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SECTIONS IN FUNCTION SPACES

BY

HENRY HELSON (*)

[University of California, Berkeley]

RESUME. — La non-existence de moyennes d'un certain type dans certains espaces
de suites ou de fonctions reelles est demontree par la construction de cocycles additifs
sur un systeme dynamique qui satisfont des conditions de croissance convenables.

SUMMARY. — The fact that certain spaces of real-valued sequences or functions
do not possess a certain kind of mean is proved by constructing non-trivial additive
cocycles satisfying appropriate growth conditions on a dynamical system.

1. In this paper we prove that function spaces do not have means of a
certain kind by constructing non-trivial additive cocycles of slow growth
on dynamical systems. We give a new criterion to show these cocycles
are not coboundaries. A recent result ofHAMACffl, OKA and OSIKAWA ([I],
[2]) is used to sharpen our result, and a new proof is given of their Theorem.
Finally, we try to formulate our method in a very general setting, where
the problem of replacing a cocycle by a cohomologous one of simpler form
leads to questions with a metamathematical flavor.

2. Let L be a topological vector space of real-valued sequences that
contains constant sequences and is invariant under translation. A section
of L will mean a Borel subset LQ that is invariant under translation, and
such that each/in L has a unique representation/o +a, with/o in LQ and a
real. We ask whether particular sequence spaces have sections.

If L is /°°, then the set of all sequences/such that lim sup^_oo/(^) = 0
constitutes a section. (Note that a section is not required to be a subspace.)
Similarly, L has a section if it consists of sequences having some generalized
limit at infinity, providing the limiting process is effective so that LQ is a
Borel set. If L contains sequences tending to infinity no ordinary limiting
process can be applicable; our result will be that no section exists in some
such spaces.

(*) Texte re9u Ie 4 mai 1977.
Henry HELSON, Department of mathematics. University of California, Berkeley, Ca.

94720, Etats-Unis.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



12 H. HELSON

Let LQ be a section of Z. Define a real function 0 on L by setting
^ (/o +°) = a f^/o m ̂ o ̂ d ̂  real. Then 0 is invariant under translation,
and 0 (f+a) == 0 (f)+a for all/in L and all a. If Z is a Polish space,
then 0 is a Borel function. For the mapping from L onto LQ x R that
carries fo+a to (/o, a) is a Borel isomorphism by Souslin's theorem, and
the mapping from (/o, a) to a is continuous.

Conversely, if 0 is a Borel function on L with the properties mentioned,
then the set of all/such that 0 (/) = 0 is a section.

A lattice in L is a Borel subset L^ invariant under translation and such
that each element of L has a unique representation /i+o with/i in L^
and 0 ^ a < 1. If LQ is a section, then the union of the sets
LQ+n(n =0, ±1, . . . ) is a lattice. The spaces we study do not even
contain lattices. This is a little unexpected on account of the analogy
with an irrational flow on a torus. This flow has no cross-section bat does
have the analogue of a lattice: a Borel set intersecting each orbit in an
arithmetic progression. (The annihilator of any non-zero character has
this property.)

Our main result about sections and lattices is the following theorem.

THEOREM 1. — Let p be a positive even sequence tending to infinity such
that p (n)/p (n+1) is bounded from 0 and from oo. Let L be the Banach
space of sequences f for which the norm

(1) H/lhsupj/OOpCn)-1!

is finite. Then L has no lattice, and a fortiori no section.
This theorem will imply the same result for other spaces of sequences

and functions. The proof depends on this criterion for the non-triviality
of additive cocycles on a dynamical system.

THEOREM 2. — (X, B, T, (i) is an ergodic dynamical system. G is a locally
compact abelian group and v is a measurable function from X to G taking
finitely many values a^ . . . , a^ Let GQ be the subgroup of G generated by
the Oj. Denote by r the smallest positive integer of the form Tikj where the
kj are integers and "Lkj aj = 0, or r = 0 if no such sum is positive. Assume
Go is closed in G and r > 1, and further that ^ is ergodic. Then v is not
a coboundary; that is, v does not have the form w (r x)—w (x) with w measu-
rable from X to G.

