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SOME REMARKS ON THE FORMAL POWER SERIES RING

BY

MATTHEW J. (TMALLEY

[Houston, Texas.]

Let R be an integral domain with identity, let X be an indeterminate
over jR, let S be the formal power series ring jR[[X]], and let G be a finite
group of .R-automorphisms of S. If J? is a local ring (that is, a noetherian
ring with unique maximal ideal M), and if R is complete in the M-adic
topology, then P. SAMUEL shows the existence of f^S such that the
ring S° of invariants of G is R[[f]] [9].

This paper was motivated by an attempt to generalize this result.
Specifically, we will prove that the same conclusion holds if R is any
noetherian integral domain with identity whose integral closure is a
finite jR-module.

In our efforts to obtain this result, we have had to make strong use
of the results of [7] and theorem (2.6) of [6]. The notion of topological
completeness is essential. In paragraph 2, we develop the needed topo-
logical results and we make some additional comments concerning ideal-
adic topologies under which R and R [[Xi, . . . , Xn]] are complete. Para-
graph 3 extends the result of Samuel.

All rings in this paper are assumed to be commutative and, except
for one brief mention in paragraph 2, to contain an identity element.
The symbols GO and c^o are used throughout the paper to denote the sets
of positive and nonnegative integers, respectively.

The author wishes to express his sincere thanks to Professor Robert
GILMER for his advice and encouragement during the preparation of
this paper.

1. Notation and terminology.

Throughout the paper, we denote by R a commutative ring with
identity, and by Sn the formal power series ring -R[[Xi, ..., Xn]] in
n-indeterminates overJ?. If { d y . j aeA is a collection of elements of R,
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then ({ ffa }a e A) will denote the ideal of R generated by { Oa } a e A- If A is
an ideal of R and if T is a unitary overring of R, then AT will denote
the extension of A to T. In particular, if aeJR, then (aT) will be the
ideal of T generated by a. We write %n to denote the ideal of Sn gene-
rated by {Xi}^^, and if there is no ambiguity, we will simply write %.
If A is an ideal of R, then we use (A, ̂ ) [or (A, %)] to denote the ideal
ASn+^n of Sn. Moreover, we will write A[[Xi, .... Xn]] to denote
the ideal of Sn consisting of those power series, each coefficient of
which is in A. We remark that in general A[[Xi, ..., Xn]] is distinct
from A Sn, but, if A is finitely generated, equality holds [3].

A collection of ideals j At },̂  of the ring R will be called a d-sequence
of ideals provided that for any n, meco, there exists a A-eco, depending
on n and 772, such that A^CA^nA^. If ^2 is the topology induced
on R by the d-sequence (A^^), then R is a topological ring under
the topology ^2. It is well known that (R, Q) is HausdorfT if, and only
if, F\ Ai == (o). We say that (R, Q) is complete if each Cauchy sequence

Z'€M

of (R, i2) converges to an element of J?. If there exists an ideal A oi R
such that A1^ Ai for each I'eco, then 12 will be called the A-adic topo-
logy, and we write (R, A) to denote the topological ring R under this
topology.

2. Topological aspects.

It follows, from [6], lemma (1.1), that if A is an ideal of R such that R
is a complete HausdorfT space in the A-adic topology, then (jR (a)) is
a complete HausdorfT space for each aeA. Conversely, observe that
if A == (fli, ..., Gn), then A^C(a^, ..., a^) for any Aeoj. It follows,
therefore, that if Bk== (a^, ...,^) for each ^ec*), and if ^2 is the
topology induced on jR by the sequence of ideals {Bk}ke^9 ^hen ^2 is
equivalent to the A-adic topology. Hence, (R, A) is complete if, and
only if, (R, Q) is complete. Extending [7], theorem (3.4), to an ideal
with a finite basis, it is straightforward to show that if (R, (di)) is
complete for each i, then (R, ^2), and hence (R, A), is complete. Thus,
if (jR, A) is HausdorfT, we have the converse of [6], lemma (1.1), in
case A is finitely generated.

