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THE LEFSCHETZ-RIEMANN-ROCH FORMULA

PETER DONOVAN.

This paper uses the results and some of the methods of the paper of
BOREL and SERRE on the Grothendieck-Riemann-Roch theorem ([0])
to obtain a fixed point formula for periodic automorphisms of non-
singular projective algebraic varieties over an algebraically closed field, k.

This formula is analogous to that of ATIYAH, SINGER and SEGAL [2]
(see also [5]) for elliptic differential operators over compact manifolds
with automorphisms of period n and for certain other automorphisms.
Both formulas depend heavily on the fact that the eigenvalues of certain
endomorphisms of vector bundles are locally constant. In [2], this is gua-
ranteed by hypotheses which force these eigenvalues to be n^ roots of
unity and considerations of continuity. In projective algebraic geometry,
the general principle that " all global functions are constant " gives this
fact. Thus the result of ATIYAH, SINGER and SEGAL can be extended
to non-periodic endomorphisms only if it is assumed that such endo-
morphisms have only isolated fixed points (see ATIYAH and BOTT [1]).
The results of this paper may be formulated under far weaker hypotheses
than periodicity, but, as is discussed in the last section, the proof of such
more general results is probably quite difficult. If k is taken to be the
field of complex numbers, the results of this paper are seen to overlap
those of ATIYAH, SINGER and SEGAL.

This formula is also analogous to that of VERDIER [10] in the etale
cohomology of schemes. The Eichler trace formula ([4]) in the theory
of function fields is also somewhat analogous.

It has not yet been stated which cohomology theory is being used here.
It is the cohomology of coherent algebraic sheaves; however, as in [O],
it is better to work more generally with the direct image sheaves of
morphisms of varieties. Thus, let y : Y -> Y and x: X —> X be periodic
endomorphisms of non-singular projective algebraic varieties and let
f: Y -> X be such that fy = xf.
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258 p. DONOVAN.

Let ^ : y^F -> F be a morphism of coherent sheaves on Y. Then there
are defined induced morphisms jR^ ^ : x^R^^F-> R^^F. ^ has a
<e Chern trace ? ? which takes values in the Chow ring of the fixed point set
of y tensored with a suitable field. I give a formula comparing the Chern
trace of ^ with the alternating sum of the Chern traces of the R^.
If F is locally free and if X is a point this looks like the formula of ATIYAH
SINGER and SEGAL. On the other hand, if x, y and ^ are all identities,
then my formula reduces to the Grothendieck-Riemann-Roch formula.

If k has characteristic p -^- o, the word <( periodic " has to be inter-
preted as meaning cc periodic with period prime to p ". The formulation
is also slightly more complicated : instead of dealing with the eigen-
values directly it is necessary to use a canonical (Teichmiiller) lifting of
them to the Witt ring of k. Thus, in the case when X is a point (in the
above notation), a formula for a stronger invariant than the trace of the
induced endomorphisms of the H^Y; F] is obtained.

In the first, three sections an appropriate formalism is set up. In the
fourth, the embedding of a fixed component of a periodic endomorphism
of a variety is dealt with. In the fifth, the (< Lefschetz-Riemann-Roch "
theorem is formulated. The proof is given in the next three sections.
It consists of investigating three special cases which together give the
general case. In the ninth, it is explained why the formalism of the first
three sections is not dependent on the hypothesis of periodicity and
then a few comments are made on the non-periodic case.

Although the algebraic geometry used is essentially that of [O], the
references given are mostly to Grothendieck's <( elements ", cited
as [EGA]. The notation is that of [EGA].

This paper is an adaptation of part of my Oxford thesis, written under
the supervision of M. F. ATIYAH and with the financial support of the
(U. K. Government) Commonwealth Scholarship Commission in the
United Kingdom.

1. The functor M.

" Variety " will henceforth mean <( projective non-singular (perhaps
reducible) algebraic variety " except when the phrase (< affine variety "
is used. All varieties are over the fixed algebraically closed field k.

It is convenient to define a category. End, as follows : The objects
of End are pairs, (X, x), consisting of a variety, X, and a periodic auto-
morphism, x, of X. The period of x is required to be prime to the charac-
teristic of k if this is not zero. An " empty variety " is allowed. The
morphisms (Y, y) -> (X, x) of End are the variety morphisms f: Y -> X
such that fy == xf. Note that the category of varieties is a full sub-
category of End. The empty variety has only the identity auto-
morphism and so is an initial object of End. In much of what follows,
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the trivial special conventions required for this initial object will not be
dealt with explicitly.

