BULLETIN DE LA S. M. F.

H. SUBRAMANIAN Integer-valued continuous functions

Bulletin de la S. M. F., tome 97 (1969), p. 275-283 http://www.numdam.org/item?id=BSMF_1969_97_275_0 >

© Bulletin de la S. M. F., 1969, tous droits réservés.

L'accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Bull. Soc. math. France, 97, 1969, p. 275 à 283.

INTEGER-VALUED CONTINUOUS FUNCTIONS

BY

H. SUBRAMANIAN.

Let C(X, Z) denote the f-ring of all integer-valued continuous functions on a topological space X. $C^*(X, Z)$ stands for the sub-f-ring of all bounded functions in C(X, Z). PIERCE [7] and ALLING [1] study C(X, Z) from the point of view of the algebra of clopen sets of X. We investigate C(X, Z) as an f-ring, and, therefore, from the point of view of its maximal *l*-ideals.

We prove the equivalence of the ring, the lattice and the (multiplicative) semigroup structures in $C^*(X, Z)$. We also give characterizations of $C^*(X, Z)$ as a lattice-ordered (l.-o.) ring, as a lattice-ordered (l.-o.) group and as a ring. We obtain these characterizations as soon as we observe that there exist sufficiently many characteristic functions with which every function in $C^*(X, Z)$ is expressed in a natural way. But, it is not clear, at present, how to characterize $C^*(X, Z)$ as a lattice or as a semigroup. Also, all these problems for C(X, Z) remain open.

We consider only commutative rings with unit element. The notion of *hull-kernel* topology in any given collection of prime ideals of a ring is assumed to be known [1], [4], [5], [6], [7], [9], [10]. An f-ring is a l.-o. ring which is a subdirect product of totally-ordered (t.-o.) rings. An *l*-ideal *I* of a l.-o. ring is a (ring) ideal satisfying the property : $|x| \leq |y|, y \in I$ implies that $x \in I$. A maximal *l*-ideal of an f-ring is always prime [2]. If the intersection of all maximal *l*-ideals of a l.-o. ring is zero, the l.-o. ring is said to be *l*-semisimple. Thus an *l*-semisimple f-ring has no nonzero nilpotent elements.

We fix some notations for the rest of the paper : X and Y for arbitrary topological spaces; R for a ring or an f-ring; Z for the t.-o. ring of integers; \mathscr{D} for the hull-kernel space of all minimal prime ideals of the ring R; \mathfrak{M} for the hull-kernel space of all maximal *l*-ideals of the f-ring R; ∂X for the Boolean space of the algebra of all clopen sets of X and σX for the space \mathfrak{M} of C(X, Z).

H. SUBRAMANIAN.

We lose nothing in the study of the ring-lattice structure of a C(X, Z) if we assume that X is Hausdorff and has a base of clopen sets [7]. Therefore we consider only such spaces in this paper.

REMARK 1. — For any point $x \in X$, let M_x denote $\{f \in C(X, Z) \mid f(x) = 0\}$. It is easy to verify that M_x is a maximal *l*-ideal of C(X, Z). Since $\bigcap_{x \in X} M_x$

is the zero ideal, $\{M_x\}_{x \in X}$ is a dense subspace of σX . Alling [1] has noted that X is homeomorphic to $\{M_x\}_{x \in X}$ under the correspondence $x \to M_x$. Obviously, X is compact if, and only if, every maximal *l*-ideal of C(X, Z) is of the form M_x for $x \in X$; that is, X is homeomorphic to σX . Thus $\sigma(\sigma X) = \sigma X$.

THEOREM 1. — A subset P of C(X, Z) is a maximal l-ideal if, and only if, it is a minimal prime ideal.