It should be remarked here that the assumption that (7?, A) is Haus-
dorfT is necessary as even the hypothesis that (R, (di)) is a complete
HausdorfT space for each i does not imply that (R, A) is HausdorfT.
In [6], lemma (1.1), it is shown that if (R, (di)) is a complete HausdorfT
space, then di belongs to the Jacobson radical J of R; hence, if F\ J^ = (o),

A-<=^>
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then (J?, A) is Hausdorff. In particular, if jR is noetherian, then this
is true ([5], p. 12). Therefore, we have proved the following theorem.

THEOREM 2.1. — Let A be a finitely generated ideal of the ring J?, and
suppose that (J?, A) is Hausdorff. Then (R, A) is complete if, and only
if, (R, (a)) is complete for each a€A. Thus, ifR is noetherian, and if A
is an ideal of R, then (R, A) is a complete Hausdorff space if, and only if,
(R, (a)) is a complete Hausdorff space for each aeA.

As a corollary to theorem 2.1, we have the following generalization
of [11] (theorem 14, p. 275).

COROLLARY 2.2. — Let A be an ideal of the ring R, such that (R, A)
is a complete Hausdorff space. Then, for any finitely generated ideal
BCA, (J?, B) is a complete Hausdorff space.

It might be noted here that one direction of theorem 2.1 can be proved
directly for the case when jR is not assumed to have an identity element.
But the proof of lemma 1.1 of [6] depends rather strongly on the assump-
tion that R has an identity element. Nevertheless, lemma 1.1 of [6]
and hence theorem 2.1 and corollary 2.2 of this paper, are true for
the case when R does not possess an identity. For, let T == R [e], the
ring obtained by the canonical adjunction of an identity to R. (Choose e
so that T has characteristic zero). Then any ideal A of -R is also an
ideal of T, and it can be shown that (R, A) is complete (Hausdorff) if,
and only if, (T, A) is complete (Hausdorff). From this fact, it follows
easily that the preceding results of this section (and lemma 1.1 of [6])
extend to the case when R does not have an identity element.

For the remainder of the paper, we will assume that -R possesses an
identity. We now turn our attention to the question of completeness
in Sn== R[[Xi, ..., Xn}}. Let { Bk }ke^ be a d-sequence of ideals of jR
and let i2 denote the topology induced on R by { B k } k < E w . For each
keu, let Uk and Vk denote the ideals Bk[[Xi, ..., Xn}} and BkSn+ ̂
of Sn9 respectively, and let Ai and As denote the topologies induced
on Sn by the d-sequences { Uk}ke^ and { Vk]kew, respectively.

PROPOSITION 2.3. — Using the notation of the preceding paragraph,
the following are equivalent :

(i) (R, 12) is complete (Hausdorff);
(ii) (Sn, Ai) is complete (Hausdorff);
(iii) (Sn, Aa) is complete (Hausdorff).

While verification of these statements is rather detailed, it is never-
theless straightforward, and we omit the proof here (see also [4], lemma 2).
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Observe that if ^ is the A-adic topology for some ideal A of R, then,
since (A, ̂ SrA^+X^A, ̂  for each /ceco, it follows that JR
is complete in the A-adic topology if, and only if, Sn is complete in the
(A, %)-adic topology. Moreover, if A is finitely generated, then
(AS',z)^= A^pCi, ..., Xn]], and hence, in this case, (J?, A) is complete
if, and only if, (Sn, ASn) is complete.

REMARK 2.4. — Let V = (fi, ...,/y be a finitely generated ideal
of Sn, and for each i == i, ..., k, let

/",=î ,
/=0

where c^ is zero or a form of degree j for each j e coo. If
__ //»(1) ^.(2) ,.(^)\
—— \CQ 9 CG 9 . . ., Co ) - ,

and if (J?, A) is a complete HausdorfT space, then (Sn, (A, ̂ )) is a complete
HausdorfT space, and hence, by corollary 2.2, since V is finitely gene-
rated, (Sn, V) is a complete HausdorfT space.

The converse of the above is not true in general. For (R, A) need
not be HausdorfT even if (Sn, V) is a complete HausdorfT space. To
observe this, we make use of an example of GILMER [2]. GILMER
establishes the existence of a ring R, admitting an -R-automorphism <p
of 5==J?[[X]], such that cp(X)==ao—X, where ̂  (00)^(0).

