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A FRAMEWORK TO STUDY
COMMUTATION PROBLEMS

BY

ALFONS VAN DAELE
[Kath. Univ. Leuven]

RESUME. — Soient A et B deux algebres involutives d'operateurs sur un espace hil-
bertien j^, telles que chacune d'elles soit contenue dans Ie commutant de Fautre.
On enonce des conditions suffisantes sur A et B, en termes de certaines applications
lineaires, ri : A ->• ^ et n' : B -> J^, pour que chacune de ces algebres engendre Ie
commutant de Fautre. Cette structure generalise d'une certaine facon celle d'une algebre
hilbertienne a gauche; elle permet de traiter Ie cas ou Falgebre de von Neumann et son
commutant n'ont pas la meme grandeur.

ABSTRACT. — If A and B are commuting *-algebras of operators on a Hilbert space ̂ ,
conditions on A and B are formulated in terms of linear maps T| : A -> ^ and n" : B -»• ^
to ensure that A and B generate each others commutants. This structure generalizes
the structure of a left Hilbert algebra in some sense. It makes it possible to deal with
cases where the von Neumann algebra and its commutant are not necessarily of the same

1. Introduction

Very often in the theory of von Neumann algebras it is a problem to
determine the commutant of a given von Neumann algebra. Probably,
the most famous example to mention here is the commutation theorem for
tensor products of von Neumann algebras. If M and N are von Neumann
algebras acting in Hilbert spaces ^ and Jf respectively, and if M (x) N
is the von Neumann algebra on Jf (x) JT generated by the operators m (x) n
with me M and n e N, then the commutation Theorem for tensor products
states that the commutant (M ® NY of the tensor product M ® N is
equal to the tensor product M' (x) N ' of the commutants M' and N\ This
Theorem was first proved in a number of special cases, but it was only
until 1967 that TOMITA gave a proof in full generality using his theory
of modular Hilbert algebras ([10], [12]).
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290 A. VAN DAELE

Also, in other situations, the theory of modular or left Hilbert algebras
has been a usefull tool to study commutation problems. Recently, it was
used in the theory of crossed products of von Neumann algebras to deter-
mine the commutant (M (x)^ G)' of the crossed product M (x)^ G of a
von Neumann algebra M with a (spatial) action a of a locally compact
group G on M ([I], |:2], [11]).

However it is not always possible to use the theory of left Hilbert
algebras as such. Very often it is necessary to reduce the general case
to a special case where it is possible to use left Hilbert algebra methods.
The main reason for this is that the left von Neumann algebra ^ (^)
of a left Hilbert algebra ^ is always "equal in size" with its commutant
as / J^f (jaQ J = J^f (jaf)' where J is the canonical involution associated
to ja^. The reduction to the case where M and N have separating and
cyclic vectors in the tensor product case is a good illustration of such
a reduction [8].

Another fact we want to mention here is that in some cases it turned
out that the full theory of left Hilbert algebras is not needed to solve
commutation problems. Again a good example is provided by the tensor
product case; there a number of more direct proofs have been obtained
later. Recently, such a proof has been given by M. RIEFFEL and myself,
using only bounded operators [5]. The proof is based upon the following
result: Given two *-algebras A and B of operators on a Hilbert space e^f,
both of which contain the identity, and such that A and B commute,
that is A c B' (or equivalently B c A')', then if co is vector in c^f cyclic
for A, we have that A and B generate each others commutants, that
is A" == B' if, and only if, y4, co +;'2?s(0 ls dense in J'f, where A^ and B^
denote the self-adjoint parts of A and B respectively.

The present paper deals with a generalization of this Theorem. It is
formulated in a framework that also generalizes the structure of a left
Hilbert algebra in some sense. We have called it a "commutation system"
because we feel it is a powerful structure to solve commutation problems.

In section 2, we introduce commutation systems, and we prove the
main theorem. In section 3, we treat the problem of associating commu-
tation systems to a given von Neumann algebra. In section 4, we study
"full commutation systems" behaving very much like full (achieved) left
Hilbert algebras. Finally, in section 5, we give some examples. In a
forthcoming paper with R. ROUSSEAU, we intend to apply our results
to the theory of crossed products [7].
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COMMUTATION PROBLEMS 291

It should be mentioned here that also M. RIEFFEL has developed a
structure for commutation problems [4], but there seems to be no real
relationship between the two approaches except for the fact that in both
cases it is possible to treat von Neumann algebras different in size from
their commutants.

2. Commutation systems

Let A and B be *-algebras of operators on a Hilbert space ^f, and
suppose that A and B commute, that is that every operator in A commutes
with every operator in B. We now want to introduce a structure in
which it is possible to formulate conditions to ensure that A and B generate
each others commutant.

A first quite natural condition is that A and B act non-degenerately
on ^f, that means that if ^e^f is such that a^ = 0 for all aeA,
then i; = 0, and similarly for B. This is of course equivalent with
the assumption that A ̂  and B ̂  are dense subsets of ^. By
von Neumann's double commutant Theorem, we then have that the
weak operator closure A~ of A equals the double commutant A" of A,
and similarly for B.

In the commutation Theorem of [5] mentioned in the introduction,
we have in fact a very simple structure. There conditions are formulated
in terms of a vector co in Jf. It is assumed that co is cyclic for A (or B\
and that A^ o +;' £sco ls dense in ^ where A^ and B^ denote the self-
adjoint parts of A and B respectively.