Proof. — For any $f \in C(X, Z)$, we denote by $\zeta(f)$ the zero set $\{x \in X \mid f(x) = 0\}$ of f. If F is a clopen set of X, χ_F stands for the characteristic function on F. Now, if P is a maximal *l*-ideal, it is necessarily prime [2]. To show that it is also minimal prime, consider any $f \in P$. $\zeta(f)$ is a clopen set of X, and $f \cdot \chi_{\zeta(f)} = 0$. Since $I \leq |f + \chi_{\zeta(f)}|$, it follows that $\chi_{\zeta(f)} \notin P$. Therefore, P is minimal prime [5], [6]. Conversely, let P be minimal prime. Surely then, P is an *l*-ideal [10]; so, it is contained in a maximal *l*-ideal, but which is also minimal prime. The desired result follows.

REMARK 2. — The space \mathcal{R} of any f-ring is always compact Hausdorff [4], [9], and the space \mathcal{R} of any ring is always totally-disconnected [5], [6]. Thus σX is compact Hausdorff totally-disconnected (abbreviated in the sequel at CHT). Alling [1] shows that the space \mathcal{R} of C(X, Z) is homeomorphic to ∂X . Therefore, σX is homeomorphic to ∂X . PIERCE [7] has shown that $C^*(X, Z)$ and $C(\partial X, Z)$ are isomorphic as rings. They are indeed isomorphic as f-rings. It follows that any general theorem concerning C(X, Z)'s as f-rings will also be true of $C^*(X, Z)$'s. Theorem 1 above is a case in instance. We also note that the space \mathcal{R} or \mathcal{M} of $C^*(X, Z) (\approx C(\partial X, Z) \approx C(\sigma X, Z))$ is σX .

The effective content of the following theorem has been announced by SANKARAN [8], but no proof seems to have been published so far.

THEOREM 2. — The following are equivalent :

(1) $C^{\star}(X, Z)$ and $C^{\star}(Y, Z)$ are isomorphic as rings;

(2) $C^{*}(X, Z)$ and $C^{*}(Y, Z)$ are isomorphic as lattices;

(3) $C^*(X, Z)$ and $C^*(Y, Z)$ are isomorphic as p.-o. groups;

(4) $C^*(X, Z)$ and $C^*(Y, Z)$ are isomorphic as semigroups;

(5) σX and σY are homeomorphic.

276

INTEGER-VALUED CONTINUOUS FUNCTIONS.

Proof. — A ring (resp. lattice) isomorphism between two *l*-semisimple f-rings induces a homeomorphism between their spaces of maximal *l*-ideals [4] (resp. [9]). Hence each of (1) and (2) implies (5). (3) implies (2) because any order-group isomorphism between two l.-o. groups preserves the lattice structures also. A semigroup ideal in a ring is minimal prime if, and only if, it is a minimal prime (ring) ideal [6]. Thus, by Remark 2, (4) implies (5). Finally, (5) implies that $C(\sigma X, Z)$ and $C(\sigma Y, Z)$ are isomorphic as f-rings. Remark 2 completes the proof.

REMARK 3. — Whether the above theorem is true with $C^*(X, Z)$ and $C^*(Y, Z)$ replaced respectively by C(X, Z) and C(Y, Z) is not known. We may refer the analogous case for C(X) shown to be true by HENRIKSEN [3]. Similar to the realcompact spaces (the crucial point in [3]) in the theory of C(X), Alling [1] considers the space

$$\delta_0 X = \{ P \in \sigma X \mid C(X, Z) / P \approx Z \}.$$

It can be proved that C(X, Z) and $C(\delta_0 X, Z)$ are isomorphic as f-rings. Only, we have to observe that, in $\delta_0 X$, the hull-kernel topology and the weak topology generated by the functions in C(X, Z) are same. Now C(X, Z) and C(Y, Z) are isomorphic as rings if, and only if, $\delta_0 X$ and $\delta_0 Y$ are homeomorphic. Such a result with respect to the lattice (resp. semigroup) structure can be brought about if only we can show that any $P \in \delta_0 X$ can be obtained purely from the lattice (resp. semigroup) structure of C(X, Z). The following examples counter any hasty predictions on a global generalization of Theorem 2 to all f-rings.

