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INTEGER-VALUED CONTINUOUS FUNCTIONS

BY

H. SUBRAMANIAN.

Let C (X, Z) denote the f-ring of all integer-valued continuous func-
tions on a topological space X. C*(X, Z) stands for the sub-f-ring
of all bounded functions in C(X, Z). PIERCE [7] and ALLING [1]
study C(X, Z) from the point of view of the algebra of clopen sets of X.
We investigate C(X, Z) as an f-ring, and, therefore, from the point of
view of its maximal Z-ideals.

We prove the equivalence of the ring, the lattice and the (multipli-
cative) semigroup structures in C*(X, Z). We also give characteriza-
tions of C*(X, Z) as a lattice-ordered (l.-o.) ring, as a lattice-ordered (l.-o.)
group and as a ring. We obtain these characterizations as soon as we
observe that there exist sufficiently many characteristic functions with
which every function in C(X, Z) is expressed in a natural way. But,
it is not clear, at present, how to characterize C*(X, Z) as a lattice or
as a semigroup. Also, all these problems for C(X, Z) remain open.

We consider only commutative rings with unit element. The notion of
hull-kernel topology in any given collection of prime ideals of a ring is
assumed to be known [I], [4], [5], [6], [7], [9], [10]. An f-ring is a l.-o. ring
which is a subdirect product of totally-ordered (t.-o.) rings. An Z-ideal I
of a l.-o. ring is a (ring) ideal satisfying the property : [ x\^\ y [, ye I
implies that rceJ. A maximal Z-ideal of an f-ring is always prime [2].
If the intersection of all maximal Z-ideals of a l.-o. ring is zero, the l.-o.
ring is said to be Z-semisimple. Thus an Z-semisimple f-ring has no
nonzero nilpotent elements.

We fix some notations for the rest of the paper : X and Y for arbitrary
topological spaces; R for a ring or an f-ring; Z for the t.-o. ring of inte-
gers; ^ for the hull-kernel space of all minimal prime ideals of the ring R;
jn for the hull-kernel space of all maximal Z-ideals of the f-ring R; 6X for
the Boolean space of the algebra of all clopen sets of X and <rX for the
space yd of C(X, Z).
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We lose nothing in the study of the ring-lattice structure of a C(X, Z)
if we assume that X is Hausdorff and has a base of clopen sets [7].
Therefore we consider only such spaces in this paper.

REMARK 1. — For any point x e X, let M^ denote { /*(= C(X, Z) | f(x) =o}.
It is easy to verify that Mr is a maximal Z-ideal of C(X, Z). Since F\ M^

x^X

is the zero ideal, ; Mr Lrex is a dense subspace of crX. ALLING [1] has
noted that X is homeomorphic to {Xr^e-v under the correspon-
dence x -> M^. Obviously, X is compact if, and only if, every maximal
Z-ideal of C(X, Z) is of the form My for xeX; that is, X is homeo-
morphic to o-X. Thus o-(o-X) == o-X.

THEOREM 1. — A subset P of C(X, Z) is a maximal l-ideal if, and
only if, it is a minimal prime ideal.

Proof. — For any feC(X,Z), we denote by S(f) the zero set
{ x ^ X f(x) = 0 } of f. If F is a clopen set of X, 7.p stands for the
characteristic function on F. Now, if P is a maximal Z-ideal, it is necessa-
rily prime [2]. To show that it is also minimal prime, consider any feP.
S(f) is a clopen set of X, and f.^(j-) == o. Since i^ /'+%:(/) [, it follows
that ;^)^P. Therefore, P is minimal prime [5], [6]. Conversely,
let P be minimal prime. Surely then, P is an Z-ideal [10]; so, it is contained
in a maximal Z-ideal, but which is also minimal prime. The desired
result follows.

REMARK 2. — The space OTi of any f-ring is always compact
Hausdorff [4], [9], and the space ^ of any ring is always totally-discon-
nected [5], [6]. Thus o-X is compact HausdorfT totally-disconnected
(abbreviated in the sec[uel at CHT). ALLING [1] shows that the space 3'
of C(X, Z) is homeomorphic to ^X. Therefore, o-X is homeomorphic
to c^X. PIERCE [7] has shown that C*(X, Z) and C(^X, Z) are isomorphic
as rings. They are indeed isomorphic as f-rings. It follows that any
general theorem concerning C(X, Z)'s as f-rings will also be true
of C*(X, Z)'s. Theorem 1 above is a case in instance. We also note
that the space ^ or J1Z of C*(X, Z) (w C(SX, Z) w C(o-X, Z)) is o-X.

