BULLETIN DE LA S. M. F.

S. YUAN On logarithmic derivatives

Bulletin de la S. M. F., tome 96 (1968), p. 41-52 http://www.numdam.org/item?id=BSMF_1968_96_41_0

© Bulletin de la S. M. F., 1968, tous droits réservés.

L'accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Bull. Soc. math. France, 96, 1968, p. 41 à 52.

ON LOGARITHMIC DERIVATIVES

BY

SHUEN YUAN.

1. Introduction.

Let C be a ring, always commutative with identity and of prime characteristic p > 0. Let C^* denote the group of invertible elements of C. Given a derivation ∂ on C, the mapping

$$\delta_0: C^* \to C^+$$

defined by $\delta_0(u) = (\partial u)/u$ is a group-homomorphism. Now assume ∂ satisfies a polynomial

$$X = \alpha_0 t + \alpha_1 t^{p} + \ldots + \alpha_i t^{p^i} + \ldots + \alpha_n t^{p^n}$$

with coefficients in the ring $A = \text{kernel } \partial$. For any c in C, let Lc denote the map $C \to C$ produced by multiplication by c. From the formula

$$(\partial + Lc)^p = \partial^p + L(\partial^{p-1}c + c^p)$$
 ([3], p. 201),

it is easily seen that

$$X(\partial + Lc) = L(\partial_1 c),$$

where

$$\delta_1(c) = \sum_{i=0}^n \alpha_i ([\partial^{p^i-1}c] + [\partial^{p^{i-1}-1}c]^p + \ldots + [\partial^{p^{i-j}-1}c]^{p^j} + \ldots + [c^{p^j})$$

is an element in A. It is also immediately clear that

$$\delta_1: \quad C^+ \to A^+$$

is again a group-homomorphism. Let u be an element of C^* . Then

$$\partial + L(\delta_0 u) = (Lu)^{-1} \partial (Lu),$$

and so

$$X(\partial + L(\partial_0 u)) = (Lu)^{-1} X(\partial) (Lu) = 0.$$

This means given ∂ and X, we have a complex :

$$\mathrm{o}
ightarrow A^\star \mathop{\rightarrow}\limits_{\varepsilon} C^\star \mathop{\rightarrow}\limits_{\widetilde{\partial}_{\mathrm{o}}} C^+ \mathop{\rightarrow}\limits_{\widetilde{\partial}_{\mathrm{o}}} A^+
ightarrow \mathrm{o}.$$

When C is a finite dimensional field extension over A and X is the characteristic polynomial for ∂ , a theorem of N. JACOBSON ([7], theorem 15) states that the kernel of ∂_1 coincides with the image of ∂_0 .

The purpose of this paper is to describe, for a general commutative ring C, the group (kernel δ_1)/(image δ_0) in terms of classes of rank one projective A-modules which are split by C. If C is a noetherian integrally closed domain, a description is also given in terms of divisor classes of A which become principal in C. These are done in the next section. In the final section, some examples are given.

2. The rank one projective class group.

LEMMA 2.1. — Let g be a set of derivations on a semi-local ring C of prime characteristic p > 0, and let A denote the kernel

 $\{x \in C \mid \partial x \equiv 0 \text{ for all } \partial \in \mathfrak{g}\}$

of g. Assume C is a finitely generated projective A-module and $\operatorname{Hom}_{\mathcal{A}}(C, C) = C[g]$. Then both C and A are finite ring direct sums of indecomposable semi-local rings

$$C = C_1 + \ldots + C_m, \qquad A = A_1 + \ldots + A_m;$$

and for each i,

$$C_i \cong A_i[t_1, \ldots, t_r]/(t_1^p - a_1, \ldots, t_r^p - a_r),$$

where a_1, \ldots, a_r are in A_i, t_1, \ldots, t_r are indeterminates, and r depends on i.

Proof. — Given a prime ideal q in A, $\mathfrak{Q} = \{x \in C \mid x^{p} \in \mathfrak{q}\}$ is a prime in C, and $\mathfrak{Q} \cap A = \mathfrak{q}$. If \mathfrak{q} is maximal, so is \mathfrak{Q} , hence A must be semilocal. Let e be any idempotent in C. We have $\partial e = \partial e^{p} = p(\partial e) e^{p-1}$ is zero. This shows e is in A. The ring C being semi-local contains no more than finitely many indecomposable indempotents $\{e_{1}, \ldots, e_{m}\}$. Put $C_{i} = Ce_{i}$ and $A_{i} = Ae_{i}$. We have

$$C = C_1 + \ldots + C_m, \qquad A = A_1 + \ldots + A_m.$$

Let N denote the radical of A_i , and put $\bar{A} = A_i/N$, $\bar{C} = C_i/NC_i$. Of course \bar{A} is a finite direct sum $\sum_j F_j$ of fields. Accordingly \bar{C} decomposes into a direct sum $\sum_j R_j$, where R_j is a finite dimensional

