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A HAHN-BANACH EXTENSION THEOREM
FOR ANALYTIC MAPPINGS

BY

RICHARD M. ARON 0 and PAUL D. BERNER (2)
[Dublin]

RESUME. — Soient E un sous-espace vectoriel ferme d'un espace de Banach G,
U un ouvert de E, et F un espace de Banach. On considere Ie probleme du prolongement
des applications analytiques de U a valeur dans F a un ouvert de G, et on trouve des
conditions necessaires et suffisantes pour 1'existence de tels prolongements. Ces conditions
entrainent 1'existence d'une application lineaire continue de prolongement de E ' a G'
ce qui, a tour de role, se rapporte au theoreme de Hahn-Banach vectoriel.

ABSTRACT. — Let E be a closed subspace of a Banach space G, let U be an open subset
of E, and let F be another Banach space. The problem of extending analytic F-valued
mappings defined on U to an open subset of G is discussed, and necessary and sufficient
conditions are found for such extensions to exist. These conditions involve the exis-
tence of a continuous linear extension mapping of E ' to G\ which in turn is related to
the Hahn-Banach theorem for linear transformations.

We consider the problem of extending an analytic mapping defined on
an open subset U of a closed subspace E of a Banach space G to an analytic
mapping defined on an open neighbourhood of U in G. Our general
approach is to obtain extensions to the whole space G of polynomials defined
on E, and then to use local Taylor series representations to extend analytic
functions locally. It is necessary to show that the local extensions are
"coherent in the overlaps". This can be done when one can define a linear
and continuous extension mapping taking polynomials defined on E to their
extensions defined on G, which in turn is closely related to the vector-valued
Hahn-Banach property as studied by NACHBIN, LINDENSTRAUSS, and others.

The general question of extending analytic mappings on topological vector
spaces was raised by DINEEN in [4]. He and other authors (HIRSCHOWITZ,
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4 R. M. ARON AND P.D. BERNER

NOVERRAZ et coll.) discussed the existence of an analytic extension of
mappings defined on a dense (vector) subspace of a locally convex space.
The case of extending from a closed subspace E of a Frechet nuclear space G
was studied by BOLAND who showed that every analytic function defined
on E has an extension to an analytic function on G.

The main result (theorem 1.1) and its corollaries are presented in section 1,
after the review of some necessary terminology. Briefly, this result states
that given a pair of Banach spaces E <=. G, the existence of various types of
holomorphic extensions is equivalent to the existence of a continuous linear
extension mapping from E ' to G". The proof of this result relies on the
important special case of extending analytic mappings from a Banach space
to its second dual, which is discussed in section 2 where we prove our main
result. In addition, section 2 contains several related results including an
extension result for "nuclear" entire functions analogous to that of BOLAND,
and several examples. Throughout, the case of complex analytic (or
holomorphic) mappings is emphasized as the real analytic case (theorem 1.2)
follows easily from it.

The authors wish to acknowledge helpful conversations with Philippe
NOVERRAZ, Sean DINEEN, and Philip BOLAND concerning this work.

1. Main result

We recall some notation from [9] (see also [10]). All Banach spaces
considered will be complex Banach spaces except when indicated otherwise.
For all ^eN, L^E, F ) (resp. ^("£, F)) is the space of all continuous
^-multilinear (resp. and symmetric) mappings from E X . . . X E into F
normed by A \-> sup |[ A (x^ ..., x^) || where each x^ 1 ̂  i ^ n, ranges
over the unit ball of E. ( L ( ° E , F ) = F ) . ^ ("£, F), the continuous
n-homogeneous polynomials from E to F, consists of the Banach space of
mappings { A : x e E h-» A (x, x, . . . , x); A e L^ ("E, F ) } , normed by
A —> sup { [ [ A (x) ||; [ [ x || ^ 1 }. Let U a E be open and non-empty.
A mapping/: U—> E is called holomorphic if for each x e U there exists a
power series ^o^fc^-^ with P k ^ ^ ( k E , F ) for each A^eN, which
converges uniformly to /(y) in a neighbourhood ofx. Such a series is neces-/\
sarily unique and for each k, P^ called the kth Taylor series coefficient off
at x, is denoted by ( l / k \ ) d kf(x). The space of all holomorphic mappings
from U to F is denoted by ̂  (U, F). The space spanned in ̂  ("£, C) by
{ (p" : x e E\—> ((p (x))"; (p e E ' } is the space of continuous ^-homogeneous
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ANALYTIC MAPPINGS 5

polynomials of finite type, denoted ̂  ("£'). The closure of ̂  ("E) (x) F
in ^ ("F, F) is denoted by ̂  (n^ F)' ^x ("̂  ^) (resp. ̂  ("F, F)) is
the closed subspace of SP ("E, F ) consisting of those polynomials which
map the unit ball in E into a relatively compact (resp. relatively weakly
compact) subset ofF. Notice that

^("£) ® F c: ̂ CE, F) c ̂ ("F, F) c: ̂ ("£, F) c: ̂ ("E, F).

In general, these inclusions are proper. For 9 = C, K, or WK, we let

f 1 - 1j^([7, F) = \ fe^(U, F); for all neN and xe U, - cT f (^e^^E, F)\.
[ n\ }

The elements of^^F) are said to be of type 9. We remark that for
connected U, /e^ (U, F) (resp. J^^K W F)) ̂  and only if, / maps
some ball in Uinto a compact (resp. weakly compact) set (see [1] and [13]).
Similarly, we define L^ ("£, F) (resp. L^^ ("F, F)) as the subspace of all
A e L ("E, F) mapping a neighbourhood of zero in E n to a relatively (resp.
weakly) compact set in F. Finally, we set

jf^F, F) = {/e^f(F, F);/is bounded on bounded sets}
and

^fe& (^ F) = ̂ e (^ ^) ̂  ̂  ( .̂ ^)» for 6 = C, K, or TYK.

^ (F, F) and Jf^ (F, F) are Frechet spaces with the topology of uniform
convergence on bounded sets.