For (X, x) e End, a covering homomorphism is defined to be a homo-
morphism ^ : x"F ->• F, where F is a (coherent algebraic, as always)
sheaf on X. A short exact sequence of covering homomorphisms is
defined to be a commutative diagram in which the lower, and therefore
the upper (as x" is exact) row is exact:

"C* OL Y* 6
o ——> x " F i —> ̂ F.2 ——-> x^F:^ ——> o

[ ̂  | ̂  [ -^
^ ^ 0 ^

o——> F, —"—> F, ——> F.3 ——> o

In fact, for a fixed (X, x), the class of covering homomorphisms forms
an abelian category if, with the above notation, Hom(^i, ^.2) is defined
to be the set of a : Fi— F^ such that ^2.^* a = a.^pi.

A cofunctor (= contravariant functor), Mi, from End to the category
of abelian groups is defined thus : Let (X, x) e End. Consider the set
of all (isomorphism classes of) covering homomorphisms ^ : x*F -> F,
where F is a locally free sheaf on X. Let Mi (x) be the quotient of the
free abelian group on this set by the subgroup generated by all elements
of the form [^i] —[^2] + [^3] where ^i, ^2 and ^3 form a short exact
sequence. If f: (Y, y) -> (X, x) is a morphism of End, a homomorphism,
Mi(f), written f1: M(x) ->M(i]), is induced by linearity from the rule
y'[^] = [f'^], where, for ^ : x ' F - > F a homomorphism of locally free
sheaves on X, f ^ is defined to be the composite of y^f^F "==" f^x^F^ f^F.
(The "==" denotes the canonical isomorphism of functors arising from
the equality fy = xf). It is easy to check that this rule is compatible
with the relations and indeed defines a cofunctorial structure for Mi.

In fact. Mi is a cofunctor from End to the category of commutative
rings with unit. As this ring structure is used only on the subcategory
of varieties, it suffices here to define the ring structure on Mi (X) = Mi (idx)
For ^i : Fi-> Fi and ^^: F^-> F\ homomorphisms of locally free sheaves
on X, set [^i].[^2] = [^i ® 4^]eMi(X). This rule induces by linearity
the required ring structure. The unit of Mi(X) is the class of the
identity homomorphism of Ox-

Let Z[k] denote the ring whose abelian group structure is free on the
elements of k and whose multiplication is induced from that of k. The
process of taking the eigenvalues of endomorphisms of finite rank
A-modules gives an isomorphism : Mi(pt) w Z[/c]. Mi is seen to be
a cofunctor from End to the category of Z [/([-algebras in the obvious way.

A (covariant) functor, M, from End to the category of abelian groups
will now be defined. The reader is reminded that, if x is an automor-
phism of the variety X, the functors x^ and x^ are exact and that x* is the
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left adjoint of x^ If f: (Y, y) -> (X, rr) is a morphism of End, there
is a canonical natural transformation of functors x^f^->f^ which is
the composite of x^f^-^x^f^y^y^ (<=" x^xj^-^f^, where the first
and third factors are the adjunction morphisms and the second is the
canonical isomorphism of functors. Hence there is induced a natural
transformation of each derived functor : x^.R^^-^R^^.y*.

For (X, a;)eEnd, let M(x) be the quotient of the free abelian group
on the set of all (isomorphism classes of) homomorphisms ^ : x^F -> F,
where F is a coherent sheaf on X, by the subgroup generated by all
elements of the form [^pi] — [^2] + [^3], whenever ^i, ^2 and ^3 form
a short exact sequence. It may be checked that if ^pi, . . . , ^ form an
exact sequence of covering homomorphisms, the alternating sum of their
images in M(x) is zero. Now let f: (Y, y) ->- (X, x) be a morphism
of End. Let <D : y*F — F be a covering homomorphism on Y. Then
I define covering homomorphisms R1^^: x^B-^^F—^ R^^F to be the
composite of x'R^F-^R^y^F^^ R^F. Note that y is proper by
proposition 4 (vi) of [0] and so each R^^ F is coherent by [EGA], III, 3.2.1.
Then an abelian group homomorphism, M(f), written jT, : M(y) -> M(x),

is defined by the rule /;[0>] ==^(—)t.[Rtf,^]€M(x).
<r f

Now let (Z, z) -> (Y, y) -> (X, x) be two morphisms of End. I claim that,
with the above notation, (f.g),== f^g, : M(z) ->M(x). This is proved
by the well known spectral sequence :

E^^RPf^Rfg^ =, R\f.g\.

Thus the functorial structure of M is established.
As for Mi, it is easily shown that M(pt) w Z[k] and that M is in fact

a functor from End to the category of Z [^-modules. In the next section,
it will be shown that M(x) and M^(x) are canonically isomorphic. They
are therefore analogous to the K and Xi of [0].

2. Locally free resolutions.

LEMMA 2.1. — Let (X, x) e End. Then there exists a projectiue space, P,
and a diagonalisable linear automorphism, p, of P, with the same period
as x, and a closed embedding i: X -> P such that ix == pi.