The effective content of the following theorem has been announced
by SANKARAN [8], but no proof seems to have been published so far.

THEOREM 2. — The following are equivalent :
(1) C*(X, Z) and C*(Y, Z) are isomorphic as rings;
(2) C*(X, Z) and C*(Y, Z) are isomorphic as lattices;
(3) C*(X, Z) and C*(Y, Z) are isomorphic as p.-o. groups;
(4) C*(X, Z) and C*(Y, Z) are isomorphic as semigroups;
(5) o-X and vY are homeomorphic.



INTEGER-VALUED CONTINUOUS FUNCTIONS. 277

Proof. — A ring (resp. lattice) isomorphism between two Z-semisimple
f-rings induces a homeomorphism between their spaces of maximal
Z-ideals [4] (resp. [9]). Hence each of (i) and (2) implies (5). (3) implies(2)
because any order-group isomorphism between two l.-o. groups preserves
the lattice structures also. A semigroup ideal in a ring is minimal prime if,
and only if, it is a minimal prime (ring) ideal [6]. Thus, by Remark 2,
(4) implies (5). Finally, (5) implies that C((7X, Z) and C(^Y, Z) are
isomorphic as f-rings. Remark 2 completes the proof.

REMARK 3. — Whether the above theorem is true with C"(X, Z)
and C*(Y, Z) replaced respectively by C(X, Z) and C(Y, Z) is not
known. We may refer the analogous case for C(X) shown to be true
by HENRIKSEN [3]. Similar to the realcompact spaces (the crucial
point in [3]) in the theory of C(X), ALLING [1] considers the space

6oX == { P(E aX \ C(X, Z)/PwZ j.

It can be proved that C(X, Z) and C(6oX, Z) are isomorphic as f-rings.
Only, we have to observe that, in 60 X, the hull-kernel topology and the
weak topology generated by the functions in C(X, Z) are same.
Now C(X, Z) and C(Y, Z) are isomorphic as rings if, and only if,
60 X and 60 Y are homeomorphic. Such a result with respect to the lattice
(resp. semigroup) structure can be brought about if only we can show
that any Pc6oX can be obtained purely from the lattice (resp. semi-
group) structure of C(X, Z). The following examples counter any
hasty predictions on a global generalization of Theorem 2 to all f-rings.

EXAMPLE 1 [9]. — The t.-o. Held Q of rational numbers and the non-
archimedean ordered ring Q[x] of polynomials over Q are order-isomorphic,
but not ring-isomorphic (not semigroup isomorphic also).

EXAMPLE 2 [9]. — The non-archimedean ordered ring Z[x] of poly-
nomials over Z and the subring Z[9] of the real number field generated
by Z and a transcendental number 9 (with induced order) are ring-
isomorphic, but not order isomorphic.

EXAMPLE 3. — Z and Z[x] are semigroup isomorphic, but not ring
isomorphic.

A semigroup isomorphism between Z and Z[x] can be constructed as
follows : Consider the set of all nonzero irreducible polynomials in x
over Z, the coefficients of whose highest degree are positive. This is a
countable set which can be put in one-to-one correspondence with the set
of all prime numbers. This one-to-one correspondence is extended to a
semigroup isomorphism between Z and Z[x] in the natural way, making
use of the fact that both Z and Z[x] are unique factorization domains
with exactly two unit elements, viz. i and — i. But, in any ring
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isomorphism between Z and Z[x], x should correspond to some integer,
which means x equals the same integer, a contradiction.

However, the following theorem and corollaries are interesting in the
face of the above remark and (< warning post " examples. Before
stating the theorem, we recall from [9] a definition.

DEFINITION. — Let -R be an f-ring, M a maximal Z-ideal of J? and P
a (proper) lattice-prime ideal of R. P is said to be associated with M
if yeP, x(M)< y(M) imply that xeP. [x(M) denotes the homo-
morphic image of .re-R in RIM.]