DEFINITION. — A Banach space F is called a ^^-space (or just a ^-space)
ifF is complemented in its second conjugate space F " and there is a projection
n : F / / —> F onto F of norm ^ X.

Example 1. — Every conjugate space F' is a ^i-space (the transpose of
the inclusion F c> F" projects F ' " onto F' with norm 1).

Example 2. - L1 (^, X) is a ^i-space for ^locally compact and [i a-finite
(restrict an element of L°° (n, Xy to the subspace C^ (X) and apply the
Lebesque-Radon-Nikodym theorem).

Example 3. - Every ^-space (in the sense of DAY [3]) is a ^-space
(A ̂ -space may be defined as a space which is complemented in every
space that contains it with projection of norm ^ X).

Example 4. — CQ, the Banach space of all complex null sequences, is not
a ^-space.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



6 R. M. ARON AND P. D. BERNER

THEOREM 1.1. — Let G be a complex Banach space, and E cz G a closed
subspace. Then the following conditions are equivalent:

(1) for every ^-space F, U <= E open and non-empty, and /e^f (U, F )
there exists a W c= G open, andfe^ (W,F) such that U c= Wandf\y = f;

(2) for every f^^ (E, E " ) there exists a W c G, open, andfe^ (W, E")
such that E c= W and f\^ = f;

(3) for every ^-space F, there exists a strict morphism

T: ^,(E,F)-^^,(G,F)

such that T/IE =ffor allfe^^{E, F);
(4) there exists a continuous linear mapping T:^fj,(E, C) —> J^ (G, C)

such that Tf^ == f for all fe^^^E, C);
(5) for all Banach spaces F, there exists a strict morphism

T: ^,,(E,F)^^(G,F)

such that Tf\^ == / for all fe^^{E, F ) where 9 = C (resp. 9 = K,
6 === WK);

(6) there exists a continuous linear map (p e E ' —> (p £ G' such that (p |^ = (p;
(7) there exists a continuous linear map S : G —> E " such that S \g = Idg.
Furthermore the above conditions imply, and if E has the "bounded approxi-

mation property" (3) are implied by, the following:
Wfor all Banach spaces F, U c: E open and non empty, andfe ̂ f^(U,F ),

there exists an open set W c= G and /eJ^ (W, F ) such that U c= W and
f^ =f where 6 == C (resp. 9 = K, 9 = WK).

The proof will be given in section 2.

Remarks.
(a) Conditions (1), (6) and (7) are complex analytic analogs of part of

Lindenstrauss9 theorem on the extension of compact operators (see [7],
theorem 2.1). This relationship is emphasised further in corollary 1.3 (iii)
below.

(b) The class of ^-spaces is the largest class of range spaces for which
conditions (1) and (3) can hold in the following sense: if F is not a ^-space

(3) E has the "bounded approximation property" if for some constant C > 0, for
any compact set K c E and s > 0, there is a Te E ' ® E with || T|| ^ C and
|| Tx— x || < e for x sK (see for example P. NOVERRAZ [11]).
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then there exists a G and a closed subspace E of G satisfying (6), but not (1)
and (3) with range F. (To see this we let E = F and G = F " . If
Idp e^, (F, F ) extends to a function/defined on an open set in F " theny\
n (y) = d ^(O) 0) would give a projection from F" onto F.)

(c) For every complex Banach space E, the pair E c= (7 EE E" always
satisfies condition (6); thus holomorphic extensions of the type indicated
in the theorem are always possible from a space Eio its second conjugate E " ,
Conversely, in section 2, we v/ill reduce the proof of the theorem to this
special case which we prove directly.

(d) If E is complemented in (7, then the holomorphic extensions of the
type indicated in the theorem are trivially possible. For many spaces E,
the converse is true as shown in the following corollary.

COROLLARY 1 . 1 . — Let G be a Banach space, andE <= G a closed subspace'
If E is a ^-space then the equivalent conditions of theorem 1.1 hold if, and
only if, E is complemented in G. In that case, we may drop the restriction
that F be a ̂ -space in conditions (1) and (3).

Proof. — If E is complemented in G, then it is clear that the conditions
hold. Conversely, if the equivalent conditions of theorem 1.1 hold, (3)
implies that Id^; e^ (E, E) extends to some Id^; G^ (G, E). Reasoning
as in remark (b) above, we conclude that E is complemented in G.

COROLLARY 1.2.- Let G be a reflexive Banach space. The equivalent
conditions of theorem 1.1 hold for every closed subspace E <= G if, and
only if, G is isomorphic to a Hilbert space.

Proof. — Every closed subspace of a reflexive space is reflexive and there-
fore a ^i-space. So if the equivalent conditions of theorem 1.1 hold for
every closed subspace E c= G, corollary 1.1 implies every closed subspace
of G is complemented in G. However, it is known [8] that every closed
subspace of a space G is complemented if, and only if, it is isomorphic to a
Hilbert space.

If G is isomorphic to a Hilbert space, the converse is trivial.

COROLLARY 1 . 3 . — Let E be a Banach space. Then the following state-
ments are equivalent :

(i) the equivalent conditions of theorem 1.1 hold for every G => E;
(ii) there exists a ̂ -space G =? Efor some \^ \for which the equivalent

conditions of theorem 1.1 hold;
(iii) E" is a ^-space/or some ^ ^ 1.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



8 R. M. ARON AND P. D. BERNER

Proof. — (i) => (iii): Suppose E" is a closed subspace of G. We want to
show that E " is complemented in G. Since E cz G, (i) and condition (7)
imply that there is a continuous linear map S : G —> E" such that S |̂  = Id^.
Now 5' [^ : JS"' —^£"' is weak*-continuous, and E is weak*-dense in E\
Hence 5' |̂ , = Id^, so 5' is a projection onto E " , and î ' is complemented
in G'.

