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COMMUTATIVE SEMIGROUPS
WHOSE LATTICE OF CONGRUENCES IS A CHAIN (*)

BY

TAKAYUKI TAMURA.

1. Introduction.

The structure of r-semigroups, the semigroups whose subsemigroups
form a chain, was completely determined by the author [8], or afterwards
by SEVRIN [5]. Analogously to this we present a problem : What are
the semigroups whose congruence relations form a chain ? For conve-
nience we give those a terminology :

DEFINITION. — A semigroup S is called a ^-semigroups if and only
if the lattice of all congruences on S is a chain with respect to inclusion
relation, that is, if p and o- are congruences on S, then exactly one of the
following three holds

pCcr, p=cr, o-Cp C).

Basic examples of A-semigroups are all semigroups of order 2 and
indecomposable semigroups [10], namely semigroups without proper
congruences.

In this paper, we will study the structure of commutative A-semi-
groups, and eventually we shall have two important classes of commu-
tative A-semigroups : quasicyclic groups and commutative nil-semi-
groups satisfying the divisibility chain condition. The first class will
be equivalent to groups which are r-semigroups, the second one will
be obtained by using the theory of structure of commutative archi-
medean semigroups, and it will be reduced to naturally totally ordered
commutative archimedean semigroups with zero.

(*) This is one of the results of the research supported by NSF Grant GP-7608.
(1) Throughout this paper, the notation « p c cr » means « p c cr, but p ̂  (T ».
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2. Basic Results.

In this section we state the basic results on (commutative) A-semi-
groups.

LEMMA 1. — If S is a ^-semigroup, then all the ideals of S form a chain,
hence all the principal ideals of S form a chain,

Proof. — If S is a A-semigroup, all Rees-congruences on .S form a
chain. Let p and o- be Rees-congruences modulo ideals I and J respecti-
vely [2]. Then p Co- if and only if Jc J. Therefore all the ideals, hence
principal ideals, form a chain.

LEMMA 2. — Every homomorphic image of a ^-semigroup is a ^-semi-
group.

Proof. — Let S be a semigroup and Sf be a homomorphic image of S.
Let f be the homomorphism S -> 5". Let p be the congruence on S
induced by f. There is a one-to-one correspondence between the set
of all congruences a- on S containing p and the set of all congruences o-'
on S ' in the following way :

xay ^ f(x)^f(y)

and p C o-i c 0-2 if and only if o-iCo-a. Therefore if S is a A-semi-
group then <S/p, hence S ' is a A-semigroup.

It is well known that any semigroup has a smallest semilattice-
congruence [2], [9]. It is a natural way to consider the greatest semi-
lattice-homomorphic image L (induced by the smallest semilattice
congruence) of a A-semigroup S. By Lemma 2, L is also a A-semigroup.

LEMMA 3. — A semilattice is a /^-semigroup if and only if it is of
order ^ 2.

Proof. — Let L be a semilattice of order ^2. As usual we define x,
y e L, x ̂  y by x = yz for some z e L. Let a, b be distinct elements
of L and let

Ia== { x ; x^=a}, Ib== [ x ; x ^ b } .

Then la and Ib are ideals of L. Let pa and pz, denote the Rees-congruences
modulo the ideals la and Ib respectively. Since la 7^ Ib, ^a 7^ p6.
Suppose L is a A-semigroup. Then either p a C p ^ or p^cpa. Hence
either ladb or 1\ da. For the first case, a^.Ib namely a < b(2);
for the second b ̂  la, namely b < a. Therefore L is a chain.

(2) a < b means a ̂  b, but a 7^ b.
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Suppose L is a chain containing at least three elements a, b, c, say
a < b < c. Let

I-+-={x; x^b}, J-= { x ; x ^ b } ,

where I~ is an ideal of L. We define congruences p4- and p- on L as
follows :

x ^ y if and only if either x, y e 1^ or x == y,
x p- y if and only if either x, y € J~ or x = y.

Clearly, p- is the Rees-congruence modulo J-. It is obvious that p-4-
is an equivalence, we may only show that x ^ y implies x z ^ y z for
all zeL. We assume x, ye /+. If z^ J4-, then xz == z == yz. If ze J^,
then aiz, y z ^ I ^ , since J4- is a subsemilattice of L. Now

a p b, but non (a p4- 6),
c p4- ^, but non (c p- b).

Therefore p^p" and p^p". This is a contradiction to the assump-
tion. Thus we have proved that L is a chain of order ̂  2. The converse
is obvious.

We know that every semigroup is a semilattice of s-indecomposable
semigroups [II], [13]. An 5-indecomposable semigroup is a semigroup
which has no semilattice homomorphic image except trivial one (one-
element semigroup).

