AnTHONY Joseph
 Symplectic structure in the enveloping algebra of a Lie algebra

Bulletin de la S. M. F., tome 102 (1974), p. 75-83
http://www.numdam.org/item?id=BSMF_1974__102__75_0
© Bulletin de la S. M. F., 1974, tous droits réservés.
L'accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

SYMPLECTIC STRUCTURE

IN THE ENVELOPING ALGEBRA OF A LIE ALGEBRA

BY
Anthony JOSEPH

[Tel-Aviv University]

Abstract

It is shown that the enveloping algebra of a Lie algebra satisfies a condition which implies a weakened form of the Gel'fand-Kirillov conjecture. This condition leads to a generalization of a commutant property previously derived for the Weyl algebra, which has its origins in a classical theorem on function groups. This provides a dimensionality estimate which is central to a proof of the Gel'fand-Kirillov conjecture for solvable algebraic Lie algebras.

Résumé. - Il est démontré que l'algèbre enveloppante d'une algèbre de Lie satisfait une condition qui implique une forme affaiblie de la conjecture Gel'fandKirillov. Cette condition amène à une généralisation d'une propriété commutante précédemment dérivée pour l'algèbre de Weyl, qui a ses origines dans un théorème classique en groupes fonctionnels. Ceci fournit une estimation dimensionnelle qui est centrale pour la preuve de la conjecture Gel'fand-Kirillov pour les algèbres de Lie algébriques résolubles.

1. Introduction

Let g be a finite dimensional Lie algebra over a commutative field K of characteristic zero. Let $U g$ denote the enveloping algebra of g and $D g$ the quotient field of $U g$. Let $D_{n, k}$ denote the quotient field of the Weyl algebra $A_{n, k}$ of degree n over K and extended by k indeterminates. Gel'fand and Kirillov ([2]-[4]) have suggested that $D g$ should depend rather weakly on g and for g algebraic have conjectured that $D g$ is isomorphic to one of the standard fields $D_{n, k} . \quad A_{n, k}$ is itself related to a polynomial algebra over the Poisson bracket (essentially equivalent to a manifold with symplectic structure) which has been subjected to considerable analysis. We wish to exploit these interrelationships in studying $U g$. In this it is often sufficient to establish a correspondence of leading order terms. This is illustrated by Theorem 2.3, the second part of which represents a weak form of the Gel'fand-Kirillov
conjecture. The first part leads to an important dimensionality estimate contained in the theorem stated below.

Let g^{*} denote the dual of g. To each $f \in g$ define an antisymmetric bilinear form B_{f} on $g \times g$ through

$$
\begin{equation*}
B_{f}(x, y)=(f,[x, y]) \tag{1.1}
\end{equation*}
$$

Recall that B_{f} must have even rank and set

$$
\begin{equation*}
m=\operatorname{dim} g, \quad n=\frac{1}{2} \sup _{f \in \dot{5}^{*}} \operatorname{rank} B_{f} \tag{1.2}
\end{equation*}
$$

Let $\operatorname{Dim}_{\kappa}$ denote the dimensionality introduced by Gel'fand and Kirillov [2]. It is shown in section 3 that :

Theorem 1.1. - Let A be a subalgebra of $U g$ and denote by A^{\prime} its commutant in $U g$. Then

$$
\operatorname{Dim}_{K} A+\operatorname{Dim}_{K} A^{\prime} \leqslant 2(m-n),
$$

with m, n given by (1.2).
We remark that $\operatorname{Dim}_{K} U g=\operatorname{dim} g$ for all g. If further g is either nilpotent or semisimple $\operatorname{Dim}_{K} C(U g)=m-2 n$ (where C denotes centre). It follows that the above bound is saturated in either of these two cases. This is also true if g is solvable and algebraic. Indeed for g solvable Nghiêm [11] has constructed a maximal commutative subalgebra A of $U g$ and it is shown in [9] by use of the above theorem that $\operatorname{Dim}_{\kappa} A=m-n$. This equality motivated the proof of the Gel'fand-Kirillov conjecture for g solvable given in [9]. We remark that Theorem 1.1 does not follow in any obvious fashion from the truth of this conjecture. This is because the corresponding dimensionality estimates are more difficult to make in $D g$.