EXAMPLE 1 [9]. — The t.-o. field Q of rational numbers and the nonarchimedean ordered ring Q[x] of polynomials over Q are order-isomorphic, but not ring-isomorphic (not semigroup isomorphic also).

EXAMPLE 2 [9]. — The non-archimedean ordered ring Z[x] of polynomials over Z and the subring $Z[\theta]$ of the real number field generated by Z and a transcendental number θ (with induced order) are ring-isomorphic, but not order isomorphic.

EXAMPLE 3. — Z and Z[x] are semigroup isomorphic, but not ring isomorphic.

A semigroup isomorphism between Z and Z[x] can be constructed as follows: Consider the set of all nonzero irreducible polynomials in xover Z, the coefficients of whose highest degree are positive. This is a countable set which can be put in one-to-one correspondence with the set of all prime numbers. This one-to-one correspondence is extended to a semigroup isomorphism between Z and Z[x] in the natural way, making use of the fact that both Z and Z[x] are unique factorization domains with exactly two unit elements, viz. 1 and — 1. But, in any ring H. SUBRAMANIAN.

isomorphism between Z and Z[x], x should correspond to some integer, which means x equals the same integer, a contradiction.

However, the following theorem and corollaries are interesting in the face of the above remark and "warning post" examples. Before stating the theorem, we recall from [9] a definition.

DEFINITION. — Let R be an f-ring, M a maximal l-ideal of R and P a (proper) lattice-prime ideal of R. P is said to be associated with M if $y \in P$, x(M) < y(M) imply that $x \in P$. [x(M) denotes the homomorphic image of $x \in R$ in R/M.]

THEOREM 3. — Let R be an f-ring, and M a maximal l-ideal of R. R/M is non-archimedean if, and only if, there exists a lattice-prime ideal P of R, associated with M, such that P contains all of $\{1, 2, 3, ...\}$.

Proof. — If R/M is non-archimedean, there is an $f \in R$ such that f(M) > n for every natural number n. Consider now

$$P = \{ g \in R \mid g(M) < f(M) \}.$$

P is a lattice-prime ideal of *R*, associated with *M* [9]. Evidently, *P* contains all of $\{1, 2, 3, ...\}$. Conversely, if such a *P* exists, choose $f \notin P$. Since *P* is associated with *M*, f(M) > n for every natural number *n*. Surely then, R/M is non-archimedean.

COROLLARY 1. — C(X, Z) and C(Y, Z) are isomorphic as rings if, and only if, they are Z-isomorphic (i. e. mapping constant functions into the same constant functions) as lattices.

Proof. — The lattice structure of an f-ring R determines the space \mathfrak{M} of R [9]. If $M \in \sigma X$, C(X, Z)/M is either Z or a near η_1 -set (which is not archimedean) [1]. Therefore, by Theorem 3, a Z-isomorphism between C(X, Z) and C(Y, Z) induces a homeomorphism between $\delta_0 X$ and $\delta_0 Y$. The result follows by Remark 3.

COROLLARY 2. — C(X) and C(Y) are isomorphic as rings if, and only if, they are R-isomorphic as lattices [C(X) denotes the \mathfrak{f} -ring of all real-(R)valued continuous functions on X].

Proof. — The same as in Corollary 1, with $\delta_0 X$ and $\delta_0 Y$ replaced respectively by νX and νY (νX stands for the realcompactification of X).

For use in the following two lemmas, we fix some terminology. If R is an f-ring, let us suppose that R is the subdirect product of the t.-o. rings R_{α} ; that is, if we denote the projection from R onto R_{α} by φ_{α} with

the *l*-ideal P_{α} as the kernel $\bigcap P_{\alpha}$ is (o).

LEMMA 1. — Any idempotent e in a t.-o. ring R is either o or 1.