PROPOSITION 4. — A ^'semigroup S is either an s-indecomposable
semigroup or the set union of two s-indecomposable semigroups

S== SoUSi,

where SoS.CS,, A^c^o, SoHSi=0, So, S^0.

Let S be a commutative A-semigroup. Then So and Si in Proposition 4
are commutative archimedean semigroups, that is, for a, be & (i == o, i)
there are positive integers m, n and elements c, d of Si (i = o, i) such
that (c/*. [2], [7])

a"1 = be, b71 == ad.

3. Simple or 0-simple A-semigroups.

We will treat the special cases, commutative simple A-semigroups
and commutative o-simple A-semigroups. A commutative simple semi-
group is an abelian group and a commutative o-simple semigroup is
an abelian group with zero adjoined.

As far as abelian groups are concerned, our problem is equivalent
to the problem on abelian groups whose subgroups form chain.
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DEFINITION. — Let p be a prime number. If a group G is the set union
of a finite or infinite ascending chain of cyclic groups Cn of order p71, that is,

G=\J Cn, CICQC.. .CC.C. . . ,
n ==1

then G is called a p-quasicyclic group, or quasicyclic group if it is not
necessary to specify p.

Remark. — This definition is originally due to FUCHS [3], [4], but in
this paper it is understood that (p-) quasicyclic groups contain cyclic
groups of order of prime power (p^ as a special case.

A part of the following theorem was proved in more general case [8],
but we state the proof here after suitable rearrangement. Commuta-
tivity is not assumed in (1.2). (1.3), (1.5) below.

THEOREM 5. — The following statements are equivalent :
(1.1) G is an abelian group which is a ^.-semigroup;
(1.2) G is a group in which all subgroups form a chain;
(1.3) For every two elements a and b of a group G, either a == b'1 or

b == a71 for some positive integer n;
(1.4) G is a p-quasicyclic group for some prime p;
(1.5) G is a group in which all subsemigroups form a chain.

Proof. — (1.1) -> (1. a) is obvious.
(1. a) -> (1.3) : Let G be a group satisfying (1.2). Then G is periodic

and all cyclic subgroups form a chain, therefore we have (1.3).
(1.3) -> (1.4) : Immediately the periodicity of G follows from (1.3).

Also it follows that all cyclic subgroups of G form a chain with respect
to inclusion. Accordingly the order of every element, hence of every
cyclic subgroup is a power of a same prime number p. Let C (x) denote
the cyclic subgroup generated by x. Let Fn be the set of all elements
of order p71 in G.

We have a finite or infinite sequence { Fn} and by the above remark

(2) G==^jFn.

n=l

Let x, ye Fn. By (1.3), either x = ̂  or y = x111 for some m > o.
Assuming x = y^1, C(x) C C(y). Since | C(x) \ = | C(y) \ = p71, we
have C(x) == C(y). (The same for y = xm.) Since the converse is
obvious, C(x) = C(y) if and only if x and y are in a same Fn. Choose
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one element dn from each Fn. Then we have a finite or infinite sequence
(3) C(a,)cC(^)c...cC(a.)c...,

where [ C(dn) = p71 and FnCC(an).
By (2),

G=^JC(^).

If the sequence (3) is finite, G == C(dn) for some n, that is, G is a cyclic
subgroup of order pn. Thus we have (1.4).

(1.4)->(1.5) : Let G be a p-quasicyclic group : G = U C(a.n\
n=l

where C(a,z) is a cyclic group of order p\ Let Jf be a subsemigroup
of G, and let

H\,=Fnr\H,

where F/, has been defined above. H == U H'^ Let x e H ' ^ . By the
^=1

definition of F,,, C(a,,) = C(x) C JZ. If the set { n i ; H ' n ^ 0 } is
infinite, then H == G; if the set is finite, and if n,n is its maximum,
H == C(a/^). Consequently G has no proper subsemigroup, hence no
proper subgroup except C(an), n == i, 2, . . . in (3). We have (1.5).
Noting that G is abelian, we have proved also (1.4) -> (1. i).

Finally (1.5) -> (1.2) : It follows that G is periodic, therefore every
subsemigroup is a subgroup. Hence we have (1.2). Thus we have
proved that (l . i) through (1.5) are all equivalent.

Abelian groups with zero which are ^-semigroups. — Let G be a group
and G° be the group G with zero o adjoined. Let p be any congruence
on G. A congruence p° on G° is associated with p as follows :

a p° b if and only if either a = b = o or a, be. G and a p b.