Proof. — Consider the cyclic group of order n generated by x acting
on X. If H is a very ample invertible sheaf on X [i. e. X -> P((TxH))
is a projective embedding : see [EGA], II, 4, for the general theory used],

consider K = (g) (r^/H. By [EGA], II, 4.4.9, K is also very ample.
The isomorphism (3 : x^K -> K induced by cyclic permutation of the
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factors of the tensor product induces a linear automorphism of period n,
denoted by p, of P = P((TxK)) which is such that ix = pi, where i is
the canonical embedding. In view of the restriction imposed on the
period, n, of x in the last section, p is necessarily diagonalisable.

LEMMA 2.2. — Let (X, x) e End. Let ^ : x"F -> F be a covering homo-
morphism on X, with F a coherent sheaf. Then there exists a locally free
sheaf, L, on X and a ̂ ^>: x^L->L and a surjective n: L—^F such that the
following square commutes :

y* Tix^L-^x'F
< l > |

'v
L———>F

Proof. — Choose a projective embedding as in the proof of 2.1. After ^
has been tensored with a suitably high tensor power of the [3 of the proof
of 2.1, by [EGA], III, 2.2.1, we may assume additionally that F is
generated by its global sections. In this case, L may be taken to be the
sum of copies of Ox- Tensoring with the corresponding negative tensor
power of (3 gives the result for the original ̂ .

The following two lemmas, in which (X, x) e End, are trivial conse-
quences of lemmas 8 and 9 of [0].

LEMMA 2.3. — With the notation of the diagram of the previous section,
if F^ and Fs are locally free, Fi is locally free.

LEMMA 2.4. — Let d be the maximum of the dimension of the components
ofX. Let

o——>x'S—>x^Lp——>...——>xkLo——>x'F——>o
c I ^ ^ w\
^ 4" ^ ^

o ——> S ———•> Lp ——>... ——> La ———> F ——> o

be an exact sequence of covering homomorphisms with each Li locally free.
Then if p ̂  d — i, S is locally free.

There is, for (X, x) e End, an obvious canonical homomorphism £ :
Mi(x) ->M(x). The following theorem may be deduced from lemmas
2.2, 2.3 and 2.4 by a method formally identical to that used for the
corresponding theorem for the functor K on pages io5-io8 of [0]. (This
proof is axiomatized by BASS, HELLER and SWAN in theorem 4 of [3].)

THEOREM 2.5. — For (X, x)^End, the canonical homomorphism
s: Mi(x) —^ M(x) is an isomorphism.

Henceforth Mi and M will be identified and written M.
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CONSTRUCTION 2.6. — Let Y be an irreducible variety, L a locally
free sheaf on Y and ^ : L -> L a homomorphism. Then the charac-
teristic equation of ^, which is first constructed locally, has coefficients
which are global functions on Y and hence constant. Hence the roots
of this equation are constant. Let c be one of them. Then

Lc^Ker^—c)^, for N>rank(L),

is a subsheaf of L independent of N. It is clear that L = Q) Lc. Also
c

^=(B^c, where each ^c : Lc->Lc is such that ^c—c is nilpotent.
As each Lc is a direct summand of L, it is locally free. If Y is a reducible
variety, this construction may be carried out on each component and the
same conclusion drawn.

LEMMA 2.7. — Let F be a coherent sheaf on the variety Y and let c e k.
Let ^ : F -> F be such that ^ — c is nilpotent. Then [^} == [c. id/.] e M(Y).
Hence M(Y) is generated by the images of the constant covering homo-
morphisms c: L-> L, with c e k and L locally free.

Proof. — This is by induction on N, the least integer such that
(r^ — c)N= o. For N == i the result is the hypothesis. For larger N, the
two diagrams superimposed below, in which Ker and Coker are defined
by the exactness of the rows, give the required inductive argument :

o——>Ker———>F^^^F——> Coker——>o
c| - L | Ker c | | ̂  c c
^ ^ ^ 4. 4- 4-

o——>Ker———^F———>F——> Coker——>o

The fourth sentence follows from the third sentence and theorem 2.5.

PROPOSITION 2.8. — Let Y be a variety. Then there is a natural
isomorphism a : M(Y) --> K(Y) (g) Z[k].

Proof. — Although in [0] K is defined only for irreducible varieties, the
extension to reducible varieties is clear. I construct an isomorphism
a : Mi (Y) -> K(Y) (g) Z[k] and then use theorem 2.5. With the notation

of 2.6, set a([^]) =V[Lc](g)[c]. This extends by linearity to define

a homomorphism a. Define a homomorphism y : K(Y) (g) Z[k]—^Mi(Y}
by setting, for L a locally free sheaf on Y and cek, y([L] (g) [c]) === [c.idL].
Lemma 2.7 shows that y.a is the identity, and it is clear that a.y is the
identity. The naturality of a, in both the covariant and contravariant
senses, is clear.
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3. Brauer trace and Chern character.