/zG^

If V == (do—X), then S is a complete HausdorfT space in the V-adic
topology ([8], theorem 4.5), but (R, (do)) is not HausdorfT, sincen^o)^(o).
n^W

However, if (Sn, V) is a complete HausdorfT space, then (R, A) is
complete. To see this, we observe that if (Sn, V) is a complete Haus-
dorfT space, then by theorem 2.3, (Sn, (fi)) is complete for each i=i,..., k,
and hence, since (Sn, (X;)) is complete for j == i, . . . , n, it follows that
Sn is complete in the (/'i, . . . , /*/, Xi, .. . , X,,)-adic topology. But

(/•„ . . . , /•,, Xi, ..., X,) = (c^, ..., c^, X,, . . . , X,) = (A, %),

and thus, (Sn, (A, ^)) is complete. Therefore, by the comment follo-
wing proposition 2.3, (R, A) is complete.

Finally, we observe that if (Sn, V) is a complete HausdorfT space,
then VCJ, the Jacobson radical of Sn. But

J ==^ Vc/e5'/z|co€J, the Jacobson radical of R^,
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and hence ACJ. Thus, if ^^^(o), (R, A) is HausdorfT. In
Tieco

particular, if J? is noetherian, then (^\ J^== (o). Thus, in this case,
n^w

it follows that (Sn, V) is a complete HausdorfT space if, and only if,
(J?, A) is a complete HausdorfT space.

We conclude this section with an observation concerning the results
of [6]. For any element

h=J^a,X^R[[X]],
l:=0

all of the results of [6], § 2, hold for h, provided there exists k^w such
that a.k is a unit of jR, while the ideal (do, . . . , a/c-i) generates a complete
HausdorfT topology on 2?. Thus, if

00

f = /-(X,, . . . , Xn) =^ C,X € &-i[[X,]] = Sn,

i=o

then the results of [6], § 2, apply to f, if there exists /ceco such that Cyt
is a unit of Sn-i, while the ideal C == (Co, . . . , c/,-i) generates a complete
Hausdorfl topology on Sn-i.

However, if g == f(o, . . . , o, Xn), then

g^a^eRHXn]],yi
^-i^n

i=.-0

and it follows that, for each fecoo,

c.-a.+2"^

where u^ is either o or a form of degree j in Sn-i for eachj€coo. Thus,
Ck is a unit of Sn-i if? and only if, a.k is a unit of R ([II], p. i3i), and,
by remark 2.4, (Sn-i, C) is a complete Hausdorff space, if R is complete
and HausdorfT in the A == (flo, . • • , ̂ -i)-adic topology. The converse,
is true, if [ \ J^- === (o), where J is the Jacobson radical of R.

m € ti>

Thus, if J? is a ring such that /̂ \ J " 1 == (o) (in particular, if R is
/ne^

noetherian), then the results of [6], § 2, apply to an element f= f(Xi,... X,,)
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of Sn if, and only if, the results of [6], §2 hold for the element
g==f(o, ...,o,X.) ofi?[[X.]].

3. Finite groups of .R-automorphisms of jR[[X]].

Throughout this section, we write S to denote the formal power
series ring 2?[[X]]. The main purpose of this section will be to prove
the following generalization of a result of SAMUEL [9].

THEOREM 3.1. — Let R be a noetherian integral domain with identity,
and suppose that the integral closure of R is a finite R-module. Let G
be a finite group of R-automorphisms of S, and let S° denote the invariant
subring of G on S. Then there exists feS such that S0 == R [[f]].

We require several preliminary results before proving theorem 3.1.
Our proof will essentially follow that of SAMUEL, but we will need to
make strong use of the results of [7] and theorem 2.6 of [6]. We begin
by making the following definition.

DEFINITION 3.2. — Let feS, and suppose that S is a complete Haus-
dorff space in the (f)-adic topology. By the results of [8], there exists
a unique jR-endomorphism cp/ of S mapping X onto f. We write R [[f\]
to denote the range of cpy.