However it is not always possible to find cyclic vectors and even if it
is possible there might be no cyclic vector for which it is easy to check
the conditions. Therefore we need something more general. Now a
vector co can be considered as a map T| : A —> ̂  by T| (a) = a co, and
similarly there is the map T|' : B—>^ defined by n' (b) = b co. The two
maps are related by the formula a n' (b) = b T| (a) for all a e A and b e B.
On the other hand, if T| and n7 are such maps, and if they are continuous
(with respect to one of the weaker topologies) they must come from a
vector. Indeed, if they are continuous we may assume without restriction
that A and B contain the identity. Then the relation a r|' (b) = b T| (a)
with a= b = 1 implies T|' (1) = T| (1). Put co = T| (1), then using the
Lemma 2.1 below we get T| (a) = T| (a.l) = a T| (1) = a co and simi-
larly T|' (b) = b co.
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292 A. VAN DAELE

So there are good reasons to consider such maps as a generalization
of the structure with a single vector. So as before let A and B be commuting
*-algebras of operators acting non-degenerately on a Hilbert space ^f.
Furthermore let T| :A-.^ and ^f :B->j^ be linear maps satisfying
the relation

ar\\b)= br|(a) for all aeA, beB.

We will then formulate conditions on A and B in terms of the mappings T|
and T|'.

We first give some easy but usefull results on the objects just defined.

2.1. LEMMA. — Let A, B, T| and r|' be as above. Then:
(i) T| (^i a^) == ^i T| (a^) for all a^ a^ e A,

i1' (&i ^) = ̂  TI' (^) /or ^/ Z^, ̂  e ̂ ;
(ii) mz/ linear combinations of elements of the form T| (a* a) mth aeA

are dense in T| (A^), and similarly for B;
(in) T| (As) and i T|' (B,) are real orthogonal, that is Re < T| (a), i T|' (6) > = 0

whenever a e A^ and b e B^ or equivalently < T| (a), r|' (b) > ^ real for
all ae As and b e By

Proof:
(i) Let b e B and a^ a^ e ^4. Then:

b T| (^i a^) = ai 02 ri7 (fc) = a^ b T| (a^) = ba^ r| (a^)

and as this holds for all beB and B acts non-degenerately we get
T| (^i a^) = ^i TI (a^). Similarly for .̂

(ii) Let JT denote the closed real subspace of e^f generated by vectors
T| (a* a) with a e A. Let a e ̂ 5 and fc a non-zero positive integer. Then
trivially

a\{d) =r\(aka)=l^ak+a)(ak+a)-(ak-a)(ak-a)),

so that of- T| (^) e jf. Then for every real polynomial p without constant
term we get p (a) T| (a) e Jf and as the range projection e of a can be
approximated by such polynomials of a we also get e r( (a) e Jf. Now
let & e ^ then:

^ri(ff) = eb\\(a) = ̂ T|'(&) = a^\'(b) = &r|(a)

and again this implies e r\(a) = r\ (a) so that T| (a) e jf. This proves
the result.
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(iii) If a e A and b e B^, we get

<^^(a^),T^/(6)>=<^T^(a),^^'(&)>

=<il(a)^Ti'(6)>

=<il(a),6ii(^)>

which is real as b is self-adjoint. By (ii) then also < T| (a), T|' (b) > is real
for all a e As and A e By This completes the proof.

Now, we want to impose conditions to ensure that A and B generate
each others commutant. In view of what we have seen, it would be quite
natural to impose something like T| (As)+fr|' (Bs) being dense. However
this condition appears to be to strong. Weaker conditions seem to be
possible and will make it easier to find mappings T| and T|' for which the
conditions can easily be checked (especially see [7]).

We introduce the following definition.

2.2. DEFINITION. — By a commutation system we mean a pair of
commuting *-algebras A and B of operators acting non-degenerately on
a Hilbert space ^f, together with linear maps T| : A —> ̂  and T|' : B —>^
such that:

(i) b T| (a) = a ̂ f (b) for all a e A, b e B;
(ii) the set B T| (A) of linear combinations of vectors b T| (a) is dense inJ^;

(iii) the projection [r| (A)~] onto the closure T| (A)~ of T| (A) belongs to
the weak closure B~ of B, and similarly [ri' (2?)] e A~;

(iv) r|(^)+fr|'(^) is dense in TI (A)+r[' (5).

Remark that, by (i), B T| (A) = A T|' (B) so that the formulation is
completely symmetric in A and B. A condition like (ii) is of course
necessary to avoid trivial cases like r\ = T|' = 0. In fact, condition (ii)
and condition (iv) are quite natural in view of earlier works [3]. Only
condition (iii) is new but it turns out to be necessary for the proof of the
main theorem below. However it is an easy one to verify and the condition
follows anyway if A and B generate each others commutant. Indeed, by
Lemma 2.1, T| (A) is invariant under A and so [r| (A)~\ e A' = B" = B~,
and similarly for B.

2.3. THEOREM. — If (A, B, T|, r|') is a commutation system, then A and B
generate each others commutant.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
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Proof. — Remark that we are in a situation where we can use Lemma 2.1.
First, let aeA,, beB and x self-adjoint in A\ then:

<1l(a), fo*XT1'(&)>=<fc^(^) ,XT1'( fo)>

=<^'W,XT1'(fo)>

=<xa^(b),r\/(b)y.

This expression is real as x and a are commuting self-adjoint operators.
Similarly, < T|' (6), a^ y T| (a) > is real for all a e A, b e B, and ^ e £,.

