BULLETIN DE LA S. M. F.

GOPAL PRASAD Non-vanishing on the first cohomology

Bulletin de la S. M. F., tome 105 (1977), p. 415-418 http://www.numdam.org/item?id=BSMF_1977_105_415_0

© Bulletin de la S. M. F., 1977, tous droits réservés.

L'accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Bull. Soc. math. France, 105, 1977, p. 415-418.

NON-VANISHING OF THE FIRST COHOMOLOGY

BY

GOPAL PRASAD [Tata Institute, Bombay]

Résumé. — On démontre que, pour les réseaux Γ du type fini dans les groupes semi simples sur les corps locaux de caractéristique positive, $H^1(\Gamma, \operatorname{Ad})$ ne s'annule pas; ceci est bien différent de ce que passe dans le cas de caractéristique zéro.

ABSTRACT. – It is shown here that, for any finitely generated lattice Γ in certain semi simple groups over local fields of positive characteristics, $H^1(\Gamma, \text{Ad})$ is non-vanishing; this is in sharp contrast with the situation in characteristic zero.

Let K be a local field (i. e. a non-discrete locally compact field), and let **G** be a connected semi simple algebraic group defined over K. Let $G = \mathbf{G}(K)$, and let $r = K - \operatorname{rank} \mathbf{G}$. The topology on K induces a locally compact Hausdorff topology on G; in the sequel, we assume G endowed with this topology. G is then a K-analytic group. Let Γ be a lattice in G i.e., a discrete subgroup of G such that G/Γ carries a finite G-invariant Borel measure. We assume that Γ is *irreducible*, i.e. no subgroup of Γ of finite index is a direct product of two infinite normal subgroups.

In case $K = \mathbf{R}$ and G is not locally isomorphic to either $SL(2, \mathbf{R})$ or $SL(2, \mathbf{C})$, it is known that $H^{1}(\Gamma, \mathrm{Ad}) = 0$; where, as usual, Ad denotes the adjoint representation of G on its Lie algebra (see WEIL [9], [10] for uniform lattices; for non-uniform lattices in groups of **R**-rank > 1, this vanishing theorem follows from the results of RAGHUNATHAN [8], combined with the results of MARGULIS [4] on arithmeticity; for non-uniform lattices in groups of **R**-rank 1, it is contained in GARLAND-RAGHUNATHAN [2]).

It is also known, in view of a recent result of MARGULIS ([5], theorem 8), that in case K is non-archimedean but of characteristic zero, $H^1(\Gamma, \text{Ad}) = 0$ when r > 1.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE

The object of this note is to show that when K is of positive characteristic, then it is not in general true that $H^{1}(\Gamma, \operatorname{Ad}) = 0$.

We shall in fact prove the following theorem.

THEOREM. – Let F be a finite field, and let K be the local field F((t)). Let **G** be a connected semi simple algebraic group, with trivial center, defined over F. Let $G = \mathbf{G}(K)$, let Γ be a finitely generated lattice in G. Then $H^{1}(\Gamma, \operatorname{Ad}) \neq 0$.

Remark. – If G has no K-rank 1 factors, then according to a well-known theorem of D.A. KAZHDAN (see [1]), every lattice in G is finitely generated.

For the proof of the theorem, we need to recall a result of WEIL [10].

We introduce some notation and a definition.

Let Λ be a finitely generated abstract group. We shall let $\mathscr{A}(\Lambda, G)$ denote the space of all homomorphisms of Λ in G with the topology of pointwise convergence. There is a natural action of G on $\mathscr{A}(\Lambda, G)$ induced by the inner automorphism.

Now assume that Λ is a finitely generated subgroup of G, and let $\iota : \Lambda \to G$ be the natural inclusion. Then Λ is said to be *locally* (or *infinitisimally*) *rigid* if the orbit of ι under G is open in $\mathscr{A}(\Lambda, G)$. According to a result of WEIL [10], vanishing of $H^1(\Lambda, \operatorname{Ad})$ implies local rigidity of Λ .

Proof of the theorem. – In view of the above result of WEIL, to prove that $H^1(\Gamma, \operatorname{Ad}) \neq 0$, it suffices to show that Γ is not infinitisimally rigid.

For i > 1, $t \mapsto t+t^i$ extends uniquely to give a continuous automorphism a_i of F((t))/F. It is evident that, for any fixed $x \in F((t))$, the sequence $\{a_i(x)\}$ converge to x.

