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ON LOGARITHMIC DERIVATIVES

SHCEN YUAN.

1. Introduction.

Let C be a ring, always commutative with identity and of prime
characteristic p > o. Let C* denote the group of invertible elements
of C. Given a derivation () on C, the mapping

^o : C^—C^

defined by <^o(") = (^u)/u is a group-homomorphism. Now assume ()
satisfies a polynomial

X =ao^+ai^+.. .+ a^+...+ a,̂

with coefficients in the ring A = kernel 0. For any c in C, let Lc denote
the map C —^ C produced by multiplication by c. From the formula

(^ + Ley = ()P + L^P-^C + CP) ([3], p. 201),

it is easily seen that
X(^+Lc) =L(^ c),

where
n

^ (c) ==^ a.d^'-^] + [^'-l-^cp + . . . + {^)i~'-j c}^ + . . . +'c '̂)
;=o

is an element in A. It is also immediately clear that

^: C-4- -^ A4-

is again a group-homomorphism. Let u be an element of C*. Then

()+L(^U) ==(Lu)-1 ()(LU),
and so

X(() + L(^u)) == (Lu)-' X(^) (Lu) = o.
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This means given ^ and X, we have a complex :

o—A^C^C-^A^-^o.
£ Oo Gl

When C is a finite dimensional field extension over A and X is the
characteristic polynomial for ^, a theorem of N. JACOBSON ([7], theorem 15)
states that the kernel of ^i coincides with the image of ^o.

The purpose of this paper is to describe, for a general commutative
ring C, the group (kernel ^i)/(image ^o) in terms of classes of rank one
projective A-modules which are split by C. If C is a noetherian integrally
closed domain, a description is also given in terms of divisor classes
of A which become principal in C. These are done in the next section.
In the final section, some examples are given.

2. The rank one protective class group.

LEMMA 2.1. — Let Q be a set of derivations on a semi-local ring C of
prime characteristic p > o, and let A denote the kernel

{ x e C | ()x == o for all ^ e g j

of g. Assume C is a finitely generated projective A-module and
Hom^(C, C) == C[Q\. Then both C and A are finite ring direct sums of
indecomposable semi-local rings

C==Ci+...+C,^ A=Ai+. . .+A// , ;

and for each i,
d^. A^i, .... tr}/W— a,, .. ., ^— a,),

where ai, . . . , a, are in A;, ti, . . . , tr are indeterminates, and r depends on i.

Proof. — Given a prime ideal q in A, Q == {x^C r r^eq } is a prime
in C, and QnA = q. If q is maximal, so is Q, hence A must be semi-
local. Let e be any idempotent in C. We have ()e == ()eP == p(^e) ̂ -1

is zero. This shows e is in A. The ring C being semi-local contains
no more than finitely many indecomposable indempotents { Ci, . . . , e,n j .
Put d = Cei and A; == Ac;. We have

C = Ci + . . • + Crn, A = Ai +.. . + A,^.

Let N denote the radical of Ai, and put A = A;/N, C == Q/NQ.

Of course A is a finite direct sum ^Fy of fields. Accordingly C
j

decomposes into a direct sum ^,R/, where R/ is a finite dimensional



LOGARITHMIC DERIVATIVES. 43

local Fy-algebra. Now d is a finitely generated projective module
over a semi-local ring A, with connected spectrum, so must be
free ([I], p. i43). This shows the dimension of Rj over Fy is equal to
the rank of Ci over Ai and hence is independent of j. If we denote
by ( ) the derivation on Rj induced by ^ a, and by 9 the set { 0 \ ̂ e 9},
then Hom^(J?y, J?y) = .R/[9] because

A (g)^ Hom^ (Q, d) = Hom^C, C).

Thus no non-trivial ideal of Rj can be stable under g, the structure
of Rj is therefore known ([9], corollary 2.8) :

R^F^ ...,^/W-f,, ...,/?-/•/.),

where fi, . . . , fr are elements of Fy, f i , . . . , fc are indeterminates. But r
is independent of j, so

C =^R^A[t^ . . . , t,]IW— a,, . . . , ^— ar) (a^A).

By [I], p. io5, this shows C; is isomorphic to

A,[^, ...,t]/(^—a,, ...,^—a,)

for some ai, . . . , a/ in Ai as desired.

