank. Thus the total contribution to the rank from such M
is 2^-1.

We may actually get the following stronger result.

THEOREM 5.6:
(i) If N is odd > 1, then we have an isomorphism

H^U^IN)) w ©2vov)-i(Z/2Z)[Z*(2)],y\.
as a GLj, (Z)-module.

(The direct sum is that of the right hand side, taken 2V(N)~1 times.)
(ii) The image of ^(^(AQ) in H^U^^N)) is equal to the image

ofH^U^lN)) in Hq<iUk(4N)).
Proof. — Again by Proposition 3.3 we may restrict our attention to

the case when N is odd and square-free. If a^ is defined as in
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Theorem 4.2, then it is easy to see from the proof of Proposition 5.5
that the collection

{o^,r(x)aM}, XGZ*(2), M|N,

generates ̂  (£/* (2 AQ). Fixing At we first claim that the vector spaces^
generated by the ocj^ and that generated by t (x) a^ are GL^ (Z)-modules»
The first statement follows from Theorem 2.16. To prove the second/<
we show that if a e GLj, (Z), then

f(ax)a^=o^0c)a^.

First, suppose that a belongs to GL^Ci^). In this case, the equality
follows from the definition of t (x) and the definition of the action of a.
Thus suppose a = id mod 2. Then

a (t (x) a )̂ = t (x) a a^ = t (x) (a )̂,

again by Theorem 2.16. Thus our claim is proved since a x = x in this
case.

Next we show that

Lce^(2)^)(aM)=0.

This is equivalent to showing that

1Lx€Z*(2)t(.x)G('M^~c('M = aM•

To see this, let 2* represent multiplication by 2 on Q^Z^ Choose a
cocyle PM in U(M) which represents a^. Then the distribution relations
imply that

LceZ*(2)^)PM+PM=2*PM.

Modulo coboundaries, using Theorem 2.16, we have

ZxeZ^^OO^+Q^A^ ^M^

which proves the claim. From this we see that

(Z/2Z)0(x)oc^^ = (Z/2Z)[Z*(2)]/(Z/2Z)5(Z*(2)).

Thus we have the following equality of GL^ (Z)-modules:

(Z/2Z)0(x)ocM)^(2) e(Z/2Z)(o^)
^ (Z/2Z)[Z*(2)]/(Z/2Z)5(Z*(2)) ©(Z/2Z).
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But one sees easily that

(Z/2 Z) [Z* (2)]/(Z/2 Z) 5 (Z* (2)) © Z/2 Z » Z/2 Z (Z *(2)],

as a GZ^ (Z)-module. This proves Theorem 5.6 (i).
To prove (ii), we show that the image of t (x) aj^ in Hq (U(4 N ) ) is 0.

Call the image t (x) (a^). Since H^ ((7(4 N)) is a trivial GLj, (Z)-module,
it follows that

t(x)c(.M=:t(xf)(x.M.
for x, x ' e Z * (2). But since

LceZ'-(2)^)aM=0,

we find that (2^-1) t (x) o^ = 0. Since 2^-1 is prime to 2, we find that
t (x) ocj^ = 0, which proves Theorem 5.6.
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