Now since **G** is defined over F, a_i induces a continuous automorphism α_i of G. Therefore, for all $i, \alpha_i.\iota$ is an embedding of Γ in G; where $\iota : \Gamma \to G$ is the natural inclusion of Γ in G. It is also obvious that the sequence $\{\alpha_i.\iota\}$ converges to ι in $\mathscr{A}(\Gamma, G)$. We shall show that none of the $\alpha_i.\iota$ lie in the G-orbit of ι . This will prove that Γ is not locally rigid and hence $H^1(\Gamma, \operatorname{Ad}) \neq 0$.

If possible, assume that, for some *i*, $\alpha_i \cdot \iota = \text{Int } g_i \cdot \iota$. Then $(\text{Int } g_i^{-1} \cdot \alpha_i) \cdot \iota = \iota$, and the main theorem of PRASAD [6] implies that $\text{Int } g_i^{-1} \cdot \alpha_i$ is the identity automorphism of *G*. Hence, $\alpha_i = \text{Int } g_i$.

We now fix a 1-dimensional torus $\mathbf{T} (\subset \mathbf{G})$ which is defined and split over the finite field F (existence of such a torus follows from Lang's theorem [3]). Let $T = \mathbf{T}(K)$. Then since \mathbf{T} is defined over F, $\alpha_i(T) = T$. Moreover,

tome 105 - 1977 - ${\rm n}^{\rm 0}$ 4

for any rational character χ on **T** and all $t \in T$,

$$\chi(\alpha_i(t)) = a_i(\chi(t)).$$

Since $\alpha_i = \text{Int } g_i$ and $\alpha_i(T) = T$, it follows that g_i normalizes T and hence also T. Therefore, for any rational character χ on T :

$$\chi(\alpha_i(t)) = \chi(g_i t g_i^{-1}) = \chi^d(t),$$

where d = +1 or -1. Hence,

(*)
$$a_i(\chi(t)) = \chi^d(t)$$
, where $d = +1$ or -1 .

Now take χ to be one of the generators of the group of rational characters on **T**. Then it follows from (\star) that, for all $k \in K$, either

$$a_i(k) = k$$
 or $a_i(k) = k^{-1}$.

But it is obvious from the definition of a_i , that this is not the case. Hence, none of the α_i . ι lie in the G-orbit of ι . This proves that $H^1(\Gamma, \operatorname{Ad}) \neq 0$.

Remark. – As the above proof shows, Γ is not locally rigid. However, in case K-rank **G** > 1 and Γ is an irreducible uniform lattice, it is *strongly* rigid (see PRASAD [7], § 8).

REFERENCES

- [1] DELAROCHE (C.) and KIRILLOV (A.). Sur les relations entre l'espace dual d'un groupe et la structure de ses sous-groupes fermés, Séminaire Bourbaki, 20^e année, 1967/1968, nº 343, 22 p.
- [2] GARLAND (H.) and RAGHUNATHAN (M. S.). Fundamental domains for lattices in R-rank 1 semi simple groups, Annals of Math, Series 2, t. 92, 1970, p. 279-326.
- [3] LANG (S.). Algebraic groups over finite fields, Amer. J. of Math., t. 78, 1956, p. 555-563.
- [4] MARGULIS (G. A.). Arithmetic properties of discrete subgroups [in Russian], Uspekhi Mat. Nauk, t. 29, 1974, p. 49-98.
- [5] MARGULIS (G. A.). Discrete groups of motions of manifolds of non-positive curvature [in Russian], "Proceedings of the International Congress of Mathematicians [1974, Vancouver]", Vol. 2, p. 21-34. — Vancouver, Canadian mathematical Congress, 1975.
- [6] PRASAD (G.). Triviality of certain automorphisms of semi-simple groups over local fields, *Math. Annalen*, t. 218, 1975, p. 219-227.
- [7] PRASAD (G.). Lattices in semi simple groups over local fields, Advances in Math. (to appear).
- [8] RAGHUNATHAN (M. S.). Cohomology of arithmetic subgroups of algebraic groups I and II, Annals of Math., t. 86, 1967, p. 409-424, and t. 87, 1968, p. 279-304.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE

- [9] WEIL (A.). Discrete subgroups of Lie groups, I and II, Annals of Math., t. 72, 1960, p. 369-384, and t. 75, 1962, p. 578-602.
- [10] WEIL (A.). Remarks on the cohomology of groups, Annals of Math., t. 80, 1964, p. 149-157.

(Texte reçu le 18 février 1977)

Gopal PRASAD, School of Mathematics, Tata Institute of Fundamental Research Homi Bhabha Roahd, Bombay 400 005, Inde.

418

томе 105 — 1977 — № 4