2. Weighted filtrations

Let n, k be integers with n non-negative and k positive. Let $g_{n, k}$ denote the Lie algebra over K with basis $\left\{x_{i}, y_{i}, z_{j} ; i=1,2, \ldots, n\right.$; $j=0,1, \ldots, k-1\}$ where $\left[x_{i}, y_{i}\right]=z_{0}$ and all other brackets vanish. Let I denote the two-sided ideal in $U g_{n, k}$ generated by $z_{0}-1$. Set $A_{n, k}=U g_{n, k+1} / I$. Observe that $U g_{n, k}$ is isomorphic to a subalgebra of $A_{n, k}$ (divide the x_{i} by z_{0}) and that $D g_{n, k}=D_{n, k}$ [2].

For arbitrary g, let the subspaces $\left\{U^{(i)} ; i=0,1,2, \ldots\right\}$ define a filtration of $U g$. Set $U_{i}=U^{(i)} / U^{(i-1)}$ and $G(U g)=\bigoplus_{i=0}^{\infty} U_{i}$.

Only filtrations making $G(U g)$ integral are considered.

$$
\text { томе } 102-1974-\text { no }^{\text {o }} 1
$$

In the remainder of this section we assume K algebraically closed.
Lemma 2.1. - Suppose g is either nilpotent or semisimple. Define m, n by (1.2) and set $k=m-2 n$. Then $U g$ admits a filtration such that $G(U g)=U g_{n, k}$.
Proof. - Take g nilpotent. Recalling (1.1) and (1.2) choose $f \in g^{*}$ such that rank $B_{f}=2 n$. Set $g_{0}=\{x \in g ; f(x)=0\}$.

Let B_{f}^{\prime} denote the restriction of B_{f} to g_{0}. We wish to show that rank $B_{f}^{\prime}=2 n$. Let $N_{B}, N_{B^{\prime}}$, respectively denote the null spaces of B_{f} and B_{f}^{\prime}. By [1], Lemma 5, it suffices to show that $N_{B^{\prime}} \subset N_{B}$. Now given $x \in N_{B^{\prime}}$,

$$
(f,[x, y])=B_{f}(x, y)=0, \quad \text { for all } y \in g_{0} .
$$

Hence $(\operatorname{ad} x) g_{0} \subset g_{0}$. Let $z_{0} \in g, \quad z_{0} \notin g_{0}$. Since $\operatorname{dim} g-\operatorname{dim} g_{0}=1$, we may write $(\operatorname{ad} x) z_{0}=\alpha z_{0}+y$, for some $\alpha \in K, y \in g_{0}$. Then for each positive integer r,

$$
\left(\operatorname{ad}^{r} x\right) z_{0}=\alpha^{r} z_{0}+y_{r} ; \quad y_{r} \in g_{0} .
$$

Since g is nilpotent ; $\alpha^{r} z_{0}+y_{r}=0$ for some r and hence $\alpha=0$. It follows that (ad x) $g \subset g_{0}$ which implies that $x \in N_{B}$, as required.

Define a filtration on $U g$ by setting $U^{(0)}=K, g_{0} \subset U^{(1)}, z_{0} \in U^{(2)}$, $z_{0} \notin U^{(1)}$. To show that $G(U g)$ has the asserted property it suffices to show that the generators of g satisfy the commutation relations of $g_{n, k}$ in $G(U g)$. Scale z_{0} so that $f\left(z_{0}\right)=1$. Then for all $x, y \in g$, we have

$$
x y-y x=(f,[x, y]) z_{0} \quad \bmod g_{0}
$$

in $U g$. Hence by choice of filtration we obtain, for all $x, y \in g_{0}$,

$$
\begin{aligned}
x y-y x & =B_{f}^{\prime}(x, y) z_{0}, \\
x z_{0}-z_{0} x & =0
\end{aligned}
$$

in $G(U g)$. Finally bringing B_{f}^{\prime} to canonical form exhibits the defining basis for $g_{n, k}$.