It is necessary to recall the basic facts about the Witt ring construction.
If k has characteristic p -^- o, then set W(k) == its Witt ring in the sense
of SERRE ([9], p. 45). There it is shown that W(Jc)is a complete discrete
valuation ring which is absolutely non-ramified and has k as its residue
field. It is characterised by these properties. Its field of fractions,
FW(k), is of characteristic zero. According to page 44 of [9], there is
a unique multiplicative (but not additive) map w : k-> W(k) which sec-
tions the reduction W(k)->k. Denote also by w:k->FW(k) the
composition of the above w with the inclusion. If k has characteristic
zero, set W(k) == FW(k) == k and let w be the identity map.

Whatever the characteristic, w makes W(k) into a Z[/c]-algebra.
Define M'(y) to be M(y) (g) W(k). M' inherits the cofunctorial,

zw
functorial and ring structure of M; write, for f : (Y, y) -^(X, x) a mor-
phism of End, f, : M' (y) -> M/ (x) for the covariantly induced map,
and similarly f.

Proposition 2.8 shows that, for a variety Y, M'(Y) w K(Y) (g) W(7c);
this isomorphism is natural on the category of varieties.

If Y is an irreducible variety, and i: pt -> Y is the inclusion of any point
c, i i

whilst c : Y->ptis the unique morphism, then K(pf)->K(Y) ->K{pf) == Z
shows that Z (the integers) is a direct summand of K(Y), independently
of f. Hence K(Y) w Z©K(Y). The augmentation ideal, K(Y), is
nilpotent; this fact may be shown by use of the canonical filtrations
of K(Y) developed by JUSSILA [7]. If we define a decomposition
M'(Y) w W(k) QM^Y) in the analogous way, it follows that M'(Y) is
also nilpotent. Hence an element of M'(Y) is a unit if and only if its
projection onto the W(k) summand is a unit in W(k).

If ^ is an endomorphism of a finite rank A-vector space, it is convenient

to define the Brauer trace of ^, B.ir.^eW(k)cFW(k) to be ̂  w(d),

the sum being taken over the eigenvalues, c,, of ^ taken with the appro-
priate multiplicity. If the characteristic of k is o, this is the classical
trace; if it is p 7^ o, the classical trace is the reduction mod p of the
Brauer trace.

In [O], extensive use is made of the Chow ring of irreducible varities
tensored with Q, the field of rational numbers. It is clear that any
other characteristic zero field will do instead of Q for the purposes of [0];
it is convenient to use FW(k). For example, if Y is an irreducible non-
singular projective variety, it has a Todd class, €(Y), which is a unit
in A(Y) Cg)FW(/c). The Chow ring functor and the Todd class may
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trivially be extended to the category of (perhaps reducible) varieties.
If f: Y -> X is a morphism of varieties, I write

and
f : A (Y) (g) FW(k) <- A (X) 0 FW(/c)

f,: A(Y)0FW(A:)-^A(X)(g).FW(/c)

for the cofunctorially and functorially induced morphisms, the second
being one of FW (k)-mod}i\es only.

If Y is a variety, a ring morphism, Chern trace, written ct, is defined
to be composite of M(Y) w K(Y) (g) Z[k] ̂ ^A (Y) (g) FW(k), where ch is
the Chern character morphism. It is natural in Y for the contrava-
riantly induced morphisms. If Y == pt, the above Brauer trace is
recovered. Similarly define a W (A-)-algebra morphism, also called ct,
M' (Y) -> A (Y) (g) FW(k).

In the next section, it will be shown that the fixed point set, written X -c,
of the periodic endomorphism x of the variety X is also non-singular.
We temporarily assume this result. Hence there is a morphism in End,
i.^: (X^, id) ->- (X, x), where i^ is the embedding. The functor
A(—) ̂ )FW(k) may now be extended to the category End as follows :
for (X, x) e End, set

A (x) (g) FW(k) = A (X7) (g) FW(/c). If f: (Y, y) -> (X, x)

is a morphism of End, there is induced a morphism /o ^ Y^—X-1'.
Define f to be jf; and f, to be /o..

The concept of Chern trace may now be extended. For (X, x) e End,
define ct: M(x) [or M'(x)} -> A(x) (g)FW(A-) = A(X") (g)FW(A:) to be the
composite of i^: M(x) -> M(XV) with the ct defined above, and similarly
for M\

The reader may now verify that the following lemma is an immediate
consequence of the standard properties of the Chow ring and the Chern
character given in sections 5 and 6 of [0] :

LEMMA 3.1. — A(—) ̂ FW(k) is a co functor from End to the category
of FW(k)-algebras. It is a functor from End to the category of
FW(k)-modules. For f:(Y,y)->(X,x) a morphism of End, and for
^M(x)[orW(x)],

rW==ct(f^).

For 7i € A (y) (g) FW(k) and \ e A (x) (g) FW(k),

/^.ro=/.^-
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4. The fixed components.

In this section, x: X -> X is a periodic endomorphism of the variety X.