42

LOGARITHMIC DERIVATIVES.

local F_j -algebra. Now C_i is a finitely generated projective module over a semi-local ring A_i with connected spectrum, so must be free ([1], p. 143). This shows the dimension of R_j over F_j is equal to the rank of C_i over A_i and hence is independent of j. If we denote by $\overline{\partial}$ the derivation on R_j induced by $\partial|_{C_i}$, and by $\overline{\mathfrak{g}}$ the set $\{\overline{\partial} | \partial \in \mathfrak{g}\}$, then $\operatorname{Hom}_{F_i}(R_j, R_j) = R_j[\overline{\mathfrak{g}}]$ because

$$\overline{A} \bigotimes_{\mathcal{A}_i} \operatorname{Hom}_{\mathcal{A}_i}(C_i, C_i) = \operatorname{Hom}_{\overline{\mathcal{A}}}(\overline{C}, \overline{C}).$$

Thus no non-trivial ideal of R_j can be stable under $\overline{\mathfrak{g}}$, the structure of R_j is therefore known ([9], corollary 2.8) :

$$R_j \cong F_j[t_1, \ldots, t_r]/(t_1^p - f_1, \ldots, t_r^p - f_r),$$

where f_1, \ldots, f_r are elements of F_j, t_1, \ldots, t_r are indeterminates. But r is independent of j, so

$$\overline{C} = \sum R_i \cong \overline{A}[t_1, \ldots, t_r]/(t_1' - \overline{a}_1, \ldots, t_r' - \overline{a}_r) \qquad (\overline{a}_i \in \overline{A}).$$

By [1], p. 105, this shows C_i is isomorphic to

$$A_i[t_1, \ldots, t_r]/(t_1^{p} - a_1, \ldots, t_r^{p} - a_r)$$

for some a_1, \ldots, a_r in A_i as desired.

LEMMA 2.2. — Let A be a commutative ring of prime characteristic p > 0, let

$$C = A[t_0, \ldots, t_n]/(t_0^p - a_0, \ldots, t_n^p - a_n),$$

where a_0, \ldots, a_n are elements of A and t_0, \ldots, t_n are indeterminates. Assume ∂ is an A-derivation on C such that $\operatorname{Hom}_{\mathcal{A}}(C, C) = C[\partial]$. Then the characteristic polynomial of ∂ is of the form

$$\alpha_0 t + \alpha_1 t^{\rho} + \ldots + \alpha_i t^{\rho^i} + \ldots + \alpha_n t^{\rho^n} + t^{\rho^{n+1}} \qquad (\alpha_i \in A).$$

Proof. — Let $\partial_i = \frac{\partial}{\partial t_i}$ be the A-derivation on C given by $\partial_i t_j = \delta_{ij}$ (the Kronecker delta function). So

$$\partial^{p_i} = b_{i_0}\partial_0 + \ldots + b_{i_n}\partial_n, \qquad b_{i_j} = \partial^{p_i}(t_j),$$

because ∂^{p^i} as a derivation is completely determined by its actions on the t_j 's. Now from $\operatorname{Hom}_{\mathcal{A}}(C, C) = C[\partial]$, we know $\{\partial^i | o \leq i < p^{n+1}\}$ form a linearly independent C-basis for $\operatorname{Hom}_{\mathcal{A}}(C, C)$. (Notice that ∂ as an A-endomorphism on the free A-module C of rank p^{n+1} has a characteristic polynomial of degree p^{n+1} . Therefore $\operatorname{Hom}_{\mathcal{A}}(C, C) = C[\partial]$ implies that every A-endomorphism on C is a C-linear combination in

 $\{ \partial^i | o \leq i < p^{n+1} \}$. But Hom₁(C, C) is a free C-module of rank p^{n+1} , $\{ \partial^i | o \leq i < p^{n+1} \}$ must be C-linearly independent.) So

$$\partial_i = c_{i0}\partial + c_{i1}\partial^p + \ldots + c_{in}\partial^{p^n} + \sum c'_{ij}\partial^j \qquad (c_{ij}, c'_{ij} \in C),$$

where the summation runs through all j, $o < j < p^{n+1}$ and j is not a power of p. So we have the matrix equation

$$\begin{pmatrix} \partial \\ \partial^{p} \\ \vdots \\ \partial^{pn} \end{pmatrix} = \begin{pmatrix} b_{00} & \dots & b_{0n} \\ \vdots & & \vdots \\ b_{n0} & \dots & b_{nn} \end{pmatrix} \begin{pmatrix} c_{00} & \dots & c_{0n} \\ \vdots & & \vdots \\ c_{n0} & \dots & c_{nn} \\ \end{vmatrix} c'_{ij} \begin{pmatrix} \partial \\ \partial^{p} \\ \vdots \\ \partial^{pn} \\ \vdots \end{pmatrix}.$$