Take g semisimple. As is well-known, $k=\operatorname{rank} g$, and n is the number of positive roots. Let h be a Cartan subalgebra for g, and Δ the set of all non-zero roots. Each root subspace g^{α} is one-dimensional, and g is a direct sum of h and the $g^{\alpha} ; \alpha \in \Delta$. Let B denote the Killing form. To each $\alpha \in \Delta$ define $H_{\alpha} \in h$ (cf. [5], Theorem 4.2) through $B\left(H, H_{\alpha}\right)=\alpha(H)$ for all $H \in h$. Let H_{0} be a regular element ([5], p. 137) of h. Then $\alpha\left(H_{0}\right) \neq 0$ for all $\alpha \in \Delta$. Define $f \in g^{*}$ through $f(H)=B\left(H, H_{0}\right)$ for all $H \in h$ and the condition that it vanish on each

[^0]root subspace. Set $g_{0}=\{x \in g ; f(x)=0\}$. For each $\alpha \in \Delta$ choose $E_{\alpha} \in g^{\alpha}$ such that $B\left(E_{\alpha}, E_{-\alpha}\right)=1$. Then through [5], Theorem 5.5,
$$
E_{\alpha} E_{-\alpha}-E_{-\alpha} E_{\alpha}=\frac{\alpha\left(H_{0}\right)}{B\left(H_{0}, H_{0}\right)} H_{0} \quad \bmod g_{0}
$$
in $U g$ and all other commutators vanish $\bmod g_{0}$. Setting $H_{0}=z_{0}$ the proof is completed with the filtration defined in the nilpotent case.

The conclusion of the Lemma fails on general g. For example, consider the two dimensional (solvable) Lie algebra with relation $[x, z]=z$. Yet through [1], Lemma 5, rank $B_{f}^{\prime} \geq \operatorname{rank} B_{f}-2 ; B_{f}^{\prime}, B_{f}$ as above. It follows that we always have the weaker result, namely that

$$
G(U g)=U g_{n-1, k+2}
$$

for a suitable filtration of $U g$.
Lemma 2.2. - Let B a non-degenerate antisymmetric bilinear form on $V \times V$. Let a be a linear transformation on V such that

$$
\begin{equation*}
B(a x, y)+B(x, a y)=0 \tag{2.1}
\end{equation*}
$$

for all $x, y \in V$. Then there exists a basis $\left\{x_{i} ; i=1,2, \ldots, 2 l\right\}$ for V such that

$$
\begin{equation*}
B\left(x_{i}, x_{2 l-j}\right)=\delta_{i j}(-1)^{j} \tag{2.2}
\end{equation*}
$$

$i, j=1,2, \ldots, 2 l$, and a is upper triangular.
Proof. - Recalling [10], p. 398, choose a basis $\left\{y_{i}\right\}$ for V such that

$$
\begin{equation*}
a y_{i}=\alpha_{i} y_{i}+\beta_{i} y_{i+1} \tag{2.3}
\end{equation*}
$$

$\alpha_{i}, \beta_{i} \in K$ with $\alpha_{i} \leq \alpha_{j}$ for $i \leq j$. Since B is non-degenerate there exists a second basis $\left\{z_{i}\right\}$ for V such that $B\left(y_{i}, z_{j}\right)=\delta_{i j}$, for all i, j. Substitution in (2.1) and (2.3) gives

$$
\begin{equation*}
a z_{i}=-\alpha_{i} z_{i}-\beta_{i-1} z_{i-1} . \tag{2.4}
\end{equation*}
$$

Let V_{i} denote the eigenspace belonging to eigenvalue α_{i}. By (2.2), $B\left(V_{i}, V_{j}\right)=0$, unless $\alpha_{i}+\alpha_{j}=0$. Further when this holds B nondegenerate implies $\operatorname{dim} V_{i}=\operatorname{dim} V_{j}$. Let V_{0} denote the zero eigenspace and V^{\prime} the direct sum of the V_{i} omitting V_{0}. On V^{\prime} set

$$
x_{i}=\left\{\begin{array}{cc}
y_{i} ; & \alpha_{i}<0 \\
(-1)^{i} z_{2 l-i} ; & \alpha_{i}>0
\end{array}\right.
$$

By (2.3) and (2.4), this determines the required basis on V^{\prime}. It remains to determine a basis on V_{0}. Equivalently we can assume a of the lemma nilpotent.