In the next section we show the connection between Theorem 1 and
non-triviality of cocycles. In paragraph 4, we use Theorem 1 to prove
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SECTIONS IN FUNCTION SPACES 13

the non-existence of lattices in various spaces. Theorem 2 is proved in
paragraph 5. The cocycles needed to prove Theorem 1 are constructed
in paragraph 6. A version of the Theorem ofHAMAcm, OKA and OSIKAWA
is stated and proved in paragraph 7. In the last section Theorem 1 is put
into a more general perspective.

I am grateful to the referee for a simplification in the proof of Theorem 2,
and for the proof, under mild assumptions on G, that the case r = 0 cannot
occur.

3. (X, B, T, n) is a dynamical system if X is a set, B a a-field of subsets
of X, T a bimeasurable automorphism of X, and \i a probability measure
on B invariant under T. For v a real measurable function on X define

v(n, x) = ES"1 v^x) (n = 1, 2, ...),
v(m+n, x) = v(m, x)+v(n, ̂ x) (all integers m, n).

This is an additive cocycle on X.
Let v be a cocycle on X that, as a function of n, belongs to a space L for

almost every x. Suppose L has a section LQ with functional 0. If we
define w (x) = 0 o y ^., x) and apply 0 to both sides of the equation

(3) v(n+l, x) = v(n, ̂ x)+v(x),

we get

(4) w (x) = w (T x) + v (x),

because 0 is invariant under translation and commutes with addition of
the constant v (x). If w is measurable, this shows v is a coboundary.

The space L of Theorem 1 is a Banach space, so 0 is a Borel function.
Thus w will be measurable if we show that the mapping from x to v (., x)
is a measurable function from Xio L. For any sequence/in L and positive
number k the set of ^c such that

(5) sup^ [ v(n, x)-/(n) | p(n)-1 ̂  k

is measurable. That is, the inverse image of each ball in L is measurable,
so the mapping is measurable.

Thus ifL has a section, then each cocycle with values in L is a coboundary.
To prove that L has no section it will suffice to find a cocycle on any
dynamical system with values in L that is not a coboundary.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



14 H. HELSON

Suppose L has a lattice Li. Define a functional x? on L by setting
XPC/l+a)=exp27^a for /i in L^ and 0 ̂  a < 1.

Then
^(/+^)=^(/)exp27cfa for all/ in L and real a.

Define ^ (x) = ^¥ o u (., x), a function of modulus one on JT. Applying l?
to (3) we find
(6) q (x) = q (T x) exp 2 n iv (x),

the multiplicative analogue of (4). Thus exp 2 Tin; is a coboundary in a
multiplicative sense. By the same argument, expz^i; is a multiplicative
coboundary for every real ^.

The Theorem of HAMACHI, OKA, OSIKAWA ([I], [2]) referred to above
asserts that v must then be an additive coboundary, provided the dynamical
system satisfies certain mild hypotheses. Thus L has no lattice either, if
there is a non-trivial additive cocycle on a suitable dynamical system having
values in L.

4. Theorem 1, once proved, will imply the non-existence of lattices in
other spaces. If L is embedded as a Borel subset in L', and if L has no
lattice, then L' cannot have one either. For the intersection of a lattice
in L' with L forms a lattice in L. Here is an application of this remark.

THEOREM 3. — Let y be a positive sequence satisfying

(7) E Y 00 < oo, Y (n)/y (n +1) bounded from 0 and oo.

Then the weight space l^ has no lattice/or 1 ̂  p < oo.
The hypothesis implies that /^ contains constant sequences and admits

translation. By elementary means, we can find a sequence p satisfying the
hypotheses of Theorem 1 and such that

(8) EPWY^KOO.

Thus the space L of Theorem 1 based on this function p is contained in
/^, and the result follows from Theorem 1.