The mapping p -> p° is a one-to-one; and pco- if and only if p°co'°.
Let GO(, and c^o denote the universal relations on G and G° respecti-
vely. We will prove that every congruence on G° is either c^o or p°,
a congruence associated with p on G. Let o- be a congruence on G°
such that

a cr o for some a e G.

Multipliying the both sides by a^x, xe G°, we have

xcro for all xe G°.

Therefore cr == oo^o. Clearly w° c C.OG".
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Immediately we have :

PROPOSITION 6. — A group G° with zero is a ^-semigroup if and only
if a group. G is a ^-semigroup.

By Theorem 5, we have :

THEOREM 7. — An abelian group G° with zero is a ^-semigroup if
and only if G is a p-quasicyclic group, p is arbitrary prime.

4. Non-simple A-semigroups.

In this section, we will prove that if S is a A-semigroup and if S has
a proper ideal I , then I can not be homomorphic onto a non-trivial
group. We do not assume commutativity of 5 in this section.

The following lemma was obtained in [15].

LEMMA 8. — Let I be an ideal of a semigroup S. Iffis a homomorphism
of I onto a non-trivial group G, then there is a homomorphism g of S onto G
such that f is the restriction of g to I .

THEOREM 9. — If a semigroup S contains a proper ideal I and if S
is a ^-semigroup, then neither S nor I is homomorphic onto a non-trivial
group.

proof. — Suppose there is a homomorphism f of S onto G, f(S) = G,
| G > i. Since G contains no ideal except G, f(I) = G. Hence

1 1 > i. Let p be the congruence on S induced by f. For each a^S\I,
there is an element b in I such that a p b. On the other hand, let o-
be the Rees-congruence on S modulo I . Then a ^ b , but non (a 0-6).
Since | G > i, non ( x p y ) for some x, ye I , but x v y . Thus p <E cr
and p 3) <7, which is contradiction to the assumption. Therefore S is
not homomorphic onto a group G, \G > i. Next, suppose that I
is homomorphic onto G, | G\ > i. Then by Lemma 8 there is a homo-
morphism of S onto G. This leads to the same contradiction. There-
fore I is not homomorphic onto G.

5. Commutative archimedean A-semigroups.

In this section, we will determine commutative archimedean A-semi-
groups. Since a commutative archimedean semigroup has at most one
idempotent, we have three possible types :

(4.1) Commutative archimedean semigroup with zero;
(4.2) Commutative archimedean semigroup with non-zero idem-

potent;
(4.3) Commutative archimedean semigroup without idempotent.
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The three types will be called Type 1, Type 2, Type 3 respectively.
Let S be a commutative archimedean semigroup.

Type 1 : 51 is of Type 1 if and only if 5 has a zero o and for each a e 5
there is n > o such that a^ == o. We will call a semigroup of Type 1
a commutative nil-semigroup.

Type 2 : If S is simple, it is an abelian group. If S is not simple,
S is an ideal extension of an abelian group G = Se, by a commutative
nil-semigroup, where e is the idempotent. This is also obtained as a
special case of unipotent inversible semigroups [6]. (S is called inver-
sible if each element has a right inverse element with respect to the
idempotent.) By Lemma 8 we have :

LEMMA 10. — If S is of Type 2, S is homomorphic onto a non-trivial
abelian group G.

Type 3 : We have the same result as in Type 2.

LEMMA 11. — A commutative archimedean semigroup S without idem-
potent is homomorphic onto a non-trivial abelian group.

Proof. — Let a e S. Two relations r\a and p^ are define by

xriay if and only if alx=aly for some positive integer I ;
x o a y if and only if a^rr^c^z/ for some positive integers m,n.

The two relations •ria and p^ are congruences on S. It is known [14], [16]
that S / r ] a is a commutative archimedean cancellative semigroup without
idempotent, and S / ^ a is a group. If | S / ^ a \ = i, then S / ' f ] a consists of

where a denotes the y^-class containing a (cf. [12]). In other words,
S / r ] a is isomorphic onto the semigroup of all positive integers with addi-
tion, and hence is homomorphic onto any finite cyclic group. There-
fore S is still homomorphic onto a non-trivial abelian group even if S / ^ a
is trivial. The proof is completed.

THEOREM 12. — If S is a commutative archimedean ^-semigroup,
then S is either an abetian group or a commutative nit-semigroup.

Proof. — This theorem is an immediate consequence of Theorem 9,
the facts (4.i), (4.2), (4.3), Lemma 10 and Lemma 11.

