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Introduction.

In recent years, the pseudo-differential operators in real space (that is,
on real ¢” manifolds) have attracted a certain amount of interest,
essentially for their possible applications to partial differential equations
(see for instance the references [1], [2], [3]). Similar reasons, but pertinent
to the complex space, have motivated the present work. In an earlier
article, I have shown that the Cauchy problem for a determined system
of linear partial differential equations with analyfic ccefficients, relative

(*) This work was done in part under N. S. F. Grant n° GP 07346.
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194 F. TREVES.

to a noncharacteristic hyperplane, with data valued in the space of ana-
lytic functionals with respect to the tangential variables (and depending
in a more ,, orthodox ” manner on the normal variable, for instance,
distributions with respect to the latter), always admits a unique solution,
the values of which also lie in those spaces of analytic functionals (see [6]).
The system of PDEs under study is looked upon as an evolufion equation
and, as such, it possesses a resolvent. The resolvent enables us to express
the solution of the Cauchy problem in terms of the data, that is, of the
initial data and of the right hand sides of the equations. This result
is to serve, so I hope, as foundation for a theory of solvability of linear
PDEs with analytic coefficients. Here solvability is meant in a * clas-
sical *’ sense : in the sense of functions or at least of distributions; and
primarily, it is solvability of the Cauchy problem (I also hope that the
present approach will throw some light on the apparently more difficult
problem of local solvability, when no initial or boundary conditions
are imposed). It ought to be recalled that any distribution with compact
support K in R" can be identified, canonically, with an analytic functional
in G~ (carried by K). Then the solvability question, for a givensystem
of linear PDEs with analytic coefficients, can be stated as follows :
is it true, or is it not, that whenever the values of the data in the Cauchy
problem are distributions with compact support (with respect to the
tangential variables), the same can be said of the solution (which we
know to be unique)? Now, even a superficial examination of this question
is enough to convince one that the properties of the resolvent will be
crucial to the obtention and to the form of the answer. In view of
this fact, the investigation of these properties should be given priority.
And it would be greatly facilitated if we had at our disposal an infegral
representation of the resolvent, with a kernel which is a function.

This is precisely the main result of this article, and the justification
for writing it. It is rigourously stated and proved (') in the final section
(Section 8). The kernel in the integral representation of the resolvent
is called the symbol of the resolvent; it is a holomorphic function of
two sets z, A of complex variables. Operators acting on analytic func-
tionals (or, by transposition, on holomorphic functions) which admit
similar integral representations, i. e., which have this type of symbols,
are called here hyper-differential operators. They could as well have
been called differential operators of infinite order with analytic coefficients :
roughly speaking, they are infinite series of the kind

Ehp (2 <§z>p,

(*) In truth, only first order systems are considered. But more general systems
can always be reduced to first order ones by introducing additional unknowns.
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where p ranges over the set N” of all n-tuples of integers >.o and
where, for each p, h,(z) is a holomorphic function in a given open set (of
course, we require these series to converge in an appropriate manner).
Differential operators with holomorphic coefficients are particular cases
of hyper-differential operators — provided that the differentiations
be applied first, and multiplication by the coefficients afterwards only
(¢f. p. 201). The reason for the definition of hyper-differential ope-
rators given here (in Section 2) is that these are exactly the operators
for which it is possible to develop a symbolic calculus. Under favourable
circumstances, the compose of two hyper-differential operators is also
one — although such operators cannot be said to form an algebra (here
again, cf. p. 201). The symbol of hyper-differential operators is
introduced in Section 6, where the reader will also find the formula,
(6.5), (6.8), for the symbol of a product. This formula is formally
identical with the one in the real case. Section 7 presents the integral
formula expressing the operator in terms of its symbol. It is somewhat
similar to the formula in the real case, but whereas in real space, one
makes use of the Fourier transformation, in complex space, the basic
tools are the Laplace and the Fourier-Borel transformations, combined
with the Cauchy representation of analytic functionals (see Section 3).
At this point the reader should be warned that all the reasonings, or
at least the most important ones, assume the geometrical configuration
to be of the simplest kind, so as to avoid the usual topological difficulties
in the theory of several complex variables. Throughout the main
sections of this article, the assumption is that the sets which carry the
analytic functionals, on which the operators act, are products of the
form A =A4,Xx...X A,, where the A; are convexr subsets of the complex
plane. All the results valid in this rather primitive case can be extended
to the case of arbitrary convex subsets of G, with the help of the projective
Fantappié transformation and of the Fantappie-Leray formula (see [4]).
But this is a rather technical theory and it would have been probably
unwise to inject it into what, after all, wants only to be an introductory
article.

1. Spaces of holomorphic functions. Spaces of analytic func-
tionals.

Let E be a locally convex Hausdorff topological vector space (over
the complex numbers, like all the vector spaces considered in this work).
Let Q be a complex analytic manifold, countable at infinity (like all
the manifolds considered here). We denote by H(Q; E) the space of
holomorphic mappings 2 — E, equipped with the topology of uniform
convergence on the compact subsets of 2. When E =G, the field of
complex numbers, we write simply H ().
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If F is another locally convex Hausdorff space, we denote by L(E; F)
the space of continuous linear mappings of E into F, equipped with the
topology of uniform convergence on the bounded subsets of E. We set

H'(Q; E) =L(H(?); E).

The elements of H'(Q; E) are called the analytic funcltionals in Q valued
in E.  When E=C we write simply H'(Q) : this is the strong dual
of H(Q).

Observe that H(L) is a Fréchet-Montel space. In particular, it is
reflexive, and as a matter of fact, nuclear (see e. g. [5], coroll. of Th. 51.5).
We have, if the locally convex Hausdorff space E is complete,

(1.2) H(Q; Ey~ HQ)Q E.

The dual of a nuclear Fréchet space is also nuclear ([5], prop. 50.5) :
thus H'(Q) is nuclear. Therefore, still assuming that E is complete
and applying Proposition 50.5 in [5] :

(1.3) LH@®); Ey~ H' (2 ® E.

Let U and V be two open subsets of £ such that Uc V. Therestriction
of functions from V to U defines a continuous linear map of H(V)
into H(U), which we shall denote by py,. Its transpose oy, is a
continuous linear map H'(U)— H'(V). In general, this transpose is
not injective. It is injective if and only if the image of py, is dense,
i. e. if every holomorphic function in U is a limit of (restrictions of)
holomorphic functions in V, in which case one says that U is a Runge
subset of V; when V=2, one says that U is a Runge open set. In any
case, an analytic functional on V which belongs to the image of oy,
is said to be carried by U. Let K be a compact subset of £2; an analytic
functional « in & is said to be carried by K if « is carried by every open
neighborhood of K.

Let K be as before a compact subset of Q, and let 9¢(K) denote the
disjoint union of the linear spaces H(U), where U ranges over the collec-
tion of all open subsets of 2 containing K. We say that two functions f
and g, defined and holomorphic in open neighborhoods of K, U and V
respectively, are equivalent near K if there exists a third open neigh-
borhood Wc UNnV of K such that the restrictions of f and g to W are
equal.

We. denote by H(K) the quotient of #¢(K) modulo this equivalence
relation. We refer to the elements of F (K) as the germs of holomorphic
functions near K. For every open set U> K there is a canonical map
oy + H(U)— H(K) : the mapping which to any holomorphic function
in U assigns its germ near K. We equip H(K) with the finest locally
convex topology such that all the mappings py are continuous. Then
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H(K) is a countable inductive limit of Fréchet spaces. But this inductive
limit is not sfrict : outside of trivial cases, the mappings py are not iso-
morphisms (as a matter of fact, often they are not even injective).

