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DIAGONALIZABLY LINEARIZED COHERENT SHEAVES

BY

H. ANDREAS NIELSEN

SUMMARY. — Let X denote a smooth projective scheme with an action of the smooth
diagonalizable group D. The Grothendieck group KD (X) on the category of D-linea-
rized coherent sheaves on X is studied.

The main result is a localization theorem for Ko, an algebraic analogue of the Atiyah-
Segal theorem.

Applications are given to Lefschetz formulas of various types.

RESUME. — Soient X un schema projectif lisse, muni d'une action du groupe diago-
nalisable, lisse, D. On fait une etude du groupe de Grothendieck, Ko (X) sur la cate-
gorie des faisceaux coherent, Z)-linearise sur X.

Notre resultat principal est un theoreme de localisation pour Ie foncteur Ko, variante
algebrique de celui de Atiyah-Segal.

Comme application des formules de Lefschetz de types varies sont donnees.

The paper is concerned with equivariant ^-theory of a smooth pro-
jective scheme X, equipped with an action of a smooth diagonalizable
group D.

Our main result is a localization theorem for the equivariant
^-functor, Ky Namely, the inclusion i : X° -—> X induces a map

i1 : K^W-^K^)

which, considered as a linear map over the representation ring of D,
becomes an isomorphism after a suitable localization.

The localization theorem combined with the Riemann-Roch formula
yields a Lefschetz fixed point formula of the type,

I:,(-iyT.rf(x^4 "(•'̂ •"̂ '•)
JXD ct(^_^N)

valid in a localization of the representation ring of D, see (4.10).
By various specializations of the coefficients, we obtain results of more
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86 H. ANDREAS NIELSEN

classical type, among others the Woods Hole fixed point formula and
those of [2], [4], [5], [9].

It should be mentioned that the localization theorem is inspired by a
similar topological theorem, see [1] for reference.

In case of a torus action, the above form of the Lefschetz fixed point
formula was conjectured by Birger IVERSEN, whom I thank for indispen-
sable guidance not only in this subject.

CONTENTS :
§ 1 : Equivariant ^-theory.
§ 2 : The Gysin morphism.
§ 3 : The localization theorem.
§ 4 : Applications.

NOTATION. — Throughout we fix an algebraically closed field k and
a smooth diagonalizable /r-group scheme D. A denotes the character
group of Z>, and we put R (D) = Z [A]. For x e A, we let e^ denote the
corresponding element in R (D).

For a ^-linear representation E of D, we put

tr(£)=E^A(rank,£J^,

where E^ is the space of semi-invariants of D of weight x in E.
As is well known tr induces an isomorphism from the representation

ring of D to R (D).
Let S ^ R (Z>) be the multiplicative subset generated by elements of

the form 1 — e^, x a non-trivial character of D. An easy consideration
shows 0 ̂  S.

1. Equivariant K-theory

DEFINITION 1.1. — Let X be a scheme (1) with a D-action. Then we
let K^ (X) denote the Grothendieck ring of the category ofZ)-linearized [12]
locally free sheaves on X, the multiplication being induced by (x). The
image of a D-linearized locally free sheaf ^ in K^ (X) is denoted cl ̂ .
Let D-Sch denote the category of /^-schemes with jD-actions, the morphisms

0 Scheme == /^-scheme throughout the paper.
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COHERENT SHEAVES 87

being D-equivariant morphisms of ^-schemes. The pullback functor
makes K^ into a functor

KD : D-Sch015 -> Rings.

As is well known the trace tr gives an isomorphism K^ (Spec (k)) ̂  R (D).
In the following, we shall always view

Kj, : D-Sch^ -> R (D)-Rings.

Put /! = KQ (/), / a Z)-equivariant scheme morphism.

1.2. ^-operations. — We have naturel equivariant operations

X 1 : K^X)-.K^X), i ^O ,
satisfying
(^) For ^ a Z)-linearized locally free sheaf on X

^(d^^cIA1^-.
(**) \: K^X)^l+tK^X)[[t~]],

x^l+^W(x)t\

is a group homomorphism.
^ (X) is actually a X-ring in the sense of SGA 6 ([14], V, 2.4).