So a*^r| (^) 1 ;r|'(^) with respect to the real scalar product. But,
from [r|C4)]e5", it follows that r\ (A)~ is invariant for B\ and so
a^yr\(a)e^(A)~. As also n(A,)+i^ (B,) is dense in T| (^)+T|' (j&),
we get that

il(A)- c=C^(AJ+n^/(^))- =^(A,r+ir\fW.
So

^* ̂  TI (a) e T| (A,)~ +i ̂  (£,)- and a^y^ (a) 1 f r|' (̂ ).

Then ^^ ri (a) e T| (^)~. Combining the two results, we obtain that
< a ^ y ^ ( d ) , b ^ x ^ ( b ) y is real for all a e A , b e £ , x e A , and y e B,.

Now

<a*^r|(a), 6*xii'W> = <^r|(a), ^T|'(&)> == (yb^(a\ xb^(a)y
=(xyb^(a), &r|(a)>.

Because this is real, we get

<xybi[\(a), br}(a)y = <^r|(a), x^r|(a)>
=<^xfcr|(a), fcr|(a)>.

From this it is possible to obtain that xy = yx by polarization and the
fact that B T| (A) is dense in Jf (see e. g. [8]). Indeed consider first

\[/(ai, a^) == <(xy-yx)bn(a^ br\(a^.

Then v|/ is a sesquilinear form and \|/ (a, a) = 0 for all ,̂ hence \|̂  = 0.
Next consider

<P(^i. ^2)=<(^-^)^ir|(ai), fc2n(^)>.

Then also (p is sesquilinear and (p (&, Z?) = 0 for all &, hence (p = 0. By
the density of B T| (A), it then follows that xy = yx for all x e ̂  and
^ e ̂ ;, and by linearity therefore also when xe A' and y e B\ As A <md B
commute, this implies that A' = B\
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2.4. Remark. — In the proof of the previous Theorem, we have used
that [T| (A)] e2?~, but we did not use the other condition [r|' (B)~\ eA~ .
As we mentioned already this follows then from the conclusion A' = B".
Therefore to have a commutation system it is sufficient to check that
[r| (A)] e B~ as the other condition [r|' (J5)] e A~ will automatically follow.

In close connection with this remark we also have the following result.

2.5. THEOREM. — Let A and B be commuting ^-algebras of operators
acting non-degenerately on a Hilbert space e^f, and let T| : A —> c^f and
T|' : B—>^ be linear maps such that:

(i) b T| (a) = a TI' (b) for all ae A, beB\
(ii) T| (A,)+fr|' (^) is dense in X7.
Then (A, B, T|, T|') is a commutation system^ in particular A' = B ' ' .
Proof. - We always have that T| (AJ+? r|' (B,) c r| (A)+T|' (B). Now

as the weak closures of A and B contain the identity, we get

11 (A) ̂  (B 11 (A))- and 11' (B) c= (A 11' (B))- = (B r\ (A))-.

So T| (A)+11' (B) c CB T| (A))~. So the density of T| (A,)+; 11' W implies
the density of 2?r| (A). So conditions (i), (ii) and (iv) of definition 2.2
are fulfilled.

Now if we look back at the proof of Theorem 2.3, we see that
condition (iii) was only used to obtain that

a*yr\(a)(=r\W+i^(B;)~ for aeA and yeB,.

This is automatically fulfilled here as T| (A^+fit ' (B^) is dense. Therefore
the proof of this Theorem goes through, and we get A' = B" also here.
But then we know that [r| (A)] e B" and [r|' (5)] e A" and so also
condition (iii) of 2.2 is fulfilled. This completes the proof.

It was suggested to us by M. RIEFFEL that also in the general case
condition (iii) might follow from the other conditions in 2.2. However
we have not been able to show this, nor did we find a counter-example.

In sections 3 and 4, we will find some types of converses of the above
commutation Theorems. Let us now finish this section by giving the
relation with left Hilbert algebras.

2.6. PROPOSITION. — Let ^ be a left Hilbert algebra. With the usual
notation in left Hilbert algebra theory [10], let A = n (eat), B = 71' (ja^'),
T| = n~1 and T|' = 7i'~1, then (A, B, T|, T|') is a commutation system with
T[ (A)~ = 11' (2?)~ = ^f. Conversely if (A, B, T|, 11') is a commutation
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system such that T| {A)~ = r^ (B)~ = ̂  then ^ = T| (A) can be made
into a left Hilbert algebra by giving it the ^-algebra structure from A.
Moreover B ^ n' (^f) and n = r|~1 and 71' = r[f~l.

Proof. — If ^ is a left Hilbert algebra it is well known that A = K (^/)
and B = n' (^/) are commuting *-algebras of operators acting non-
degenerately on ^f = ^~. From the relation n (^) ̂  = -JT' (^/) ^ for all
^ e e^ and ^/ e ̂ / and the fact that n and TC' are non-degenerate it follows
that n and 71' are injective. Then we can define T| = n~1 and r|' = K ' ~ 1

and, rewriting the same relation, we get b T| (a) = <2r|'(^) for all ^e^
and b e B. Now because T| (A) = ̂  and T|' (B) = jaT we have that T| (A)
and r|' (B) are dense. Furthermore T| (A^+i T|' (^) = ^+; ̂  and this
is dense as we know from left Hilbert algebra theory (see e. g. [6],
Lemma 5.12). So, by Theorem 2.5, {A, B, T|, T|') is a commutation
system. Conversely, let (A, B, T|, ri') be a commutation system such
that T| (A) and T|' (B) are dense. From a^ (b) = b TI (a) for all aeA
and b e B, it follows that ri (a) = 0 implies a = 0. Similarly r^ (&) = 0
implies b = 0. So r\ and T|' are injective. Then we can consider ̂  == r\ (A)
and equip ^ with the *-algebra structure it inherits from A. In particular