Let now ¢/ (K) denote the product of the spaces H'(U), where U
ranges over the family of all open subsets of & containing K. We denote
by H'(K) the linear subspace of #¢'(K) consisting of the elements («y)
such that, given any two opensets U, V suchthat Kc Uc V, ‘pyp(ar) = ar
We equip H'(K) with the topology induced by the product space topo-
logy on 4¢'(K) [one says then that H'(K) is the projective limit of the
spaces H'(U)]. We shall refer to the elements of H'(K) as the analytic
functionals on K (or, if there is any danger of confusion, as the local
analytic functionals on K). It should be kept in mind that, in general,
these cannot be identified with the analytic functionals in Q carried by K
Indeed, two analytic functionals in some open neighborhood U of K
might have the same restriction on the set of functions which are exten-
dable as holomorphic functions in the whole of  without being equal
in U. There is an important case where we can identify H'(K) with
the subspace of H’() consisting on the analytic functionals carried
by K (?) : this is when K is a Runge compact set, which means that
there is a basis of open neighborhoods of K consisting of Runge open
sets. We recall that in the case where Q is the complex plane, this
amounts to saying that K is simply connected. Of course, no such simple
characterization is valid in higher dimensions. But every conver compact
set in G* is a Runge compact set.

Let « be a linear map of H(K) into some locally convex Hausdorft
space E. The map o is continuous if and only if, for every open set
U> K, the compose aop,: H(U)—E is continuous. Let us assume
that E= G and set ay=aopy. If V is another open set containing U,
we have apopypr=a,. Now ap and «, are analytic functionals (on U
and on V respectively), and the preceding relation means that
togr(ay) = ap. In other words, the collection (oy) defines an element
of H'(K). And conversely, every element of H'(K) defines a continuous
linear functional on H(K); this is evident. We may identify H’'(K)
with the dual of H(K); this identification extends to the topologies
[the strong dual topology ont the dual of H (K)]. The spaces H (K)
and H' (K) are barrelled and complete. As a compact subset of a
manifold has a countable basis of neighborhoods, in virtue of (50.6)
and (50.8) in [5], they are both nuclear. We apply Proposition 50.5
in [5]. If E is any complete locally convex Hausdorff space,

.4) L(H(K); Ey~ H'(K)® E.

(*) Equivalent with saying that the complement of K is connected.
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Let U range over the family of open neighborhoods of K. Going to
the projective limit with respect to U commutes with the completion
of the tensor product (when dealing with nuclear spaces) and therefore

[ef. (1.3)]
(1.5) H'(K)& E = proj lim H'(U) & E = proj lim L(H (U); E),

hence, recalling that by definition H'(U; E) = L(H(U); E),
(1.6) H'(K; E)=rproj lim H'(U; E) = L(H(K) ;E) = H (K)  E.
U

Let Q! (i=1, 2) be two complex analytic manifolds and for each i,
A! a subset of &, either compact or open. From (1.3) and (1.4), we
derive
(1.7) L(H(A"Y; H (A%) >~ H'(A) & H (4%);

(1.8) L(H(A"); H'(A%) > H'(A) Q H'(A%).
On the other hand, because of the reflexivity of all the spaces involved,

transposition of continuous linear mappings establishes canonical iso-
morphisms

(1.9) L(H(A"); H (A%) > L(H'(A%); H'(A"));
(1.10) L(H(A"); H'(A%) >~ L(H (A%); H'(A").
In particular, we have [cf. (1.6)] :

(1.11)  L(H(A'); H(A%) >~ L(H'(A%); H'(A"))
— H'(A")Q H(A?) = H'(A'; H(AY).

Remark 1.1. — When both A' and A? are compact, it is not true
(outside trivial cases) that the topological vector spaces in (1.11) are
isomorphic with

H(A>; H'(AY)),

the space of germs of holomorphic functions near A* valued in H'(4').
This is due to the fact that the topological tensor product, the way we
are assuming it to be defined, does not commute with the inductive limit.
For instance, when A'= A*= K, the identity mapping of H(K) cannot
be canonically identified with a germ of holomorphic function near K
valued in the space of analytic functionals on K.

2. Definition of the hyper-differential operators.

Let Q! (i =1, 2) be two open subsets of G*, K a compact subset of G~
such that

@.1) K+ Qco,
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Let then « and o be arbitrary elements of H' (K) and H (?) respectively.
For arbitrary h in H(£*) and w in Q', we set

(2-2) <9 (@) tws h(2) > =<2, 9L+ w) h(t + w) ).

That this makes sense follows easily from (2.1). Indeed, let Q' be any
relatively compact open subset of Q'. In view of (2.1), we can find
an open neighborhood U of K such that U + Q’'cQ? When w ranges
over &', tr>o(f 4 w)h(t +w) is a holomorphic function in U. Not
only does the right hand side of (2.2) makes sense, but it is also a holo-
morphic function of w in ', and therefore in Q', as Q' is arbitrary.
Furthermore, the linear map

he> (W ay, 9 +w)h(E +w))),

from H(L?) into H(Q!'), is evidently continuous. In other words,

9(2) - as defined by (2.2) is an element of H(Q') & H' (2%). Another
assertion not difficult to check is that the bilinear map

2-3) (2 9) > 9(2) %oy

from H'(K)x H(Q?) into H(Q') & H'(Q?), is continuous. The universal
property of the topological tensor product (see e.g. [5], Prop. 43.4)
associates with (2.3) a continuous linear map

H'(K)x H(2*) — H(Q) & H'(2)
for which we. shall use the notation
2.4) G.(2) > G (2).
By using the canonical isomorphisms (1.11), in particular
H(Q) ® H'(2%) ~ L(H'(); H'(@)),

we may regard G._.(z) as the kernel associated with a continuous linear
map
G: H'(QY)—H'(Q).

DeriNiTION 2.1. — A continuous linear map G : H'(Q')— H'(£?)
will be called a hyper-differential operator if there is a compact subset K
of G~ satisfying (2.1) such that the kernel associated with G belongs fo
the image of the mapping (2.4).

We shall sometimes refer to the mapping (2.4) as the « defining
mapping »; we shall say that the compact set K carries the translations
of the hyper-differential operators whose kernel lies in the image of (2. 4).
Observe that it is not clear whether the defining mapping (2.4) is
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injective, i.e., wheter the kernel G,(z)e H'(K)® H(RQ?) corresponding
to some hyper-differential operator G : H'(Q')— H'(R?) is unique.

We give now a few very simple (but basic) examples. By d, we denote
the Dirac measure. In the first two examples, we take K={o};
then (2.1) means Q!'c Q2

ExampLE 2.1. — Suppose K={o} and Q!c Q2 Take
G.(2) =0.Q1(2).

Then G is the natural « extension mapping » from Q! to 2, the transpose
of the restriction mapping from H(Q?) to H(QY).

ExampLE 2.2, — Same assumption as in Example 2.1. Take
G.(2) = 0,® h(z), where h is any function belonging to H(Q?). Then G
is the extension of analytic functionals from Q! to Q? followed by multi-
plication by h.

ExampLE 2.3. — Let now K be any compact set satisfying (2.1)
and let « be any analytic functional in K; take G.(2)=a.®1(2).
Then G is the convolution of analytic functionals in Q! with o.