Let r be the least positive integer such that $a^{r+1} V_{0}=\{0\}$. Set

$$
W^{(s)}=\left\{x \in V_{0} ; a^{s+1} x=0\right\} \quad \text { and } \quad W_{s}=W^{(s)} / W^{(s-1)} .
$$

We have

$$
V_{0}=\oplus_{i=0}^{r} W_{i} ; \quad a W_{i} \subset W_{i-1} \quad \text { for all } i .
$$

Hence to prove the lemma it suffices to exhibit a basis for V_{0} on which B is antidiagonal and which, for each i, contains as a subbasis a basis for W_{i}.

Set $U=a^{r} V_{0}$. Then $\operatorname{dim} U=\operatorname{dim} W_{r}$, and by (2.2) :

$$
\begin{equation*}
B\left(U, W_{s}\right)=0 ; \quad s<r . \tag{2.5}
\end{equation*}
$$

Hence there exists a basis $\left\{y_{i} ; i=1,2, \ldots, t\right\}$ for W_{r} and a basis $\left\{y_{i}^{\prime} ; i=1,2, \ldots, t\right\}$ for U such that B is antidiagonal on their linear span U^{\prime}. Further since B in non-degenerate we may assume that $B\left(y_{j}, y_{\iota-j}^{\prime}\right)=(-1)^{j} . \quad$ Set

$$
x_{j}=y_{j}, \quad x_{2 l-j}=y_{l-j}^{\prime} ; \quad j=1,2, \ldots, t .
$$

Observe that $U \subset W_{0}$ and set $V_{0}^{\prime}=W^{(r-1)} / U$. Let $\left\{z_{i}\right\}$ be a basis for $W^{(r-1)}$. Set

$$
z_{i}^{\prime}=z_{i}-\Sigma_{j=1}^{\prime}(-1)^{i} B\left(y_{j}, z_{i}\right) y_{i-j}^{\prime} .
$$

Recalling (2.5) it follows that $B\left(x, z_{i}^{\prime}\right)=0$, for all $x \in U^{\prime}$ and all i. On the other hand $z_{i}^{\prime}=z_{i}$ on V_{0}^{\prime}. Induction provides the required basis. The lemma is proved.

Theorem 2.3. - Define m, n by (1.2) and set $k=m-2 n$. Then $U g$ admits a filtration such that $G(U g)$ is isomorphic to a subalgebra of $A_{n, k}$ and $D(G(U g))=D_{n, k}$.

Proof. - Let $f, B_{f}, B_{f}^{\prime}, g_{0}, N_{B}, N_{B^{\prime}}$, be as in the proof of lemma 2.1. Given rank $B_{f}^{\prime}=\operatorname{rank} B_{f}$, the conclusion of lemma 2.1 holds and the theorem follows easily. Otherwise by [1], Lemma 5, N_{B} is of codimension 1 in $N_{B^{\prime}}$. Choose $x \in N_{B^{\prime}}, x \notin N_{B}$. Then as before $(\operatorname{ad} x) g_{0} \subset g_{0}$ and given $z_{0} \in g, z \notin g_{0}$,

$$
(\operatorname{ad} x) z_{0}=\alpha z_{0}+y ; \quad y \in g_{0} ; \quad \alpha \neq 0
$$

By definition of B_{f} and the Jacobi identity :

$$
\begin{equation*}
B_{f}([x, y], z)=B_{f}([x, z], y)+B_{f}(x,[y, z]) \tag{2.6}
\end{equation*}
$$

for all $x, y, z \in g$. Choosing x as above, $y \in N_{B^{\prime}}, z \in g_{0}$, it follows from (2.6) that $(\operatorname{ad} x) N_{B^{\prime}} \subset N_{B^{\prime}}$.

Suppose that there exists $z \in N_{B^{\prime}}$, such that $(\operatorname{ad} x) z=\beta z ; \beta \neq \alpha, 0$.