^Oi(^i)) 11(^2) = 'n(^i)-'n(^2) = 'n(^i^2) = ̂ 1^2).
so that 71 (r| (a^) = Oi and n = r|~1. Then the first three axioms of a
left Hilbert algebra are easy to verify. Finally T| (As) -L i r } ' (^) and
jf = r( (A,)~ = ̂ - implies that TI' (B,) c jf1. So TI' (^) c jf^+f jT1

and as ri' (B) is also dense we have J f n f j r = = { 0 } . This then proves
the last condition to have a left Hilbert algebra [6].

Then b T| (a) = a T|' (&) for all aeA and &e.S implies that & ^ = 71 (^) r|' (b)
and b * ^ = n (^) TI' (6*) for all ^ e ̂  so that ri' (6) e ^ ' and 71' (ri' (b)) = b.
Hence also n' = ri'"1 and ^ c TC' (^/).

3. Association of a commutation system to a von Neumann algebra

In this section, we start from a von Neumann algebra M acting in a
Hilbert space and we will prove the existence of commutation systems
(A, B, T|, r|') so that A" = M and hence B" = M'. The situation is similar
to the case of left Hilbert algebras. However there is one important
difference: for any von Neumann algebra M there is a left Hilbert algebra ^
such that M is isomorphic to the left von Neumann algebra ^ (<0 of e ,̂
for commutation systems we actually get M equal to A". This makes it
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possible to use our Theorem 2.3 in more general situations (for a good
example, see [7]).

There are two different posibilities to associate commutation systems
to a given von Neumann algebra.

So let At be a von Neumann algebra in a Hilbert space ^f. In the
first approach, we start from a maximal family of vectors { ^ }̂  such
that the projections e, = [MM' ^] are mutually orthogonal. Here
[MM'^J denotes the projection onto the closed subspace generated by
vectors of the form xx' ^ with x e M and x ' e M'. Of course e, e M n M'
and Siej^ = L Define

A = { x e M ; x€i = 0 except for a finite number of indices i] ,
B = {x 'eM'; x'^. = 0 except for a finite number of indices i}.

Remark that ^ = ^ ̂  so that x ̂  = 0 for all but a finite number of
indices when x e A. Therefore we can define

'[\(a)=Y,ieIa^i when aeA,
' n 'W=Efe j^^ when beB.

(The summation only runs over finite subsets of 7.) We will show that
(A, B, T|, iV) is a commutation system with A" = M and B" = M'. We
first prove the following Lemma.

3.1. LEMMA. — With the notations of above', A and B are dense self-
adjoint ideals in M and M' respectively.

Proof. — Let a^a^eA, choose finite subsets J^ and J^ of / such
that a^e, = 0 for all / e I\J^ and a^ e, = 0 for all ; e T\JZ. Then
(^1+^2) e, = 0 for all i e I\J when J = Ji u J^. Furthermore if ae A
then a* e^ = ^ a* = (ae^ will be zero except for finite number of i.
So A will be self-adjoint. Also xe M and 0 e A implies easily xa e A and
it follows that A is a self-adjoint ideal. Similarly for B.

To prove the density observe that Cj = ̂ ^j^i belongs to A as well
as B for all finite subsets J of 7, and that ^j —> 1 as J increases.

3.2. PROPOSITION. — (A, B, T|, ri') is a commutation system.
Proof. — From Lemma 3.1, we know already that A and B are

commuting *-algebras of operators acting non-degenerately in c^f. Clearly,
T] and T|' are linear, and if ae A and b e B, we trivially have

b^(a)=b^^ia^=^^ba^==^^ab^
=a^(b).
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Now, if x e M, then xej e A for all j e 7, and

^1 O ĵ) = L e J ̂ y ̂  = L e J ̂ y ̂  ̂ i

=xe,^=x^.

If moreover ^/ e M', then ^/ ̂  e B and ;c' ,̂ T| (x6?,) = ^' ̂ . x ̂  == x ' x ^,.
Hence B T| (^) contains all vectors of the form x' x ̂  with x ' e M, x e M
and j e 7, and such vectors span a dense subspace by assumption.

The only condition that remains to be checked is the density of
TI (A,)+i TI' (£,) in T| (A)+r\' (B). Indeed here we know A" = B' so that
automatically [r| (A)] e B" and [r|' (B)] e A".

Now, for any vector co, we have that M^(O+Z'M;CO is dense in
MO+M'O) ([5], [9]).

In particular, for every ae M and j e I, we get that

^,e(M^,+fM^,)-.

Now, if x e Ms, then xej e As as ej is central and T| (xej) = x ̂  as we
saw already. Similarly if x ' e M, then x ' ej e ̂  and T|' (x' ej) = x ' .̂.
Therefore M, ̂ .+; M; ̂ . c: T| (^J+; r|' (B,\ and we obtain that

^,e(r|(A,)+iTl'(B,))- for all aeM and jel.

In general, T| (a) = ̂ ,g y a ̂  for any aeA and as we only have a finite
sum we get TI (a) e (r| (A,) + f T| / (^)) -. Similarly T| / (b) e (r| (A,) +i^ (B,)) -
for all b e B. Therefore we have T| (.4)4-^ (B) c (ri (^,)+f r|' (B,))~ so
that r| (A,)+i^ (B,) is dense in T| (A)+^ (B).