LEMMA 4.1. — Each fixed component (i. e. component of the fixed point set)
of x is non-singular.

Proof. — The reader is referred to section 10 of [0] for the basic pro-
perties of local co-ordinates. Let a e X be such that xa == a. Choose
an open affine irreducible neighbourhood U of dimension d of a such
that xU = U and such that there is a set of local co-ordinates
/i, . . . , j^eA(£7) (the affine algebra of U) for a in U. By the usual
averaging procedure, we may arrange things so that f^x = a^, where
the ait e k are roots of unity and a^ ̂  i only for i ̂  t ̂  q, for some q ̂  d.
It is well known (and easy to prove) that /i, . . . , f^ form a set of local
co-ordinates for the component of X^ containing a. Hence it is non-
singular.

Now let Z be a fixed component of x. Let i : Z -> X be the embedding.
We will investigate I ' f , :M(Z)->M(Z). By replacing X with the
component containing Z, there will be no loss of generality in assuming
that X is irreducible.

LEMMA 4.2. — There is a canonically induced endomorphism, <D, of the
dual, N ^ , of the normal bundle ofZ in X. Hence there is an endomorphism,
A^, of each exterior power, AW, of N ^ .

Proof. — On page 120 of [O], an isomorphism D : ^(Z)/^(Z)2— Oy^N")
of locally free sheaves on Z is set up, where ^(Z) denotes the sheaf of
ideals of Z in X and <^z(N^) is the locally free sheaf associated with the
vector bundle N ^ . For each point aeZ, find an open affine neigh-
bourhood U and a set of local co-ordinates. /\, . . . , /^, as in the proof
of lemma 4.1. ThenJD [ U nZ is given by ft\-> df^, t = i, . . . , q. Define
e» U r\Z by df^\-> o^tdft, t == i, . . . , q. These fit together to give the
required global e>.

LEMMA 4.3. — Set
q

^=^(—)4A^]eM(Z) and ^^(—yiA^eM^Z).
i=0

Then ̂  is a unit in M^Z) and cf (^z) == ct(^) is a unit in A (Z) (g) FW(k).

Proof. — By construction 2.6, N"=©.1^ and 0=®^, with
c c

^c'-Lc—^Lc such that Oc-c is nilpotent. By the proofs of lemmas 4.1
and 4.2, each c that occurs is a root of unity but not unity. By the
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criterion of the last section for an element of M'(Z) to be a unit, and
y

as Az has W(k) component fj(i—w(a,)), ^ is a unit. Hence c^z)

is a unit.

PROPOSITION 4.4. — Wi7A /Ae a6oye notation, /br^eM(Z), I ' f , ^ = ̂ .^.
Proof. — By linearity and lemma 2.7, it suffices to prove this fact

in the case when E, is the image of the constant covering homomorphism
c : F ~> F, with cek and F a locally free sheaf on Z.

The induced covering homomorphism R° f, c was defined in section 1
to be the compositeof^^F"==:?'^^^Fa(^l^-^^F. As f is an embed-
ding, R^= o for ^o. By lemmas 2.2 and 2.4, there exists an
exact sequence of covering homomorphisms, with the Lf locally free
sheaves on X :

o——>x^L^—>. . .—->^Lo——>xk i^F—>o
(l) IpNl zyj R o , , c |

V Y ^

o ——> LN ——>. .. ——> La ——-> i^F -——^ o

Now consider the diagram :
o ——> i*L^ ——>-.. . ——^ i* LQ •—> o

F^LN
^N

,*/v.* TI X JLo

^^o

o —> I*LN —>... ——> FLo —> o

Now the rows of (2) have, by the proof of proposition 12 of [0] (p. 122),
cohomology isomorphic to F(g)zAW. So (2) defines certain endo-
morphisms ̂ : F 0 A W" — F (g) A W. As [J?° f , c] = ̂  (—)/[^] eM(x),

i i^ == ̂  (—) ̂ co^]. It remains to show that cx^ = c. A ̂ .

To do this, for each a eZ choose an open affine U as in the proof of 4.2,
but such that additionally each Lf \ U and F \ Zn U is trivial. Now
consider the restriction of (1) to U and the restriction of (2) to Zn U.
The Wt U are independent of the resolution used in the restriction
of (1). Hence the restriction of (1) may be replaced by a Koszul reso-
lution as in page 122 of [0]. The result may now be read off from the
construction used in [0] to obtain the isomorphism quoted just after (2).

A canonical element, ^, of M(X^) = ®M(Z), the summation being
taken over the set of fixed components of x, is now defined to have
Z-component ^z.
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5. Formulation of the result.

Recall the fundamental result of [0] :

QUOTE 5.1. — Let f: Y-> X be a morphism of irreducible varieties.
Let ^eK(Y). Then f^ch-n.^(Y)) = ch(f^).^(X)eA(X) (g) Q.