1.3. The trivial action. — Suppose D acts trivially on X. A D-linearized
locally free sheaf ^ decomposes ^ = ©^eA^y? where D acts on ^\
through x, ^^ [3]. ^ \-> ̂  g ̂  cl (<^\c) 0 ^% induces a natural map

tr^ : K^(Z)->X(Z)®z^(2))

which is an R (Z))-linear isomorphism (loc. cit.).

1.4. Linear action on projective space. — Let E be a rank r+1 ^-linear
representation of D. Put

^^©xeA^ rankfc£^=n^, E x 6 A ^ = r + l •

n
The action of D on E induces an action of D on P (E) —> Spec k together

with a linearization of Op (1).

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



00 H. ANDREAS NIELSEN

THEOREM 1.5 (2). — We have an R (D)-linear isomorphism

K^(P(E))^R(D)[T]l^^(T-e^\
cl(^p(l))^T.

Proof. — Fix notation for the proof

;==cl(^p(l)),
w = cl (Ker n *(£)-> Op (1)),

i?=cl(n*(£)).

The proof consists in three steps (1.6), (1.7), (1.8).

(1.6) K^(¥(E)) is generated over R(D) by {;"; neZ}.

Let us first make some considerations over graded modules.
D acts on A == Sym^ E through E. By a graded Z)-^-module we under-

stand a graded ^4-module M together with a /^-linear action of D on each
graded piece of M subjected to

a(am) = (<7^)(am); oeD, aeA, meM.

The morphisms in the category of graded JD-^-modules are graded of
degree 0 and as well A" as Z)-linear.

If K e A and At is a graded Z)-^[-module, then M^ denotes the graded
Z)-^4-module obtained from M by twisting the Z)-action as follows :

(T m : = K (a) am; a e D, me M.

Note that if N is a graded Z)-y4-module x e A and n e Z, then

Hom^-^(A,(-n), N) ̂  (N,),

where (A^)^ denotes the semi-invariants of D of weight x in N^
Let us call a graded D-^-module free if it is a finite direct sum of graded

D-A -modules of the form A^(—n\ xeA, n e Z.
In virtue of the above remark, it is clear that if M is a finitely generated

D-A -module then there exists a surjective morphism of graded D-^l-modules
L —> M with L a free graded D-A -module.

(2) This is a particular case of the theorem giving the structure of K (P (E)) for E
a locally free sheaf on a ringed topos ([14], VII. 1.4).
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We are going to prove :
A finitely generated graded D-A-moduie M has a resolution

(*) O^L,+i-^L,->...^Lo^M^O,

where the L^s are free graded D-^-modules.
First it is clear from the preceding remarks that we can find a resolution

as above where LQ, L^ . . . , Ly are free graded D-^-modules.
By Hilbert's syzygy theorem, L^i is a free gradded ^4-Module. Thus it
suffices to prove.
(^k^k) A finitely generated graded 2)-y4-module M which is free as a
graded ^(-module is free as a graded Z)-^-module.

Proof. — Pick a family (w,) of semi-invariant homogeneous elements
of M such that (m^ ® 1^) form a basis for M ®^ k. Let /^ have degree d^
and weight ̂ , and put L = (g) /4^ (- rff). We have a morphism f'.L—^M
whose reduction mod A 4. is an isomorphism. From this and the assump-
tion that At is a free graded -/4-module follows that / is an isomorphism
(see [8], Lemma 2.2).

Returning to the proof of (1.6). The sheafification functor lifts to a
functor 0 from the category of finitely generated D-A -modules to ^-linea-
rized coherent sheaves on P (E). 0 is exact and onto objects. If L is

<v

a free graded Z)-A-module then cIL is an 7?(Z))-linear combination of
{ /"; n e Z }. Now (1.6) follows from (^),

(1.7) }~l.e^l-e^=Q.