Then for all $\gamma \in K$,

$$
\begin{equation*}
(\operatorname{ad} x)\left(z+\gamma z_{0}\right)=\beta\left(z+\gamma z_{0}\right)+(\alpha-\beta) \gamma z_{0}+\gamma y \tag{2.7}
\end{equation*}
$$

Since $\beta \neq 0 ; x, z$ are linearly independent. Let $\left\{x_{i}\right\}$ be a basis for g_{0} with $x_{1}=z, x_{2}=x$. Set $g_{0}(\gamma)=\operatorname{lin} \operatorname{span}\left\{z+\gamma z_{0}, x_{2}, x_{3}, \ldots, x_{m-1}\right\}$. Define $f_{\gamma} \in g^{*}$ such that

$$
g_{v}(\gamma)=\left\{x \in g ; f_{\gamma}(x)=0\right\} .
$$

Denote by g_{00} a maximal subspace of g_{0} on which B_{f}^{\prime} is non-degenerate. Since $z \in N_{B^{\prime}}$, we may choose a fixed g_{00} such that $g_{00} \subset g_{0}(\gamma)$ for all γ. Let $B_{f_{\gamma}}^{\prime \prime}$ denote the restriction of $B_{f_{\gamma}}^{\prime}$ to $g_{00} \times g_{n 0}$. By choice of g_{00}, $\operatorname{rank} B_{f_{0}}^{\prime \prime}=\operatorname{rank} B_{f}^{\prime}=\operatorname{rank} B_{f}-2$.

Hence except for finitely many values of γ,

$$
\operatorname{rank} B_{f_{y}}^{\prime \prime}=\operatorname{rank} B_{f}-2
$$

Since $z, x \in N_{B^{\prime}}$, there exists, for all but finitely many values of γ, $y_{\gamma} \in g_{00}$ such that $B_{f_{\gamma}}^{\prime}\left(x, y_{\gamma}\right)=O(\gamma)$ and setting $z_{\gamma}=z+\gamma z_{0}+\gamma y_{\gamma}$ that $B_{f_{\gamma}}^{\prime}\left(a, z_{\gamma}\right)=0$ for all $a \in g_{00}$. Again $f_{\gamma}(y)=O(\gamma)$ so from (2.7) we obtain

$$
B_{f_{\gamma}}^{\prime}\left(x, z_{\gamma}\right)=(\alpha-\beta) \gamma+O\left(\gamma^{2}\right) .
$$

Since $\alpha \neq \beta$, it follows by [1], Lemma 5 and the above that we may choose γ such that rank $B_{f_{\gamma}}^{\prime}=\operatorname{rank} B_{f}$. Then the conclusion of Lemma 2.1 holds and the theorem is proved in this case. We conclude that there is no loss of generality in assuming that $N_{B^{\prime}}$ admits a basis $\left\{z_{i}\right\}$ such that

$$
\begin{equation*}
(\operatorname{ad} x) z_{i}=\alpha_{i}^{\prime} z_{i}+\beta_{i}^{\prime} z_{i+1} \tag{2.8}
\end{equation*}
$$

where $\alpha_{i}^{\prime}=\alpha, 0$, for all $i=1,2, \ldots, k$, with $x=z_{k}$.
Set $V=g_{0} / N_{B^{\prime}}$, and let B denote the restriction of B_{f}^{\prime} to V. Use of (2.6) shows that ad $x-(\alpha / 2)$ is a linear transformation on V satisfying (2.1). Further B is non-degenerate on V, so Lemma 2.2 applies. Let $\left\{x_{i} ; i=1,2, \ldots, 2 l\right\}$ be a basis satisfying its conclusion. Since $\operatorname{rank} B=\operatorname{rank} B_{f}-2$, we have $l=n-1$. Define a filtration on $U g$ as follows.

Set $U^{(0)}$ equal the tensor algebra generated by x. Let

$$
\begin{array}{cl}
z_{0} \in U^{(i m)}, & z_{0} \notin U^{(4 m-1)}, \\
x_{i} \in U^{(2 m+n-i-1)}, & x_{i} \notin U^{(2 m+n-i-2)}, \\
z_{j} \in U^{(2 m-n+1-j)}, & z_{j} \notin U^{(2 m-n-j)} ; \\
i=1,2, \ldots, 2 n-2 ; & j=1,2, \ldots, k-1 .
\end{array}
$$