(iii) => (ii): Condition (7) holds trivially for G = E".
(ii) => (i): Let G^ be a ^-space satisfying (ii). Then by condition (7)

there is a continuous linear map S^ : G^ —> E" which extends the inclusion
E q: E". Now suppose G is any Banach space containing E as a closed
subspace. Since G^ is a ^-space there exists a continuous linear map
T : G —> GI which extends the inclusion E—>G^ Let S = S ^ o T: G—>E\
S satisfies condition (7) and so (i) holds.

Remark. — The extension of an entire function given in condition (1) of
theorem 1.1 is not necessarily entire, but if it is also bounded on bounded
subsets then it may be extended to an entire function as in condition (3).
This is illustrated in the following proposition (see [4]).

PROPOSITION 1 . 1 . — /e^f (CQ, C) can be extended to an entire function on
l^ if, and only if.fe^^ (CQ, C).

Proof. — Since (c^ = /^ the sufficiency follows from the equivalence of
conditions (7) and (3). Conversely JOSEFSON [6] has shown that each
/e^f(/oo, C) is bounded on each bounded set contained in CQ. That is
7|co^(co, C), hence the result.

Real case. — If E and F are real Banach spaces, we define spaces of
polynomials ̂  ("E, F), ̂ ^ ("£, F), etc. in a way analogous to the complex
case. Similarly, if U <= E is open, and/: U —> F is a mapping, we say/is
(real) analytic if / can be represented in a neighbourhood of each point
in U by a convergent power series. We define spaces of (real) analytic
mappings ^ (U, F), J^Q (U, F), ̂  (U, F), etc. in an obvious way. The
following theorem is the real analog of theorem 1.1, and is proved in
section 2.

THEOREM 1.2 (Real case). — Let G be a real Banach space, and E a closed
subspace. Then if the holomorphic e^f is replaced everywhere by the real
analytic ^ in the conditions of theorem 1.1, the same implications and
equivalences hold with F a real Banach space.

TOME 106 — 1978 — N° 1
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2. Related results

In this section, we prove a lemma which shows how certain polynomial
extension mappings give rise to holomorphic extension mappings. We
apply it to the case of extending holomorphic maps from a Banach space E
to its second conjugate space? E" and then use these results to prove
theorems 1.1 and 1.2. The section concludes with some further results
and comments.

Let us recall that if E and F are Banach spaces, U c= E is open and non-
empty, x e U and/eJ^ (U, F), then the radius of convergence offat x is

rc^,f)==
limsup^llO/nO^/Mll17"

and the radius of boundedness offat x, r^(x,f), is the supremum of all
p > 0 such that the ball of radius p centred at x is contained in U and/is
bounded on it. It is shown in [9] (§ 7, proposition 2) that

r,(x,/) = min{rc(x,/); dist(x, E\U)}.

DEFINITION. — Let R: U—> (0, oo ] be a function satisfying
R (y) =sS dist (y, E\U)for all y e U. Then we define

^(R\ 17, F) == {fe^(U, F); r,(yj) ̂  R(y) for all ye U}
and

^Q(R; U, F) = ̂ (R\ [7, F) n ̂ (^ F) for 9 = C, K, or WK.

We note that for U = E and R =. oo, we have

^f(oo; £, F) = ̂ (£; F) and ^9(00; E, F) = ^^(E\ F).

Also given any/e ̂  (U, F) there exists a function 7? such that/e^f (R; £/, F),
namely R(y) = r^(y,f) for all ^e £/.

Given meN, Pe^^F.F), .yeF, and O ^ k ^ m we recall that
(l//c!) ̂  P OQ e ̂  (T, F) and (see [9]) if P e ̂  ̂ F, F), 9 = C, ,̂ or ]̂ ,̂
then (I/A;!) ̂  P (j^) e ̂  (^F, F ). If A is the (unique) element of L, ^E, F)
such that A = P then

]-dkP(y)(x)=(m\Aym~kxk fora l lxeE,
k! \ k /

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



10 R. M. ARON AND P. D. BERNER

where Aym~kxk denotes
m—k k

A(y, y, ..., y, x,x, ...,x).

In this notation, A ̂ m-fc is a continuous fe-multilinear mapping on E.
We state and prove the following lemma for spaces of type 6 = C, K or

WK, but it is obvious from the proof that it also holds for ̂  (U, F), and
we will use this fact.

LEMMA. — Let G and F be Banach spaces, and E a closed subspace of G;
and let 9 == C, K, or WK. Assume there exists a sequence of linear maps
{ T^ : ̂ e (nE^ F) -^ ^e (nc7' F) LeN and a sequence of real numbers > 1,
{ ̂  }^N such that all k,me1^, k ^m and P e ̂ e (w^ ^),

(i) ^(T.PXjO = T 1 ^?^) for all ^e£;
k! k\

(ii) ||T,P]|^]]P]|,
and
(iii) a = lim sup^ g ̂  (^n)17" < °° •
Then for all U cz E open and non-empty and all R: U—> (0, oo] such that
R (y) ^ dist (y, E\ U)for ally e U, there exists an open set Win G containing
U and a linear mapping T :/e^e (R\ U, F)\-> T/e^fe (W, F ) such that
Tf\u =/ for all fe^Q(R; U, F). We may take W to be the set
W = { x e G; a || x—y \\ < R (y) for some y e U }.

Furthermore, when U = E and R = oo, we may take W = G and
T : Jf^, (£', F ) —>^^ (G^ F ) is a strict morphism.

(Note: For k = 0, condition (i) implies that 7^ is an extension mapping.)
Proof. - For each^ e U, let Uy denote the set { x e G; a || x-y \\ < R(y) }.

Clearly, W= Uyei/ UY ^fine Tyf: Uy-^Ffor esichfe^^R; U, F )
by

TyfW^^JTk^f^x^y) for xel/y.