278

Proof. — Since $e = e^2$, $e \ge 0$. Either $e \le (1-e)$ or $(1-e) \le e$. In the first case, $e = e^2 \le e(1-e) = 0$. Thus e = 0. Since also $(1-e)^2 = (1-e)$, the second case shows that e = 1.

COROLLARY. — If e is any idempotent in an f-ring, R, $e \wedge (\mathbf{1} - e) = 0$. *Proof.* — Follows by observing that $\varphi_{\alpha}(e) = 0$ or $\mathbf{1}$ in R_{α} .

LEMMA 2. — An f-ring R in which every element is a finite integral combination of idempotents is l-semisimple.

Proof. — If $\{M_{\beta}\}$ is the collection of all maximal *l*-ideals of *R*, consider any $x \in \bigcap M_{\beta}$. Let $y = |x| \land I$. Since *y* is an integral combination of idempotents, by Lemma 1, $\varphi_{\alpha}(y)$ is an integer in R_{α} . Since also $o \leq y \leq I$, $\varphi_{\alpha}(y)$ is o or *I*; and, every P_{α} contains either *y* or (I-y). If some P_{α_0} contains (I-y), we get $(I-y) \in M_{\beta_0}$, where M_{β_0} is a maximal *l*-ideal containing P_{α_0} . Since also $y \in M_{\beta_0}$, this is a contradiction. Therefore $y \in \bigcap P_{\alpha} = (o)$. Now $|x| \land I = o$ implies that x = o, because $|\varphi_{\alpha}(x)| \land I = o$.

THEOREM 4. — An \mathfrak{f} -ring R as described in Lemma 2 is ring-lattice isomorphic to a C(X, Z) for some (unique upto homeomorphism) CHT space X.

Proof. — The obvious choice for the space X should be the space \mathfrak{M} of R. Given $x \in R$ and $M \in \mathfrak{M}$, we have

$$x = n_0 \cdot \mathbf{1} + n_1 e_1 + \ldots + n_r e_r$$

where $n_k \in Z$ and $e_k^2 = e_k \in M$. For,

$$x = \sum m_k i_k, \quad m_k \in \mathbb{Z}, \quad i_k^2 = i_k$$

can be rewritten by changing an i_k into $1 - (1 - i_k)$ whenever $i_k \notin M$. If possible, let also

$$x = n'_0 I + n'_1 e'_1 + \ldots + n'_s e'_s, \qquad n'_k \in \mathbb{Z}, \qquad e'^2_k = e'_k \in \mathbb{M}.$$

If $n_0 > n'_0$, then $1 \leq (n_0 - n'_0) 1 \in M$; thus $1 \in M$, which is a contradiction. $n_0 < n'_0$ is ruled out likewise. Thus $n_0 = n'_0$. Every $M \in \mathcal{M}$ now induces a map $\psi_M : R \to Z$, $\psi_M(x)$ being the integer n_0 as we have just obtained.

It is easily seen that ψ_M is a ring homomorphism from R onto Z with M as the kernel. Since M is a maximal *l*-ideal, there is a canonical total order in the ring R/M, i. e., Z. The uniqueness of a compatible total order in the ring Z shows that ψ_M preserves lattice structure also. Because of *l*-semisimplicity, by Lemma 2, R is thus lattice-ring isomorphic [by the transform $x \to \tilde{x}$; $\tilde{x}(M) = \psi_M(x)$] to a sublattice-subring of the f-ring of all integer-valued functions on \mathfrak{M} .

H. SUBRAMANIAN.

If $x = \sum n_k e_k$, $n_k \in Z$ and $e_k^2 = e_k$, then $|\tilde{x}| \leq \sum |n_k|$. So x has finite range which effects a finite partition of the space \mathfrak{M} . Each coset, x being a constant in it, is exactly the collection of all maximal *l*-ideals containing x - k. I for some $k \in Z$; and so it is closed. It follows that each coset is open. Hence \tilde{x} is continuous because the preimage of every single point open set in the discrete space Z is open.