The sequence 0-> Ker-^ IP (E) —>0p (1) -^0 gives, with the intro-
duced notation, v.l~1 = w. /^+l . Applying ^ gives

^-^(i+ovwr1).
Now substitute v = ̂ eA^x^ an^ use (1.2) CA^), then

n.eA^^^r^o+o^^r1).
For r = —1, we get the relation

rwi-^r1)"^.
(1.7) follows after multiplication with /r+l :

(1.8) 1, ? , . . . , f are linearly independent over R(D).
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Let ̂  (P, x) : K^ (P (E)) —> R (D) denote the Lefschetz trace, see (4.2)
for details.

Suppose ^^Q^/^0. Let a, be the biggest non-trivial coefficient.
a, = ̂ rj -a, J1"5. By Serre's calculations [13], ̂  (P, /l-s) = 0, i = 0, . . . ,
5'-!. Now apply %j)(P,x) to the above relation, use that % J ) ( P , I ) is
R (Z))-linear and conclude a^ == 0.

2. The Gysin morphism

In this paragraph, we introduce a Gysin morphism (z\) for equivariant
AT-theory, and give three formulas interrelating f, and f ' .

PROPOSITION 2 . 1 . — Let D act on the smooth projective scheme X. Then
the natural map of K^(X) into the Grothendieck group of the category
of D-linearized coherent sheaves on X is an isomorphism.

Proof. — The category of D-linearized locally free sheaves on X is a
full subcategory of the abelian category of JD-linearized coherent sheaves
on X. So by standard theory, e. g. [2] or [6], we are easily reduced to
prove the following lemma.

n
LEMMA 2.2. — Let X—>Spec k be a smooth projective scheme on

which D acts.

(2.3) There exists a D-linearized ample sheaf ^ on X.

(2.4) Every D-linearized coherent sheaf ̂  on X is an equivariant quotient
of a D-linearized locally free sheaf on X.

Proof. — (2.3) is contained in the results of Kambayashi (see [10]).
For (2.4) choose m so large that ^ ® ^m is generated by its global sections.
V = H° (X, ^ ® ^w) is a ^-linear representation of D, (4.1), hence
we have a ^-equivariant surjection n* V—> ̂  00 ^m and therefore ^
is a quotient of n* F® J^"^

DEFINITION 2.5. — Let i: Y—>X be a D-equivariant closed immersion
of smooth projective schemes with D-action. By (2.1), the direct image
functor i^ induces an Abelian group homomorphism

i, : K^(Y)-.K^X)

TOME 102 —— 1974 —— N° 1
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i J
such that for Z—>Y—>X, we have

0°j)!=^%

Three formulas. — Notation as in (2.5). i : Y—>X.

(2.6) The projection formula : For every x e K^ (X), y e K^ (Y) :

i,(y^W)=i,(y).x.

(2.7) The self-intersection formula : Put N = cl (^y/^), ^ y / x b^g
the conormal bundle on Y with its canonical linearization. For every
y e K ^ ( Y ) :

^iOO)=3^-i(N).

(2.8) The cartesian formula : Let
r

T——>Y
.! h

be a cartesian square of D equivariant closed immersions between smooth
projective schemes with .D-action. Then there exists ^ ^ e K ^ ( T ) such
that for every y e K y ( Y ) :

7' (1. (3')) = i\ (Yr •J" (30), Y e ̂ p ( 5').
Remark on proof. — (2.6) follows from a natural isomorphism.

(2.7) follows from a closer look at the " unlinearized " proof (see
MANIN [11] or SGA6 ([14], VII, 2.7)). (2.8) is proved as follows :

Let / denote the inclusion T—>X. Put (Tor is short for Tor'"-1') :

Y^=S(-l)iclr!!Tor.((Py,^).

Let now y = cl (^"), where y is a locally free sheaf on Y :
/i^ = E(-lWTori(^, 4^).

Now
Tor,(<^, i^) = Tor,((9z, ^y) ® 4^

gives
/ »i 3' = E(-l)'clj*Tor,(^, (Py) 0J* 4^-

=^(-l)'cl4((*Tor.(^,^)®j'*^-)
=i;(S(-l)•cl(!!STor.(^,^)./lJ.)
=^(Yr./'3').
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3. The localization theorem

Let D act on the smooth projective scheme X. The fixed point
scheme X0 is smooth [9]. The inclusion i : X° —> ^induces an R (JD)-linear
map

i 1 : K^X^K^X0).