We conclude with the following result.

3.3. THEOREM. — If M is a von Neumann algebra in c^f, then there exist
dense self-adjoint ideals A and B of M and M' respectively and linear
mappings T| and rj' such that:

(i) a TI' (b) = b T| (a) for all a e A, b e B;
(ii) BT{ (A) is dense in e^f;

(iii) T| (A,)+i^(B,) is dense in T| OO+TI' (B).
In particular, (A, B, T], T|') is a commutation system. If moreover the

center of M is countably decomposable one can assume A = M, B = M'
and that there is a vector co such that T| (a) = a co and that T| f (b) = b co
for a e A and be B. So 0) is a vector such that:

(i) MM'co is dense;
(ii) M^CO+^M^G) is dense in Mco+M'co.
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Proof. — The first part is essentially the content of the preceding
Proposition. If M n M' is countably decomposable the index set must
be countable and we can normalize the vectors ̂ , such that Si e 111 ^i 112 < °° •
Then we put o)=^^§., then [MM'co] = ̂ ^ e, = 1. Finally,
MsO+zM^co is always dense in Mco+M'co.

Now we come to the second approach. Here we start from a maximal
family of vectors { ^ }^j such that the families of projections

{^—[M^]}^ and {^=[M^]} , , ,

are both orthogonal families. Put

^ = S f e j ^ and ^ '=S»6j^
then (1 -e) (1 -0 = 0 by maximality (cf. [9], Theorem 1.5). As before
define

A = {xeM; xe, = 0 except for a finite number of indices i],
B = {x 'eM 7 ; x ' e^ = 0 except for a finite number of indices i],

^W =Lej^ if aeA,
^(^Lez^ if fceB.

Also here T| (a) and T|' (b) are well-defined as all sums are finite.

3.4. PROPOSITION. — A and B are dense left ideals in M and M' respec-
tively^ the maps T| and T|' are linear and satisfy:

(i) b T| (a) = a r|' (fr) /or all a e ^4 wzrf b e B;
(ii) T| (^)+^r|/ (2?J f5' 6f^^ ^ -J^.
Proof. — As in Lemma 3.1, it is easy to show that A and B are left

ideals in M and M' respectively. For any finite subset J ^ I, we have
that/j = ^^gj €i-\-(\—e) is in ^4 and also/y —-> 1 as J increases. Therefore
as A is a left ideal, it must be dense. Similarly for B.

As before also b T| {a) == ^ r|' (b) for all ^ e A and A e 2?. It remains to
show that T| (A,)+i TI' (B,) is dense in ^. Put

/ J= l -^+LeJ^ .

/.=l-^+Le^
^J = 2^ieJ^f

for any finite subset J of /.
Then Ms ̂ j + z Af^ ^j is dense in M ̂  + M' ̂ . Let ^ e M, then

x ̂  e (M, ̂ +z M, ̂ )- and if we apply fjfj we get

fj^-fj^f^j^fjfj^j^fjfjM^if.f.M^)-.
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Now if x 6 M, then f, x f, e .4, and 11 (/, x /,) = f j X ^ = /,/; x ̂ ,.
Therefore f,f, M, î  e r| (A,) and similarly fjf, M; ̂  e n' (̂ ).
So we get

fj^e^W+i^(B,))-

for all x e M and finite J. Now if x = x^y and j e J, we get

fjX^e^W+i^Wr

and in the limit as J increases we get x ^j e (r| (As)-{-i T|' (£s))~' Similarly
we get x ' ^e(ri (^)+ZT|' (^))~ and by assumption J^ is spanned by
the vectors x ^j and x ' ^j with xe M, x ' e M' and 7 running through 7.

Again we can conclude by the following result.

3.5. THEOREM. — If M is a von Neumann algebra in J^, then there are
dense *-subalgebras A and B of M and M' respectively and linear mappings
T| : A ->^f and T|' : B—^^ such that:

(i) b TI (a) = a ̂  (b) for all a e A, be B;
(ii) T| (^^-fri' (^) is dense in ^f.

In particular, (A, B, T|, ri') is a commutation system. If moreover either M
or M' is countably decomposable one can take A = M and B = M' and
then there is a vector co such that T| (a) = a co and ^ (b) = b co. 50 co is
a vector such that M, co+; M^ (0 ^ fi^^^ (and so in particular Mco+M' o>
dense).

Proof. — With the notations of before consider A^ n A and 2?* n B
and consider the restrictions of T| and TI' to these sets. Then we can use
Proportion 3.4 as A* n A ^ A^ A which is still dense and (A^ n A)s = Ay

Finally if M or M7 is countably decomposable the set / is countable
and again after normalizing, co = ^gj^i will be the desired vector.

The advantage of the second approach is that we get a commutation
system such that TI (^J+^'TI' (B^) is dense in the Hilbert space, while the
advantage of the first one is that A and B are two-sided ideals.

4. Full commutation systems

In this section, we will define full commutation systems, and we will
see how any commutation system can be enlarged to a full system. In [7],
it turned out to be necessary to work with such systems.

Let A be a *-algebra of operators acting non-degenerately on a Hilbert
space ^f, and let T| be a linear map from A to e^f. To such a pair we
associate a new pair (A, f\) as follows.
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/\
4.1. NOTATION. — Let A and T| be as above, then denote by A the set of

operators be A' such that there exist vectors ^i, ^2 m ^ satisfying

a i;i = b T| (a) and a ̂  = ^* r! (fl) f01" a^ ^ eA.