COROLLARY 5.2. — Let f: Y -> X be a morphism of varieties. Let
r^^M(Y)[orM'(Y)}. Then

/•,(c^.€(Y))=c/(^).€(X)eA(X)(g)FW(/c).

Proof. — As the above formula has to be interpreted componentwise,
there is no loss of generality in assuming that Y and X are irreducible.
It now follows from the definition of ct, proposition 2.8 and the above
quote.

COROLLARY 5.3. — Let the characteristic of k be p ^- o. Use the notation
of section 4. For T] e M (x), and for c : Z -> pt,

c^(Z).(caz)-[.ct(V'n))^W(k)cFW(k).

Proof. — Apply 5.2 for the morphism c to f^^.^z^eM^Z),
-where Y/ is the image of T] in M' (x).

5.3 is an st integrality theorem " that is of importance in the non-
periodic case as well as in 5.5. It is convenient to make the following
definition of the (< Todd class ", ^i(x), of an object, (X, x), of End :
With the sum being taken over the set of fixed components, Z, of x,
^ (x) == © ̂  (Z). (ct ̂ z)-1 € A (X^) 0 FW (K). Then the " Lefschetz-

z
Riemann-Roch " theorem is :

THEOREM 5.4. — Let f: (Y, y) -> (X, x) be a morphism of End. Let
r; e M(y) [or M1 Q/)]. Then :

f^.^(y))=ct(f,•n).^(x)^A(XV)®FW(k).

The proof will be given in the next three sections. The important
special case when X is a point is :

COROLLARY 5.5. — Let (Y, y)eEnd. If Z is a fixed component of y ,
write iz : Z ->Y for the injection and Cz '. Z->pt for the unique morphism.
Let c: Y -> pt. Then the following equality holds in the ring W(k)
for Y^eM(y) :

B. tr.(c, -n) =^ cz.(S(Z). (cUz)-^. ct(î )).
z

For an application, consider a finite group, G, acting on a variety, Y.
Then a <( G-sheaf " may be interpreted in terms of (< covering homo-
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morphisms " as follows : A G-sheaf, F, on Y is a coherent sheaf, also
denoted by F, on Y together with, for each ge G, a homomorphism
^^: g^F -> F such that the <^ satisfy certain compatibility conditions
which need not be written down explicitly here. These induce repre-
sentations of G on the H^X; F], and corollary 5.5 gives a formula for the
alternating sum of the Brauer characters of these representations.

The Chern number formulae of ILLUSIE may now be obtained in this
context by arguments identical with those of [6], provided that the order
of G is prime to the characteristic of the field. This assumption may be
shown to be necessary by the example of the cyclic group of order p^
where p is the characteristic of k, acting linearly on a projective space»

6. The case of embeddings.

This section gives a proof of theorem 5.4 for the vital special case
when f is an embedding. 6.2 is used to reduce 6.1 to the already
known 5.2.

PROPOSITION 6.1. —- Theorem 5.4 is valid under the additional hypo-
thesis that f is an embedding.

Proof. — Without loss of generality assume that both X and Y are
irreducible. Let ^ and 7y be the canonical elements of M(X^)
and M(YY) of section 4. Let i: YV->Y andj : X^ -> X be the embed-
dings. Let fo : Yy—^X-^ be the restriction of f. Assume temporarily
the following :

PROPOSITION 6.2. — There is an element Y€M(Y>) such that :

(i) ^.T=/-o^,

and
(ii) J'^^/oiO'^.T) torall r?eM(y).

Then

ct (f, rf). € (x) == ct (f f, -n). € (X^). (ct y^)-1 by de finition,
= ̂ (/o^i^.T)).^^).^^,)-1 by 6.2 (ii),
= /o.(^(i'Yi.T).^(Y^).(c^,)-1 by 5.2 for /o,
=/o.(c^.dy.e(Y^./o,(d7,)-0 by 3.1,
== /, (c^. €(Y^. (c/^)-1) by 6.2 (i),
= f, (ctr]. ®(y)) by definition.

Proof of 6.2. — Let Xi, X^, ... be the fixed components of x. For
convenience of notation, whenever a typical one has to be studied it will
be taken to be Xi. Let Yi, Ya, ... be the fixed components of y ; each
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is contained in some fixed component of x. For convenience of notation
assume that only Yi, Ya, . . . , Y/. are contained in Xi, and let t be such
that i ̂  t ̂  r. Let it: Yt -> Y and j\: X,-> X be the embeddings
and let /^ : Y/—^Xi be the restriction of f. It is required to constuct
an element Y/eM(Y<) such that :

(i/) ^.T^/^,

and

(ii') jV,Y?=]^,(^.y<)eM(XO for all 7?eMQ/).

The following construction will be given in outline only. The detailed
checking with local co-ordinates is similar to that used to prove propo-
sition 4.4, but is several times as long. First note that by theorem 2.5
it is sufficient to verify (i') and (ii^ for Y] the image of a covering homo-
morphism ^ : y^F -> F, where F is a locally free sheaf on Y.