LEMMA 2.2. — Lef A 6e a commutative ring of prime characteristic p > o,
Z^

C = A[t,, ..., f.]/(^— flo, ..., ̂ — ̂ ),

where Oo, . . . » a/z are elements of A and to, ..., ^ are indeterminates.
Assume () is an A-deriuation on C such that Hom^(C, C) == C[^]. Then
the characteristic polynomial of ( ) is of the form

^t+ a i^+ . . .+ a,r+...+ o^nt^+t^1 (a,€A).

Proof. — Let ^= -3, be the A-derivation on C given by ()iij•= ^;y
(7^

(the Kronecker delta function). So

'̂ = 6,0 ̂  +... + b^n, bi, = ̂ l (t,),

because ^l as a derivation is completely determined by its actions on
the //s. Now from Hom^(C, C) = C [^], we know { ^ o^i< p714-1 {
form a linearly independent C-basis for Hom^/(C, C). (Notice that ^ as
an A-endomorphism on the free A-module C of rank p"4-1 has a character-
istic polynomial of degree p^. Therefore Hom^(C, C) == C[^] implies
that every A-endomorphism on C is a C-linear combination in

)\ ^ iu ̂ = i. '~ .̂ ̂  ^
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{ ^[o^ i < p^ { . But Hom^(C, C) is a free C-module of rank/^4-1,
{ O1'\ o ̂  i < p^1 } must be C-linearly independent.) So

^ = Cio () + Cn OP + . . . + Cin ̂ pn + ̂  C'ij ̂  (Cif, C'ij € C),

where the summation runs through all j, o < j < p7^' and j is not a
power of p. So we have the matrix equation

^ \ /&00 ... ^0/l\ /CQO . . . C o n \ / )p

^ \ / I I \ / ; : \ /
^7

y j \bn0 ... bnn/ \CnO ... C/^ / \^ ,

The linear independency of { ( ) 1 ' ' \ o ̂  i < p724-1 } therefore asserts
that (hi/) (c;y) is the identity n + i by ^ + i matrix and (6;y) (cjy) is a
zero matrix. This shows (c;y) == (c;/) (6^) (c^) is a zero matrix. In
other words,

^, == c;o^ + CH()P + . . . + dn^'1 for all f.

From ^71+1 === &/H-I o^o + • • . + ^/z+i 7^/1, we see that ^ satisfies a poly-
nomial

^t + ai^+ . . . + a^+ . . . + a,^+ ̂ l+l.

That this polynomial must coincide with the characteristic polynomial
of c) follows from the fact that { ()1 o ̂  i < p/^+l } are linearly independent
over C. This completes the proof of the lemma.

REMARK 2.3. — Derivations satisfying the hypothesis
Hom^ (C, C) == C [()] always exist. For example, let 0 be given
by ()to == i and Ot, == (/o . . . ^-i)7'"'1 for all i > o. It is easy to verify
that the characteristic polynomial of this derivation is just ^"+1.

THEOREM 2.4. — Let ( ) be a derivation on a ring C of prime character-
istic p > o with A as its kernel. Assume C is a finitely generated projectiue
A-module of rank r and Hom^(C, C) === C[^]. Then () satisfies a
polynomial X = o^ot + a^^ + • • • + ^n—it^71^ + ^pn with a; in A and
r = p\ Moreover XC [t] = { /•€ C [t] f(()) == o j.

Proof. — Given a maximal ideal q in A, let Q denote the maximal
ideal { r c € C\xP^.q} in C. It is clear that CQ == C(^)jAq. So
Hom^(C^, Cq) == Ay0^ Hom^(C, C) == CQ^]. Hence by lemma 2.1
r == p71 for some n. Let At be the A-submodule of Hom^(C, C) gener-
ated by ()p\ i == o, i, . . . , n, and denote by M' the A-submodule
of M generated by ()P\ i = o, . . . , n — i. In view of [1] (p. 112, cor. 1)
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to show the inclusion map M' -> M is onto it suffices to show at each
maximal ideal q in A the corresponding map M'q -> Mq is onto which
according to lemma 2.2 is indeed the case. So there is a polynomial
X = ̂ i + ai^ + . . . + a/^i^71--1 + tP\ with a, in A and X (^) = o.
Given feC[t], f(()) = o, we may write f == gX + h, with ^, heC[Z]
and degree 7i < p}^. So A (^) = o. Since j ^ o ̂  i < p^ } is linearly
independent over CQ at every maximal ideal Q in C, all coefficients
of h must vanish because they vanish locally. So f == gX. This
completes the proof of the theorem.