If a |[ ̂ -^ |[ ^ r < R(y) and P, = (1/^!)^/(^), then:

£r=o||(T.p.)(x-^)||^Er=ol|T,pj| i|x-^]|^Er=o^||p.|
^E^of^Vllp.ll1^)^^

\a /

TOME 106 - 1978 - N° 1
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ANALYTIC MAPPINGS 11

since a = lim sup (a^^ and r^ (y,f) ̂  R(y) > r. Therefore Tyfis well
defined and holomorphic on Uy and by lemma 1, paragraph 9 of [9] we have
that TyfeJ^Q (Uy, F). Now suppose:

(A) Tyf |^n^ = TJ |^n^ for all y , ze U

is satisfied. Then Tf : W-^ F may be defined by

Tf \u, = Tyf and Tfe^,(W, F) for all fe^^R; U, F).

Furthermore the mapping T :/eJfe (R\ U, F ) \-> T/e^fe (W, F) is clearly
linear. So we will proceed to show that (A) is satisfied.

Let Uy1 = { x e G\ a |[ x-y \ < (1/3) R (y) } for all y e U and suppose
that:

(B) V, ̂  n 173, == T,/j ̂  n 173, all v, w e U

is satisfied. Then (A) is also satisfied for the following reasons:
If Uy n U^ ^ 0 and w == ^,y+(l -^) z, 0 ^ K ^ 1, then:

j |w-^|+J|w-z|| = ||);-z|| ̂  \\x^y\\+\\x-z\\<l-(R(y)+R(z)\

for all x e Uy n U^. So either a || w—y \\ < R (y) or a |[ w-z || < R (z).
In either case, since a ^ 1 and R (-) ^ dist (•, E\ U), we have that
we U r\(UyU U^). Now if (B) holds then each T/is well defined on the
connected open set: V= (Jo^x^i ^y+d-^ an(^ smce Z9 Y e v a^
F n (Uy n £4) T^ 0, (A) holds by uniqueness of analytic continuation.

To show (B) let y, z e U and /eJ^e (^ U, F ) be given and suppose
xe Uy n U^ + 0. We must show that Tyf(x) = T^f(x). Without loss
of generality we may assume that R (z) ^ R (y), and (by translation) that
z == 0.

Let ?„ = (1A2!)^/00 and &, = (l/^z!) ̂ /(O), /zeN. If ^ is an
^-homogeneous polynomial, the Taylor series expansion of the non-homo-/\
geneous polynomial v\—> A (v — y) at 0 is

A(v-y)==Tnm^^-CdmA(-yMv) tor all v.
m\

Expanding the A:-th partial Taylor series sum of/at y,

^f,y(P)=^n^Pn(P-y) forallt;eE,

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



12 R. M. ARON AND P. D. BERNER

in this way we have

^.f.y(v) =1^0^=0^-^ P,(-y)(v)\
\ w! /

=S^OJ-dm(E^«Pn)(-};)(").m!

Therefore, <f (^ /, y) (0) = (T (^ ?„) (-^), w = 0 1, ..., k. Expan-
<\

ding the polynomials T^Pn ("-^)? ^ = O? . . . , ^, and using hypothesis (i)

we obtain:

S^o(^P„)(^-^)=E^ofE^=oJ-^(T,P„)(--^)(^^^E^ofE^o-^
\ m!

-E^o—^^^ES^PnX-^)^) for all .eG.

Substituting for ^(E^m^n) (-^) we obtain:

(C) E^o(^„P^^-y)=E^o-l.^dmT,,^,(0)(t;) foralli;eG.
m!

Since a || x-y \\ < (1/3) R (y) and a || x || < (1/3) R (0), and (by assump-
tion) R (0) ^ R (y) we can find real numbers K, p, and a such that

a]|^|| <^<-^(0), ?i<p,

a || x--^|| <p< 1 ^^ ) and ^cK^00.
3 3p

By Cauchy's inequalities applied to/—^^ ^ y at 0:

a»—^,^(o) ^^""sup^^ii.ii^ii/^-T,,^,^)!]
m

for all m, feeN.

Now | | ^ | [ = = ^ and [ |i [ ^ o- implies

\\^-y)\\^^M+M+\^-y\\)
^a(\+ot\\x\\+0i\\x-y\})
^3ap<R(y)^r,(y,f).

TOME 106 - 1978 - N° 1



13ANALYTIC MAPPINGS

Hence:

M=(o^-l)- lsup{| | / (^+^(D-^)) | | ; l ;e£, | | l ; ] |=?l , |^i |=a}<oo.

Now applying [9] (lemma 1, § 6), we have

Qm- —^^ f y(0) ^ ^-"a-^M for all m, feeN.
m!

Therefore, by the linearity of each 7^ and the hypothesis on a^, we obtain:

1(D) ^<2.-—T,^T,,^,(0) ^-"a-^M.
m!

So for all A;eN:

i|To/(x)-T,/(x)||=||E^o7,e,(x)-E^o7,P,(x-j;)||

(using (C):

^||E^+i7,6,(x)||+ E^o^Q.w-S^o^-r.^^^^o)^)
m!

+\\Tkrn=oT^P^x^y)-^T^P^x-y)\\

^=^l\\T^\\.\\x\\m+^ T.e.-J-T.^^^/O)^ Ljm=k+l || ^m m!
+E^i||^^||.||x-^|'»

(using (D)):

^E^+i||e.||a»|[^||'"
+S^o^„,M||x-||m+Z^,J|PJ|aJix-J.i|m.

Since lim sup, (|| Q^ || ̂  || x \\m)l"n < (l/^ (O,/)) a |[ x [| < 1, it follows
that the first (and similarly the third) term above tends to 0 as k —> oo. The
second term is dominated by (Af/o*) ̂ =o (An/01"') (a || x \\/Ky. Since:

,. / ' a m / ' a l M i W ' a l J x I i ,limsup^ ^ -^i—i!- < " " < 1
\a \ A / / A,

the series is convergent and since o > 1 the second term also tends to 0 as
k ->• oo. Therefore Tyf(x) = Tyf(x) and (B) is established.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



14 R. M. ARON AND P. D. BERNER

It only remains now to consider the case U = E and R =. oo. Let n ^ 1
be an integer, and suppose x e G with || x \\ ̂  n. Then:

\\Tf(x)\\= E^or,^d»/(0)(x) <^=o ^^/(O) ^n"
OT!

for all /e^e (oo, £, ^) = .̂ M, CE, F). The Cauchy estimates imply that

^"7(0) ^anr^up^ii^^Jl^z)!) fora l lmeN.