Thus the study in the present case is reduced to that of Type 1 which
is a A-semigroup, since the groups (in Type 2) have been studied in
paragraph 3.
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Let S be a commutative nil-semigroup. In S we define a relation [ by

b a if and only if either a = b or a == &;r for some rce S.

Then [ is a partial ordering. Anti-symmetry follows from the fact that
a == ax implies a == o. (The partial ordering [ is effective even if commu-
tativity is not assumed.) The ordering | is called the divisibility ordering.

THEOREM 13. — Let S be a commutative nil-semigroup. The following
statements are equivalent :

(5.1) S is a ^'semigroup;
(5. a) The ideals form a chain with respect to inclusion;
(5.3) The principal ideals form a chain with respect to inclusion;
(5.4) The divisibility ordering is a chain.

Proof. — (5.i)->(5.2) : Since the Rees-congruences form a chain,
(5. a) immediately follows.

(5.2)-^(5.3) : Obvious.
(5.3)-^(5.4) : For any a, b ( E S , S1^ C S1 b (3), or S^b C S^a, hence

we have proved either a | b or b \ a.
(5.4)--^ (5. i) : Suppose (5.4) holds. Let p be any congruence on S.

We will prove that p is a Rees-congruence on S. If p is the equality
relation &, it is regarded as the Rees-congruence modulo { o J-. So we
assume p 7^ i, and it is sufficient to prove

a-^- b, a^b ^> ^po , b p o.

Suppose a ̂  b, a p b. By (5.4)? either b == ax or a == bx for some
x ^ S . Assume that b == ax. (The same argument for a = bx.) Then
a p ax. Since S is a nilsemigroup, a^= o for some n > o. Accordingly,

hence
a p ax p ax1 p ... p ax'1 == o,

a p b p o.

Let I = = { x ; x ^ o } . I is an ideal of S, and we have proved that a
congruence p is the Rees-congruence modulo I . To prove (5.i), we
may prove the ideals form a chain. Let I and J be ideals of S. Suppose
I $ J . There is an element aeJ, but a^J. Let x be any element
of J. Clearly a ̂  x. By (5.4)» either x = ay or a = xu for some y,
some u. If a == xu, a e J because xeJ and J is an ideal. This is a
contradiction with a^J. So x == ay. Since aeJ, we have rceJ.
Thus we have proved J C J. The proof of (5.i) is completed.

(3) S^ = Sau{ a }
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DEFINITION. — If a semigroup S satisfies the condition (5.4), we say
that S satisfies the divisibility chain condition.

We conclude that -S is a commutative A-nil-semigroup if and only
if S is a commutative nil-semigroup which satisfies the divisibility chain
condition.

DEFINITION. — A semigroup D is called naturally totally ordered if
and only if

(6.1) D is a semigroup;
(6.2) D is a totally ordered set (^);
(6.3) a ̂ b implies ac^bc, ca^cb for all c;
(6.4) a ̂  b implies b \ a.

A commutative nil-semigroup satisfying the divisibility chain condi-
tion is a naturally totally ordered commutative nil-semigroup. Accor-
ding to CLIFFORD [I], we have the following result :

PROPOSITION 14. — Let R be the semigroup of all positive real numbers
with addition. A naturally totally ordered commutative nil-semigroup S
can be embedded into the Rees-factor semigroup Rfl modulo J, where I
is defined by either { x ^ R ; x > i } or {x^R; x^i}, ̂  is the usual
order.

Tully obtained in [17],

PROPOSITION 15. — A naturally totally ordered commutative nil-semi-
group is isomorphic with the intersection of the interval (o, i) and some
multiplicative subgroup of positive real numbers with either the interval
(o, 1/2), or (o, 1/2] collapsed to a point.

6. Commutative non-archimedean A-semigroups.

In this section, S denotes a commutative non-archimedean A-semi-
group. According to Proposition 4 and the remark after that in para-
graph 2,
(7) S=S,uS,,

where So and Si are archimedean semigroups and So is an ideal of S.

LEMMA 16. — In (7), Si contains neither proper ideal nor zero, hence Si
is an abelian group.

Proof. — Suppose that Si has either a proper ideal or { o }, say denoted
^ ^ { 0 } c I C Si, Si > i . Then the set union J= SoUl is an
ideal of S. Let p denote the Bees-congruence on S modulo J and let cr
be the congruence induced by the partition S = SoUSr For rceJ
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and y € Si\J, x a- y, but non (x p y), while, for x e J and z e -So, rr p z but
non (a;cr^). Thus p <j: o- and o-<t:p; 5' is not a A-semigroup. This is
a contradiction. Therefore Si is simple, hence an abelian groupe since S
is commutative.