COROLLARY 2.5. — Let () be a derivation on a ring C of prime cha-
racterictic p > o with A as its kernel. Assume C is a finitely generated
projectiue A-module and Hom^(C, C) === C [^]. Then

{f€C[t]\W)=o}=XC[t]

for some X (t) = ̂ t + ^t? + . . . + ̂  + . . . + a^71 with a,eA
and a,z a non-zero idempotent.

Proof. — Since C is finitely generated and projective as A-module,
the map p : q —^ (rank of Cq over Ay) is locally constant on ^2 = Spec A.
For any positive integer r, write ^:= { qe ̂  | p (q) == r ,}. So I2, is
both open and closed in ̂  and we have a finite disjoint union i2 == U ̂

because ^2 is quasi-compact. If A = (^2, A.) is the sheaf of local rings
associated to A and A, === A | ^2;, then A == A (^2) decomposes into a
finite ring direct sum © A, (^2,). So A == © Ae, and C == ® Ce, where e,
is the identity element of A;(^). Since Ce; is a finitely generated
projective A ̂ -module of finite rank and Hom^(Ce;, Cei) = Ce^e^].
An application of the theorem completes the proof of the corollary.

Hereafter we shall always denote by X the polynomial given by
corollary 2.5.

THEOREM 2.6. — Let () be a derivation on a ring C of prime character-
istic p > o with A as its kernel. Assume C is a finitely generated pro-
jectiue module over A and Hom^(C, C) = C [^]. Then the group P (C/A)
of classes of rank one projectiue A-modules split by C is isomorphic to the
homology group L (C/A) = (kernel c^)/(image ^o) of the complex

(7-^C+-^A4-
Oo Oi

defined by () and X.
Proof (x). — Let M be a rank one projective A-module such that the

C-module M 0 C is free on one generator b. Let F be a finite subset

(y) Henceforth all tensor-product signs without subscripts will denote tensor
product over A.
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of A such that the ideal in A generated by F is A and such that for
any f^F, the Ay-module M(g)Ay is free on one generator &/([!], p. i38).
Given feF, b == ^y(i (g> uy) for some invertible element u/of A/ . Now
let Q be a prime ideal of C, and let q denote the prime Q n A in A. To any
generator b^ for the free A^-module M (g) A^, there is a unique invertible
element u^ in CQ given by the equation b == b^(i (g) u^). It is easily
seen that the correspondence Q -> (<^)/u^ is independent of the choice
of &Q. In particular, if jfeF is not in q, then (^u/)/u/ goes to (^u^lu^
under the canonical homomorphism C/ •-> CQ. This shows Q -> (c)u^u^
is a section for the structural sheaf of SpecC. By [4], p. 86, there is
a unique element ze C such that for all Q€ SpecC, the canonical image
of z in CQ is (^UQ)IU^ Now ^iZ must be trivial because at each Q,

X(^ + Lz) =-. (L^)- X(^) (L^) = o ([I], p. 112).

If b' is another generator for the free C-module M (g) C, and z ' is the
element in C to correspond, then z ' == z modulo image Oo. So we have
a well-defined mapping 7 : P (C/A) -> L (C/A).

Obviously ^ is a group-homomorphism. To show it is one-to-one,
assume z = ̂ u/u for some ueC. Then for any Qe SpecC, u^ == iia^
for some a^eA^, (i (g) ^) (6 [i(g) u-']) must be zero in M (g) C because
at every Q,

(i 0 ̂ ) (^[i ® u-1]) = (i (g) ^) (^[i (g) ̂ ]) = o.

But the sequence o-^M(g)A->M(g)C^->M(g)C is exact, 6 (i (g) u-')
therefore is already contained in M. Let m be any element of M.
Then m (g) i = 6 (i (g) u-'c) for some ceC. Therefore c must be an
element of A because o = ( i ( g ) ^ ) ( m ( g ) i ) = 6 ( i ( g ) u-^c]). This
shows M is free over A and hence ^ is one-to-one (2).

It remains to show A is onto. So let C[t; ()} be the non-commutative
ring of differential polynomials with coefficients in C defined by
tc == ct + ^c. An inductive argument shows that

trc == ̂  + ( r) (()c) r-1 + ( '_) (^-c) t7-2 + . . . + (^c),
\ 1 / \2 /

and so X is in the center of C [t; ()] because t^c == ct^ 4- ()PC.
Now to any z in the kernel of ^i : C4- -> A4-, we associate a ring-

homomorphism
p.: C [/; ()] -> Hom^(C, C) given by p.(^) == g (() + Lz).