So || Tf(x) [| <CTSUP^|^^ ||/(z) [| where CT = ̂ y (2an)-m(a^nm)<w.
Hence sup^ [| r/|| < o sup^ |[/|| for all/e^es (E, F ) where

A,={xeG; | [ x ] |<n} and 5, = {ze£; |[z|| < 2an}.

Since {!)„ }^^ is a fundamental sequence of bounded subsets of G, and
each £„ is bounded, we see that Tfe^P^ (G, F ) for all/e^i, (J£, ^)and
that T •.^Qi,(E,F)->3«'si,(G,F) is continuous. On the other hand,
restriction to E is obviously a continuous left inverse for T, so T is a strict
morphism and the proof is complete.

PROPOSITION 2.1. - If E and F are Banach spaces, then there exists a
sequence of continuous linear mappings {Yn : L ("E, F)—>L ("E", F " ) }
such that ;

1° |[<Fj| = 1 for alined;
2° ^(Ayn-k)=^A)y"-k for all 0 < k < n, all y e E and all

AeL^E.F), and

30 ̂  : Ly ("E, F ) -^ Le ( " E " , F) <= L ("£, F") for all k e N where ̂  is
the restriction of^f^ to the subspace Ly (*£•, F), and 9 = K or WK.

Proof. — First we assume that the proposition is true when F = C. Then
the mappings { ̂  : L ("E, C)-^L ( " E " , C) }^ induce /^-linear mappings
^ : (£")" ̂  (L ("E, C))' defined by

^(x'i, ..., x',): 5eL("E, C)^(T,,2?)Oc'i, ..., x',)eC

for all (xi', ...,<) €(£")" and neN. The fact that {Y,, }„ satisfies
property 2° implies:

(a) ^(xi, ..., x^By"-^ = ̂ "-'(xi, ..., x,)(B)

for all A:, n e N, 0 < k < n, B e L ( ' ' E , C), y e E ' and Xi, ..., x^ e E " , and
property 1° implies || ̂  || = 1.
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Now we let F be any Banach space and use the sequence of mappings
{ ^n LeN to construct mappings { ̂  : L (»F, F)-^L ( " E " , F ") }^ satisfy-
ing the proposition. For fixed n e N, we identify (isometrically) L ("E, F )
with -L((x)^ E, F) using the projective tensor product topology. Under
this identification AeLe("F,F) if, and only if, the associated mapping
A : (x)^ i E —> F is a compact (resp. weakly compact) mapping where
9 = K(resp. 9 = ^j^). A", the double transpose of a mapping
A e .L (00 "E, F), is a continuous linear mapping from ((x) "Fy ^ L ("F, C)'
into F" and if A is compact (resp. weakly compact) then A" is also and has
range in F (see [5]). Define ̂  by

^: AeL(w£,F)^A / /o^eL("£",F / /), fo ra l lneN.

|| ̂  [| ^ 1 since [| A \\ == \\ A" [ [ and |[ ̂  |[ = 1, and since the composition
of a (weakly) compact mapping with the continuous ^-linear mapping ̂  is
(weakly) compact, we have that ̂  A e Z/e ("F", F) whenever A e LQ ("E, F),
where 9 = K or ^X

For each y e F, 72, k e N satisfying 0 ^ k ^ n and A e L ("F, F) we have
have that (p o ^ ^"-k e L (^ C) whenever (p e F', so by (a) when
(xi, ....^eCT:

^(^i, •••,^)(<POAvn- f c)=^^- f c(Xl, ...,x,)((poA).
That is

î,..., x^o^^-^y = ̂ -\^,..., x,)oA'.
Hence

^(A^-')^, ...,x,)
= (A^-T&^i, . .., x,)) = A-^^-^x,, .. , x,))
^(^A)};"^^, ...,x,).

Thus condition 2° holds for the sequence { ̂  }„. In particular, when
k = 0, we see that the { ̂  } are extension mappings. Thus \\^n\\ = 1

so 1° is satisfied, and we have already seen that 3° holds. Therefore, we
need only consider the case F = C.

First we notice that for all n G N, L ( " E " , C) ^ ((x)^ ^ E ' y is a conjugate
space so, by example 1 of section 1, there is a natural norm 1 projection p^
of L ( " E " , CY onto L ("F//, C). Let ̂  be the mapping

^: B e L (£, L ("T, C)) ̂  ?„ o B" e L (£", L ("£', C)),

where ̂  is the double transpose, B" : E" —>L(E \ C)". It is easy to see
that || 0^ || = 1 and that <!>„ is an extension mapping.
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16 R. M. ARON AND P. D. BERNER

Now we will define the sequence { ̂  : L ("E, C) -^ L ( " E " , C) }̂  by
induction. Let ^o be the identity on L (°E, C) = C == L ̂ E", C) md let
^FI = Oo :^ e ̂  (^ C) h-> A' e L (£", C). Notice that

^,(Ayl)=Ay=(^,A)yl

for all y e £ since OQ is an extension mapping. Suppose that for some
m ^ 1, we have mappings ̂  : L ("£, C) —> L ( " E " , C), 72 == 0, 1, . . . , m,
which satisfy 1° and 2° of the proposition. Let ̂  be the mapping:

^,: AeLC^C)
^{^A : yeE^^Ay^eL^, C^eL^E.L^, C)).

Clearly ||^||= ||^||= 1 so that

^+1 =^n°^n: LC^E, O^L^LC^, C^^L^-1-^, C)

is of norm 1 since the natural isomorphism is isometric. Using the fact
that ̂  is an extension mapping, it follows that, for all A eL(m+lE, C)
and y e E,

(&) ^(A/) = ̂ A)(y) = ̂ o^A)(y) = CF^A)/.