We show that this map becomes an isomorphism after localization with
respect to the multiplicative subset S s R (D) generated by elements of
the form 1 —e^, K a nontrivial character of D. Note 0^5.

LEMMA 3.1. — Let N = cl (^xo/x) tne ^ass in ^D (XD) °f tne conormal
bundle of XD in X. Then X _ i N becomes a unit in S~1 K^ (X0).

Proof. — It is enough to prove that ^_i N is a unit when we restrict
to every connected component Z of XD. Now choose a closed point
z e Z and let j\ : { z ] —^ Z be the inclusion. By MANIN ([II], § 8 and 9) :

K(Z)=Z@KQTU!)

and Ker(7*) is nilpotent. Tensoring this with R(D) and using (1.3),
we obtain a decomposition

K^Z)^R(D)@KerU^

with Ker (7;) nilpotent. Clearly it suffices to prove that the component
of X _ i 7 V after R(D) belongs to S. Now the component of ^_ i N
after R(D) equals

tr^^-i N) = tr^^.i 0-iiV).

All weights of D in the fibre of ̂ ^/x at z are nontrivial as it follows
from the fact that the fixed point scheme is smooth [9], hence we can
write tr^ ̂ j\ N = ̂ o m, e\ By (1.2) (̂ *),

tr^}7^-lN=^^o(l-^TK

which belongs to 5'.

THEOREM 3.2. — The inclusion i : XD —> X induces an R (D)-linear map

i1 : K^W^K^)
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which is an isomorphism after localization with respect to S. The inverse
map is given by

y^S^i^y.^N)-1), yeS-^K^X^

Proof. — Localizing the formulas (2.6) and (2.7), we get

S-'i^y.S^i^x^^S-1^)^,
S^i^S^i^^y.^.^N)

for x e S~1 K^ (X\ y e S~1 K^ (A^).
Using (3.1) and these formulas, it remains to prove the following two

equivalent statements :

(3.3) S~^\ S-'K^X) -^-^(X0) isinjective,
(3.4) S~11, : S~1 K^ (X0) -> S~l KJ) (X) takes the value 1.

We proceed by two lemmas.

LEMMA 3.5. — (3.3) is true for a linear action on a projective space P (E)
\cf. (1.4) for notation].

Proof. - By the calculations in (1.4), we get ¥ (E)0 = u^^¥(E^)
and

5-1 ! ' : (s-l^(D)[T]/^xeA(T-^^)^(^-A^"l^(^)[^]/(T-^n
(r^nn

Using that
(T-^) = e"\l-e^)+(T-e^)

is a unit in *S'~1 R (D ) [T]/(T —e^)"^' for x' ^ K this map is easily seen
to be injective.

LEMMA 3.6. — (3.4) is true for any X.

Proof. — By (2.3), we can find a ^-linear representation E of D and
a jD-equivariant closed immersion j : X—> P (E). The following diagram

X"——>P(£)°
I J D I -
1' 1'
X——> P(£)

j

is cartesian as it follows from the definition of the fixed point scheme.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
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According to (3.5), we can find Zp e S~1 K^ (P^)^ such that
S~1 i p ^ Z p ) == 1. Put

zx ^"W^.YXD, S-1^) = 1
as it follows from the localized version of (2.8).

4. Applications

The applications of the localization theorem we are going to discuss
are based on the Lefschetz trace :

%^X,x): K^X)-^R(D),

X a projective scheme with jD-action.

4.1. Construction ofk-linear representations. — Let us recall that if ^ is
a D-linearized sheaf on X, then we have a canonical action of D on the
cohomology groups H1 (X, ̂ r). Namely for a e D (k) the D-lineariza-
tion of ^ provides a morphism o* ^F —> ̂  which induces a linear map
H1 (X a^ ^)-> H1 (X, j^). Composing this and the canonical map
H1 (X, ̂ ) -> H1 (X, a* ̂ ) gives the action of a on H1 (X, ̂ \

4.2. The Lefschetz trace. — Let A" be a smooth projective scheme with
a jD-action. The functor

^^L(-iytrJT(X,^)

from the category of ZMinearized locally free sheaves to R (D) is additive.
This functor induces the Lefschetz trace :

^(X,x): K^X)-^R(D),

%^ (X, x) is an jR (Z))-linear map satisfying :

(4.3) For a jD-equivariant closed immersion j : Y—>X :

XD(^=XD(^)°JiGO.