The linear independency of $\{ \partial^i | o \leq i < p^{n+1} \}$ therefore asserts that $(b_{ij}) (c_{ij})$ is the identity n + i by n + i matrix and $(b_{ij}) (c'_{ij})$ is a zero matrix. This shows $(c'_{ij}) = (c_{ij}) (b_{ij}) (c'_{ij})$ is a zero matrix. In other words,

$$\partial_i = c_{i0}\partial_i + c_{i1}\partial_i^p + \ldots + c_{in}\partial_i^{p^n}$$
 for all *i*.

From $\partial^{p^{n+1}} = b_{n+1} \partial_0 + \ldots + b_{n+1} \partial_n$, we see that ∂ satisfies a polynomial

$$\alpha_0 t + \alpha_1 t^{\rho} + \ldots + \alpha_i t^{\rho^i} + \ldots + \alpha_n t^{\rho^n} + t^{\rho^{n+1}}$$

That this polynomial must coincide with the characteristic polynomial of ∂ follows from the fact that $\{ \partial^i | o \leq i < p^{n+i} \}$ are linearly independent over C. This completes the proof of the lemma.

REMARK 2.3. — Derivations satisfying the hypothesis $\operatorname{Hom}_{\mathcal{A}}(C, C) = C[\partial]$ always exist. For example, let ∂ be given by $\partial t_0 = I$ and $\partial t_i = (t_0 \dots t_{i-1})^{p-1}$ for all i > 0. It is easy to verify that the characteristic polynomial of this derivation is just $t^{p^{n+1}}$.

THEOREM 2.4. — Let ∂ be a derivation on a ring C of prime characteristic p > 0 with A as its kernel. Assume C is a finitely generated projective A-module of rank r and $\operatorname{Hom}_{\mathcal{A}}(C, C) = C[\partial]$. Then ∂ satisfies a polynomial $X = \alpha_0 t + \alpha_1 t^p + \ldots + \alpha_{n-1} t^{p^{n-1}} + t^{p^n}$ with α_i in A and $r = p^n$. Moreover $XC[t] = \{ f \in C[t] | f(\partial) = 0 \}$.

Proof. — Given a maximal ideal q in A, let Q denote the maximal ideal $\{x \in C \mid x^p \in q\}$ in C. It is clear that $C_Q = C \bigotimes_A A_q$. So $\operatorname{Hom}_{\mathcal{A}q}(C_Q, C_Q) = A_q \bigotimes_A \operatorname{Hom}_{\mathcal{A}}(C, C) = C_Q[\partial]$. Hence by lemma 2.1 $r = p^n$ for some n. Let M be the A-submodule of $\operatorname{Hom}_{\mathcal{A}}(C, C)$ generated by ∂^{p^i} , $i = 0, 1, \ldots, n$, and denote by M' the A-submodule of M generated by ∂^{p^i} , $i = 0, \ldots, n - 1$. In view of [1] (p. 112, cor. 1)

44

to show the inclusion map $M' \to M$ is onto it suffices to show at each maximal ideal q in A the corresponding map $M'_q \to M_q$ is onto which according to lemma 2.2 is indeed the case. So there is a polynomial $X = \alpha_0 t + \alpha_1 t^p + \ldots + \alpha_{n-1} t^{p^{n-1}} + t^{p^n}$, with α_i in A and $X(\partial) = o$. Given $f \in C[t]$, $f(\partial) = o$, we may write f = gX + h, with g, $h \in C[t]$ and degree $h < p^n$. So $h(\partial) = o$. Since $\{\partial^i \mid o \leq i < p^n\}$ is linearly independent over C_Q at every maximal ideal Q in C, all coefficients of h must vanish because they vanish locally. So f = gX. This completes the proof of the theorem.

COROLLARY 2.5. — Let ∂ be a derivation on a ring C of prime characterictic p > 0 with A as its kernel. Assume C is a finitely generated projective A-module and Hom_A(C, C) = C [∂]. Then

$$\{f \in C[t] | f(\partial) = o\} = XC[t]$$

for some $X(t) = \alpha_0 t + \alpha_1 t^p + \ldots + \alpha_i t^{p^i} + \ldots + \alpha_n t^{p^n}$ with $\alpha_i \in A$ and α_n a non-zero idempotent.