We remark that it follows from Remark 2.4 that the above definition
is a more general definition of R[[f]] than that given in [6]. We mean
this in the sense that there exist rings R and elements feS such that
R[[f]] is defined by definition 3.2, but not by the definition given in [6].

The following lemma is a generalization of [7], lemma 4.9; its proof
is trivial.

LEMMA 3.3. — Let cp be an R-endomorphism of S, and let aeS be
such that 9 (a) === a. Then cp is continuous in the (a)-adic topology on S.

LEMMA 3.4. — Let aeS, and suppose that S is a complete Hausdorff
space in the (a)-adic topology. If cp is any [R-endomorphism of S such
that cp (a) == a, then cp is the identity on R [[a]].

proof. — By [81, theorem 2.3, if AeJ?[[a]], then A is the unique limit
( n }of a sequence of the form^Vr^) , where ncR for each i, in
\ <==0 )n^w

the (a)-adic topology on S. Therefore, since cp is continuous from
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(S, (a)) into itself, we have that

/ / " \\ / " \ / » \
?(A)=(p(lim ^r,a' ==limy ^r^)=lini(Vr^)=A.

\ \(=o // " \^<, / » \^ )

We observe that if cp is an ^-automorphism of S such that cp (X) = 8
then S is complete and Hausdorff in the ((S)-adic topology ([8], theorem 4.5)!
Hence, by theorem 2.1, for any element ye (,3), S is a complete Haus-
dorff space in the (g')-adic topology. In particular, if G is a finite group
of fl-automorphisms of S, and if /•=-[Jcp(X), then S is a complete

i?e<?
Hausdorff space in the (/)-adic topology, and R[[f]] is defined. Moreover
since cp (/)==/• for each <p6G, it follows, from lemma 3.4, that G is
the identity on R[[f]]. Thus, we have proved the following.

COROLLARY 3.5. — Let Gbea finite group of R-automorphisms of S.

^ff^Y^VW, then G is the identity on R[[f]].
ZQG

Corollary 3.5 shows that ^[[fflc^ for any ring R and finite group G
of it-automorphisms of S. The remainder of the paper will be concerned
with showing that if R satisfies the hypothesis of theorem 3.1, then
the reverse containment holds.

The following theorem is^a restatement of several of the results of [7].

THEOREM 3.6. — ''Let R be [a noetherian ring and let (3 =y^X'eS.
(=0

Then there exists an, R-endomorphism (pp of S such that <ps(X) == 6 if
<ind only if, (R, (b,)) is a complete Hausdorff space. Furthermore if
such a cop exists, then

(i) bo € J , the Jacobson radical of R;
(li) cpj3 is the unique R-endomorphism of S mapping X onto (3; and

(iii) <pp is an automorphism if, and only if, bi is a unit of R.

Suppose now that R is a noetherian ring, and let R' be a unitary
«

overring of R, which is a finite JP-module. If (3==V^x'e5 and

if (R, (to)) is a complete Hausdorff space, then R is a noetherian ring
complete and Hausdorff in its (froA')-adic topology ([II], theorem 15,
p. 276). Hence, by theorem 3.6, there exist unique R and .R'-endo-
morphisms 9? and cpp of S and S'=R'[[X]], respectively, such that
<pp(X) = cpp(X) = (3. Furthermore, if 9? is onto [and hence, an auto-
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morphism ([8], theorem 4.7)], then &i is a unit of R. Therefore, since &j
must also be a unit of R, it follows that cp^ is onto (and hence, an
automorphism). Our next result shows that cop is the unique extension
of cpp to y. Since 9^ is the unique .R'-endomorphism of S1 mapping X
onto .6, it suffices to show that cpp, restricted to S, is equal to cpp. We shall
have need of a precise definition of cp|.

00

Let a ===VcyX^e5', and suppose that (7?, (co)) is a complete
/=0

HausdorfT space. Then there exists a unique -R-endomorphism cpa of S
such that cpa(X) = a ([7], theorems 4.2 and 4.3). For any element

h^^hiX^S, cpa(/0 is defined to be ^p^X^ where
;==0 k==0

( \ \pk(h)== lim7^( YA^' ) for each Aecoo.
71 \ A" /

\z=o /

The limit is taken in (R, (Co)), and ^^g) == 9k for any element
oo

ff=^X^S[7].
f==:0

We can now prove the following.