Sequence spaces are naturally embedded in spaces of functions defined
on the line, by identifying a sequence with a function constant on intervals
between successive integers. Thus Theorems 1 and 3 have analogues for
function spaces on the line.
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SECTIONS IN FUNCTION SPACES 15

Here is one consequence of the continuous version of Theorem 3. For/
a real function in LP on the circle, let Fbe the harmonic extension of/to
the disc. We ask for a functional <D defined on V with some of the properties
oflim^i F(z). Ordinarily a generalized limit is required to be linear, and
to extend the ordinary limit. We require instead that 0 should be a Borel
functional invariant under conformal maps of the disc that leave z = 1
fixed, and satisfying

^ (/+ a) = <& (/) + a for all / and a real.

Our result is that for p finite no such functional exists.
5. We prove Theorem 2.
Since Go is countable and closed, its topology as a subset of G is discrete.

Choose a to satisfy a"" = 1, a + 1. Then a character is defined on Go by
setting

(9) ^W^-.

We extend % to be a continuous character on G. If v is a coboundary,
say v (x) = w (r x)—w (x), we have

(10) X ( w ( r x)-w(x))=a ^ 1,
f)C(w(^rx)—w(x)) = a1' = 1.

Since T1' is ergodic the second equation implies that / o w is almost every-
where a constant; but the first equation shows that this is not the case.
Hence v is not a coboundary.

In our application v will be a real function with values 1, —1, which
gives r = 2. For this case the proof above can be given even more simply.

6. THEOREM 4. — Let (X, £, T, [i) be an aperiodic dynamical system, and
let p be any positive sequence tending to infinity. There is a measurable
function v on X taking the values 1, -1, such that v (n, x) = 0 (p (n)) for
almost every x.

First we use this result to complete the proof of Theorem 1. Choose
a dynamical system such that r2 is ergodic and L2 (X, \t) is separable.
Theorem 2 shows that the cocycle of Theorem 4 is not an additive coboun-
dary. But the values of the cocycle are in L for almost every x, so L has
no section. The theorem of the next part gives the stronger statement that
exp i ' k v is non-trivial in the multiplicative sense for some real K, so that L
does not even have a lattice.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



16 H. HELSON

We prove Theorem 4. Construct a Rohlin tower for the dynamical
system with two floors, whose union we call T^ and a residual set C\ of
measure at most e^. X is the disjoint union of 7\ and Ci.

A transformation T^ is induced on C\ by defining T^ ;c to be the first
^x(k > 0) belonging to C^. The restriction Hi of ^ to C\ is invariant
under TI, and the new dynamical system is aperiodic. Now represent C\
as a tower with two floors (whose union is T^) and a residual set €3 of
measure at most s^.^is the disjoint union of 7\, T^ and C^.

We continue inductively. Choose the numbers Sj, tending to zero, so
that X is the disjoint union of 7\, T^, . . . Define v (x) to be 1 on the
lower floor of each 7 ,̂ and — 1 on each upper floor. We shall prove that v
has the property of the theorem if s^ tends to zero rapidly enough.

Without loss of generality assume p (n) is non-decreasing and takes
integer values. Let Nj, be the smallest N such that p (TV) ^ k+1.

LEMMA. — | v (n, x) | ̂ ; k < p (Nk)for 1 ̂  n ^ Nj, except for x belonging
to a set Ek of measure at most s^A^.

Let x be a point such that r7 x belongs to 7\ u . . . u 7^ for 0 ^ j < A^.
In the sum v(n, x) = 2^~1 v (r7 x), we group together the terms such that
T-7 x is in a particular T(. Adjacent terms in the group have opposite sign
by the definition of v and the properties of a Rohlin tower. Thus each
group contributes 1, 0 or — 1 to the sum, whose modulus can therefore not
exceed k. The exceptional set E^ consists of points x such that ̂ jx is in C^
for some j < Nk, of measure at most s^N^ This proves the lemma.

For Nk < n < TV^+i we have except in Bj^+^,

(11) | t ; (n ,x) |^fe+l=p(N,)=p(n) .