Because ^4 acts non-degenerately the vectors ^i and ^2 ar^ uniquely defined^ .̂
by &. Therefore we can define a map r\ :A—>^f by the relation

^ y^

for|(a) = ar|(fo) for all aeA, beA.

4.2. LEMMA. — Aisa ^-subalgebra of A ' , T| is linear, and r\ (b^ 62) =b^r\ (b^)/\.
for all &i, &2 e A-

/\.
Proof. — Let a e A, b^ b^ e A, then

fl(r|(fci)+Ti(^))=an(&i)+^'n(^2)=fci^(^)+^2^(^)=(&i+^2)ri(a),

and similarly
a(W)+W))=(b,+b,rr\<ia)

/\.
and it follows that b^+b^e A and that

^(^+^)=TI(^)+T|(^).
Also :

and
^i ̂  (^2) = ̂ i ̂  ̂  (^2) = ^1 ^211 W

afc2il(fc?) = W^) = (&i fc2)*il(^

so that b^b^e A and T| (61 ^2) = ^i 'H (^2)-/\
So we have associated a pair (A, T|) to the pair (A, T|). It would of

course be nice to be able to repeat this procedure. This however can only/<
be done when also A is non-degenerate. Unfortunately it seems difficult
to impose easy conditions on the pair (A, T|) to ensure that A acts non-
degenerately.

Suppose however that we start from a pair of commuting *-algebras A
and B acting non-degenerately on ^f and that we have given linear maps
V{:A—>^ and T|' \B—>^ such that b TI (d) = ar|' (b) for all aeA
and b e B. Then of course B c: A and rj ] B = T|'. In particular, A acts
non-degenerately as B does.

Now if A is non-degenerate we can repeat the construction and consider
^ ^the pair (^4, T|). We have the following Lemmas.
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^< ys.

4.3. LEMMA. — If A acts non-degenerately, then A is a-weakly dense
^ ^

in A' so that in particular A' = A". Moreover we have that A s A ^ A"^
and that T| | A = T|.

Proof. — Let { ^ } be a net in A such that || ̂  || < 1, and ^ —> 1
strongly. Take x e A' and consider ^ = ^ xe^. Then ^ converges

ys

strongly to x. To prove that x^e A, let ^ e A and consider

^ ̂  11 (A) = ̂  ̂  ̂ \ (A) = ̂  ̂ A TI (^),

a^ x* T] (^*) = (^ x^)* TI (^),/\.
so that x^ e A.

^ ^ ^Because A' = A'\ we clearly have that A ̂  A ̂  A" and that T| | A = T|.
^ ^

Because A ^ A and ^4 is non-degenerate, this is also true for A, and we
can repeat the operation once more. As was to be expected we get

(i, ̂ ) = (A, 11).
^ - $ ^4.4. LEMMA. — A = A and T| = T|.

/\./^ /< ./\.
Proof. — By Lemma 4.3 applied to ^4, we know already that A ̂  A

$ ^ ^ ^ ^
and that rj | A = T|. So it remains to show that A c: A. ThereforeT\.̂
let & e y4, then

^ ^ $ ^ ^
^ T| (V) = b T| (^) and a r\ (Z?*) = fc* TI (a) for all a eA.

^ ^As A ^ A and T| y4 = T|, we also get
^. ^.^ ^

a T] (ft) = b T| (a) and a r| (fc*) = b* r| (a) for all a eA
/s.

so that be A.
We now come to some kind of converse of the commutation Theorem

of section 2.
4.5. PROPOSITION. — Let A and B be commuting ^-algebras of operators

acting non-degenerately on ^ and let \\ '.A—>^ and T|' \B—>^ be
linear maps such that b TI (a) = a TI' (b) for all a e A and be B. Suppose

ys. vs.

moreover that A= Band B= A, thenr\ (A^+i^ (By) is dense in T| (A)+r\f (B).
Remark that under the above condition of course T)' = r\ and T| = r\\
Proof. - Let ^e^f be real orthogonal to TI (^)+fr|' (B,). Then

Re < ̂  11 (a) > = 0 and so < ̂  r\ (a) >+< r\ (a), ̂  > = 0 for all aeA,.
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Then as the scalar product is linear in the first term and conjugate linear
in the second variable we can obtain

<^(^)>+<^*U>=0 f o r a l l a e A

and similarly as also ^ -L i TI' (B^) we can obtain

a,^(b)y-^(b^^=0 for all beB.

From the first relation with a = of a^ and a^ a^ e A we get

<^^2)>+<^i),^>=0.

Then define Jf to be the closed subspace of Jf © e^f generated by the
vectors (a^, T| (a)) with aeA. Denote linear operators on ^ © ̂ f by

2 x 2 matrices and let P = i . ) be the projection on Jf. Then^* ^
0 ^ p ^ 1 and 0 ^ q ^ 1 and as jf is invariant for the diagonal action
of A, we get that p, q r e A ' .

As (a ^, T| (^)) eJf, we obtain P (a ^, r( (a)) = (a ^, T| (fi?)) and so

(1) pa^+r\\(d)=a^
(2) ir*a^+^T|(^) = r|(a) for all a e A.