THEOREM 3. — Let R be an \-ring, and M a maximal l-ideal of R.
RIM is non-archimedean if, and only if, there exists a lattice-prime ideal P
of R, associated with M, such that P contains alt of { i , 2, 3, . . . }.

Proof. — If RIM is non-archimedean, there is an f^R such that
f(M) > n for every natural number n. Consider now

P^[g^R\g{M)<f(M)\.

P is a lattice-prime ideal of R, associated with M [9]. Evidently,
P contains all of { i , 2, 3, . . . j. Conversely, if such a P exists,
choose f^P. Since P is associated with M, f(M) > n for every natural
number n. Surely then, RIM is non-archimedean.

COROLLARY 1. — C(X, Z) and C(Y, Z) are isomorphic as rings if,
and only if, they are Z-isomorphic (i. e. mapping constant functions into
the same constant functions) as lattices.

Proof. — The lattice structure of an f-ring jR determines the space 3Vi
of R [9]. If Meo-X, C(X, Z)IM is either Z or a near y^-set (which is
not archimedean) [1],. Therefore, by Theorem 3, a Z-isomorphism
between C(X, Z) and C(Y, Z) induces a homeomorphism between ^oX
and ^o Y. The result follows by Remark 3.

COROLLARY 2. — C(X) and C(Y) are isomorphic as rings if, and only if,
they are R-isomorphic as lattices [C(X) denotes the \-ring of all real-(R)-
ualued continuous functions on X],

proof. — The same as in Corollary 1, with c^oX and §oY replaced
respectively by vX and v Y ( y X stands for the realcompactification ofX).

For use in the following two lemmas, we fix some terminology. If R
is an f-ring, let us suppose that R is the subdirect product of the t.-o.
rings Ro,; that is, if we denote the projection from R onto J?a by cpa with

the Z-ideal Pa as the kernel (^\ Pa is (o).

LEMMA 1. — Any idempotent e in a t.-o. ring R is either o or i.
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Proof. — Since e = e2, e ̂  o. Either e ̂  (i — e) or (i — e) ̂  e.
In the first case, e = e2 ̂  e(i — e) = o. Thus e = o. Since also
( i—^^( i—e ) , the second case shows that e=i .

COROLLARY. — If e is any idempotent in an ^-ring, R, e A ( i—e) == o.
Proof. — Follows by observing that cpa(^) == o or i in J?a.

LEMMA 2. — An \-ring R in which every element is a finite integral
combination of idempotents is l-semisimple.

Proof. — If { Mp } is the collection of all maximal /-ideals of J?, consider
any rce (^\ Mp. Let y == \x\ f\ i. Since y is an integral combination
of idempotents, by Lemma 1, cpa(y) is an integer in J?a. Since also
o^y^i, cpa(y) is o or i; and, every Pa contains either y or ( i—y).
If some Pa, contains ( i—y) , we get (i—z/)eM^, where Mp, is a
maximal Z-ideal containing Pa,,. Since also z/eM^, this is a contra-
diction. Therefore y e /^\ Pa == (o). Now | a ; | / \ i = = o implies that
a; == o, because cpa(a*) A I = °-

THEOREM 4. — An i-ring R as described in Lemma 2 is ring-lattice
isomorphic toaC (X, Z) for some (unique upto homeomorphism) CHT space X.

Proof. — The obvious choice for the space X should be the space 3Xi
of R. Given x^R and Me^Tl, we have

x = Ho. i + ̂ i ^i + • . . + ^rCr
where n^eZ and e|=^eM. For,

x==^mkik, mk^Z, il==ik

can be rewritten by changing an i/c into i—(i—i^) whenever ik^M.
If possible, let also

x == no i + n, ̂  +... + n', e,, n^ € Z, e^ = e^ e M.

If no>nfo, then i^(no—n'^ieM; thus i€M, which is a contra-
diction. no<n'Q is ruled out likewise. Thus H o = = = ^ o - Every Me^
now induces a map ^M'' R->Z, ^>M(x) being the integer Ho as we have
just obtained.