There is a commutative diagram with exact rows on Yt :

o —> M; —> f; N(Xi inX)' -^->N(Yt in Y)" ——> o
^t f^i ^t\

~4^ S^ ^
o——>Mr——^/^(XiinX^-^A^Y.inYr—>o ^

in which N (...)" denotes the dual of the appropriate normal bundle,
or rather its associated locally free sheaf, (3 is the canonical homomor-
phism, and <Di and <^^ are the endomorphisms of 4.1. This defines M^
and GO/.

Y( is defined to be ^?(—)"[A"co^]. (i7) is now an immediate conse-
quence of the standard properties of the exterior power operation,
•see page 109 of [0]. Local co-ordinates may now be used to find isomor-
phisms ^j^f^Fw (Sfi^^F^^M^). The proof of (if) may now

t Yt
be completed similarly to that of 4.4, i. e. the analogues of diagrams (1)
and (2) have to be constructed for R°f,^ and then the local co-ordinates
may be used.

7. Another special case.

In this section, X is an irreducible variety of dimension d, p : P -> P
is a periodic (and therefore diagonali sable) linear endomorphism of the
projective space P of dimension n, Y is the product PxX, y : Y—^ V
is p xidjc and f: Y -> X is the projection. Theorem 5.4 will ;be proved
for this f.

There is a canonical t{ Hopf " invertible sheaf, <9p(i) in the notation
of [EGA], II, 3.2.5, on P, and 0p(f) is written for its Ith tensor power.
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Say that a sheaf on Y is of type (H) if it is isomorphic to a finite direct
sum of sheaves of the form ^(Q(g)L,, where L, is a locally free sheaf
on X and <( 0 " denotes the Cartesian product. Recursively, say that
a multiple extension, F, of sheaves of this form is of type (H') if it is
of type (H) or if there exists an exact sequence :

o -> Op(s) (g) L -^-F-^F' -> o,

where L is a locally free sheaf on X and where F ' has been constructed by
such extensions using sheaves of the form Op(f)^Lt for t<s only.

PROPOSITION 7.1. — Let o-^K->Hr->...->Ho-^F->o be an
exact sequence of sheaves on Y. If r ̂  n + d and if each Hi is of
type (H), then K is of type ( H ' ) .

Proof. — First note the corresponding fact about regular local rings. A,
of dimension d. Let R be the graded ring A[to, .... ^]. Consider
finitely generated Z-graded ^-modules. A is canonically such and
tensor products of them will be taken ignoring the grading. Let
o — N -> Mr->...— Mo-> G -> o be an exact sequence of them,
with r ^n + d and each M, free. Then, by [8], p. 210, th. 4.2, N is
projective as an ungraded jR-module. Hence N(g)A is a projective
A-module, and so each of its graded components is free. Hence there
is a free Z-graded J?-module M and a ^ : M->-N such that ^ (g) A is an
isomorphism. As Coker (^)(g)A = o, the argument of page 216 of [8]
shows that Coker (^) = o. As Tor1 (N, A) = o, Ker (jji) (g) A = o, and
the same argument shows that Ker (fJi) = o. So N is free.

Now let a be a point of X. [EGA], II, 2.7.5 and the above result
show that there is an open neighbourhood, U, of a such that K \ Px U is
isomorphic to a finite direct sum of sheaves of the form Op(t) ̂ )L(U, t),
where L (U, t) is a locally free sheaf on U.

Write K(t) for the tensor product of K with <9/.(Q(g)^. Then the
above and [EGA], III, 2.1.15 plus the so-called projection formula
show that there is a to such that the adjunction morphism f*f^ (K(t))->K(t)
has zero domain for / < to and is injective for t == to.' [EGA], III,
7.9.10 shows that f,(K(to)) is locally free. Iteration of this argument
shows that K is of type (H').

PROPOSITION 7.2. — Let ^:y^F->F be a covering homomorphism
on Y. Then there exists an exact sequence, in which each Ht is of type (H)
and K is of type ( H ' ) :

o ——> y^K —> y'Hn+d ——>... ——> y'Ho —> y"F —> o
e | .̂+J w,\ $|
Y 4- Y Y

0 — — — — > K — — — — > H n + d — — — — > . . . — — — — > H Q — — — — > F — — — ^ 0
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Proof. — [EGA], III, 2.2.1 and [EGA], III, 7.9.10 may be used to
construct To and Ho as in the proof of 2.2. This process for constructing
a resolution may be iterated n + d times and then 7.1 is applicable.

LEMMA 7.3. — Let Ls, Lt he locally free sheaves on X. Then, if s > t,

Hom[Y; y\0p(s) (g) LQ, 0p(t) (g) L,] = o.