As also < a?i ^, T| (^2) > + < TI (^i), ^2 ^ > = ° for all Oi, ^2 € A we get that
(T| (a), a^) 1 Jf so that P (^ (a), a Q = 0 and

(3) ^il(^)+^q=0,

(4) r*ri(a)+^fl^ = 0 for all a e A.

The equations (1) to (4) can be rewritten as

(1') a(l-^==rr|(a),

(2') ar^= (l-^)ii (a),

(3') ^=-pTi(a),

(4') ^=-r*ii00

and as £ = A it follows that r, p, \-qeB and that

^(P)=-r^ ^(r)=(l-p)^

i1'(l-^)=r*^ i1'(r*)=-^.
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Then we use that < ^, T|' (&)>-< n' (6*), 0 = 0 with b = pr. We get

<S.^(l-p)^>+<r*^,^>=0,

which implies that p (1 -p) ̂  = 0 and r ̂  = 0. Now, from the fact that P
is a projection, we get p2^^ =7? so that rr* ^ = p (1 -p) ^ = 0 and
also r* ^ == 0. Then, for all a e A, we get

r* r T| (a) = ^ (1 - q) T| (a) = qa T|' (1 - ^r) = qar* t, == 0

so that also r^ rr[ (a) •= 0. Then r T[ (a) = 0 and by (1') it follows that
a (1 -P) S = 0 for all a and hence (1 -p) ̂  = 0 and p ^ = ^.

Finally

< ^ r | ( f l ) > = < p ^ T i ( a ) > = = < ^ p i i ( a ) > = < ^ , a T i ' ( p ) > = - < ^ , ^ ^ > = 0
so that ^ J_ T( (A).

By symmetry also ^ 1 n' (^) and the result follows.
With the previous result, we came very close to commutation systems.

We now introduce full commutation systems.

4.7. DEFINITION. - A commutation system (A, B, r\, T|') is called full
if A = B and £ = A.

4.8. PROPOSITION. — Let A and B be commuting ^-algebras of operators
acting non-degenerately on ^f, and let T| \A—>^ and n' :2?—>jf be
linear maps such that:

(i) b T| (a) = a n' (b) for all a e A, be B;
(ii) B T| (A) is dense;

(iii) A = B and B = A;
then (A, B, T|, r [ ' ) is a full commutation system.

Proof. - From the previous result, we know that T| (A,) + i T|' (B,) is dense
in T| G4)+r|' (B). From ^4 = B it also follows that B" = A" = A' by
Lemma 4.3, so that [r\(A)\eB" and [r|'(5)] e^". Then all axioms
are fulfilled.

4.9. THEOREM. - Let A and B be commuting ^-algebras of operators
acting non-degenerately on e^f, and let T[ :A—>^ and ^f :B—>^ be
linear maps such that b T| (a) = a n' (b) for all a e A and be B and such
that B T| (A) is dense. Then (A, B, rj, T|') can be extended to a full commu-
tation system, that is there is a full commutation system (A^, B^ r|i, r\\)
such that A c A^ B c ̂  and r|i j A = T| and T|'J B = n'.
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"X ^ ^ ^
Proof. — Consider (A, A, T|, T|) and apply the previous results.
One might think that also (B, A, rj', r\) is a full commutation system

that extends (A, £, T|, ri'). In general, this will not be true since the
/>>. /\. /\.

relation ar\ (b) = b^\' (a) may fail to hold for some aeB and be A.
To see this take e. g. for A any von Neumann algebra in a Hilbert space ̂
and assume that A has a cyclic vector co but that A is not all of ^ (J'f).
Define also B = C 1 and T| (a) = a CD and T|' (b) = b co for all ae A
and b e B. Then the assumptions of the Theorem are fulfilled. A simple
argument yields that A = A' with T[ (b) = b (D for b e A' and B = ̂  (^f)
with rj' (a) = a co for ae ^ (e^f). Clearly a r\ (b) = b T|' (a) will not hold
for some ae ^ (J'f) and A e A' as it will be possible to find such a and b
not satisfying ab (^ == ba CD.

We also remark that there is a relationship with the notion of full
(= achieved) left Hilbert algebras. Indeed if we consider the commutation
system (A, £, T|, r^) = (n (^), n' (^/), Ti"1, Ti'"1) associated to a left
Hilbert algebra ^ as in Proposition 2.6 we can easily see that B = A
since s ^ ' can be characterized as those vectors ̂  e ̂  such that there is
a bounded operator b and another vector ^ satisfying 6 ^ = n (Q ̂
and 6* ^ = 7i (Q ̂  for all ^ e j^. Therefore also B = n (jaT) and we
will have that (TI; (s/), K ' (^/), ^r"1, Tt'"1) is a full commutation system if,
and only if, ^ is a full left Hilbert algebra.

We now finish this section by introducing the equivalent of left and
right bounded elements in the theory of left Hilbert algebras.

So let (A, B, T|, i^') be a commutation system.

4.10. NOTATION:

A== [beA'\ 3^e^f such that a^=br[(a) for all aeA};

B= [ a e B ' , 3^e^f such that fc^ari^fc) for all beB}.

Also define a mapping TI' : .4 —> ̂  by ^ T|' (b) = 6 T| (^) for all a e A
and b e A, and a mapping T| :: B—>^ by &T| (a) = ar|'(^) for all beB
and a e A. Clearly B c A and ^4 c B and the notations TI' and TI are
consistent as the new mappings are extensions of the old ones.

It is immediate from the definitions that A == A n A* and B = B n B^.