It is easily seen that ^M is a ring homomorphism from R onto Z
with M as the kernel. Since M is a maximal Z-ideal, there is a canonical
total order in the ring RIM, i. e., Z. The uniqueness of a compatible
total order in the ring Z shows that ^>M preserves lattice structure also.
Because of Z-semisimplicity, by Lemma 2, R is thus lattice-ring isomorphic
[by the transform x->x; x(M) ==^M(x)] to a sublattice-subring of the
f-ring of all integer-valued functions on OTi.
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If o;==Vn/:^, n^eZ and e\ = e^, then [^ ^^|n/i|. So a; has
finite range which effects a finite partition of the space OR. Each coset,
x being a constant in it, is exactly the collection of all maximal Z-ideals
containing x—k.i for some keZ; and so it is closed. It follows that
each coset is open. Hence x is continuous because the preimage of every
single point open set in the discrete space Z is open.

The map x->x from jR to C(3Ti, Z) is also onto. Since 3M is always
compact Hausdorff [4], [9], any fe.C(3Xi,Z) is a finite sumVn^/^,
where each Ek is a clopen set of Oil. But E/c is the hull of a direct
summand of R, and thereforet he hull of an idempotent ik e R. Obviously,
jk = ̂ , where jk = i — 4. Thus if x ==^n^j/,, then x == f.

The proof is complete on showing that OTI is a totally disconnected
space. Every .re-MeOTI is a finite integral combination of idempotents
within M; so distinct elements of DTi contain in them different collections
of idempotents. Therefore any two points of OTt are separated by a
clopen set, and 3Ti is totally disconnected. The uniqueness follows
from Theorem 2 and Remark 1.

Let G denote a l.-o. Abelian group with strong order unit i (i. e. an
element contained in no maximal Z-subgroup). We define an idempotent
in G to be a relatively complemented element in the interval (o, i).
The property of being a strong order unit is preserved under any group-
lattice homomorphism. Since G is a subdirect product of t.-o. groups,
ee (G, i) is an idempotent if, and only if, e /\ (i — e) == o. Any maximal
Z-subgroup of G is the kernel of a group-lattice homomorphism of G
onto a t.-o. group, and contains one, and only one, of the conjugate
idempotents e and (i—e). Any clopen set in the hull-kernel space
(certainly compact Ti) of maximal Z-ideals of (G, i) is given by the hull
of an idempotent. In Summary, we obtain the following theorem.

THEOREM 5. — Lemma 2 and Theorem 4 are true in the set up of a l.-o.
Abelian group with strong order unit in the place of an \-ring.

LEMMA 3. — A ring R, whose additive group is torsion-free, and whose
elements are finite integral combinations of idempotents, does not have any
nonzero nilpotent elements.

Proof. — Let R be the subdirect product of subdirectly irreducible
rings Ra. If we denote by 9 a the projection R->Ra with kernel Ka,
F\ Ka is (o). Consider any x^R such that x71 = o, n ̂  i. Let

x=niei+.. .+nkCk,

where n/:eZ and e^=^. Since a subdirectly irreducible ring cannot
contain any idempotent except o and i, we have either x^Ka
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or x =^rrta (mod Ka) (m^ o) for each Ka, where nia^Z. But each ma
so obtained is a sum of some or all of Hi, . . . , n/,. Thus there are only
finitely many among the m^s which are distinct; if they are m,, m.,,..., m/,,
we see that m?. . .m?.rce ̂  Z^== (o). This means x is o, because the
additive group is torsion-free.

In all the following lemmas, let R denote a ring as described in
Lemma 3. We proceed to prove that such a ring R characterizes a
C(X, Z) for some CHT space X.

LEMMA 4. — R is isomorphic to a sabring of a C*(X, Z).
Proof. — Choose X to be the space ^ of R. For any x^R and Pe T,

obtain Ho e Z exactly as in Theorem 4. If this Ho is not unique, there
exists n e Z- such that n. i e P. P being minimal prime, n;r = (n. i)x = o
for some x^P [5], [6]. This contradicts the assumption that the additive
group of R is torsion-free. The result of the proof is exactly like in
Theorem 4 using Lemma 3 in place of Lemma 2.

LEMMA 5. — If P, Q e ̂  are distinct, then P + Q == R.
Proof. — Choose xePr^Q. Express x as a sum of idempotents

within P, as in Theorem 4. One of these idempotents, say e, is necessa-
rily not in 0. Thus (i — e) e Q, and P + Q = R.

COROLLARY. — Any maximal ideal of R contains a unique minimal
prime ideal.

For every maximal ideal M of R, let TT (M) denote
{ x ^ R xy == o for some y^M}.