The hyper-differential operators of the kind considered in Examples
2.2 and 2.3 are the « building blocks » out of which all the hyper-
differential operators are made. Let «/(j=1, ..., N) be N analytic
functionals in K, h/ an equal number of functions belonging to H(£22).
Take

(2.5) G(2) =D, 2/ QI ()

j=1

[in other words, G.(z) is a « typical » element of H' (K) ® H(2*)]. Then G
is the operator from H'(Q!) to H’'(L?) defined by

(2.6) GB = 1) («/ % ).

j=1

As a matter of fact, if we allow the integer N to go to -+ o, formulae like
(2.6) would define any hyper-differential operator H'(2')— H'(L2?) with
translations carried by K. Indeed, any element G.(z) of H' (K) & H(Q?)
admits a series representations of the kind (2.5) with N = 4- «, converging
in the space H'(K)&® H(Q).

It is not difficult to give examples of continuous linear mappings
H'(Q') — H'(22) which are not hyper-differential operators : for instance,
when Q! = Q? = C~, no such mapping is one if it has a finite dimensional
image (see [6], coroll. 1 of Th. 23.2).
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Another example of a continuous linear operator H'(Q')— H'(R?)
which is not a hyper-differential operator is obtained as follows.
Suppose that Q! is the disk in the complex plane centered at the origin

and with radius R! (i =1, 2) and that R' ZR* < g R!. Let hbe aholo-

morphic function in ! which cannot be extended as a holomorphic
function in 2. Then multiplication of analytic functionals in Q! by this
function h, followed by extension to €2, is nof a hyper-differential
operator (see [6], Th. 23.3). This last exemple, compared with
Examples 2.1 and 2.2, shows that the compose of two hyper-differential
operafors may very well not be a hyper-differential operator.

Nevertheless, under favourable circumstances, it might happen that
the compose of two hyper-differential operators is also one. Let us
consider two additional subsets of G*, one open, U, one compact, C.
We assume the following inclusion relations, in addition to (2.1) :

2.7) U—CcQ
2.9) K+C4QcU.
Consider then any two kernels
F.(z) inH'(CQ)QHU), G.(z) inH (K)& H(Q).

Applying the mapping « restriction of holomorphic functigns » from €
to Q'+ K, we may view G.(z') as an element of H'(K) R H(K + Q).
Then the kernel G._.(z') is associated with a hyper-differential operator

G: H'(Q)-»H'(Q + K).

In view of (2.8), the kernel F. ., (2) is associated with a hyper-differential

operator
F: H Q'+ K)—H'(U).

We may therefore form the compose :
FoG: H'(Q)—H'(U),
which is a continuous linear map.

ProrosiTioN 2.1. — Under the preceding hypotheses, the compose F o G
is a hyper-differential operator.

Proof. — We begin by defining a quadrilinear mapping
Q: H'(K)xH(Q)xH (C)xH(U)—H'(K + C)& H(U)
by the formula
2-9) Q@ 9, B, ) = sy 9(2—5) B> (D),
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meaning that, for an arbitrary function h in H(K + C),
<Q@s 9, B )y B> =[(D)< 2@ Bys 2(z—Yy) h(x + 7) -

Note that this makes sense, since ¢(z—y) is a holomorphic function
of (y,z) in an open neighborhood of CxU in view of (2.7), whereas
h(z + y) is a holomorphic function of (z,y) in KxC. One also sees
easily that Q is continuous. Once more the universal property of the
topological tensor product comes to our help, and associates with Q
a continuous bilinear map

0: (H'E)QH®)XH (C)QHU)—H (K + C)Q H().
We may write '
0(Gu(2), Fe(2) = Gros(z—5), F:()) ).
Next we take the image of Q(G.(2'), F(z)) under the * defining mapping ”
| H'(K + €)@ H(U)~H(@") @ H'(U),

the analog of (2.4) with K + C substituted for K and U for Q2; this
image turns out to be

{ Gomal@), Feu(2)

and this is seen at once to be the kernel associated with Fo G.

Q. E. D.

Remark 2.1. — The proof of Proposition 2.1 shows that the compact
set K + C carries the translations of the compose Fo G.

3. CGauchy representation of analytic functionals in one variable
Links with the Fourier-Borel transformation and with the Laplace
transformation.

Let K be a compact subset of the complex plane, « any (local) analytic
functional on K. Given any point ¢ in the complement of K, ({—z)~!
is a holomorphic function of z in some open neighborhood of K and
therefore defines a germ of holomorphic function near K, that is, an
element of H(K). We may form

3.1) Cazy (2im) 1 (C—2)D.

It is convenient to look upon (3.1) as a function of £ in the complement
of K with respect to the Riemann sphere S' : this complement is open
and (4.1) is a holomorphic function there, vanishing at infinity. We
denote (4.1) by ® «(¢) and call it the Cauchy representation of « (some-
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times also the Fantappié transform). Let us denote by H,(S'\ K) the
space of holomorphic functions in S\ K which are equal to zero at
the point «. The following is wellknown :

TrEOREM 3.1. — The Cauchy representation o ® o is a linear bijection
of H'(K) onto H,(S'\_K).
As a matter of fact, ® is an isomorphism for the topological-vector
space structures if we equip H,(S'\ K) with its natural topology,
the one of uniform convergence on the compact subsets of S'\ K.
The proof of Theorem 3.1 consists essentially in establishing the inversion
formula for the Cauchy representation :

(3.2) b= [hQOa@) d,

where h is an arbitrary (germ of) holomorphic function near K and ¢
a certain homology class in G!\_ K. For simplicity let us suppose
that the complement of K, as well as K itself are connected — although
we could dispense with both these assumptions. Suppose that h has a
representative, also denoted by h, in an open neighborhood U of K
which we may take to be connected and simply connected. Then the
homology class ¢ has a representative in U which is an oriented cycle
,»» around 'K, i.e., a simple closed rectifiable curve, oriented counterclock-
wise, whose ,, inner region ”’ contains K. The right hand side of (3.2)
might then just be interpreted as the integral along this curve.

Let now Q be an open subset of G'. A compact subset K of  is holomor-
phically convexr with respect to 2 if no connected component of the
complement of K in G! is a relatively compact subset of Q. Then K
has the Runge property with respect to Q (cf. p. 197). Of course,
every compact subset of Q is contained in some other compact subset
of Q which is holomorphically convex. If K is holomorphically convex,
H'(K) can be regarded as a subspace of H'(£2) and obviously the latter
is equal to the union of such subspaces where K ranges over the collection
of all compact subsets of & which are holomorphically convex. By appling
Theorem 3.1 to these subspaces H' (K) we see that the Cauchy represen-
tation is a linear bijection of H'(Q) onto H,(S'\ L), the space of germs
of holomorphic functions nears S'\ Q which vanish at infinity.

Let now « be any analytic functional in G (for the moment, we may
assume n to be any integer > o). The Fourier-Borel transform of «
is the function of 4 in C~,

(3.3) 5() =< oz, eH,

This is easily seen (e.g., by the Cauchy-Riemann criterion) to be an
entire function of 2. Suppose then that « is carried by a compact subset
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K of G, which means that to every ¢> o there is C.> o such that,
for all A in H(C"),

(CHY) |<a h>léCsd(§%P | k().

j<e
Taking h(z) =exp<{2,z> in (3.4) yields at once
3-5) &) | < Ceexp { Ix(R) + | 2]},
where we have set

3.6) Ix(2)=supRel}, z>.
s€K

[Conversely, one can prove that if (3.5) holds for every ¢> o and all A
in G~ the analytic functional « is carried by the convex hull of the compact
set K. Estimate (3.5) implies that the entire function 2 is of expo-
nential type. Let us denote by exp (C”) the space of entire functions
in G» of exponential type. We have (see for example [5], Theor. 22.2)

TueoreM 3.2. — The Fourier-Borel transformation is a linear bijection
of H'(C") onito exp (C).