4.11. PROPOSITION. — B and A are a-weakly dense left ideals in A' and B"
respectively. If x e A" and a e B then r( (xa) = x T| (a) and if y e B" and
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be A then T|' (yb) == y ̂  (&). Moreover if (A, B, T|, -p') ^ ^ full commu-
tation system, then b T| (a) = a T|' (b) for all a e B and b e A and

A={beAf; 3^e^f such that a^= br|(a) for all aeB};
B={aGBr;3^G^ such that b^==ar\'(b) for all fceA}.

Proof. — The proof of the first part of this Proposition can be obtained
with methods similar to those used in Lemma 4.2. The density follows
from the fact that A c ^and £ c A. Suppose now that we have a full com-
mutation system. Because A is a left ideal in B", we get JT* A ^ A r\ A* = A
and since our commutation system is assumed to be full so that A == B
we get J* A c B. We know that b T| (a) = a T|' (b) for all a e B and b e B.
We apply this with b ••= b^b^ where &i, b^eA and we get

b!b^(a) =a^(bf b^) = ab^ (b,) =^*aii'(^).

Then as A is non-degenerate we find b^ T| (a) == a^\' (b^) for all a e B
and b^eA. It then follows from the definition that the last statements
are correct. Several conclusions can be obtained from this result. There
is one we especially want to mention here since it will be used in [7].

4.12. PROPOSITION. — Let M be a von Neumann algebra on a Hilbert
space c^f, then there exist a-weakly dense left ideals N and N of M and M'
respectively, and linear maps T| : N—>^ and T|' : N—>^ such that:

(i) b T[ (a) = a T|' (b) for all aeN and b e N;
(ii) T| (Ay+^ri'^) is dense in e^f;

(iii) N == [beM'\ ^e.?f such that a^=b^(a) for all a e N } ;
(iv) N={aeM;^e^ such that b^==a^\(b) for all beN}.

Proof. — By Theorem 3.5 there exist a commutation system (A, B, T|, T|')
such that A" = M and B" = M' and T| (^)+ZT|' (B^ dense in ^f. By
Theorem 4.9, we can assume that (A, B, T|, ri') is a full system. Then
if we put N = A and N = B, we obtain the result from Proposition 4.11.

Remark that, by 4.11, it is notationally consistent to denote the two
^ x

ideals by N and N. In fact N = N.

5. Applications
In this section, we want to apply the commutation theorem of section 2

to give new proofs of two well known results. In a forthcoming paper,
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we will apply the theory to give a new proof of the so called commutation
Theorem for crossed products [7].

5.1 THEOREM. — Let Xbea locally compact Hausdorff space with a regular
Borel measure \i. Let ^ = L^ (X, (i) and let M be the von Neumann
algebra on ^ generated by multiplications on L^ (X, |i) by continuous
complex valued functions on X with compact support. Then M = M\

Proof. — Denote by Cc(X) the space of continuous complex valued
functions on X with compact support. For/e Cc(X) let m^ be multi-
plication by / on L^ (X, n). Put A = B = {Wp/e C, (X) } and define
T| = T|' by T| (wy.) = /. Then trivially a T|' (b) = b T| (a) for all a e A and b e B.
Also

TiCA^+fii'^) = 11 (A,)+111 (A,) = ii(A)

which is dense and an application of Theorem 2.5 gives A" = B' proving
the Theorem.

For our next example, we consider a locally compact group G with a
left Haar measure ds. Define left and right translations in L^ (G) as usual
by (^/)(0 ==f(s~1t) and (p,/)(0 == A (s)112 f (ts) where s, t e G,
fe L^ (G) and A is the modular function.

5.2. THEOREM. — The commutant of the von Neumann algebra generated
by the left translations [ A^; s e G } is the von Neumann algebra generated
by the right translations { p^; t e G }.

Proof. — Let r ^ -.
A=^ \g(s)^ds;geC,(G)^

'{fB=< g(^)p^;geC,(G)k

where the integrals are considered in the weak topology. It is well-known
and easy to check that A and B are commuting *-algebras of operators
in Z/2 (G'), that they act non-degenerately and that A" is the von Neumann
algebra generated by {^seG} and B" the von Neumann algebra
generated by { p,; s e G }.

Define T| on A and T|' on B by

\([g{s)^ds\=^

^((^sr^f^^ds^f.

ri( g(s)Ms)=g,

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



308 A. VAN DABLE

Then:
(N s(s)\ds\f\(t) = (g(s)(KJ)(t)ds

=^g(s)f(s~lt)ds

= jg((s)/(s-1)^

=f/(s-l)A(s)-l/2(p,g)(0^

=((J/(S-1)A(S)-1/2PS^)^)(0•

This relation implies that T| and T)' are well defined and that a -f}' (b) = b T) (a)
for all a e A and Z» e B. We will now show that n ( ,̂) + ;• T)' (5,) is dense
Now: / f v r— r _

I g(s)Msl = g(s)X,-ids = A(s~l)g(s~l)K,ds

and TI (^4,) consists of those functions g e Cc (G) satisfying

Similarly g^=^-i)g(s=^).

(^(s)-l'2f(s-l)^dsY=SA(s)-l/2jr(s^)p^ds

^ACs-^ACs-1)-1/2/^^

= ̂ (sr^TWP.ds

and T)' (-5,) consists of those functions /e Cc (G) such that

f(s)=f(s-1).

Now any feCc(G) can be written as

^-d^/ îS7^)
î̂ -î ,̂ )

proving that ^ (^)+;r|' (£,) is dense. Again an application of our
Theorem 2.5 yields the result.
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