$$
\text { томе } 102-1974 — \mathrm{~N}^{0} 1
$$

Recalling that $k=m-2 n$ and that ad x is upper triangular on V and on $N_{B^{\prime}}$, we obtain the following bracket relations in $G(U g)$:

$$
\begin{aligned}
{\left[x_{i}, x_{2 n-2-j}\right] } & =\delta_{i j} z_{0}, \\
{\left[x_{i}, z_{r}\right] } & =0, \\
{\left[x, x_{i}\right] } & =\alpha_{i} x_{i}, \\
{\left[x, z_{r}\right] } & =\alpha_{r}^{\prime} z_{r}, \\
{\left[z_{r}, z_{s}\right] } & =0,
\end{aligned}
$$

for all $i, j=1,2, \ldots, 2 n-2 ; r, s=0,1, \ldots, k-1$, where $\alpha_{0}^{\prime}=\alpha$, $\alpha_{r}^{\prime}=0, \alpha ; \alpha_{i}+\alpha_{2 n-2-i}=\alpha$. Set

$$
y_{i}=x_{2 n-1-i} ; \quad i=1,2, \ldots, n-1
$$

and

$$
x_{n}^{\prime}=\left(x-\sum_{i=1}^{n-1}\left(\alpha-\alpha_{i}\right)\left(x_{i} z_{0}^{-1}\right) y_{i}\right) z_{0}
$$

Then for all $i=1,2, \ldots, n-1, r=0,1,2, \ldots, k$,

$$
\left[x_{i}, y_{i}\right]=z_{0}, \quad\left[x_{n}^{\prime}, z_{r}\right]=\alpha_{r}^{\prime} z_{0} z_{r}
$$

and all remaining brackets vanish. Set $x_{n}=x_{n}^{\prime} z_{0}^{-1}, y_{n}=z_{0}$. The proof is completed by noting that $x_{i} z_{0}^{-1}, y_{i} ; i=1,2, \ldots, n ; z_{r} z_{0}^{-1}$; $r=0, \alpha_{r}^{\prime}=\alpha$ and $z_{r} ; \alpha_{r}^{\prime}=0$ generate $A_{n, k}$.

We remark that the proof and consequently the filtration simplifies should g be almost algebraic [6], p. 98. In this case ad x may be assumed semisimple.

Given $x \in U^{(s)}, x \notin U^{(s-1)}$, we write $f(x)$ for the leading term of x. Theorem 2.3 has the following easy corollary which illustrates the symplectic structure associated with the enveloping algebra of a Lie algebra.

Corollary 2.4. - There exists a filtration of $U g$ with $U^{(0)}=K$, such that $G(U g)$ is isomorphic to a subalgebra of $K\left[x_{i}, y_{i}, z_{j}\right] ; i=1$, $2, \ldots, n ; j=1,2, \ldots, k$. Furthermore given $x \in U^{(r)}, x \notin U^{(r-1)}, y \in U^{(s)}$, $y \notin \mathrm{U}^{(s-1)}$; then either

$$
[x, y] \in U^{(k+s-2)} \quad \text { and } \quad\{f(x), f(y)\}=0
$$

or

$$
f([x, y])=\{f(x), f(y)\}
$$

where

$$
\{f(x), f(y)\}=\Sigma_{i=1}^{n}\left(\frac{\partial f(x)}{\partial x_{i}} \frac{\partial f(y)}{\partial y_{i}}-\frac{\partial f(x)}{\partial y_{i}} \frac{\partial f(y)}{\partial x_{i}}\right)
$$

Proof. - Given $x \in g$ suppose with respect to the filtration of $U g$ defined in Theorem 2.3 that $x \in U^{(s)}, x \notin U^{(s-1)}$. Define a new filtration in $U g$ by setting $U^{(0)}=K$ and defining $x \in U^{(s+1)}, x \notin \mathrm{U}^{(s)}$. Computation shows that the new graded algebra $G(U g)$ has the asserted properties.

3. The commutant theorem

In this section, we consider only filtrations on $U g$ such that $U^{(0)}=K$ and $G(U g)$ is commutative. Given a subalgebra A of $U g$, set $f(A)=\{f(a) ; a \in A\} . \quad f(A)$ is isomorphic to a subalgebra of polynomials in m variables : $m=\operatorname{dim} g . \quad$ Set $d f(A)=\{d f(a) ; f(a) \in f(A)\}$. Let $\operatorname{dim} d f(A)$ denote the dimension of $d f(A)$ considered as a module over $G(U g)$.