Let us now go back to the case n =1, and let « be an analytic functional
in G! carried by a convex compact set K. For every {& K, let us denote
by ¢ the orthogonal projection of ¢ onto K, and by L(Z) the half straight
line in the complex plane, joining o to c and passing through (£ — Zx).
An easy argument, based on inequality (3.5), shows that &(z) exp (— z?)
is an integrable function with respect to the measure |dz| over L(%)
(see proof of Lemma 7.1). One calls the integral

3.7) £a() = f = 4(0) dz
L)

the Laplace transform of &. One ought to say that many a path of
integration from o to « can be substituted for L({) —indeed, certain
problems might require a different choice from ours. At any rate,
£ 8(%) is seen at once to be a holomorphic function of ¢ in a neighborhood
of o and to vanish at «. As a matter of fact, an immediate computation
shows that, in such a neighborhood of oo,

3.9) ® o= 22

In other words, the Cauchy representation of the analytic functional o
can be viewed as an analytic continuation of the Laplace transform of its
Fourier-Borel fransform. '
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4. Extension to polydomains.

Let S or S! denote the Riemann sphere; as usual, the complex plane G!
is identified with the complement of the point atinfinity «. Given any
product A =A,X... XA, of subsets 4; of S, we set

S"OA =B\ 4)X...X(E\ 4.

We shall suppose that each one of the sets A; is either open or closed
(which means compact). If A, is closed, we denote by H,(S\ A4))
the space of holomorphic functions in the open set S\ A; which vanish
at infinity, equipped with the topology of uniform convergence on the
compact subsets of SN A;. If A; is open, we mean by H,(S\ A4))
the space of germs of holomorphic functions near the compact set S\ A,
which moreover vanish at infinity; this space is provided with its
“natural” inductive limit topology (cf. p. 197). With these meanings
we set

@.1) H,(S"O A)=H,(S\A)&...Q Hi(S\ A,).

It is not difficult to describe the elements of H,(S"& A) except insofar
as the distinction between functions and germs of functions must be
preserved. If we forget about it for a moment, we may say that the
élements of H,(S*S A) are the holomorphic functions of z=(z,, ..., z,)
in 89 A which vanish whenever anyone of the variables z; takes the
value .

Let o be any (local) analytic functional on a product K=K, X ... XK,
of n compact subsets of G'. We set, for any ¢ in S"O K,

Pa(@)=(im) " s G—2)7" o (G—22) 71

and refer to ® « as the Cauéhy representation (or the Fantappié transform)
of o [¢f. (3.1)]. We have here the analog of Theorem 3.1 :

TueorReM 4.1. — The Cauchy representation is a linear bijection of
H'(K) onto H, (S"O K).

Here also, like for Theorem 3.1, the proof consists essentially in the
establishing of the inversion formula, that is, of the analog of (3.2)
(see [6], Appendix) :

(4.2) Cahy=[hQ 2@ dz,

where d¢ =d¢, A . . . A d¢, and ¢ is a homology class of degree nin G*© K
c=¢X...Xc, with ¢; a homology classin G'\ K, suitably adapted
to K; (1Zj<n) in the manner indicated in p. 203.

Theorem 4.1 has an immediate extension to the case where some of
the K; are open sets (cf. the remarks on p. 203).
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Let now « be an analytic functional in G”, carried by a compact set
of the kind K=K;X...xK, with the K, conver. Let ¢;¢K;,
and {= (¢, ..., ;) thus belong to S"© K. For each j, let % denote
the orthogonal projection of ¢; onto the closed convex set K, and call
L;(¢;) the half straight line in C', joining o to « and passing through
(¢;—1t%). Setting L({)=Li(¢)X...XL,(¢) and calling & the
Fourier-Borel transform of «, we may set, like in the case of a single
variable :

La@)= e=<>Pa(2)dh.
LE)
Then, when all the ¢; are close enough to « in S',
4.3) Ga@)=2ra@) [cf. (3.8)]

Here also we may view ®« as an analytic continuation of £a.

5. An injectivity result.

We return now to the situation in Section 2, where we were dealing
with two open sets Q¢ (i =1, 2) and a compact set K, all in G, satisfying
(2.1), that is,

K 4 QtcQ2,

But now we assume that the Qi and K are products of n subsets of the
complex plane :

®.1) Q=0 x ... xQ, (i=1, 2); K=K;X...XK,
For the sake of simplicity, we shall make the following assumption

(B.2) Qi (i=1,2) and K are connected.

Of course (5.2) is equivalent with saying that all the Q) and K; are
connected. We also shall assume that :

(5.3) For every j=1, ..., n, the complement of K; in G' is connected
and Q' (i=1, 2) is simply connected.

Assumption (5.3) implies that K and the Q! are Runge sets.

Let then G.(z) be an arbitrary kernel belonging to H'(K) & H(2?).
We perform the Cauchy representation of G,(z) with respect to the
variable £.  'We denote it by ® G(z, ); it is a function belonging to
H,(S"\ K) @ H (£?).

Let now '= Q) X ... X &, bean arbitrary polydomain whose closure
is compact and contained in £!. In view of (2.1), K + Q' is a relatively
compact subset of 2, In view of (5.3), it is simply connected. For each
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j=1,...,n we select a simple closed rectifiable curve c; in Q2 ,, encir-
cling ” K;+ £ and we set c==c¢,;X ... XCn.

LeEmma 5.1. — Let 3 be any analytic functional in Q' carried by €',
h be any holomorphic function in Q2. We have

G.4) <GB > = [ (B @ GG E—w) >R .

Proof. — It follows at once from the inversion formula (4.2) that (5.4)
holds when G.(z) belongs to H'(K)® H(RQ?), hence for any G,(z) in
H'(K)® H(2*) by continuity.

Formula (5.4) has a “ dual ” equivalent. Let ‘G: H(Q*)— H(Q")
be the transpose of the continuous linear operator G. Then, for any
holomorphic function h in Q2 and any point w in Q’,

(3.5) mem=jh@¢G@:—wma

We recall that ¢ is an n-cycle in :n($"© (K + ') ,, encircling
K+ Q.
Now we may state and prove :

Taeorem 5.1. — Suppose that Q! (i =1, 2) and K are product sets,
like in (5.1), satisfying K + Q'c Q. Suppose moreover that (5.2) and
(5.3) hold.

We make the following additional hypothesis :

(I) For each j =1, ..., n, there is a point z; of Q3 such that
K/CZ/——-— Q}.

Then the mapping (2.4) is injective.

We recall that (2.4) is the ,, defining map ” G,(z) ~> G.—(2) from
H'(K) & H(®?) into H(Q') & H'(X?).

Proof. — Suppose G._(2) =o or equivalently [by (1.11)] that the
_hyper-differential operator G defined by G,(z) vanishes; then its trans-
pose ‘G vanishes also. We apply (5.5) with Q'=D(w*), any open
polydisk centered at an arbitrary point w’= (w{, ..., w;) of Q' whose
closure D(w') is compact and contained in Q'. For all h in H(Q?)
and all w in D(w"),

(5.6) fh(c)fb G, {—w)d;=o.

‘We shall apply the following elementary (and well-known) one-dimen-
sional lemma.
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LemMA 5.2. — Let U be an open bounded subset of the complex plane,
connected and simply connected. Let C be a compact subset of U and f
a holomorphic function in U\ C having the following property :

(5.7) Given any simple closed rectifiable curve in U encircling C and
any holomorphic function h in U,

Pronea=o

Then f can be extended as a holomorphic function in the whole of U.