LEMMA 3.7. — Let R be a noetherian ring, R' a unitary overring ofR
that is a finite R-module, and cpp the unique R-endomorphism of S mapping X

onto (3 ==^biX1. Then cpp can be extended to a unique R-endomorphism
!==0

cpp of S =R[[X]]. Furthermore, if cpp is an automorphism, then cpji
is an automorphism.

Proof. — It only remains to show that 9? extends 9?. Let
00

h^^hiX^S;
i==0

then, by definition,
/ n \

W) ='vpk(h)Xk, where p,(A) = lim7r,( Yh^ }
Mm n \ wm I
k=-Q \i=Q /

for each ke^o, and the limit is taken in (R, (boR)). However,
since h and (SeS, it follows from [7], lemma 4.1 that, for each J^ecoo,
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^ 27^ ) ( ls a ^^hy sequence of (R,(bo)), and hence,
\z=o / Jrae^o

converges to a unique element dk of JR. But since each Cauchy sequence
of (R, (bo)) is Cauchy in (.R', (boR)) and since (J?, (&o^)) is HausdorfT,
it follows that pk(h) == dk^R for each Tcecoo. Therefore, <pp(*S)^S,
and thus cpp, restricted to S, is an -R-endomorphism of S mapping X
onto (3. But cpp is the unique jR-endomorphism of S mapping X onto (3,
and therefore, c^, restricted to S, is equal to cpp.

Our next result shows that if the coefficients of (3 satisfy certain condi-
tions, then, if g ^ S ' and if ^(g)^S, then g itself is an element of S.
This fact will be applicable to the proof of theorem 3.1. The method
of proof used here is the same as that used in [9].

LEMMA 3.8. — Under the same hypothesis as that of lemma 3.7, if
oo

p=^&^X ^ has the property that there exists neco such that bn is a

unit ofR, and such that B = (bo, bi, ..., bn-i)^J, then, for any element
g ^ S ' , if ^(g)^S, g ^ S . As a consequence, we have :

(i) q?p is one-to-one if, and only if, cpp is one-to-one; and
(ii) cpjs is onto if, and only if, cpp is onto.

00

Proof. — Let g=^g^X^S', and suppose that
/=0

oo

<pp(<7)=2;c^es.
k=o

By definition of cpp,
/ ^ \

Ck==lm^k[ ^^/P7 ) for each ke^o,
\/==o /

where the limit is taken in (R', (boR')). Let E be the JP-submodule
of -R' generated by i and { g^ j /e^o- We show that E === R.

We first make some observations. Since BCJ and since jy is a
finite jR-module, we have that (R, BR') is HausdorfT, and, furthermore,
since BE is an JP-submodule of R, BE is closed in (R, BR) ([II], theorem 9,
p. 262). Moreover, since (boR^^BR, and since (R, (boR)) is complete,
we have that each Cauchy sequence of (R, (boR)) converges in (R, BR)
also. Thus, in particular, since BE is closed in (R, BR), if { i i / } y^
is a sequence of elements of BE, Cauchy in (R, (boR)), then j iiy (yeco
converges to a unique element u e BE in (J?', BR). We make strong
use of this fact.
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We prove by induction on j that g;^R+ BE for eachje^o. Now,

i \ / i

Co==lim7To( ^/(^ ) =l"n( ^7^'
\/=o / ' \/=o ^

= f f o + l i m ( ^g,bi).i/o -r "mi ^yjUQ
\/=i

( ' )Therefore, since ̂ ff/^ is a Cauchy sequence of (R, (b,R)),
w'==i )i'e^

and since ̂ ff/^'e BE for each i, we have, by the above observation,
/=!that

/ l \
^o=Co—lim^ ^gjb{ ^R+BE.