Thus [ v (n, x) | = 0 (p (n)) for each x not in infinitely many E^ Let the
Sk satisfy
(12) Sre.N,<o);

the Borel-Cantelli lemma asserts that the points in infinitely many E^ form
a null set. This completes the proof of the theorem.

Certain of the non-trivial cocycles constructed in [3] have the property
that | v (n, x) \ = 0 (n6) almost everywhere, for any positive fixed s.
G. RAUZY has investigated the growth of v (n, x) when X is [0, 1),
TJC = ^+a(mod 1) with a irrational, and v(x) = 1 on [0, 1/2), — 1 on
[1/2, 1). For suitable a, the order can be as small as log n but, by known
results in Diophantine approximation, never of smaller order.
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SECTIONS IN FUNCTION SPACES 17

7. THEOREM 5. --Z^ (JSf, 2?, T, |i) ̂  072 ergodic dynamical system such that
L2 (X, n) is separable. Suppose v is a real measurable function on X with
the property that expi'kv is a multiplicative coboundary for each real X.
Then v is an additive coboundary.

This statement was communicated by William PARRY, who observed
that it is a version of the result presented as Theorem 3 in [1] and Propo-
sition 1 in [2].

For each real A, there is a unitary function q^ on X such that

(13) exp i X v (n, x) = ̂  (r" x) ̂  (x) a. e. (n = 1, 2, ...).

Since T is ergodic each q^ is determined up to a multiplicative constant,
and q^r is a constant multiple of q^ q^. Let M(X) be the mean value of
q^ By the ergodic theorem

(14) p^x) = lim^JV-^expa^n, x)

exists a. e., and equals M (K) q^ (x) a. e. for each ^. The function p^ (x)
is measurable on R x ̂ relative to the product of the Borel field on R with B.
Hence the set E of ^ where M (X-) 7^ 0 is a Borel subset of R.

It is not difficult to prove that E has positive measure. The proof can
be avoided if we multiply (13) by h (r" x), so that M{K) is the mean value
of hq^. It is immediate that M (k) ^ 0 for ^ in a set of positive measure,
for some h in L2 (X, \\). The separability of L2 (X, n) is necessary at this
point.

Now define u^(x, y) = q^(x)q^(y). We have u^^ = u^ u^ almost every-
where on X x X for each real X and ^. Also u^ (x, y) =p^ (x) ~1?^ (y) if'k is in E.
Thus u^ is a measurable mapping of E to L2 (XxX). By the functional
equation u^ is measurable as well on any translate of E. The family of
measurable subsets of R on which u^ is measurable forms a cy-algebra, and
it is not hard to see that it contains all Borel subsets of R. By changing
u^ (x, y) on null sets of (x, y) for each X, we can assume the function is
measurable as a numerical function on RxXxX.

By the Fubini theorem, there is a YQ so that for almost every x

(15) u^ (x, yo) = u^ (x, yo) u^ (x, yo) for almost every ( ,̂ Q.

For such x there is a real number w(x) such that u^ (x, yo) = exp i ' k w (x)
(almost all X), and the function w so defined is measurable. Thus we have

(16) expi^v(x) = u^x, yo)u^(x, yo) = expiK[w(xx)-w(x)]

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE 2



18 H. HELSON

for almost all (X, x). By continuity, the relation holds identically in X for
almost every x. Thus we have shown that v is a coboundary.

The theorem has an interesting reformulation. Let B be the Bohr group,
dual to the discrete real line Rd'Bo is the distinguished one-parameter
subgroup of B whose elements ^ (t real) are defined by
(17) e,(K)=^ (Un^).

A measurable function h from X to B is called coherent if h (r x)—h (x) is
in ^o f01 almost every x. For example, h is coherent if its values lie in a
single coset of BQ. Our result essentially says that every coherent function
has this form.

A difficulty arises from the fact that B has no countable neighborhood
base at 0. Say that a mapping k from X to B is a null function if ^ o k (x) = 1
a. e. on J^for each ?i in R^. (Unfortunately we cannot say that k (x) = 0 a. e.)
We can prove the following theorem.