The map $x \to \tilde{x}$ from R to $C(\mathfrak{M}, Z)$ is also onto. Since \mathfrak{M} is always compact Hausdorff [4], [9], any $f \in C(\mathfrak{M}, Z)$ is a finite sum $\sum n_k \chi_{E_k}$, where each E_k is a clopen set of \mathfrak{M} . But E_k is the hull of a direct summand of R, and therefore the hull of an idempotent $i_k \in R$. Obviously, $\tilde{j}_k = \chi_{E_k}$, where $j_k = \mathbf{1} - i_k$. Thus if $x = \sum n_k j_k$, then $\tilde{x} = f$.

The proof is complete on showing that \mathfrak{M} is a totally disconnected space. Every $x \in M \in \mathfrak{M}$ is a finite integral combination of idempotents within M; so distinct elements of \mathfrak{M} contain in them different collections of idempotents. Therefore any two points of \mathfrak{M} are separated by a clopen set, and \mathfrak{M} is totally disconnected. The uniqueness follows from Theorem 2 and Remark 1.

Let G denote a l.-o. Abelian group with strong order unit $\mathbf{1}$ (i. e. an element contained in no maximal *l*-subgroup). We define an *idempotent* in G to be a relatively complemented element in the interval (0, 1). The property of being a strong order unit is preserved under any group-lattice homomorphism. Since G is a subdirect product of t.-o. groups, $e \in (G, 1)$ is an idempotent if, and only if, $e \wedge (1 - e) = 0$. Any maximal *l*-subgroup of G is the kernel of a group-lattice homomorphism of G onto a t.-o. group, and contains one, and only one, of the conjugate idempotents e and (1 - e). Any clopen set in the hull-kernel space (certainly compact T_1) of maximal *l*-ideals of (G, 1) is given by the hull of an idempotent. In Summary, we obtain the following theorem.

THEOREM 5. — Lemma 2 and Theorem 4 are true in the set up of a l.-o. Abelian group with strong order unit in the place of an f-ring.

LEMMA 3. — A ring R, whose additive group is torsion-free, and whose elements are finite integral combinations of idempotents, does not have any nonzero nilpotent elements.

Proof. — Let R be the subdirect product of subdirectly irreducible rings R_a . If we denote by φ_a the projection $R \to R_a$ with kernel K_a , $\bigcap K_a$ is (o). Consider any $x \in R$ such that $x^n = 0, n \neq 1$. Let

$$x = n_1 e_1 + \ldots + n_k e_k,$$

where $n_k \in Z$ and $e_2^k = e_k$. Since a subdirectly irreducible ring cannot contain any idempotent except o and I, we have either $x \in K_a$

280

or $x \equiv m_a \pmod{K_a}$ $(m_a \neq 0)$ for each K_a , where $m_a \in Z$. But each m_a so obtained is a sum of some or all of n_1, \ldots, n_k . Thus there are only finitely many among the m_a 's which are distinct; if they are m_1, m_2, \ldots, m_r , we see that $m_1^n \ldots m_r^n . x \in \bigcap K_a = (0)$. This means x is 0, because the additive group is torsion-free.

In all the following lemmas, let R denote a ring as described in Lemma 3. We proceed to prove that such a ring R characterizes a C(X, Z) for some CHT space X.

LEMMA 4. — R is isomorphic to a subring of a $C^*(X, Z)$.

Proof. — Choose X to be the space \mathcal{R} of R. For any $x \in R$ and $P \in \mathcal{R}$, obtain $n_0 \in Z$ exactly as in Theorem 4. If this n_0 is not unique, there exists $n \in Z^+$ such that $n.1 \in P$. P being minimal prime, nx = (n.1)x = 0 for some $x \notin P$ [5], [6]. This contradicts the assumption that the additive group of R is torsion-free. The result of the proof is exactly like in Theorem 4 using Lemma 3 in place of Lemma 2.