With the help of lemma 5.2, we shall derive from (5.6)that ® G(z,7)=o
for z in Q2 and 7 in $*© K. We reason by induction on the number n
of variables. The result is trivial when n=o0. We assume therefore
n> o and adopt the following notation : z'=(z, ..., z,—4), similarly
for w', w*, 7', ete. Also

Q= Qix.. . X, (i=1,9), K=EKX.. . xXKvi,
= C1 X oot XCpo1,y

From (5.6), we derive
(5.9 f f D G, Cny &' — ', Co—w,) by (¢) he(C) dE' dG=0
for all w in D(w’), all h, in H(Q"), all h, in H(RQ3). We set
[ w) = [ @ G G =W, Lr—w) (E) A
so that (5.8) can be rewritten
| @ v ey dtu=o.

We apply Lemma 5.2 with U an open bounded subset of £, connected
and simply connected, containing C = K,--D,")[D,(w") is the
projection of D(w’) on the plane of the n-th coordinate]. We derive
from Lemma, 5.2 that f(¢,, w,) can be extended as a holomorphic function
of ¢, in the whole of U and therefore, in the whole of 2. From the
Cauchy formula applied to this extension of f({., w.), we see at once
that it depends holomorphically on w, in D,(w;). As w; can be any
point in Q) we see that f({,, w,) can be extended as a holomorphic
function of (¢, w,) in the whole of Q2xQ.. At this point, we set
Zn =200 Thn=0{—W, We see that f(z,, z,—7,) can be extended as
a holomorphic function of 7, in z,— ;. But in view of Condition (I),
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there is an open subset V of Q such that, for every z,in V, K, cz,— Q..
And
f(zn, Zp— Tn.) =f® G(C', Zn, cl'— wlg Cn) hi (C/) dC'

is a holomorphic function of (z, 7,) in Q2 X (S'\_K,), vanishing when
t,=co. In particular, for each z, in V, f(z., z.— 7.) is an entire function
of 7, vanishing at «, in other words, vanishes identically. But then this
must also be true for any z,in Q2. This means that we have, whatever h,
in H(Q'?), whatever w"’ in Q' and w’ in D’ (w*’) [this is the projection
of D(w’) on the hyperplane w,= o], whatever z, in Q2 and 7, in the
complex plane,

f O Gy 2y I — ', ) () dE = o,

where ¢’ is any (n —1)-cycle in Q" encircling K’ 4 D'(w"). The induc-
tion on n yields then the desired result, namely that ® G(z, ) vanishes
identically for z in Q* and 7 in & K. Theorem 4.1 implies that the
analytic functional with respect to #, G.(z), vanishes for all z in 2,

Q. E. D.

6. The symbol of a hyper-differential operator.

‘We continue to deal with two open subsets Q (i =1, 2) and a compact
subset K of G, like in Section 2; these sets satisfy (2.1). We do not
assume here that they are products like in Section 5, but we do make
the following assumptions :

(6.1) The defining map (2.4) is injective;
(6.2) K is a Runge set.

(6.2) allows us to identify H’'(K) with the space of analytic functionals
in G which are carried by K.

Let then G.(z) be a kernel belonging to H'(K) & H(Q),
G: H'(Q)—H'(Q)
the hyper-differential operator defined by G.(z).
DEeriNiTION 6.1. — The Fourier-Borel fransform of G,(z) will be called
the symbol of the hyper-differential operator G.
We shall sometimes denote by o G(z, A) the symbol of G :
o G(z, 1) =< Gi(2), €MD,

In virtue of theorem 3.2, the symbol of a hyper-differential operator
like G is uniquely determined [recalling that (6.1) and (6.2) hold].

BULL. SOC. MATH. — T. 97, FASC. 2. 14
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Ezxamples. — If G is the hyper-differential operator in Example 2.1,
its symbol is the function identically equal to one. If G is the operator
in Example 2.2 its symbol is h(z); if G is the operator in Example 2.3,
its symbol is the Fourier-Borel transform of the analytic functional o,
@. More generally, suppose that

6= 4N (),

=1

with o/ e H'(K), h'e H(Q?). Then

o Gz, 1) = 2, W/ (2) ()3

j=1

this remains valid, under appropriate conditions of convergence, when
N=-+4w.

The symbol ¢ G(z, %) is a holomorphic function of (z, 2) in Q2Xx C7;
it is of exponential type with respect to A. More precisely, to every
¢ > o and to every compact subset K’ of Q2 there is a constant C.(K') > o
such that, for ali z in K’ and all 2 in C~,

6.3) |5 Ga 1) | £ Co(K") exp(Ix(3) +¢] 1))
[(cf. 3.5)]. .

It is natural, at this stage, to ask whether there is a formula giving
the symbol of the product (i. e., the compose) of two pseudo-differential
operators — when this product itself is a hyper-differential operator.
In order to take a look at this question, we consider the situation intro-
duced ‘at the end of Section 2. This is the situation in which Propo-
sition 2.1 is valid. Keeping exactly the same notation as there, we use
the fact, pointed out at the end of the proof of Proposition 2.1, that the
kernel associated with Fo G is

G (@), Faa@))
or, equivalently, that the hyper-differential operator Fo G is defined
by the kernel

{ Grs(z—5), Fs(9)>e H'(K + C) ® H(V)

[where K, C, U are submitted to the conditions (2.7), (2.8)]. It follows
at once from this that the symbol of Fo G is

(6.4) o(Fo G) (@ 1) =K Grs(z—3), Fs(2) >, €2
— < o G(Z —S, )\) e<7\,s>’ Fs(Z) >.

In the last member, the bracket is the one of the duality between analytic
functionals and holomorphic functions with respect to the variable s.
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Observe that, in (6.4), z is the variable in U and s is the variable near C
[keeping in mind that (2.7) holds].

Suppose for a moment that C is a compact polydisk centered at the
origin. In view of (2.7), we may write, whatever z in U,

s Ge—sn=Y E e gy,
sex P

where we have used the notation fi7.9(z, 1) = (9/0z)” f(z, ). We now
use the notation f(7)(z, 2) = (d/02)” f(z, 1), and observe that

o F0.7)(z, 1) = s7 &>, F(2) .
We may then write

6.5 F-G)@H= (—I)w;‘la GP o) (z, W)@ F0.7)(z, 2).

PEN"

Let us show rapidly that the series in the right hand side of (6.5) converges
normally in U X G*. Suppose that the polyradius of Cisr=(ry, ..., ),
o<r;<+4 o for every j=1, ..., n. Let K' be an arbitrary compact
subset of U; then K — C = K + C is a compact subset of ©22. There are
numbers r;>r; (1<j<n) such that, for some constant M(2)> o
and all z in K,

(6.6) [o G» 0 (z, ) | = M) pl ™.

It is evident that we may take M (%) to depend continuously on 4 in G~
On the other hand, the analog of estimate (6.3) holds for F, with C in
the place of K. Therefore, for every ¢ > o there is M: > o such that,
for all 2 in G, all z in K',

|0 F(z, 3) | = M exp((ri +¢) | 1] 4+ . .+ (a4 ) | 2a]).

If we combine this with Cauchy’s inequalities, we obtain, for all p in N7,
A in G~ all n-tuples p=(pi, ..., pn) of numbers > o, all z in K’,

|o F©7)(z, 2) | = M: plp=7 exp <Z(r;+ O (12, + P/')>’

j=1
agreeing that o'=1. Choosing p;=p,/(r;+¢) for each j=1,...,n
and applying Stirling’s formula, we get

6.7) laFw’wz,méMz(r+a)pexp<2<r,~+e>mx>,

j=1



212 F. TREVES.

where r+:=(ri+¢, ..., r.+¢). We require that ¢ be so small as
to have r;4 ¢ <r, for every j=i,...,n. Combining then (6.6)
and (6.7) yields the desired result.