THEOREM 6. — Under the hypotheses of Theorem 5, every coherent mapping
hfrom X to B differs by a coherent null function from a function taking its
values almost everywhere in a single coset of BQ.

Define a coordinate function on BQ by setting c (e^) = t. Given a coherent
mapping h, set v (x) = c \h (r x)—h (x)]. Then

exp i ̂  v (x) = X, o h (T x)IK o h (x),

a multiplicative coboundary for each ̂ . By Theorem 5 there is a measurable
real function w such that v (x) == w (^ x)—w (x) a. e. Set w (x) = e^^y
Then the last equation means w (r x) — w (x) = h (r x) — h (x) a. e. That is,
the function k (x) = w (x}—h (x) is invariant under T. Since the dynamical
system is ergodic, X o A: (x) is constant a. e. for each X. This constant is a
multiplicative function of ?i, and so defines an element y of B:

X o k (x) = y (^) a. e. for each 9i.

Thus k (x) —y is an invariant null function, and the theorem is proved.
The hypothesis of separability in Theorems 5 and 6 cannot be omitted.

Take for X the group dual to the discrete circle and for T an ergodic trans-
lation. Then exp i K (that is, v (x) identically 1) is a multiplicative coboun-
dary for each ̂ , but v is not an additive coboundary. In the other language,
there is a coherent mapping h from X to B not taking values in a single coset
of BQ. For each character x of the discrete circle, let h (x) be the character
of Rd defined by h (x) (X) = x (exp i X).
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SECTIONS IN FUNCTION SPACES 19

The idea involed in Theorem 6 can be carried further v. Let r be a
countable dense subgroup of the line. Give T the discrete topology,
and call its dual K. Define the distinguished subgroup KQ = (e^) as above.
To the coherent mapping h from X into K associate the rea1 function
v (x) = c \h fr x)—h (A-)]. For each A, in F, exp i K v == ^ o h fr ^)/^ o A (^),
a multiplicative coboundary. It is not difficult to show, using the fact
that r is countable, that every function v such that exp i X v is a multi-
plicative coboundary for all ^ in r is thus obtained from a coherent
mapping h of X to K. Two coherent mappings determine the same v
if and only if they differ by a constant element of K. Finally, v is an
additive coboundary if and only if h takes its values in a single coset
of KQ. The fundamental theorem of H. DYE on weak equivalence
of dynamical systems shows that in ordinary cases there are coherent
mappings whose values do not lie in a coset of KQ. Thus Theorem 5
can be viewed as the statement in a dramatic way that Dye's theorem
cannot be extended to a particular non-separable context.

Our remarks lead to this result: if exp fkv is a multiplicative coboundary
for each \ in F, a dense subgroups of R, and if ̂  is any non-zero element
of r, then v is additively cohomologous to a function v whose values are
multiples of 2 n/C,. For each element of K has a unique representation
in the form y+e^ with y ( Q = l and 0 < t < 2 TT/^. Let h be the coherent
mapping of X to K associated with v; define r(y-{-e^ ==y and A' = roh.
Then h' is coherent and the corresponding function v' is cohomologous
to v (because h'-h has values in Ko). But h' (^x)—h' (x) = e^ where u
is a multiple of 2 TC/^, which proves the assertion.

In the same way, any effective procedure for changing the value of h (x)
within the same coset of KQ leads to a function cohomologous to v. We
think of h (r" x) as a function of n with values in a line that has a scale
of distance but no origin. An "effective procedure" is a Borel operation
that transforms sequences in some space to sequences in another, prefe-
rably smaller space. The operation should commute with translation
in n, and with translation in the range space. The functionals ^> of
paragraph 2 transformed sequences to constants, which we identify
with constant sequences, and were required to have exactly these proper-
ties. Now we want to generalize Theorem 1 to cases where the operat-
ion is allowed to be of more general type.

8. A cone will be a family of real sequences containing all constant
sequences, invariant under translation, closed under addition and multipli-
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20 H. HELSON

cation by positive scalars, and endowed with a Borel structure consistent
with these operations. A homomorphism from a cone L to a cone M will be
a Borel mapping from L to M that commutes with translation and with the
addition of constants.