LEMMA 5. — If $P, Q \in \mathcal{X}$ are distinct, then P + Q = R.

Proof. — Choose $x \in P \sim Q$. Express x as a sum of idempotents within P, as in Theorem 4. One of these idempotents, say e, is necessarily not in Q. Thus $(1-e) \in Q$, and P + Q = R.

COROLLARY. — Any maximal ideal of R contains a unique minimal prime ideal.

For every maximal ideal M of R, let $\pi(M)$ denote

 $\{x \in R \mid xy = 0 \text{ for some } y \notin M \}.$

It is easily seen that $\pi(M)$ is an ideal of R and $\pi(M) \subset M$.

LEMMA 6. — For any $P \in \mathcal{X}$, $P = \pi(M)$ for any maximal ideal M of R such that $P \subset M$.

Proof. — If $x \in \pi(M)$, let xy = 0, $y \notin M$. Then $y \notin P$, implying that $x \in P$. Conversely, let $x \notin \pi(M)$. Consider the multiplicatively closed subset $S = \{x^n y \mid y \notin M\} \cup \{R \sim M\}$. It is easily checked that $\pi(M)$ is disjoint with S. Therefore, by Zorn's Lemma, there exists a prime ideal Q containing $\pi(M)$ and maximally disjoint with S. Since $Q \subset M$, P should be, by Corollary to Lemma 5, the only minimal prime ideal contained in Q. Since $x \in S$, $x \notin P$.

COROLLARY. — For any $P \in \mathcal{R}$, $x \in P$ if, and only if, $x^* + P = R$, where x^* denotes the annihilator ideal $\{y \in R \mid yx = o\}$ of x.

Proof. — Let $x \in P$. If M is any maximal ideal containing P, M cannot contain x^* by Lemma 6. Thus the ideal generated by x^* and P together is R. The converse is obvious.

LEMMA 7. — $\{h(y) | y \in R\}$ is a base for open sets in \mathcal{X} , where for any $A \subseteq R$, $h(A) = \{P \in \mathcal{R} | A \subseteq P\}$, the hull of A in \mathcal{R} .

Proof. — By Lemma 6, $h(y) = h'(y^*)$ for any $y \in R$, where h'(A) denotes the complement of the hull of A in \mathcal{R} . Choose any $x \in R$ and $P \in \mathcal{R}$. Let n_1, n_2, \ldots, n_k be all the nonzero values of the function \tilde{x} , defined as in Lemma 4. Consider $y = (x - n_1) \ldots (x - n_k)$. Suppose that $x \notin P$. Then $y \in P$; and, for any $Q \in \mathcal{R}$ such that $y \in Q, x \notin Q$. Thus $P \in h(y) \subseteq h'(x)$. Since $\{h'(x) \mid x \in R\}$ forms a base for open sets in \mathcal{R} , the result follows.

By Corollary to Lemma 5 and Lemma 6, π is a map defined from the hull-kernel space \mathcal{M} of all maximal ideals of R onto \mathcal{R} . We establish :

LEMMA 8. — π is continuous.

Proof. — For any $y \in \mathbb{R}$, $\pi^{-1}(h(y)) = \{M \in \mathcal{M} \mid y \in \pi(M)\}$. By definition of $\pi(M)$, it follows that $\pi^{-1}(h(y)) = \{M \in \mathcal{M} \mid y^* \nsubseteq M\}$, which is an open set in \mathcal{M} . Since h(y) is a basic open set in \mathcal{R} , π is continuous.

Since \mathfrak{M} is always compact, we have :

COROLLARY. — The space \mathcal{D} of R is compact.

LEMMA 9. — If F is any clopen set in the space \mathcal{R} of R, then F = h(e), where e is an idempotent in R.