Even when C is not a polydisk, there are cases where (6.5) retains
some kind of meaning, precisely, an asymptotic one, as follows. Suppose
that ©* is a Runge open set. Then o G(z, 2) is the limit, uniformly
on the compact subsets of Q2x G, of functions g¢,(z, 2) which are entire
with respect to both z and A. Then, of course, the series

2(__1)Ipl [Tll g7 (2, 1) o FO:P) (2, 2)
P

converges normally in UXGCG* When v-— 4 o0, its sum converges,
uniformly on the compact subsets of Ux Gt to o(Fo G)(z,2). To
express this fact, we write

6.9 cFoQEN~ Y (:%a Gir (2, 2) o Fo 1) (2, ).

P EN"

The' similarity between (6.8) and the formula giving the symbol
of a product of pseudo-differential operators in the real space (see e. g. [3],
form. (4.3)"") hardly needs stressing.

7. Expression of a hyper-differential operator in terms of
its symbol.

We continue to deal with the open sets Q! (i =1, 2) and the compact
set K. We have, as before, K | Q'c Q2 Let G:H'(Q")— H'(Q?)
be a hyper-differential operator with kernel G._..(z), where

G:(?) e H'(K) ® H(2?),

and let ¢ G(z, ) denote the symbol of G, i. e., the Fourier-Borel transform
of G,(z) with respect to . Let 3 be any analytic functional carried by a
compact subset K’ of '. 'We are now going to show that, under suitable
restrictions upon the choice of @', * and K, it is possible to give a for-
mula expressing the Cauchy representation of G@ in terms of o G(z, 1)
and of B(%), the Fourier-Borel transform of 3. This will be analoguous
to the formula expressing a pseudo-differential operator in real space
in terms of its symbol.

We observe first that G is an analytic functional in 2 carried by
K + K’; this can be checked at once. Let then K” be a compact
subset of Q2. By combining (3.5) and (6.3), we see that, to every : > o
there is a constant C.> o such that, for all z in K and all 2 in C~,

@) |oGE NBMW|ZCoexpUx() + Ip () + 2| 1)),
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Observe that
Ie(h) + Lo (@) = Lo i ().

We make now the following assumption :
(7.2) Q=0 x...xQ (i=1,2), K=K x...xK,

where the Q; and the K; are convex sels.

Notice that (7.2) implies (5.1), (5.2), (5.3). Now we may and shall
replace K’ by its convex hull or, rather, assume that K’ is convex.

Let z=(z, ..., 2,) be an arbitrary point in G"Q (K + K'), that is,
z;&¢ K, 4 K'; whatever j=1, ..., n. For each j, let z} be the orthogonal
projection of z; on the convex compact set K;4- K : z} is the unique
point in K;+ K’ such that d(z;, z}) =d(z;, K;+ K). We denote
by L(z;) the half straight line joining o to co in the complex plane,
and passing through Zz;—7Zz}, and set

L) =L(2z)) X ... X Ly(zn).
We shall need the following result :

Lemma 7.1. — For each j=1, ..., n, let K, be a compact subset
of the complement of K, + K'; with respect to Q and let K" = K| X... X K.
There exist constants C, 9d,, ..., 0,> o such that, for all z in K'' and all &
in L(2), '

(7.3) |e20 Gz N)ER)| = Cexp(—di | hi|—...— 3, ha])-

Proof. — Fix arbitrarily A on L(z), which means that 1;=1{;(z,—z9)
with {;> 0 (1=j<n). Because of the compactness of K + K’ there
is a point w in K + K’ such that

I (A)=Reli, w).

In view of (7. 1), the left hand sideis = C' exp(— Re <z—w, A >+ ¢ | 2| ).
But

n n

Re{z—w, 1> =Y t;Re(zj—w)) (z;—2) =21, d(z), K; + K))*.

j=1 J=1

Let m; (resp. M,) denote the minimum (resp. the maximum) of
d(z;, K; 4 K’;) when z; ranges over K. We have
—Re(z—w, 1) + ¢ | A| Z— DL} — e M)).
J=1

Choosing ¢ <inf(mj/M,) and observing that |4;| < M;t; leads to the
7

desired result.
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An easy consequence of lemma 7.1 is that

7.4) f <=0 G(z, 1) () dh
L(z

)

is a holomorphic function of z in *&S (K + K'). Indeed, given any
point Z of 2285 (K + K'), for every z in a sufficiently small neighborhood
of Z the integral (7.4) can be performed over L(Z) instaed of L(z) :
this follows at once from estimate (7.3). It suffices then to observe
that the integrand in (7.4) is a holomorphic function of z in Q2.

THEOREM 7.1. — Let { be an arbitrary point in $"S (K + K') and
for each j=1, ..., n, let ¢; be any simple closed rectifiable curve in Q3
encircling K;+ K; and such that ¢; lies in the exterior of c;. Set
c=c¢ X ...Xc, Then, given any analyltic functional 3 carried by K’',

(7.5) @(Gﬁ)(c):(giﬁ)—?”'/</£(z)e—“w’>o—G(z, x)s(x)dx>

c

X II(C/——Z/‘)_' dz.

j=1

Proof. — We observe that (7.4) is equal to

< G.(2), fL (z)e—d,:wéa) dx>

where ( , >isthe bracket of the duality between holomorphic functions
and analytic functionals in the variable ¢ (z plays the role of a parameter).
We may apply Lemma 7.1 with ¢ G(z, 1) replaced by exp<{2,¢>.
In view of condition (7.1), this is permitted provided that ¢ remains in K.
For these t’s, we obtain the analog of (7.3). But by continuity, a similar
inequality will be valid with ¢,/2 substituted for ¢, (1= j = n) for all ¢
in a suitable neighborhood of K. For the £s in such a neighborhood,
we see that 3(2) e~<»<—* is absolutely integrable over L(z) with respect
to |di|. We have

(2iﬁ)—"fuz)e‘“"z—“ﬁ(%) &)= B(z—1)
= (ziﬂ')_” < ﬁw; Il(z,-——l,——w,-)*j >.

Thus we see that (7.4) is equal to
(2im)" < Bw, ® G(z, z—w) >
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and therefore the right hand side of (7.5) is equal to

(7.6) f<ﬁw, ® Gz z—w) > h(2) dz,

where
h(z) = (2in)y " (Ci—z) " ... Co—2z)

Let then A; be the inner region determined by ¢c; and A=A, X ... XA,.
It is clear that h(z) is a holomorphic function of z in some open neighbor-
hood of A which we might assume of the form U= U, X ... X U, with U;
open connected and simply connected, and contained in Q3% (1 j = n).
We may then apply Lemma 5.1 with U substituted for €22 (this is seen
at once to be permitted). We conclude that (7.6) is equal to { G@, h>;
but the latter is nothing else but ®(Gp) (2).
Q. E. D.

ReEMARK 7.1. — It is not true, in general, that we have

~

®(GB) () = j e—<ho5 G(z, 1) B () ),

L(z)

as seen on the example G,(z) =9, ® h(z), where he H(Q?).

We keep the same hypotheses as before, in particular (7.2). One of
the implications of theorem 7.1 is that the hyper-differential operators
are precisely those operators which can be expressed by formulas such
as (7.5). Let us be a little more precise concerning this fact.

Let g(z, 2) be a holomorphic function of (z, 2) in Q2 X C* and suppose
that, for every compact subset K” of Q* and every > o there is a
constant C > o such that, for all z in K” and all A in C~,

(7.7) |9(z 1) | < Cexp(Ix(?) + ] 2]).