(2) Note that the hypotheses C over A being finitely generated project! ve and
Hom^(C, C) = C[()] are not needed for the existance and the injectivity of A.
Similar remark applies to theorem 2.9.
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If g is in the kernel of po, then g (0 + Lz) is the zero endomorphism on C.
This shows the kernel of po is contained in the kernel of pr;. So we have
a ring-homomorphism p^p'o1 : C [^] —^ Hom^(C, C). In other words,
X (^ + L^) = o means that C is made into a C [^-module with (^ acting
on C as ^ +Lz. But if C [()] == Hom^(C, C), the modules over the
latter are well-known. Write E = Hom^(C, C), then the formula is
Hom^(C, C) (g) C ~ C([l], p. 181, exercice 18). Now each element
of Hom^ (C, C) is determined by its action on i e C which must go to
an element of C annihilated by the new operation of ( ) since in the old
operation of 0, <h = o. Thus Hom^(C, C) ̂  kernel (() + Lz) and
so C = C. kernel (^+ Lz). But C over A is a faithfully flat module :
given any prime ideal g in A, Q = { x e C \ x P ^ q } is a prime in C, and
Qr\A = q\ if q is maximal, so is Q ([I], p. 5i). Hom^(C, C) 0 C = C
therefore implies that Hom^(C, C) and hence kernel (^ + Lz) is a rank
one projective A-module ([I], p. 53, 142). Write TT^ = kernel (^ + ^)»

and let b be the element ̂  m; 0 c; in 7r^.(g) C such that ̂ . m; c^ == i

in C. For each QeSpecC, pick moOT^ such that ^== 777,3 (g)i is
a generator for the rank one free Ay-module 7r^(g) Ay. We have, for
all f, 7n;0i ==772o0a; for some a;eAy. Now with the notations
introduced earlier in this proof, UQ = ̂  a,c;. But in CQ

iriQ V G;C; == ^772;C;== I. SO

o == (^777o) (^^c,-) + mo^a,(^)

=——7no(z ̂ CliC ) + THQ^fl^C,).

This shows (OUQ^UQ= ( ( ) ^^c^y(^a,c^ = z, and hence ^ is onto.

This completes the proof of the theorem.
We list some special cases of theorem 2.6. When C is a field, the

following is the well-known theorem of Jacobson ([7], theorem 15].

COROLLARY 2.7. — Let C be a semi-local ring of prime character-
istic p > o. Let () be a derivation on C with A as its kernel such that C
is a finitely generated projectiue module over A and Hom^(C, C) = C [()} (3).
Then the sequence

o-^A^C^C-^A-
£ Go Oi

is exact.

(3) When C is a finite dimensional field extension of A, this is always satisfied.
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Proof. — Since A is also semi-local, we have L (C/A) ^ P (C/A) == o
([I], p. 143) hence the corollary.

Of particular interest is the following corollary.

COROLLARY 2.8. — Let C be either a noetherian ring or an integral
domain of prime characteristic p > o. Let ( ) be a derivation on C with A
as its kernel such that C is a finitely generated protective A-module and
Hom^(C, C) =C[^]. Let L be the total ring of fractions of C, and
denote by L (C/A) the group

[^o (L*) n C-^o (C*) = {^x\x | x e L*; Ox\x e C }IWx \ x e C}.

Then there is an isomorphism

TT : L (C/A) -> P (C/A)

which takes class z to class kernel (^ + Lz).

Proof. — Consider the commutative diagram given by () and X,

C^C-^A-
n n n
U-^L^-^K^ (K == the total ring of fractions of A),

the lower sequence is exact by corollary 2.7. So z belongs to
kernel {C 4 - -^ A-^} if and only if z == ()x\x for some x e L*. By
theorem 2.6, this shows TT is an isomorphism as asserted.

In the above corollary, if C is a noetherian integrally closed domain,
the hypothesis that C over A is finitely generated and projective can
be relaxed to C over A is finitely presented, that is, there is an exact
sequence of A-modules

F,->F,->C-> o,

where Fi and Fa are finitely generated free A-modules. But instead
of rank one projectives, we now have to describe L (C/A) in terms of
divisor classes.

The definition of Krull domain can be found in [2]. Noetherian
integrally closed domains form the main example of Krull domains.
If g is a set of derivations on a field L, and z a non-zero element in L,
we shall denote by ^ '. g -> L the map defined by ( ) -> (()zjz).