Proof. — Since C is finitely generated and projective as A-module, the map $\rho: q \to (\operatorname{rank} \text{ of } C_q \text{ over } A_q)$ is locally constant on $\Omega = \operatorname{Spec} A$. For any positive integer r_i write $\Omega_i = \{ q \in \Omega \mid \rho(q) = r_i \}$. So Ω_i is both open and closed in Ω and we have a finite disjoint union $\Omega = \bigcup \Omega_i$ because Ω is quasi-compact. If $\tilde{A} = (\Omega, \tilde{A})$ is the sheaf of local rings

associated to A and $A_i = A | \Omega_i$, then $A = A(\Omega)$ decomposes into a finite ring direct sum $\bigoplus A_i(\Omega_i)$. So $A = \bigoplus Ae_i$ and $C = \bigoplus Ce_i$ where e_i is the identity element of $A_i(\Omega_i)$. Since Ce_i is a finitely generated projective Ae_i -module of finite rank and $\operatorname{Hom}_{Ae_i}(Ce_i, Ce_i) = Ce_i[e_i\partial]$. An application of the theorem completes the proof of the corollary.

Hereafter we shall always denote by X the polynomial given by corollary 2.5.

THEOREM 2.6. — Let ∂ be a derivation on a ring C of prime characteristic p > 0 with A as its kernel. Assume C is a finitely generated projective module over A and Hom_A(C, C) = C [∂]. Then the group P (C/A) of classes of rank one projective A-modules split by C is isomorphic to the homology group L (C/A) = (kernel δ_1)/(image δ_0) of the complex

$$C^\star \mathop{
ightarrow} \limits \to {} C^+ \mathop{
ightarrow} \limits \to {} A^+$$

defined by ∂ and X.

Proof (1). — Let M be a rank one projective A-module such that the C-module $M \otimes C$ is free on one generator b. Let F be a finite subset

^(*) Henceforth all tensor-product signs without subscripts will denote tensor product over A.

of A such that the ideal in A generated by F is A and such that for any $f \in F$, the A_f -module $\mathbb{M} \otimes A_f$ is free on one generator $b_f([1], p. 138)$. Given $f \in F$, $b = b_f(1 \otimes u_f)$ for some invertible element u_f of A_f . Now let \mathfrak{Q} be a prime ideal of C, and let q denote the prime $\mathfrak{Q} \cap A$ in A. To any generator $b_{\mathfrak{Q}}$ for the free A_q -module $M \otimes A_q$, there is a unique invertible element $u_{\mathfrak{Q}}$ in $C_{\mathfrak{Q}}$ given by the equation $b = b_{\mathfrak{Q}}(1 \otimes u_{\mathfrak{Q}})$. It is easily seen that the correspondence $\mathfrak{Q} \to (\partial u_{\mathfrak{Q}})/u_{\mathfrak{Q}}$ is independent of the choice of $b_{\mathfrak{Q}}$. In particular, if $f \in F$ is not in q, then $(\partial u_f)/u_f$ goes to $(\partial u_{\mathfrak{Q}})/u_{\mathfrak{Q}}$ under the canonical homomorphism $C_f \to C_{\mathfrak{Q}}$. This shows $\mathfrak{Q} \to (\partial u_{\mathfrak{Q}})/u_{\mathfrak{Q}}$ is a section for the structural sheaf of Spec C. By [4], p. 86, there is a unique element $z \in C$ such that for all $\mathfrak{Q} \in \text{Spec } G$, the canonical image of z in $C_{\mathfrak{Q}}$ is $(\partial u_{\mathfrak{Q}})/u_{\mathfrak{Q}}$. Now $\delta_1 z$ must be trivial because at each \mathfrak{Q} ,

$$X(\partial + Lz) = (Lu_{\mathfrak{Q}})^{-1} X(\partial) (Lu_{\mathfrak{Q}}) = 0 \quad ([1], p. 112).$$

If b' is another generator for the free C-module $M \otimes C$, and z' is the element in C to correspond, then z' = z modulo image ∂_0 . So we have a well-defined mapping $\lambda : P(C|A) \to L(C|A)$.