Lemma 3.1. - Let A be a subalgebra of $U g$. Then

$$
\operatorname{Dim}_{K} A=\operatorname{dim} d f(A)
$$

Proof. - The proof follows that of [8], Theorem 3.3. Let $\left\{x_{i} ;\right.$ be a basis for g. We have $x_{i} \in U^{\left(n_{i}\right)}, x_{i} \notin U^{\left(n_{i}-1\right)}$, for each i, where the n_{i} are positive integers. Set $y_{i}=x_{i}^{1 / n_{i}}$. Let $f\left(A^{\prime}\right)$ denote $f(A)$ considered as an algebra of polynomials in the y_{i}. Clearly

$$
\operatorname{dim} d f\left(A^{\prime}\right)=\operatorname{dim} d f(A)
$$

That $\operatorname{Dim}_{K} A \leqslant \operatorname{dim} d f\left(A^{\prime}\right)$, follows from the dimensionality estimate of [7], Lemma 3.3. On the other hand choosing $a_{1}, a_{2}, \ldots, a_{r} \in A$ such that $\left\{d f\left(a_{i}\right) ; i=1,2, \ldots, r\right\}$ is a basis for $d f(A)$ shows that $\operatorname{Dim}_{K} A \geq \operatorname{dim} d f(A)$.

Theorem 1.1 follows on application of [8], Lemma 2.1, and Corollary 2.4 and Lemma 3.1 to the algebraic closure of K.

REFERENCES

[1] Dixmier (J.). - Sur les représentations unitaires des groupes de Lie nilpotents, II., Bull. Soc. math. Fr., t. 85, 1957, p, 325-388.
[2] Gel'fand (I. M.) and Kirillov (A. A.). - Fields associated with enveloping algebras of Lie algebras, Soviet Mathematics, t. 7, 1966, p. 407-409 [en russe]; Doklady Akad. Nauk SSSR, t. 167, 1966, p. 503-505.
[3] Gel'fand (I. M.) and Kirillov (A. A.). - Sur les corps liés aux algèbres enveloppantes des algèbres de Lie. - Paris, Presses universitaires de France, 1966 (Institut des Hautes Études Scientifiques, Publications mathématiques, 31, p. 5-19).
[4] Gel'fand (I. M.) and Kirillov (A. A.). - Structure of the Lie field connected with a split semisimple Lie algebra [en russe], Funkcional'nyj Analiz, t. 3, 1969, fasc. 1, p. 7-26.
[5] Helgason (S.). - Differential geometry and symmetric spaces. - New York, Academic Press, 1962 (Pure and applied Mathematics, Academic Press, 12).
[6] Jacobson (N.). - Lie algebras. - New York, Interscience Publishers, 1962 (Interscience Tracts in pure and applied Mathematics, 10).
[7] Joseph (A.). - Commuting polynomials in quantum canonical operators and realizations of Lie algebras, J. of math. Phys., t. 13, 1972, p. 351-357.
[8] Joseph (A.). - Gel'fand-Kirillov dimension for algebras associated with the Weyl algebra, Ann. Inst. H. Poincaré, série A, t. 17, 1973, p, 325-336.
[9] Joseph (A.). - Proof of the Gel'fand-Kirillov conjecture for solvable Lie algebras, Proc. Amer. math. Soc. (à paraître).
[10] Lang (S.). - Algebra. - New York, Addison-Wesley publishing Company, 1965 (Addison-Wesley Series in Mathematics).
[11] Nghiêm (X. H.). - Sur certains sous-corps commutatifs du corps enveloppant d'une algèbre de Lie résoluble, Bull. Sc. math., série 2, t. 96, 1972, p. 111-128.
(Texte reçu le 11 avril 1973.)
Anthony Joseph,
Institut des Hautes Études Scientifiques, 35, route de Chartres, 91440 Bures-sur-Yvette
et
Department of Physics and Astronomy, Tel-Aviv University, Ramat-Aviv, Israël.

[^0]: bulletin de la société mathématique de france