THEOREM 2.9. — Let g be a finite set of derivations on a Krull domain C
of characteristic p^o, and let A be the Krull domain

{x^.C\()x==o forall 0^.g}.
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Denote by L and K the fields of fractions of C and A respectively.
Assume C is finitely presented as A-module and Hom^(C, C) = C[g].
Then the group r(C/A) of divisor classes in A which become principal
in C is isomorphic to

L(C/A) == {^ z€l/ and ^)eC for all ^ e ^ j / f C . z€C*}.

Proof. — Let d be a divisor in A which becomes a principal divisor (z)
in C. Then for each prime ideal Q of height one in C, there is some ZQ
in K such that | z \ Q = [ ZQ \Q, where [ \Q is the discrete valuation on C
given by Q. So z == UQZQ for some invertible element UQ in CQ. This
shows for any () in g, ^z/z == (^UQ/UQ is an element of CQ for all
prime Q of height one. So ^z/z is an element of C because C is a Krull
domain. Since ^ == ^u (2 el/, ueC*) is equivalent to (^ (z/u) == o for
all 0 in (/, or in other words z\u e K*, the correspondence d -> ̂  gives
rise to a one-to-one group-homomorphism A : T (C/A) -> L(C/A).

To prove the map is onto, let z be an element of L* such that ^z/ze C
for all () in ^. We claim that if | z \q^- o modulo p, then the ramification
index <? (0) of Q over A must be one. Let t € Q be a uniformizing
variable for Q, that is, /C^ == @CQ. So z == ut71 for some invertible
element u in C^, and

(^u/u) + n(^/Q == ^z/ze C for all 0 in ^.

This shows if n ̂  o (p), then tCo is stable under g. Now C is finitely
presented as A-module, if q === QnA, then

A^ Hom^(C, C) ̂  Hom^(CQ, Co) ([I], p. 98).

But Aq is a discrete valuation ring, CQ as a finitely generated torsion-free
A/y-module must be free, so

Co[g] ̂  Ay(g)^Hom^(C, C) ̂  Ay(g)^[Ay(g)^Hom^(C, C)]

^ Ay(g)^ Hom^(C9, Co) ̂  Hom^(Co, Co),

where ^ means taking completion. Now the ramification index of tGq
is either i or p. If it is p, then there is an Ay-derivation A on GQ such
that M =i. From CQ(^] ==Hom^(6o, Co), we see that Ot^.tCQ for
some 6? in (/. This shows that if QCo = tCo is stable under g, then

e(g) == i. Let d denote the divisor V -121^- (Q n A). Clearly ?i maps
Q ^

class d to class ^z/z. This completes the proof of the theorem.

REMARK 2.10. — When L is a field extension over K of dimen-
sion p, g has only one element ^, and ^(C) contained in no prime ideal of

BULL. SOC. MATH. — T. 96, FASC. 1. - 4
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height one, theorem 2.9 is given by SAMUEL ([8], theorem 2). The mono-
morphism part of theorem 2.9 is also given by HALLIER ([6], p. 8924).
That this monomorphism in general is by no means onto is clear from
the following.

REMARK 2.11. — The hypothesis Hom^(C, C) = C[<)} cannot be
dropped from theorems 2.6 and 2.9. Consider the polynomial ring
C =E[x, y , z] where E is a field of characteristic 2. Let ( ) ' be the
^-derivation on C given by

^x == y\ ( ) ' y ==x2 and 6 ' z == xyz.

Then C is a free module over A === kernel ( ) ' == E [x\ z/2, z2]. The latter
is a unique factorization domain, so both P (C/A) and r(C/A) are trivial.
L (C/A, 0 ' ) however is not trivial : O'zfz = xy is an element of C while C*
is just E\ the image of C* in C+ is trivial.

If instead of ( ) ' , we consider the E-derivation () on C given by Ox == i,
Oy = x and Oz == xy, then Hom^ (C, C) = C [^]. The sequence
C* -> C^ -> A4- given by ^ and its characteristic polynomial Is is exact,
and

L(C/A) =L(C/A,^) =o.