So using the fact that 2° holds for n = m and (b), we have that for all
0 ^ k < w+1 and all y e E,

^(Ay^^) = ̂ ((A^^r"') = (^.(A/))/"''

=(XF,^A)/^~fe=(^+lA)^+l"k.
Therefore by induction there is a sequence of mappings { ̂  }^^ satisfying
1° and 2°. We complete the proof by noting that every C-valued continuous
multilinear mapping is (weakly) compact, and thus 3° holds trivially.

COROLLARY 2 . 1 . — Let E be a Banach space, and F a ̂ -space. If U c= E
is open and non-empty, andfe^ (U, F), then there exists a W c= E\ open,
and an /eJf (W, F ) such that U <= W andf\y = f. We may take W to

be the set ^y^ ̂ ^ff, e^x-y\\ <r,(y,f) for some yeU}.

Furthermore, there is a strict morphism T : ̂  (E, F) —> J ,̂ (E", F) such
that Tf\^ =ffor all fe^, {E, F).

Proof. — The result follows immediately from the lemma once we set
^ (y) = ^ (y^f) f01' ^1 V e U and construct sequences

{ ̂  : ̂ ("£, F)-^C2r, F)}^ and {a^

satisfying the conditions of the lemma with a = e.
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Let n e N and let { ̂  }meN ^e ̂  sequence of proposition 2.1. It is
easy to see that if A e L ("E, F ) is symmetric then ̂  ^4 e L ̂ E\ F " ) is also
symmetric. Thus the restriction of T^ to the subspace L^ ("E, F ) which we
also denote by ̂  maps Z^ ("F, F ) into L, ("£", F "). Since Fis a ^-space
there is a projection TT : F " —> F. Let K == [ | n \ [. For each B e L, ("£", F"),
n o £ e Ly ( " E " , F ) and the mapping 2? i-> TT o B is of norm K.

For each Banach space X, the mapping 5 e L, ("X, F)^->Be^ ("X, F)
is bijective with norm 1, and its inverse B h-> £ is of norm ^ rf/n! (see [9]).
Define T^ : ̂  ("E, F) -> ̂  ( " E " , F) for all n e N by

T» P = 7^0 ̂ P for all P e ̂  ("£, F).

Clearly ]| T^ || ^ X (̂ !). We also have that for each m, fceN,
0 ^ k < m, each y e E and each P e ̂  ("*£', F) :

( 1 ^ ^ \ / m\
T, ^^P^^^oyJ^Up^-^

;̂j..(^p)r-

=^^(^ P)(^).

Finally we note that by Stirling's formula

/ ^V7"limsup^^ X- = ^ < o o .
\ n\}

Hence the mappings {T^ }ne^ satisfy the lemma and the proof is
complete.

COROLLARY 2 . 2 . — Let E and F be Banach spaces. If U c= E is open and
non-empty and feJ^Q(U, F ) then there exists a W c E'\ open, and an
fe^Q (W, F)such that U a Wandf\y =/, where Q == K(resp. 9 = WK\
We may take W to be the set W = { x e E " ; e || x-y || < ^ O,/) for
some y e U }.

Furthermore, there is a strict morphism T\^^ (E, F ) —>^^ (E\F)
such that Tf^ =ffor alife^^ (E, F), where 9 = K {resp. 9 = WK).
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18 R. M. ARON AND P. D. BERNER

Proof. — The proof is the same as for corollary 2.1, except that we define
the sequence { T, : ̂  ("E, F ) -> ̂  (^//, F) }̂  by

T,: Pe^CE^F^^Pe^CE^F)

for all n e N and 9 = A or WK.

PROPOSITION 2.2. — Let E and F be Banach spaces. If U c= E is open
and non-empty andfe^^ (.U, F ) then there exists an open set W c: E" and
anfe^c W F ) such that U c= W and f\y ==/. We may take W to be
the set

W= {xeE"; H ^ - ^ l l < rj,(y,f) for some y e U } .

Furthermore, there is a strict morphism T :^cb(E, F)->^^(E\F)
such that Tf\E =ffor allfe^cb (E, F).

Proof. — The subspace topology on E induced by the weak* topology
a (E", E) on E" is just the weak topology on E. For each n e N, each
P e ̂  f ("E) ® Fis obviously weakly continuous and, as Eis o- (E \ E) dense
in E " , P has a unique extension P by continuity. P e ̂  ("E " ) 0 F and the
extension mapping P h-> P is a linear isometry. Hence it can be extended to
an isometry:

T^ : ^f ("£) 0 F == ^c C% F) -^ ̂ f CE') ®F=^c ("^ F)'

Let (p e E' and x e F', then (p" ® ^ : y e E \-> ((p (^)) "̂  e F is an element
of^c (nJE'?JF) and 7n (<P" ® ^) = $" 0 ̂  where $ is the extension of (p to E"
(by evaluation). Now, for all y e £' and k e N, 0 ^ k < n:

^ W ® x)(y) == (^(y^y ® x = T/^V^^r-^^x)

=l^jk((p"®x)(3;).
fe!

^
Since the operators 7^, T^, and P i-» (I//;!) ̂  P (^) are all continuous and
linear and since the span of polynomials of the form (p" (x) x is dense in
^c^E.F) it follows that (I/A;!) d^ T ^ P ( y ) = (l/k\) T ^ ^ P ^ y ) for all
n e N, y e E, P e ̂ c CE, F ) and k e N, 0 ^ ^ < n. Since || ̂  || = 1 for
all n, we complete the proof by applying the lemma.

Remark. — Corollary 2.2 could be applied to the case 6 = C, as well as
to 9 = K, WK. However, the construction of proposition 2.2 allows
extensions to larger open sets W in this case.
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With the above results we may now easily prove the theorems of section 1.
Proof of theorem 1.1.- The implications (1) => (2) and (3) => (4) are

obvious.
(2) => (7): Let / : E c? E " be the canonical inclusion. Since /e^f (£, E"),

(2) implies that there is an open set W <= G, E c: W, and a mapping
7e ̂  (W, E ff) extending 7. Let S = d 1 7(0) e L (G, E"). For each jc e G,
S (x) is then the directional derivative of 7 at 0 in direction x. It is easy to
check that S \E = / and so (7) is satisfied.