Obviously λ is a group-homomorphism. To show it is one-to-one, assume $z = \partial u/u$ for some $u \in C^*$. Then for any $\mathfrak{Q} \in \operatorname{Spec} C$, $u_{\mathfrak{Q}} = ua_{\mathfrak{Q}}$ for some $a_{\mathfrak{Q}} \in A_{\mathfrak{q}}^*$, $(\mathfrak{I} \otimes \partial)$ $(b [\mathfrak{I} \otimes u^{-1}])$ must be zero in $M \otimes C$ because at every \mathfrak{Q} ,

$$(\mathbf{I} \otimes \partial) \ (b[\mathbf{I} \otimes u^{-1}]) = (\mathbf{I} \otimes \partial) \ (b_{\mathfrak{Q}}[\mathbf{I} \otimes a_{\mathfrak{Q}}]) = \mathbf{0}.$$

But the sequence $o \to M \otimes A \to M \otimes C \xrightarrow[1\otimes \partial]{} M \otimes C$ is exact, $b (\mathbf{I} \otimes u^{-1})$ therefore is already contained in M. Let m be any element of M. Then $m \otimes \mathbf{I} = b (\mathbf{I} \otimes u^{-1}c)$ for some $c \in C$. Therefore c must be an element of A because $o = (\mathbf{I} \otimes \partial) (m \otimes \mathbf{I}) = b (\mathbf{I} \otimes u^{-1}[\partial c])$. This shows M is free over A and hence λ is one-to-one (²).

It remains to show λ is onto. So let $C[t; \partial]$ be the non-commutative ring of differential polynomials with coefficients in C defined by $tc = ct + \partial c$. An inductive argument shows that

$$t^r c = ct^r + {r \choose 1} (\partial c) t^{r-1} + {r \choose 2} (\partial^2 c) t^{r-2} + \ldots + (\partial^r c),$$

and so X is in the center of $C[t; \partial]$ because $t^{p}c = ct^{p} + \partial^{p}c$.

Now to any z in the kernel of $\delta_1: C^+ \to A^+$, we associate a ring-homomorphism

 $\rho_z: C[t; \partial] \to \operatorname{Hom}_A(C, C) \text{ given by } \rho_z(g) = g(\partial + Lz).$

⁽²⁾ Note that the hypotheses C over A being finitely generated projective and $\operatorname{Hom}_{\mathcal{A}}(C, C) = C[\partial]$ are not needed for the existance and the injectivity of λ . Similar remark applies to theorem 2.9.

If g is in the kernel of ρ_0 , then $g(\partial + Lz)$ is the zero endomorphism on C. This shows the kernel of ρ_0 is contained in the kernel of ρ_2 . So we have a ring-homomorphism $\rho_z \rho_0^{-1} : C[\partial] \to \operatorname{Hom}_{\mathcal{A}}(C, C)$. In other words, $X(\partial + Lz) = 0$ means that C is made into a C[∂]-module with ∂ acting on C as $\partial + Lz$. But if $C[\partial] = \operatorname{Hom}_{\mathcal{A}}(C, C)$, the modules over the latter are well-known. Write $E = \text{Hom}_{\mathcal{A}}(C, C)$, then the formula is $\operatorname{Hom}_{E}(C, C) \otimes C \simeq C$ ([1], p. 181, exercice 18). Now each element of Hom_E(C, C) is determined by its action on $i \in C$ which must go to an element of C annihilated by the new operation of ∂ since in the old operation of ∂ , $\partial I = 0$. Thus $\operatorname{Hom}_{E}(C, C) \cong \operatorname{kernel} (\partial + Lz)$ and so C = C.kernel $(\partial + Lz)$. But C over A is a faithfully flat module : given any prime ideal q in A, $Q = \{x \in C | x^p \in q\}$ is a prime in C, and $Q \cap A = q$; if q is maximal, so is Q ([1], p. 51). Hom_E(C, C) \otimes C = C therefore implies that $\operatorname{Hom}_{E}(C, C)$ and hence kernel $(\partial + Lz)$ is a rank one projective A-module ([1], p. 53, 142). Write $\pi_z = \text{kernel } (\partial + Lz)$, and let b be the element $\sum m_i \otimes c_i$ in $\pi_z \otimes C$ such that $\sum m_i c_i = \pi$ in C. For each $Q \in \operatorname{Spec} C$, pick $m_Q \in \pi_z$ such that $b_Q = m_Q \otimes 1$ is a generator for the rank one free A_q -module $\pi_z \otimes A_q$. We have, for all *i*, $m_i \otimes I = m_Q \otimes a_i$ for some $a_i \in A_q$. Now with the notations this proof, $u_Q = \sum a_i c_i$. introduced earlier in But in C_o $m_Q \sum a_i c_i = \sum m_i c_i = 1.$ So $o = (\partial m_Q) \left(\sum a_i c_i \right) + m_Q \sum a_i (\partial c_i)$

$$= -m_Q\left(z\sum a_i c\right) + m_Q\sum a_i(\partial c_i).$$

This shows $(\partial u_Q)/u_Q = \left(\partial \sum a_i c_i\right) / \left(\sum a_i c_i\right) = z$, and hence λ is onto. This completes the proof of the theorem.