(4.4) If D acts trivially on X then he following diagram commutes :

K^X)^K(X)®zR(D)
\ /

^ (X. ;c).\ ^/x(X. x) ® idR(D)

R(D)
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The next proposition shows how to compute the total ̂  by means of ̂
on the fixed point scheme. Moreover (4.4) shows that 7^ on the fixed
point scheme may be computed from the unlinearized 7.

PROPOSITION 4.5. - Let i :XD->X,xe K^ (X), then

%D<iX,x)=S-l^(XD, i\x).(K,,N)-1) in S-^CD).

Proof. - (3.2), (4.3).

Example 4.6. — From the exact sequence

0 -. ̂ ^ -> z* Q^ -. D^ -> 0,

we get ?i_i cl (f* 0,) == X _ i ^.X_i (cl D^) in ̂  (X^. By (4.5),

XD (^, ^-1 cl Q^) == 5Cz) (^D, ^-1 cl ̂ p) in S ~1 R (D).

For D == T an algebraic torus, the equality above holds in R (D). So
we may specialize the characters to 1, and get

%(X,K.M=^XT,^^)

in Z proved by Birger IVERSEN [9].

4.7. Isolated fixed points. - Assume XD finite. Then (4.5) gives for
a D-linearized sheaf ^ on X :

^-^•^•'^-^r.W

4.8. H. WeyFs character formula. — An interesting application of (4.7)
is the case where X = G/B, ^ is a Borel subgroup of the reductive linear
algebraic group G and D = T a maximal torus contained in B (see [2]
and [4]). In characteristic zero, this leads to a proof of WeyPs character
formula (loc. cit.).

4.9. The Woods Hole formula. - Let a e D (k). The evaluation map
A -> ^*, x h^ x (a) gives rise to a ring homomorphism ev^ :R(D) -> k
such that for a ^-linear representation E we have ev^ (tr E ) = Tr (a, E) e k
the usual trace for the operation of a on E.

Let a e 2) (k) be a dense element, i. e. x (a) ^ 1 for all nontrivial charac-
ters K e A, then ev^ factors through R (D) -> S~1 R (2)).
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Applying ev^ to the formula (4.7) gives the following formula in k :

L(-iyTr(o, TO, ̂ )) = ̂ ex. ̂ ^ .
Det(l-^a)

4.10. The cohomological formula. — Assume we have a cohomology
theory in the sense of Grothendieck [7] such that its Chern-character
satisfies the Riemann-Roch theorem

X(X^)= f ch^-.ToddpO.
Jx

For the trivial action of D on X put
trx ch<S>idR(D)

etc : Ko(X)^K(X)®R(D)————>A(X)®Q®R(D),
Todd^ = Todd ® l^),

f " = " f ®id^.
Jx Jx

Now (4.4), (4.5) gives the formula

Y ( X ^ ! ^q^Todd^)^p^A,.^^— ———————-————-————
J X D cto^-iN)

in Q 00 S~1 R (D) for '̂ a D-linearized coherent sheaf on X.

4.11. Specialization to the Witt ring. — Assume char (k) = p -^ 0.
For an element CT e D (k) the composite of the evaluation map (4.9)
ev^ :A—^* and the Teichmtiller lifting w '. k^ —> W(k) gives the map
by : R (D) —> W (k) such that for a ^-linear representation E, we have
&^ (tr E) = j8 Tr (a, £'), the Brauer trace for the operation of <r on E.

Now assume D to be finite cyclic with generator d e D ( k ) . d is
" dense " (4.9), so b^ factors

R(D)->S~1R(D)-. W(k).

The cohomological formula (4.10) specializes through this map to the
formula of Donovan ([2] and [5]).
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