LEMMA 17. — In (7), -So is a commutative nil-semigroup. The zero
of So is a zero of S.

Proof. — The commutative archimedean semigroup *So has one of
the three types : Type 1, Type 2, Type 3 described in paragraph 5.
By Lemmas 10, 11, So of Type 1, or Type 2, is homomorphic onto a non-
trivial group G, and then S would not be a A-semigroup by Theorem 9.
Consequently So has to be of Type 1. Let o be the zero of So. Since
oxeSo for all x ^ S ,

ox == (oo)x == o(orc) == o for all rre S.
That is, o is also a zero of S.

If 5' is a A-semigroup and if So is trivial, then S is an abelian group So
with zero adjoined. We have already studied the A-semigroups of this
kind in paragraph 3. So we assume | 5 ' o [ > i .

LEMMA 18. — If | So > i, then Si is a trivial group \ e}, and e is the
identity of S.

Proof. — We define a relation T: on S == So u Si by
a T: b if and only if 5' a == S1 b.

TT is a congruence on S. (Of course, we can define r. on any commu-
tative semigroup.) Since Si is a group by Lemma 16,

a TT b for all a, b e Si
and if a^So and &e5'i, then non (a^b). Lemma 17 tells us that So
contains o, which is a zero of S. Suppose a e So and a r: o. Then
S ' a = ̂ o implies a =-- o. On the other hand, let p be the Rees-con-
gruence on S modulo So. Since |5 'o |> i , TT S o C ^ \ S o by the fact
mentioned above. (TT | So denotes the restriction of TT to So.) In order
that S be a A-semigroup, TT must be comparable with p over S. Accor-
dingly, T: | So C p [ So implies TC c p which leads to TT | Si C p | Si.
Since p | Si is the equality relation, T: Si is also the equality relation,
that is, [ Si \ = i, Si is a trivial group { e}.

It remains to prove that e is the identity of S. By Lemma 1, for
all x, y ^ S , either S ^ x C S^y or S^x '^ S^. Now eeS'e and if aeSo,
e ̂  S1 a. Therefore S1 a c S1 e, which implies aeS^ for all a € So. There-
fore SoCS^. Immediately we have See === So. Take any x^So,
x = y e for some ye So. Then

a^ == (ye)e == y(ee) == ye == x for all rce So.
Combining this with e2 = e, we have proved that e is the identity of S.
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Thus we know that if S is a commutative non-archimedean A-semi-
group, it is a commutative A-nil-semigroup with identity adjoined.
To prove the converse, we consider the relationship between the con-
gruences on S and 51 where S is a commutative nil-semigroup, S1 = S\J { i ! ,
i the identity of S'.

Let p be a congruence on S. A congruence p1 on -S1 is associated with p
as follows :

x p1 y if and only if either x == y = i or x, yeS and x p y.
It is easy to see that p1 is a congruence on 51, and that p1 c;1 if and only
if pc^. Let o- be a congruence on S1 such that rro-i for some xeS.

Since S is a nil-semigroup, 0^=0 for some n > o. Then xv i
implies oo-i , and it implies

ocry for all y ^ S ^

Thus we have proved that cr == c^'i, the universal relation on -S'. Conse-
quently, every congruence 1; on 51 is either 00^1 or p1 for some congruence p
on S. If c«) denotes the universal relation on S, c^coi^i.

Immediately, we have :

LEMMA 19. — Let S be a commutative nil-semigroup. S^ is a ^-semi-
group if and only if S is a ^-semigroup.

By all the lemmas in this section and Theorem 7, we have :
THEOREM 20. — S is a commutative non-archimedean ^-semigroup if

and only if S is either :
(8.1) a p-quasicyctic group with o adjoined,

or
(8.2) a commutative nil-semigroup with identity adjoined satisfying

the divisibility chain condition.
Related to (8.2), we notice that if S satisfies the divisibility chain

condition, 5'1 also satisfies the same condition.

7. Conclusion.

Summarizing all the theorems and propositions obtained, we have :

THEOREM 21. — All the types of commutative ^'semigroups are :
(9.1) Quasicyclic groups;
(9.2) Quasicyclic groups with zero adjoined;
(9.3) Commutative nil-semigroups satisfying the divisibility chain

condition;
(9.4) The type (9.3) with identity element adjoined.
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We notice that cyclic groups of prime power are of Type (9.i) as
mentioned in Remark in paragraph 3; all commutative semigroups of
order 2 also belong to one of the above four types.

As far as Type (9.3) is concerned, CLIFFORD or TULLY'S result gives
its structure, but the author has been successful in another attack by
means of the non-negative valued functions in [12]. The result will
be published elsewhere.
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