We list some special cases of theorem 2.6. When C is a field, the following is the well-known theorem of Jacobson ([7], theorem 15].

COROLLARY 2.7. — Let C be a semi-local ring of prime characteristic p > 0. Let ∂ be a derivation on C with A as its kernel such that C is a finitely generated projective module over A and Hom_A(C, C) = C $[\partial]$ (³). Then the sequence

$$\mathrm{o}
ightarrow A^{\star} \mathop{\to}\limits_{\varepsilon} C^{\star} \mathop{\to}\limits_{\hat{\mathcal{O}}_{0}} C^{+} \mathop{\to}\limits_{\hat{\mathcal{O}}_{1}} A^{+}$$

is exact.

(3) When C is a finite dimensional field extension of A, this is always satisfied.

Proof. — Since A is also semi-local, we have $L(C|A) \cong P(C|A) = o$ ([1], p. 143) hence the corollary.

Of particular interest is the following corollary.

COROLLARY 2.8. — Let C be either a noetherian ring or an integral domain of prime characteristic p > 0. Let ∂ be a derivation on C with A as its kernel such that C is a finitely generated projective A-module and Hom_A(C, C) = C[∂]. Let L be the total ring of fractions of C, and denote by L (C/A) the group

 $[\delta_0(L^*) \cap C^+]/\delta_0(C^*) = \{ \partial x/x \mid x \in L^*; \ \partial x/x \in C \}/\{\partial x/x \mid x \in C^* \}.$

Then there is an isomorphism

$$\pi : L(C|A) \rightarrow P(C|A)$$

which takes class z to class kernel $(\partial + Lz)$.

Proof. — Consider the commutative diagram given by ∂ and X,

the lower sequence is exact by corollary 2.7. So z belongs to kernel $\{C^+ \xrightarrow{\delta_1} A^+\}$ if and only if $z = \partial x/x$ for some $x \in L^*$. By theorem 2.6, this shows π is an isomorphism as asserted.

In the above corollary, if C is a noetherian integrally closed domain, the hypothesis that C over A is finitely generated and projective can be relaxed to C over A is finitely presented, that is, there is an exact sequence of A-modules

$$F_2 \rightarrow F_1 \rightarrow C \rightarrow 0$$
,

where F_1 and F_2 are finitely generated free A-modules. But instead of rank one projectives, we now have to describe L(C|A) in terms of divisor classes.

The definition of Krull domain can be found in [2]. Noetherian integrally closed domains form the main example of Krull domains. If g is a set of derivations on a field L, and z a non-zero element in L, we shall denote by $\zeta_z : g \to L$ the map defined by $\partial \to (\partial z/z)$.

THEOREM 2.9. — Let g be a finite set of derivations on a Krull domain C of characteristic $p \neq 0$, and let A be the Krull domain

$$\{x \in C \mid \partial x = 0 \text{ for all } \partial \in g\}.$$

48

Denote by L and K the fields of fractions of C and A respectively. Assume C is finitely presented as A-module and $\operatorname{Hom}_{\mathcal{A}}(C, C) = C[g]$. Then the group $\Gamma(C|A)$ of divisor classes in A which become principal in C is isomorphic to

$$L(C/A) = \{\zeta_z \mid z \in L^* \text{ and } \zeta_z(\partial) \in C \text{ for all } \partial \in g\} / \{\zeta_z \mid z \in C^*\}.$$

Proof. — Let d be a divisor in A which becomes a principal divisor (z) in C. Then for each prime ideal Q of height one in C, there is some z_Q in K such that $|z|_Q = |z_Q|_Q$, where $|z_Q|_Q$ is the discrete valuation on C given by Q. So $z = u_Q z_Q$ for some invertible element u_Q in C_Q . This shows for any ∂ in g, $\partial z/z = \partial u_Q/u_Q$ is an element of C_Q for all prime Q of height one. So $\partial z/z$ is an element of C because C is a Krull domain. Since $\zeta_z = \zeta_u$ $(z \in L^*, u \in C^*)$ is equivalent to ∂ (z/u) = o for all ∂ in g, or in other words $z/u \in K^*$, the correspondence $d \to \zeta_z$ gives rise to a one-to-one group-homomorphism $\lambda : \Gamma(C/A) \to L(C/A)$.

To prove the map is onto, let z be an element of L^* such that $\partial z/z \in C$ for all ∂ in g. We claim that if $|z|_Q \neq 0$ modulo p, then the ramification index e(Q) of Q over A must be one. Let $t \in Q$ be a uniformizing variable for Q, that is, $tC_Q = QC_Q$. So $z = ut^n$ for some invertible element u in C_Q , and

$$(\partial u/u) + n(\partial t/t) = \partial z/z \in C$$
 for all ∂ in g.