(5) => (6): Each (p e E ' belongs to ̂ ^ (E, C) (9 = C, ,̂ or WK). Let T
be the mapping of (5) and set (p = d 1 (T(p) (0) e G". It is easy to see that
the mapping (p e £" t-^ $ e 6" satisfies (6).

(4) ==> (6): E ' c= ̂  (E, C) so we may reason as above.
(6) => (7): Let T : E ' -> G' be a mapping satisfying (6), let T : G" -> E"

be its transpose and let S : G —> E" be the restriction of T ' to G. An
elementary calculation shows that 5' satisfies (7).

(7) => (1) and (3): Let S be a mapping satisfying (7) and let U c= E, an
open set, and/ e Jf ((7, F) be given where F is a ̂ -space. By corollary 2.1,
there is an open set V <= E" and an/i Ge^f (V, F ) such that (7 c: V and
/i |c/ = /. and there is a strict morphism f : ̂  (£, .F) —>^^ (E\ F) such
that fg\E==g for all ^ejf,(^,F). Let W = S~1 (V) and let
f=fi°S:W—>F. As composition of a continuous linear mapping with
a holomorphic mapping is holomorphic, we have/ejf (W, F) and it is trivial
to see that (1) is satisfied. Similarly T = To S : ̂  (E, F ) —>^b (P, F) is
a continuous linear mapping such that Tg \E = g, for all ge^f^ (E, F).
Tis also a strict morphism as the restriction mapping g ejf^, (G, F ) —>g L
is a continuous left inverse for T, so (3) is satisfied.

(7) => (8) and (5): We reason precisely as in the case above using corol-
lary 2.2 for 6 = K or WK and proposition 2.2 for 9 = C in place of
corollary 2.1 above. We need to note, however, that if S : G —> E" is any
continuous linear map and P e ̂ e ̂ E\ F ) then P o S e ̂ e CG, F) for all
n e N, all Banach spaces F and 9 = C, K or :̂. Hence the composition
of a continuous linear map with a holomorphic map of type 9 is again
holomorphic of type 9, (9 = C, K, or WK).

It only remains to show that if E has the bounded approximation property,
then (8) => (7). By condition (8), if E has the bounded approximation
property with constant C, and if T : E—> Fis a continuous linear finite rank
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operator, there is a holomorphic function T : W —> F which extends T,
^1 <%'where E cz W, and ^is open in G. Then T^ = d T(0) is a linear extension

of T to G, and as in | 7] for some m > 0, independent of T and F,
(| TQ || ^ m |[ T||. Now, let H <= E be a finite dimensional subspace and
let E > 0. Choose Te E ' (x) £, || T \\ ̂  C, such that

j |T/!-^||<8(he^,i |^H^l),

and let 7^ be a linear extension of T with 1 1 T^ \ \ ^ m 1 1 T \ \ ^ m C. Thus,
for each pair (H, s), we obtain linear mappings T and T^, as described
above. Partially order the collection of such pairs by (H, s) > (H\ e') if
H ^ H ' andc^s', and consider the compact setA^]"]^^ ^"(0, w C|| y |[),
where each closed ball B^ (Q,mC\\y\\) has the a (^//, £') topology. For
each (H, c), we get a point 9^^ in X, given by 9(^ (j) = 7^0). An
argument similar to that described in [7] yields that the linear operator S
corresponding to a limit point of the net { 9^ ^ } is an extension of id [jg
proving condition (7).

Q.E.D.

Proof of theorem 1.2. — Let E, G and F be real Banach spaces and
let E^ Gc and F^ denote their complexifications: E^ = E (x)^ C, etc.

Let U c= E be open and non-empty, and let fe ̂  (U, F). f may be
continued analytically to an open subset Uj- cz £^, U c= Uj-, and its analytic
continuation/c ls an element of^f(£/p F^). In particular, if U == E and
/e ̂  (E, F), then £} = £'c and fc eJffc (^c» Fc)• Furthermore, using a
result in [9], if/e jafe (^ F) then/c e^fe (^ ^c) when 9 := c. ̂  or ^^•

Now suppose the mapping S :G—> E " satisfies (7) of theorem 1.2. Then
S^ : x+iyeG^^ S (x) + i S (y) e E^ satisfies (7) of theorem 1.1. Hence
if F is a ^-space there is a W <= C?c open and an/c e^f (^F, 7^) such that
^ c: W and j^ |̂  =/c. Let V =. Wn G and let /== p o^ where
p : F^ —> F is the projection onto the "real part" of F^. Then £/ <= F,
V is open in G, f e ^ ( V , F ) and /[y =/. Hence (7) => (1). If
T : Jff, (£'c. ^c) -^^ (G^ ^c) is the mapping of theorem 1.1 (3), with F a
<^-space,then ^ /e^(£, F)-(po T/c)|.e^(G; F)

satisfies (3). The implications (7) => (5) and (7) => (8) are proved similarly.
For all the remaining implications, we may argue as in the proof of

theorem 1.1.
Remarks. — A particular case of theorem 1.1 gives conditions in which

every element P of ^ ("E; C) extends to an element P of ^ ("G; C). Unlike
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the linear case, it is not in general possible to ensure that [ [ P \ \ = [ | P \ \ for
n > 1. We are grateful to R. M. SCHOTTENLOHER for allowing us to use the
following example, illustrating this. Let G = C3, with the supremum
norm, and let E = [ ( x , y , z ) e G ' , x+y+z=0} with basis vectors
v = (l, -l, 0) and w = (1, 0, -1). Let Pe^(2^; C) be defined by
P (a v + P w) = a2 + a? + P2. Then |[ P |[ = 1, but [| P \\ > 1 for every
extension P of P to ^ CG; C). In fact, if (x, y, z) e E, [| (x. y, z) \\^ = 1
with, say, | x \ = 1, then

|P(x, ^, z)| = \y2+yz+z2\=\y(y+z)+z2\=\P^x, ̂ y , Xz)|

for any complex number ^ of modulus 1. Thus, ] P (x, y, z) | = | y+z2 [,
where we may assume that y+z = 1, and it is routine to verify that
[ y+z2 | ̂  1 in this case. The cases where | .y | = 1 and | z \ = 1 are treated
in exactly the same manner. Now, let u = (1, 0, 0), and let Pe^(2G;
C) be any extension of P,

P(ar+pw+yi0 = o^+ocp+P^S^+^ocy+Sspy.