We may then apply Lemma 7.1 with ¢(z, 2) instaed of ¢ G(z, 1) and,
consequently, form

(7.8) r@(@:(zin)—enf(fu G 1)@())«11)

X H(C/ -—z;) ' dz.
=1

Here the ingredients, ¢, ¢, B, ..., are the same as in formula (7.5).
We see easily that 8 > ®—'I'3 is a continuous linear map of H'(Q!)
into H'(Q?). Theorem 7.1 implies at once that this is a hyper-
differential operator. Indeed, because of (7.7), we know that g(z, 2)
is the Fourier-Borel transform, with respect to the variable #, of an
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element G, (z) of H'(K) & H(2?) [cf. the remark following (3.5) and (3.6)].
Now, G/(z) defines a hyper-differential operator G : H'(2')— H'(2?)
the symbol of G is of course ¢(z, ) and by Theorem 7.1, ®(Gp) is
equal to I'3 [defined in (7.8)].

8. The resolvents of systems of linear partial differential equa-
tions with analytic coefficients are hyper-differential operators.

As a justification for the introduction of hyper-differential operators
in complex space, we are going to show its relevance to systems of linear
partial differential equations with analytic coefficients. The systems
under study will all be determined (i. e. contain as many equations as
there are unknowns) and, for simplicity, the partial differential equations
making up the systems will be of order one. It is convenient to deal
with (n +1) variables, denoted by z=(z, ..., z,) and £ The systems
will be noncharacteristic in the #~direction. In fact, let us assume that
they are of the form

0~ p)
L= ot —Z‘Yi(z, i)% —Yo(z ),
j=1

where the v;(z, f) (0 £j < n) are matrix-valued holomorphic functions
of (z, f) in some open neighborhood © of the origin in G*+!. That the
system is determined means that the matrices v,(z, f) are square, say
with N rows and N columns (N 1), thus acting on N-vectors.

Let then Q be a bounded open subset of C*, v a number > o such that
the compact set { (z, f)e G»+'; z€Q, | {| <} is contained in ©. Let then
u, be an arbitrary analytic functional in Q with values in GV, ¢(f) any
holomorphic function of #, |{| <=, valued in H'(Q; G¥). We shall be
interested in the Cauchy problem

8.1) Lu@®)=o(), |[t|<d<mn; u(o)=u,.

It has been proved in [6] (see Sections 12, 14), under the hypothesis
that Q is a Runge open set, that (8.1) admits. one and only one solution
u(f) : this is a holomorphic function of ¢, |{| < d, valued in the spaces
of holomorphic mappings Q;— G"; here

Q={zeC;d(z, Q) <s}

with s a number > o, depending on J, o <<d <<7. As a matter of
fact, s can be taken to be of the form C ¢(C, a positive constant).

The solution u(f) of (8.1) can be expressed as a function of the data ¢
and u, by means of the resolvent & (f,t') of the system L; ®(t,t') is
the (unique) solution of the problem

(8.2) L&t 1)=o0, |1|<d, |I—l|<d; &I )=I,
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where I is the identity mapping of the relevant spaces of analytic func-
tionals (in the variables z; see[6]). The resolvent R (¢, t') is a holomorphic
function of (£, ¢') in a suitable neighborhood of (o, o) in C2, with values
in the space of bounded linear operators H'(Q;; CY)— H'(Q,; C").
Here s and s’ are numbers > o, depending on ¢ and ¢’ ([6], Section 8).
We can view R(f, ) as an NXN matrix whose entries are bounded
linear operators H' (2,)—H' (L) depending holomorphically on ({, t') near
(o, 0).

It does not require much acumen to realize that information about
the resolvent R (f, ') can be extremely useful in the study of problem (8.1).
This is particularly true if one wants to find out whether this problem
admits calssical solutions whenever the data ¢(f) and u, are themselves
,» classical ’ (meaning by this that their values are carried by real compact
sets and defined by functions or distributions with support in these
sets). Such a study will be greatly facilitated if we can show that the
resolvents R (f, 1) are hyper-differential operators. For then we may
rely on the symbolic calculus for such operators, and therefore deal with
holomorphic functions instaed of having to deal with ,, operators ”

In this section, we show that the resolvent R (¢, {') of the system L
is a hyper-differential operator. But we shall have to impose certain
conditions on the sets carrying the analytic functionals : namely those
conditions that enabled us to define the symbolic calculus of the previous
sections — essentially, the open sets will have to be conver polydomains.
For the sake of simplicity, we restrict ourselves to the case {'= o; from
there a translation ¢+ t—1#', affecting all intervening functions of ¢
(including the coefficients v, of the system L), enables us easily to settle
the general case.

Like in (7.2), consider two convex open polydomains
Q= Qi x...X &, (i=1, 2)
and a convex polycompact set in G*. We assume that K -+ Q'c Q2.
Let then G : H'(Q')— H'(2%) be a hyper-differential operator, whose

translations are carried by K, and let ¢ G(z, 1) denote its symbol.
We shall use the notation

B(GB) () =(in)" [ e s G(z 1) BO)d),

L(z)

where (5 is an analytic functional carried by a convex compact subset
of Q' of theform K'= K, X ... X K,,and zisa pointin Q*n (8" (K + K)).
Then formula (7.5) reads

G3)  2(EHO=Gin~ [ 36 @[ ¢ —2)d=

Here c is an n-cycle in Q2 appropriately positioned with respect to K + K'.
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All this remains meaningful, and (7.5) remains valid, if § is an ana-
lytic functional valued in GV, i. e., an N-vector whose components are
analytic functionals; then G will be a hyper-differential operator
H'(Q; GY) - H'(Q2; GY) or, equivalently, an N XN matrix whose
entries are hyper-differential operators H'(Q') — H’'(R?) (the translations
of all these hyper-differential operators are carried by the same compact
set, K); the symbol o G(z, 1) is a matrix-valued holomorphic function
of (z, 1) in Q2 X G, satisfying an estimate of the kind of (6.3).

Suppose now that G depends holomorphically on the complex variable {,
for | t| <m; we write then G(f), and o G(z, ¢, 1) for the symbol of G(t).
Let us assume, on the other hand, that the coefficients v;(z, f) of L are
holomorphic functions of (z, f) in some open neighborhood of the closure
of the product set Q*x)—m, n(, for instance by requiring that this
closure be contained in our initial set ©. In view of this, we may make
the differential operator L act on the vector-valued functions % (G (£) B) (2).
It is easily seen, for instance on the formula giving the symbol of the
compose of two hyper-differential operators, that

@.4) SL(GOPL) ()
=L{3(GOHP) @]

. 0 . J

— —n —<h, 5 . E . )

_(2“7:) L(.)e ‘ >{dt Yl(z’ t)<()Z/' )L/>
s j=1

—Yo(z, 1) } o Gz 1, 1) B()dh

Keeping this in mind, we consider the following Cauchy problem :

0~ , p)
(8.5) {Jt — i t)(—d—z;—l,-> — 1z, t)}r(z, , ) = o
j=1
8.6) r(z, o, 1) =1y, the N XN identity matrix.

Here the unknown r(z ¢, 1) is N X N-matrix valued function; the
coefficients y,(z, f) act on it by matrix multiplication.