This shows if $n \neq 0$ (p), then tC_Q is stable under g. Now C is finitely presented as A-module, if $q = Q \cap A$, then

$$A_q \bigotimes_A \operatorname{Hom}_A(C, C) \cong \operatorname{Hom}_{A_q}(C_Q, C_Q)$$
 ([1], p. 98).

But A_q is a discrete valuation ring, C_Q as a finitely generated torsion-free A_q -module must be free, so

$$\hat{C}_Q[g] \cong \hat{A}_q \otimes_{\mathcal{A}} \operatorname{Hom}_{\mathcal{A}}(C, C) \cong \hat{A}_q \otimes_{\mathcal{A}_q} [A_q \otimes_{\mathcal{A}} \operatorname{Hom}_{\mathcal{A}}(C, C)]$$

 $\cong \hat{A}_q \otimes_{\mathcal{A}_q} \operatorname{Hom}_{\mathcal{A}_q}(C_Q, C_Q) \cong \operatorname{Hom}_{\mathcal{A}_c}(\hat{C}_Q, \hat{C}_Q),$

where \wedge means taking completion. Now the ramification index of $t\hat{C}_Q$ is either 1 or p. If it is p, then there is an \hat{A}_q -derivation Δ on \hat{C}_Q such that $\Delta t = 1$. From $\hat{C}_Q(g] = \operatorname{Hom}_{\hat{A}_q}(\hat{C}_Q, \hat{C}_Q)$, we see that $\partial t \notin t\hat{C}_Q$ for some ∂ in g. This shows that if $QC_Q = tC_Q$ is stable under g, then e(Q) = 1. Let d denote the divisor $\sum_Q \frac{|z|_Q}{e(Q)}(Q \cap A)$. Clearly λ maps

class d to class $\partial z/z$. This completes the proof of the theorem.

REMARK 2.10. — When L is a field extension over K of dimension p, g has only one element ∂ , and $\partial(C)$ contained in no prime ideal of BULL SOC. MATH. — T. 96, FASC. 1. 4

height one, theorem 2.9 is given by SAMUEL ([8], theorem 2). The monomorphism part of theorem 2.9 is also given by HALLIER ([6], p. 3924). That this monomorphism in general is by no means onto is clear from the following.

REMARK 2.11. — The hypothesis $\text{Hom}_{\mathcal{A}}(C, C) = C[\partial]$ cannot be dropped from theorems 2.6 and 2.9. Consider the polynomial ring C = E[x, y, z] where E is a field of characteristic 2. Let ∂' be the E-derivation on C given by

$$\partial' x = y^{i}, \quad \partial' y = x^{2} \quad \text{and} \quad \partial' z = xyz.$$

Then C is a free module over $A = \text{kernel } \partial' = E[x^2, y^2, z^2]$. The latter is a unique factorization domain, so both P(C|A) and $\Gamma(C|A)$ are trivial. $L(C|A, \partial')$ however is not trivial : $\partial' z | z = xy$ is an element of C while C^* is just E^* , the image of C^* in C^+ is trivial.

If instead of ∂' , we consider the *E*-derivation ∂ on *C* given by $\partial x = I$, $\partial y = x$ and $\partial z = xy$, then $\operatorname{Hom}_{\mathcal{A}}(C, C) = C[\partial]$. The sequence $C^* \to C^+ \to A^+$ given by ∂ and its characteristic polynomial t^8 is exact, and

$$L(C|A) = L(C|A, \partial) = 0.$$

3. Examples.

3.1. Counter-example for a conjecture of Samuel. — Let C be the polynomial ring E[x, y] where E is a field of characteristic 2. Let ∂ be the E-derivation on C given by $\partial x = 1$ and $\partial y = y^2$. Then C is a free module over $A = \text{kernel } \partial = E[x^2, y^2, xy^2 + y]$ and $\text{Hom}_A(C, C) = C[\partial]$. The characteristic polynomial for ∂ is t^2 , and the map $\delta_1: C^+ \to A^+$ given by ∂ and t^2 is $c \to \partial c + c^2$. Now C^* is just E^* , so $\delta_0(C^*)$ is trivial. The kernel of δ_1 is $\{0, y\}$. So $P(C|A) = \Gamma(C|A) [= P(A) = \Gamma(A)$ because C is a unique factorization domain] is cyclic of order 2. The non-trivial rank one projective A-module is the ideal $y^2A + (xy^2 + y)A$. Since $\partial y|y = y$ is an element of $C = (\partial C)C$, we get a counter-example for the following conjecture of Pierre SAMUEL ([8], p. 88) :

Let ∂ be a derivation on an integral domain of characteristic p > 0. If Q is the ideal in C generated by the image of ∂ , then $\partial c/c \in Q$ $(c \in C)$ implies $\partial u/u = \partial c/c$ for some $u \in C^*$.