Proof. — AsK=Homy(y'(c^(s)(g)L,), 0p(/)0L,) is isomorphic
to Op(t—s)0Homx(L,,Lt), [EGA], III, 2.1.15 plus the so-called
projection formula shows that f^K == o. Whence the result.

PROPOSITION 7.4. — M(y) is additiuely generated by elements of the
form [9], where 9 : ̂ (Op(f) (g)L) -> 0p(t)^L and where t is an integer
and L is a locally free sheaf on X.

Proof. — This is an immediate consequence of 7.2 and 7.3.
Note that another use of [EGA], III, 2.1.15 could be made to show

that M(y) is a free M(X)-module of rank n + i. The corresponding
result is standard in various ^-theories.

PROPOSITION 7.5. — Theorem 5.4 is valid under the additional hypo-
thesis that f is as constructed in the first paragraph of this section.

Proof. — In view of 7.4, it suffices to verify 5.4 for •n = [0]. The
fixed components of y are the products of certain projective subspaces
of P with X; it is now seen to be sufficient to check 7.5 in the case
when X is a point. This may be done in some two pages of explicit
calculations; as these calculations are modifications of those on page 119
of [0] and on page 597 of [5], they will be omitted.

8. Completion of the proof.

Let f: (Y, y) -> (X, x) be a morphism of End. Then, if i: (Y, y) -> (P, p)
is an embedding as in lemma 2.1, f may be factorised as n.(i, f),
where (i, f) : (Y, y) -> (P x X, p x x ) is also an embedding and
TT : (Pxx, pxx)->(X, x) is the projection. By the usual formal
argument (cf. page n3 of [0]), to prove theorem 5.4 for f it suffices to
prove it for (f, f) and for TT. Now embeddings were dealt with in section 6.
In the special case when x is the identity, TT was dealt with in section 7.

So 5.4 has already been proved for the special case when x is the iden-
tity, which is the case of greatest interest. To prove it in general,
it remains to extend 7.5 to the above TT.

The fixed components of the above x will be denoted by Xa, a = i, 2, ....
Write ja :Xa-^X for the embeddings. The fixed components of the
above p will be denoted by Pt, t = i, 2, .... Write i'a for
idpXja :PxXa—PxX. Write 7Ta :PxXa—Xa for the projection.
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PROPOSITION 8.1. —- Theorem 5.4 is valid for the above TT.
Proof. — Assume temporarily that

(*) TTo,,.V^r]==j^.n,r]eM(X^), for all r]^.M(pXx).

It is required to prove that, for all T] € M (p x x),

^(d7T . ̂ (p X X)) = d(TT^) . ̂ (X) € (g) A (Xa) (g) FW(A-).
a

Denote the a components of each side by ( . . . ) a ^ it is required to prove
that, for each a, these a components are equal.

ct(TT,ri).^(x) |a= c^.7r,y}).^(Xa).(c^J-1 by definition,
= dGTa,.^).%(Xa).(c^)-^ by (*),
= 7ra*(^(i'a y?). ̂ (p X idxj). (c^xj-1 by 7.5 for 7:0,
= 7ra*(^(^^).^(pXid^).7T;(d^)-1) by 3.1,
=7^(c^.^(px;r))[a.

The last equality follows from expressing each side as a sum over t of
contributions from the fixed components P^xXa and then noting that
the normal bundle of a product of embeddings is the product of the
normal bundles.

My Oxford thesis contains an easy proof of (-Ar), but uses derived
category theory. To establish (*) by the methods of this paper, it would
be necessary to use the spectral sequence of [EGA], III, 6.7.3 : for F a
locally free sheaf on PxX,

E^^^L-Pji.R^.F => R^^.HF.

The details may be omitted.

9. Remarks on the non-periodic case.

The above arguments depend very heavily on the hypothesis of the
periodicity of the endomorphisms of varieties under consideration.
If this hypothesis is removed, it is possible to use derived category
theory to give a more general definition of the functor M. If lemmas 4.1
and 4.3 are made into hypotheses, a (< Lefschetz-Riemann-Roch "
theorem may be formulated for a far larger class of endomorphisms.
In view of proposition 4.4, which does not depend on the hypothesis
of periodicity, this is the only plausible fixed point formula.

I conjecture that such a theorem is valid if k has characteristic zero.
If k has characteristic p 7^ o, the Frobenius endomorphism, y, of the

projective line, Y, (with X = pt) provides a counterexample to such
a theorem. Indeed, for the canonical covering homomorphism y*<9y—^ 0y,
it may be seen that the generalisation of 5.5 would yield i == p + i.



LEFSCHETZ-RIEMANN-ROCH FORMULA. 273

However my Oxford thesis gives a proof of corollary 5.5 with the equation
replaced by a congruence mod p without the hypothesis of periodicity.
(The proof there is complete only in the case when each fixed component
is a point or a curve.) This is therefore a formula for the classical, as
opposed to the Brauer, trace.
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