It is easily seen that TT (M) is an ideal of jR and T: (M) c M.

LEMMA 6. — For any P€ "?, P = 7r(M) for any maximal ideal M of R
such that PcM.

Proof. — If x^7i(M), let xy = o, y^M. Then y^P, implying
that rreP. Conversely, let X^.T:(M). Consider the multiplicatively
closed subset S == { x n y \ y ^ M }u {R^ M }. It is easily checked that
7r(M) is disjoint with S. Therefore, by Zorn's Lemma, there exists
a prime ideal Q containing 7r(M) and maximally disjoint with S.
Since QcM, P should be, by Corollary to Lemma 5, the only minimal
prime ideal contained in Q. Since x ^ S , x^P.

COROLLARY. — For any P e ̂ , x e P if, and only if, x" + P = R,
where x* denotes the annihilator ideal { y e R \ yx = o { of x.

Proof. — Let x^P. If M is any maximal ideal containing P, M cannot
contain x" by Lemma 6. Thus the ideal generated by x" and P together
is R. The converse is obvious.
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LEMMA 7. — { h ( y ) \ y e R } is a base for open sets in ^, where for
any ACR, h(A) == {Pe ̂  ] A Cp}, the hull of A in ^.

Proof. —By Lemma 6, h(y) = h'^) for any y^R, where h' (A) denotes
the complement of the hull of A in ^. Choose any x^R and Pe^.
Let Hi, 722, . . . , Uk be all the nonzero values of the function x, defined
as in Lemma 4. Consider y == (x — Hi) ... (x — Uk). Suppose that x ̂  P.
Then y ^ P ; and, for any 0e^ such that y^Q, x^Q. Thus
P^h(y)^hf(x). Since j A7 (re) | x e -R } forms a base for open sets in ^,
the result follows.

By Corollary to Lemma 5 and Lemma 6, TT is a map defined from
the hull-kernel space .JTl of all maximal ideals of R onto ^. We esta-
blish :

LEMMA 8. — TT is continuous.
Proof. — For any y^R, TT-^A^)) == { M^3Vi\ yerc(M)}. By defi-

nition of 7r(M), it follows that Tr-1 (A (y)) = { M^OU [ y*^M j, which is an
open set in JH. Since 7?(y) is a basic open set in ^, TT is continuous.

Since OVi is always compact, we have :

COROLLARY. — The space ^ of R is compact.

LEMMA 9. — If F is any clopen set in the space ^ ofR, then F = h(e),
where e is an idempotent in R.

Proof. — TT-^F) is clopen in JTt; therefore, there exists e^R
such that e = = e 2 and TT-^F) = { M e < m | eeM}. If Peh(e) and
P C M e ori, then P = n (M) and M e 7r-1 (F). Therefore P e F. Conver-
sely, if P e F, let P = TT (M) for some M e ̂ . Then e e At. Since e = e2

and i—e^P, eeP. That is, Pe.h(e).
We now state :

THEOREM 6. — A ring R, as described in Lemma 3 is ring isomorphic
to a C(X, Z) for some (unique upto homeomorphism) CHT space X.

Proof. — Choose S to be the space X, Using Lemma 4, Corollary
to Lemma 8, and Lemma 9, modify the proof of Theorem 4 accordingly.

REMARK 4. — The converse of each of Theorems 4, 5 and 6 are clearly
true. In fact, for any feC*(X, Z), we have

f=2j ^Z/-1^)
nEf[x)-{0}

and this is the unique representation of f as an integral combination with
the fewest number of orthogonal idempotents. We could simplify the
proofs of Theorems 4, 5 and 6 with such a strong representation of
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elements. But a weaker hypothesis as we have assumed in these Theo-
rems are enough.

REMARK 5. — Neither Lemma 2 (hence Theorem 4) nor Lemma 3
(hence Theorem 6) extends to non-commutative cases. The necessary
example to illustrate this is given below.

EXAMPLE 4. — In the additive group Z x Z, define (a, b) (c, d) == (ac, ad)
and give the lexicographic order. This non-commutative (f-)ring is
additively generated by the idempotents (i, 6). (o, i) is nilpotent and
generates the only maximal /-ideal in Z x Z.

The author thanks John R. ISBELL who provided the examples 3
and 4.
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