3. Examples.

3.1. Counter-example for a conjecture of Samuel. — Let C be the
polynomial ring E [x, y] where £ is a field of characteristic 2. Let ( ) be
the ^-derivation on C given by ()x = i and ()y == y2. Then C is a free
module over A == kernel () == E [x\ y\ xy2 + y] and Hom^(C, C) = C [()].
The characteristic polynomial for () is Z2, and the map ^i: C4- -^ A-^ given
by 0 and f2 is c -^ ^c + c2. Now C* is just E\ so ^o(C) is trivial. The
kernel of ^ is f o, y }. So P (C/A) - r(C/A) [= P(A) == r(A) because C
is a unique factorization domain] is cyclic of order 2. The non-trivial
rank one projective A-module is the ideal z^A + (xy2 + y) A. Since
^Uly =?/ is an element of C ==(^C)C, we get a counter-example for
the following conjecture of Pierre SAMUEL ([8], p. 88) :

Let 0 be a derivation on an integral domain of characteristic p > o.
If Q is the ideal in C generated by the image of (), then ^c/c € 0 (c e C)
implies ^u/u = ^c/c for some u e C*.

Some special cases of this statement have been verified by HALLIER [5]
and also by SAMUEL [8], and was used by SAMUEL to compute the divisor
class group of the following example when the characteristic of C is 2,
3 and 5.

3.2. — Let C ==E[[x,y]] be the formal power series ring over a
field E of characteristic p > o. Let () be the f-derivation on C given
by ()x == x and ()y = — y. So A = kernel 6 == E [[xP, yf\ xy]]. Both A
and C are noetherian integrally closed. Since C is finitely generated
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as A-module, C is finitely presented also [I], p. 36. The rank one pro-
jective class group P(A) is trivial because A is a local ring. We propose
to verify the following statements :

(i) C[^] =Hom^(C, C);
(ii) r(A) ==r(C/A) is cyclic of order p;

(iii) the A-module C is not flat, and hence not projective.
Given f in Hom^(C, C), we have f == Xo + x^O +... + o^_i^-1

with Xi € L because Hom^ (L, L) = L [^] and [L : K] = p. Now
.To = /'(i)€ C, so we may assume a;o = o and

f==Xi() +...+ ̂ -i^-1.

From ^(.r7) ^ j ' x i , ^O/O == ( - - J Y y ' , we get two systems of linear
equations in Xi :
(I) i.ri + i^x, + . . . + i>-' ̂ _i == f(^W (o < i < p);

(ii) (— o x, + (— o2^ + . . .+ (— ly-^-i - /'(yO/y1 (o < i < p).
The first system of equations shows Xi is a polynomial in i/rc with coef-
ficients in C, while the second system shows Xi is a polynomial in i/y
also with coefficients in C. So a;;€C and /'eC[^].

The divisor class group r(A) is just r(C/A) because C is a unique
factorization domain. So r (A) = [^o (L*) n C^j/^o (C*). Now the minimal
polynomial for () is IP — t. The mapping ^i : C"̂  ̂  A-^ with respect
to ^ and IP — t is given by ^i(s) = ̂ -l s — s + s^(s€ C).

Assume 2 is an element of kernel ^i, and write
p-i

z = a + p + ̂  (u '̂ + y^),
;=i

where ae£, (3, iz;, y;eA, and p has no constant term. We have
p-i

(^P— a) + (^— P) + ̂  (u,̂  + ^y0^ = o.
;=i

So a = a^, which implies a is an element of { o, i, .. ., p — i }, and

P = V (UiX1 + Vi^Y + (̂

/^-l /?-!

= ^(u.^+ u,yiV+^(UiXi+ ViyiV+ ̂
;=l z=:l

oo /?-!

=^ ̂ (^+^r.
/!==! 1=1
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This shows z is an element of kernel ^ if and only if
^ p-i

z ==a+ ̂  ^(^+^)^
;' == 0 /? == 1

with ae ; o, i, . . . , p — i }, iii, y,(EA. But given ueA, o < f < p,
the element u^+(u^y + (u^y2 + . . . always lies in the image
of ^o : C* -> C^ because the equation

///7-1 \ //?-1 \ oc

<) [ ^ 5, a;/ I = ( 2 ̂ xi ) 2 ("^ (̂  € A)
\7=0 / \ ;=0 / n=0

is solvable in Sy. This proves r(A) is cyclic of order p since elements
in the image of ^o : C* -^ C^^ has no constant terms.

Finally, C is finitely presented as A-module, if C is flat over A, C would
be projective over A ([I], p. i4o); according to corollary 2.8, that would
imply P(C/A)==L(C/A) = r(C/A) is cyclic of order p. But A is a
local ring, P(C/A) must be trivial, therefore the A-module C is not flat.
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