\/=i /

Suppose we have shown that g / e R + BE for j < Jc. Then
i \ / i/ l \ / l \

c.,=lmi7r,^ ^^^ ) ==lim( ^g^nk^'} )
\ =0 / l \/=0 /

k-i / i \
^g^n^+g^nk^+lim^ ^ ^^(PQ).
/==0 ' \/=^+T /

^)+^^HP')+linil J^ ^/Tr^rfi^
/=0 ' \/=^+t

Now, 7r^((3^)ejR for eachj, and hence, in particular, by the induction
hypothesis,

k—l

^/^(P7) = ue(R+BE)R = ̂  +B£.

Moreover, TT,^^) has the form ^+d where deBCJ, and hence,
since bn is a unit of R, b^ + d is a unit of J? ([10], p. 206). Finally,

i

we observe that for j > k, ^(PO^B, and hence V g^k^^BE
/=^4-1

for each i. Therefore, as in the case for j == o, we have that

/ l \
I™) 2 9/^nk(^') ) == u^BE.\/==A+1 /
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Thus, since b^ + d is a unit of J?, we have

gk^lCnk—^+u^^+d^eR+BE.

Therefore, by induction, we have that £CJ? 4- BE. But, since E is
an jR-module containing i and since B is an ideal of R, we have the reverse
containment, and hence E == R + BE.

Hence, by Nakayama's lemma since BCJ, we have E = R, so that
9^S.

The proofs of (i) and (ii) are straightforward and we omit them.
We make one final observation before proving theorem 3.1. Let R

be a noetherian ring, and let G == { c p , }̂  be a finite group of J?-auto-
morphisms of S. If

f==f[^(X)^a,X1,

then it follows that dn is a unit of R, and A = (ao, di, ..., c^-i) generates
a complete HausdorfT topology on R (theorems 3.6 and 2.1 and corol-
lary 2.2). Thus, the coefficients of f satisfy the hypothesis of [6], theorem
2.6, and we have that { i, X, . . . » X ^ ' j is a free module basis for S
over R[[f]].

Proof of theorem 3.1. — Let L, K and F denote the quotient fields
/ n °° \

of S, ^', and R[[f]], respectively ( f==Yf^(X) ==Va^ ). If G*
V -B-A. ^—rf y

z=l z=o /

denotes the finite group of automorphisms of L induced by G, then,
since { i, X, ... , X'^} is a free module basis for S over 2?f[f]], it follows
that G* is the Galois group of L with respect to F. Moreover, since
R [[/']]CSG (corollary 3.5), FCK, and thus, since G* is the identity
on K, it follows from Galois theory that F == K. Therefore, since S
is integral over -R[[f]], we have that Sr\F == Sr\K^ integral closure
of jR[[/*]]. Hence, if R is integrally closed, we have that -R[[/']] is inte-
grally closed ([I], chap. V, § 1, n° 4, prop. 14) (since R is noetherian),
so that 5^CJ?[[f]].

In the general case, we suppose that R, the integral closure of R,
is a finite .R-module. By lemma 3.7, each -R-automorphism cp of S
can be extended to an jR'-automorphism 9* of S' ==R'[[X]]. Therefore,
if G == •{ c^ [ 9,'€ G { , then G' is a finite group of ^-automorphisms of S ' ,
and the <( integrally closed " case applies. Thus, the invariant subring
(S')0' of G on y is R' [[/•]].

Therefore, since S^ = R [[f]] n S, it suffices to show that

K[[n}r\SCR[[f]].
BULL. SOC. MATH. — T. 99, FASC. 3. 17
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But this is a special case of lemma 3.8. This follows from the fact
00

that f=^aiX1 is such that dn is a unit of JR and (do, fli, . .., an-i)CJ.
i=^o

Moreover, if ^ and 4'* denote the unique jR and -R'-endomorphisms
of S and S ' , respectively, which map X onto f, then R[[f]] and R' [[/*]]
denote the ranges of ^ and ^p*, respectively. Hence, if <7eJy[[f]]nS,
then there exists TieS" such that ^*(h) = g. But g ^ S implies that
heS, so that g = ^*(7i) =^(h)e^(S)= R[[f}]. This completes the
proof.
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