A cone is measurable if the coordinate functions are Borel functions
on the cone; and if in addition each additive cocycle v {n, x) belonging to
the cone as a function of n for each x defines a mesurable mapping from
X to the cone.

THEOREM 7. — Suppose a cocycle v (n, x) takes values in a measurable
cone L, and suppose there is a homomorphism of L into a measurable
cone M. Then v is cohomologous to a cocycle with values in M.

Let w (., x) be the element of M obtained by applying the homomor-
phism to v(., x). The properties of a homomorphism imply that

v (x) = w (k +1, x) - w (fe, T x) for each fe.

The function w (x) = w (0, x) is measurable on X, and by induction we
find

w(n, x) = v(n, x)+^(T"x).
This sequence is in M for each x, so

w (n, x)-w (x) = v (n, x)+[w (r" x)-w (x)]

is also in M, and this is a cocycle cohomologous to v as required.
This theorem enables us to prove that homomorphisms between certain

cones do not exist, by constructing appropriate cocycles.
THEOREM 8. — Let L be the space of Theorem 1, MQ the cone of constant

sequences, and M^ the cone of non-decreasing sequences in the topology
of uniform convergence, or the topology of pointwise convergence. There
is no homomorphism ofL into M^, nor of M^ into MQ.

All the cones are measurable. Take v = 1 on any dynamical system.
Then v (n, x) is in M^ for each x. If there were a homomorphism of M^
to MQ v would be a coboundary, which is not the case.

Let v be the function of Theorem 4 on a dynamical system such that v
is not a coboundary. If there is a homomorphism from L to Mi, then
for some measurable function w we have v(x)+w (xx)—w (x) ^ 0 a. e.
By the ergodic theorem,

(18) lim^ ̂ n~'l[v(n,x)+w (r" x) - w (x)]

exists a. e., and is evidently non-negative. Since v has mean value 0 by
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SECTIONS IN FUNCTION SPACES 21

construction, lim n~1 v (n, x) = 0 a. e. Aho lim n~1 w (x) = 0. Hence
lim n~1 w (r" x) exists a. e. and equals the limit in (18).

Now lim inf | w (r" x) is finite a. e. Thus the limit in (18) is 0 a. e.
It follows that the non-negative function v (x)+w (r x)—w (x) has
integral 0 and therefore vanishes a. e. That is, v is a coboundary. This
contradiction shows there is no homomorphism from L to M^

Let P be the space of all leal polynomials, restricted to the integers,
with the topology of pointwise convergence. Let P^ be the subspace
of polynomials of degree at most k (so that PQ is the same as MQ above).

THEOREM 9. — There is no homomorphism ofL, the space of Theorem 1,
into P, and so a fortiori there is none into Pkfor any k = 0, 1, 2, . . .

The case k = 0 was Theorem 1. Suppose there is a homomorphism
of L into Pfc for some positive k. Let v be a non-trivial cocycle with values
in L, say the one constructed in Theorem 4. As in the proof of Theorem 7
(19) v (n, x) + w (T" x) = w (n, x) = SS ̂  W ̂

where w (., x) is the image of v (., :̂) under the homomorphism. Let Op
be the last coefficient that is not zero a. e. Then p > 0 because v is not
a coboundary. Divide (19) by ̂ , and let TZ tend to oo. Since v has mean
value 0, the first term on the left tends to 0. For the second term,
iim sup ^ 0 and lim inf ^ 0. Hence Op = 0, a contradiction. This proves
there is no homomorphism of L to P^

Finally suppose there is a homomorphism of L to P. We have (19)
again, but the degree k (x) depends on x and can be arbitrarily large.
However replacing n by n+1 in (19) shows that the degree is invariant
under T. Thus k (x) is an invariant function, and we verify that it is
measurable. If the dynamical system is ergodic, k is constant; that is,
the homomorphism carries v ( . , x) to a single P], for almost every x. This
was shown to be impossible in the first part of the proof.
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