Proof. — $\pi^{-1}(F)$ is clopen in \mathfrak{M} ; therefore, there exists $e \in R$ such that $e = e^2$ and $\pi^{-1}(F) = \{M \in \mathfrak{M} \mid e \in M\}$. If $P \in h(e)$ and $P \subseteq M \in \mathfrak{M}$, then $P = \pi(M)$ and $M \in \pi^{-1}(F)$. Therefore $P \in F$. Conversely, if $P \in F$, let $P = \pi(M)$ for some $M \in \mathfrak{M}$. Then $e \in M$. Since $e = e^2$ and $\mathbf{1} - e \notin P$, $e \in P$. That is, $P \in h(e)$.

We now state :

THEOREM 6. — A ring R, as described in Lemma 3 is ring isomorphic to a C(X, Z) for some (unique upto homeomorphism) CHT space X.

Proof. — Choose \mathcal{R} to be the space X, Using Lemma 4, Corollary to Lemma 8, and Lemma 9, modify the proof of Theorem 4 accordingly.

REMARK 4. — The converse of each of Theorems 4, 5 and 6 are clearly true. In fact, for any $f \in C^*(X, Z)$, we have

$$f = \sum_{n \in f(x) - \{0\}} n \chi_{f^{-1}(n)}$$

and this is the unique representation of f as an integral combination with the fewest number of orthogonal idempotents. We could simplify the proofs of Theorems 4, 5 and 6 with such a strong representation of elements. But a weaker hypothesis as we have assumed in these Theorems are enough.

REMARK 5. — Neither Lemma 2 (hence Theorem 4) nor Lemma 3 (hence Theorem 6) extends to non-commutative cases. The necessary example to illustrate this is given below.

EXAMPLE 4. — In the additive group $Z \times Z$, define (a, b) (c, d) = (ac, ad) and give the lexicographic order. This non-commutative (f-)ring is additively generated by the idempotents (I, b). (o, I) is nilpotent and generates the only maximal *l*-ideal in $Z \times Z$.

The author thanks John R. ISBELL who provided the examples 3 and 4.

REFERENCES.

- ALLING (N. L.). Rings of continuous integer-valued functions and nonstandard arithmetic, Trans. Amer. math. Soc., t. 118, 1965, p. 498-525.
- [2] FUCHS (L.). Partially ordered algebraic systems. Oxford, Pergamon Press, 1963 (International Series of Monographs on pure and applied Mathematics, 28).
- [3] HENRIKSEN (M.). On the equivalence of the ring, lattice, and semigroup of continuous functions, Proc. Amer. math. Soc., t. 7, 1956, p. 959-960.
- [4] HENRIKSEN (M.) and ISBELL (J. R.). Lattice-ordered rings and function rings, Pacific J. Math., t. 12, 1962, p. 533-566.
- [5] HENRIKSEN (M.) and JERISON (M.). The space of minimal prime ideals of a commutative ring, *Trans. Amer. math. Soc.*, t. 115, 1965, p. 110-130.
- [6] KIST (J.). Minimal prime ideals in commutative semigroups, Proc. London math. Soc., t. 13, 1963, p. 31-50.
- [7] PIERCE (R. S.). Rings of integer-valued continuous functions, Trans. Amer. math. Soc., t. 100, 1961, p. 371-394.
- [8] SANKARAN (N.). Rings of integer-valued functions, 29th Annual Conference of the Indian math. Soc. [1963, Madras], Abstracts, Mathematics Student, t. 32, 1964, nºs 3-4, Appendix, p. 28.
- [9] SUBRAMANIAN (H.). Kaplansky's Theorem for f-rings, Math. Annalen, t. 179, 1968, p. 70-73.
- [10] SUBRAMANIAN (H.). *l*-prime ideals in *f*-rings, Bull. Soc. math. France, t. 95, 1967, p. 193-204.

(Texte reçu le 9 janvier 1969.)

H. SUBRAMANIAN, Department of Mathematics, State University of New-York, Buffalo, N. Y. 14226-U. S. A. (États-Unis).