If ||P || = 1, then |P(1, 1, -1)|, |P(1, -1, 1)|, |py, -1, 1)[, and
|P(f . l , —1) | are all no bigger than 1. The first two inequalities imply
| l+5i | ̂  1 while the last two imply | l-§i | ̂  1. Hence §1 = 0.
Finally, [ P(l, 1, 1) | ̂  1 and | P( -1, 1, 1) [ < 1 respectively yield that
| 1-(82+§3) | ̂  1/3 and | 3-(62+83) | ̂  1, which is impossible. Thus,
the norm of P must be strictly larger than 1.

Theorem 1.1 characterizes pairs of spaces E c: G for which extensions of
many vector valued holomorphic extensions exist (conditions (1), (3), (5)
and (8)) and for which scalar valued extensions exist and are given by a
continuous linear extension mapping (conditions (4) and (5)). The question
remains whether given a pair of spaces E c: G not satisfying say (6) or (7),
do extensions of scalar valued holomorphic functions exist, though not given
by a continuous linear extension mapping? In general, the answer is no as
illustrated in the following example. However, if we restrict the class of
holomorphic functions to a sufficiently small class (nuclear bounded type
described below) then the answer is yes for all pairs E <= G (theorem 2.1)
and we may even allow vector values.

Example 2.1.- Let? be an integer ^ 2 and let E = (Lp (a), [ [ | |p). Then
E can be isometrically embedded in a space G having the polynomial
Dunford-Pettis Property (PDP). For example (see [12]), we may take
G = C(K\ K == the weakly compact unit ball of E ' . When E is infinite
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dimensional, the function P :fe E —> /p d\i is a ̂ -homogeneous continuous

polynomial on E which cannot be extended as a holomorphic function to
any open set in G containing E.

Indeed, if W c G were open, E <= W, and there existed a g eX7 (W, C)
such that ̂  |̂  = P, then P == (I//?!) ̂  ̂  (0) would be an element of^ (^(7, C)
satisfying P [^ = P. But G' has PDP, so P would be weakly continuous,
hence P would be weakly continuous on E which is clearly not the case.

BOLAND showed in [2] that every entire function defined on a closed
subspace of the dual of a Frechet-nuclear (DFN) space has an extension to
an entire function on the larger space. Entire functions defined on a DFN
space correspond in form to the "nuclear bounded type" of Banach spaces.
Motivated by this fact we will prove a similar result in the class of Banach
spaces for entire functions of "nuclear bounded type".

DEFINITION. — Let E and F be Banach spaces and let n e N. The nuclear
norm || [[^ is defined on ̂  ("£') ® F by

il^i|N=mf{E^Ji(pJ|n|ixJi;reN,

and P=S?=i(p?®x,; (p»e£', x,eF}.

The completion of(^f ( " E ) (x) F, [| [[^) is denoted by ̂  ("E, F ) and can
be identified algebraically with a subspace of^ ("E, F).
^^ (E, F), the space of entire mappings of nuclear bounded type from E

into F is defined as follows: /e^, (E, F ) if, and only if, /e^f (£, F),
^/(O) e ̂  (k^, F)for alike N, and\im sup,^ (|| (l/k\) ̂ /(O) 11^=0.

The sequence of norms

|| I],: /e^^^^^^om'IKl/fe!)^/^)!^

defines a Frechet topology on Jf^ (E, F).
The proof of the following theorem is modelled on the method used by

BOLAND [2].

THEOREM 2 . 1 . — Let G and F be Banach spaces and let E be a closed subs-
pace of G. Then the restriction mapping:

R: /e^(G,F)^/|^e^,(£,F)

is a strict morphism onto ̂  ̂  (E, F ) .

Proof. -Let a > 0,n e N and let ̂  = { Pe^ ( " E ) ® F; [| P [[^ < a }.
For each P e B^ there exists r e N, (pi, . . . , (p^ e E ' and x^ ..., x, e F such
that P = ̂  ̂  (p^ (x) x,. By the Hahn-Banach theorem, there exists
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$i, ..., (p,.e G" such that (p^ = (p.and | | (p,] | = [ [ ( p , [ [ , f = 1, . . . , r. It
follows that there exists a Pe^("G)®F such that P [^ = P and
M^-IHLv. Let

D,={Pe^(»G,F);|[P||^<a}.

Then R(D^) =. B,, so

^(DJ =3 {Pe^("£, F); |[ P||^ < a} = B,.

It follows from the continuity of R and the completeness of ̂  ("E, F)
(see [14], p. 76) that R (D^,) =) ̂  for all a, s > 0. Let/e^ (£, F)
and let ]^o ?„ be the Taylor series of/at 0. Then, for each n e N there
exist^ a P, e ̂  ("G, F ) such that ?„ |̂  = P, and [ [ ?„ [[^ < || P, \\^+n-\
Let7(x)=^^n^)- Since

limsup^H ?„ ||̂  ̂  limsup/1| ?„ |]^+ ̂ O,
V n }

it follows that/(x) is defined for all xe G, that/e^f^ (G, F ) and that
f\E = /. Hence R : ̂ ^ (G, F ) —^ ̂ ^ (E, F) is onto. It is also a conti-
nuous map between Frechet spaces so it follows that R is a strict morphism
onto.
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