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ON CERTAIN SUBSOCLES
OF A PRIMARY ABELIAN GROUP

BY

Cnartes MEGIBBEN.

Let G be a p-primary abelian group. Then G[p]={z€ G : pr=o0)
is called the socle of G and any subgroup of G[p] will be referred to as
a subsocle. In [3], the notion of a quasi-essential subsocle is intro-
duced : A subsocle S is said to be quasi-essential if G = H + K,
whenever H is a pure subgroup of G containing S, and K is maximal
disjoint from S. Recall that K will be maximal disjoint from S if and
only if G[p]=K[p]® S and K is a neat subgroup of G (that is,
pGNn K = pK). The purpose of this note is to prove the following
proposition.

ProrosiTiON. — A subsocle S of G is quasi-essential if and only if either

) Sc Gl=ﬁp~G
or -
() @ ®)[pl2S2(@+ G)[p]

for some nonnegative integer n.

. That conditions (1) or (2) are sufficient is established in [3], but the
converse is obtained there only when further conditions are placed
either on S or G. Our basic tool will be the following lemma :

Lemma. — If G=Zb@ Zad H, where o(b) =p’ and o(a)> p*+*
and if S is a subsocle of G such that SCZb@® H and SnZb +# o, then S
is not quasi-essential.

Proof. — Write S = (Zb)[p] @ S: with S, CH, and choose M maximal
disjoint from S, with a, be M. Then M is a neat subgroup of G, and
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M =Za@® ZbP M,, where M,=MnH. Let M'=Z(b+ pa) P M,,
and note that G[p] = M'[p] @ S. M’ will therefore be maximal disjoint
from S provided it is neat in G. But the neatness of M’ is an easy conse-
quence of the neatness of Zb @ M,. To prove that S is not quasi-essen-
tial it suffices to show that GZM'+ (Zb@ H). But, in fact,
agM’' + (Zb H). For suppose a = t(b 4+ pa) + m, -+ sb + h, where
m €M, heH and t,s€Z. Then m,+heHn(Za P Zb) = o, and we
have the absurd equation (1—pt)a = ({ 4 s)be ZanZb = o.

‘We shall require the notion of a cenfer of purity : A subgroup H of G
is said to be a center of purity if every subgroup maximal disjoint from H
is pure in G. In [4], it is shown that a subsocle S of a p-group G is a
center of purity if and only if either

@) Sc G
or
(ii) (" G)[p]2S2(p™* G)[p]

for some nonnegative integer n. Note the slight difference between (ii)
and (2). In [3], it is actually proved that if a subsocle is both a center
of purity and quasi-essential, then it satisfies (1) or (2). Consequently,
we need only prove that every quasi-essential subsocle is a center of purity
in order to establish our proposition.

Now if S supports a pure subgroup H (that is, H[p] = S) and if S is
quasi-essential, then clearly G =M@ H whenever M is maximal
disjoint from S and, since direct summands are pure, S is a center of
purity. The proof of our proposition thus reduces to showing that a
quasi-essential subsocle that fails to support a pure subgroup is also
a center of purity, or equivalently, that a subsocle S which neither
supports a pure subgroup nor is a center of purity cannot be quasi-
essential.

By a standard technique, we can construct a basic subgroup B=A ¢ C
of G where C[p] is dense in S (relative to the subspace topology induced
on G[p] by the p-adic topology of G). Since S does not support a pure
subgroup, SNp*G cannot be dense in (p” G)[p] for any n (see [2]).
This fact forces A to be unbounded. But S is not a center of purity
and therefore S§ G'. Hence there is a minimal nonnegative n such
that S¢p»+* G. Then S has an element of height exactly n and,
since C[p] is dense in S, this element may be taken to be in C. Thus C
has a cyclic direct summand Zb with o(b) = p**'. Recall that A is
unbounded, and consequently has a cyclic summand Za with
o(a) = p*> p"+*. Exploiting the purity of B and the fact that C|[p]
is dense in S, one easily shows that Zan(S+ C+ p*G)=o0. By
Theorem 24.1 of [1], we then have a direct decomposition G = Za P M,
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where M2S 4 C. But Zb is a pure subgroup of G and therefore
G=ZaP ZbP H, where ZbPHHDS and SNnZb+# o. The conditions
of our lemma are now satisfied, and we conclude that S is not quasi-
essential.
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