Suppose for a moment that we show that (8.5)-(8.6) has a (unique)
solution r(z, £, 2) which is a holomorphic function of (z, ¢, ) for z in Q2,
|f] <6 and all 2 in G Furthermore, suppose that r(z f, 1) satisfies
an estimate of the kind of (6.3). The considerations at the end of
Section 7 tell us, then, that r(z, f, 2) is the symbol of a hyper-differential
operator ®R(f) : H'(Q'; GV)— H'(Q*; GY), with translations carried
by K. Now, obviously ®(f) will satisfy (8.2) with # =o. The uni-
queness of the solution to the latter problem demands therefore that
R({)=R(, o).
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Via the “ change of unknown
r(z, &, ) =eM®o(z i, 1),

Problem (8.5)-(8.6) gets transformed into :

n \
3.7) <§t —> 16 05— t>) Pt D=0,  |t]<3;

8.8) 0(z, 0, )= e~ H1y,

Let there be given n convex open subsets 2; of the complex plane.
For any j and any ¢ > o, set

(@)= (teC;d(t, ) <o}
Set also ()=, and
Q(S):(Ql)ax ‘ee X(gn)f;s 650'

We shall assume that the Q(c), or equivalently, the Q;, are bounded.
We select the number v > o in such a way that that, for some 3,> o,
the closure of the set

8.9) {(z, e Q15 zeQ(d), | T <m}

is contained in our initial open set ©. This has, as a consequence, that
the differential operator L is defined, and that its coefficients are holo-
morphic in an open neighborhood of the closure of the set (8.9). For any
number s, o=s <1, we call X, the space of continuous mappings
Q(sdy)— L(GN; GV) which are holomorphic in Q(sd,); X, is turned
into a Banach space by the maximum norm [over the compact set (s 50l

In the framework of these spaces X, we may apply Ovciannikov theorem
to problem (8.7)-(8.8) [6]. We reach the following conclusion :

(8.10) Foreach 4 in G, problem (8.7)-(8.8) has a unique solution p(z, t, 2).
For every s, os <1, p(z 1, 1) is a holomorphic function of t
in an open disk |t| <0d(s), valued in X,. We may take
0(s) = a(1—s) with « a sufficiently small constant > o.

We use now the resolvent ®’“(t, ') of Problem (8.7)-(8.8) relatively
to our choice of the spaces X,— or rather, we use ®?(f, o) : for s <1
and |{]| < d(s), ®Ri(f o) is a bounded linear operator X,—> X, (see [6]).
We have (see [6]).

0(z 1, 1) = RA(l, 0) (e~ 1,).
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Since the restriction to £(d,) of 1yexp (—< 4, z>) is an entire function
of 2 in CG* with values in X,, we derive :

(8.11) For each s, o<s <1, and for |t]| << d(s), the solution p(z, {, )
is an entire function of 4 in G, valued in X,.

By Hartog’s theorem, we see that, for o s <1, p(z, ¢, #) is a holo-
morphic function of (z, £, 1) in the region

8.12) zinQ(s dy), |t| <o(s), AinGn
All these properties also hold for the solution
r(z, &, 2)=e*>p(z 1, 2)

of (8.5)-(8.6). But r(z, t, 4) satisfies an inequality which is very impor-
tant in the present context, and which does not hold for p(z, {, 2).
Let us introduce the following notation :

AO =Xy, + e,

j=1

B(t, 1) =Y 7;(z ) 1.

j=1

We view r(z, £, 2) as a function of ¢, valued in the spaces X, (with respect
to the variable z) and depending on the parameter A. For the sake
of brevity, we denote by r(¢, 2) this function. We regard problem (8.5)-
(8.6) as a Cauchy problem for an evolution equation (which it is!) and
rewrite it

8.13) (ddiyr(t, y=Ar(, 2)—B(, iyr(, 1), [ <93
8.14) r(o, ) =1x.

We observe that B(t, %) is a holomorphic function of { (and a linear
one of 2) valued in the Banach space of bounded linear operators X,— X,
for any s, 0o <Zs < 1; the norm of B({, 2) in this Banach spaceis =~ B|2|,
with B a constant > o, independent of {, |{| <=, and of s, 0 Zs 1.
As for A(#) it is a bounded linear operator (depending holomorphically
on {) from X, into X, whatever s, s’ such that o<s’" <s_1; its norm
in L(X,; Xy)is =< C(s—s')~", where C is a constant > o independent
of ¢ and of s, s’. The latter property is an easy consequence of our
choice of the spaces X, and of Cauchy’s inequalities.
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Fix A arbitrarily in G*. We define recursively a sequence { o} (k=o, 1,
...) of holomorphic functions of {, |{| <=, valued in X, for any s,
05 <1, in the following manner :

8.15) Qo=1p}
B.16) P =AO%—BEG Do (1] <n; (o) =0
for k=o,1,.... Here ¢’ stands for the derivative of ¢ with respect

to . Let us write || ||, for the norm of X,. The properties of A(f)
and B(, ) are such that

617 0@z § [ 10 sl 1+ BIA [ (9@ 1] at1,

where ¢ is any number such that o <e¢ <1—s, and where the inte-
grations are performed over the straight line segment joining o to £. Let
us set

M;(s) = sup. (Fox @ [Is[E[75).

Our contention will be that, for all s, o~s <1, and all k=o,1, ...,

(8.18) Mk(s)é( Igs - >/-.

We reason by induction on k. Because of (8.15), (8.18) is true when
k=o0. Next we apply (8.17) and obtain

Cc

M (s) £ = Ic—|—1Mk(S+8)+k+ [ 4] Mi(s).

We take ¢= (1—s)/(k + 1) and apply the induction hypothesis
M@ =755 ((14+5) 225 + kBm) + 2 (S pBi)
) (e )
i (o +r’«>k(ffs(*+ﬁ> )

k
Observing that <1 + ]1{> ~ e, we obtain at once (8.18).

Using the fact that (a + b)t< of(a* 4 b*) (a, b > 0), we derive from
(8.18), that, for all ¢, [¢] <,

I b= (225100) + (3 ) @BILL 1]
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By Stirling’s formula, we know that for a suitable constant M,,
e k
(&) =gy
Finally, we see that, for |{| <(2Ce)~' (1—35),
2Ce

I—S

B.19) Bl a@ == 25111+ MoexpaB] ]| 7).

But from (8.15), (8.16), we derive that the series
(8.20) Do),
k=0

which converges absolutely for |{ | < (2Ce)~! (1—s), must be, for these
values of £, a solution of problem (8.13)-(8.14). The uniqueness of the
solution to this problem demands that the sum of (8.20) be equal to
r(f, 7). Therefore, for the same values of f, we reach the conclusion

[¢f- (8.19)] that

8.21) Ir wxé{x— 2Ce 1y

i LN
This estimate is essentially what we wanted. Take

Q=Q(0)=QX...XQy Q=Q(sd)

1
+M0 ezB]tl.]M.

for any s, o <s <1. In view of (8.11), we know that r(z, £, 1) is a
holomorphic function of (z, ¢, 1) for zin 2, [{| < d(s) and A in C*, valued
in the space of N XN matrices. Select then ¢> o small enough so
that, if

(8.22) K={zeC;|z;|<Le, j=1,...,n},

then (2.1) holds, i. e., K 4+ Q!c Q2 (it is clear that it suffices to require
e <s9d;). Imposing then simultaneously the conditions

(8.23) [t] <(2Ce)t(1—35), [t] < a(s), aB|t]| <s,
we derive from (8.21) that, for all z in £2 and all 2 in Cr,

[ r(z, t,2) | < C(f) exp (I« (A)).
Then the considerations at the end of Section 7 show that r(t z, 2)
is the symbol of a hyper-differential operator H'(Q'; G)— H'(2*; GM)
whose translations are carried by the compact polydisk K defined in
(8.22), and which depends holomorphically on ¢ in the open disk (8.23).

In view of what, we have said earlier, this hyper-differential operator
must be equal to the resolvent R (%, o).
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