Some special cases of this statement have been verified by HALLIER [5] and also by SAMUEL [8], and was used by SAMUEL to compute the divisor class group of the following example when the characteristic of C is 2, 3 and 5.

3.2. — Let C = E[[x, y]] be the formal power series ring over a field E of characteristic p > 0. Let ∂ be the E-derivation on C given by $\partial x = x$ and $\partial y = -y$. So $A = \text{kernel } \partial = E[[x^p, y^p, xy]]$. Both A and C are noetherian integrally closed. Since C is finitely generated

as A-module, C is finitely presented also [1], p. 36. The rank one projective class group P(A) is trivial because A is a local ring. We propose to verify the following statements :

(i) $C[\partial] = \operatorname{Hom}_{\mathcal{A}}(C, C);$

(ii) $\Gamma(A) = \Gamma(C|A)$ is cyclic of order p;

(iii) the A-module C is not flat, and hence not projective.

Given f in Hom_A(C, C), we have $f = x_0 + x_1 \partial + \ldots + x_{p-1} \partial^{p-1}$ with $x_i \in L$ because Hom_K(L, L) = $L[\partial]$ and [L : K] = p. Now $x_0 = f(1) \in C$, so we may assume $x_0 = 0$ and

$$f = x_1 \partial + \ldots + x_{p-1} \partial^{p-1}.$$

From $\partial^i(x^j) = j^i x^j$, $\partial^i(y^j) = (-j)^i y^j$, we get two systems of linear equations in x_i :

$$\begin{array}{ll} \text{(I)} & ix_1 + i^2x_2 + \ldots + i^{p-1}x_{p-1} &= f(x^i)/x^i & (\text{o} < i < p);\\ \text{(II)} & (-i)x_1 + (-i)^2x_2 + \ldots + (-i)^{p-1}x_{p-1} = f(y^i)/y^i & (\text{o} < i < p). \end{array}$$

The first system of equations shows
$$x_i$$
 is a polynomial in $1/x$ with coefficients in C , while the second system shows x_i is a polynomial in $1/y$ also with coefficients in C . So $x_i \in C$ and $f \in C[\partial]$.

The divisor class group $\Gamma(A)$ is just $\Gamma(C/A)$ because *C* is a unique factorization domain. So $\Gamma(A) = [\partial_0(L^*) \cap C^+]/\partial_0(C^*)$. Now the minimal polynomial for ∂ is $t^p - t$. The mapping $\partial_1 : C^+ \to A^+$ with respect to ∂ and $t^p - t$ is given by $\partial_1(s) = \partial^{p-1} s - s + s^p (s \in C)$.

Assume z is an element of kernel δ_i , and write

$$z = \alpha + \beta + \sum_{i=1}^{p-1} (u_i x^i + v_i y^i),$$

where $\alpha \in E$, β , u_i , $v_i \in A$, and β has no constant term. We have

$$(\alpha^p - \alpha) + (\beta^p - \beta) + \sum_{i=1}^{p-1} (u_i x^i + v_i y^i)^p = 0.$$

So $\alpha = \alpha^p$, which implies α is an element of $\{0, 1, \ldots, p-1\}$, and

$$\beta = \sum_{i=1}^{p-1} (u_i x^i + v_i y^i)^p + \beta^p$$

= $\sum_{i=1}^{p-1} (u_i x^i + v_i y^i)^p + \sum_{i=1}^{p-1} (u_i x^i + v_i y^i)^{p^2} + \beta^{p^2}$
= $\sum_{n=1}^{\infty} \sum_{i=1}^{p-1} (u_i x^i + v_i y^i)^{p^n}.$

This shows z is an element of kernel δ_1 if and only if

$$z = \alpha + \sum_{i=0}^{\infty} \sum_{n=1}^{p-1} (u_i x^i + v_i y^i)^{p^n},$$

with $\alpha \in \{0, 1, ..., p-1\}$, $u_i, v_i \in A$. But given $u \in A$, 0 < i < p, the element $ux^i + (ux^i)^p + (ux^i)^{p^2} + ...$ always lies in the image of $\delta_0 : C^* \to C^+$ because the equation

$$\partial\left(\sum_{j=0}^{p-1}s_jx^j\right) = \left(\sum_{j=0}^{p-1}s_jx^j\right)\sum_{n=0}^{\infty}(ux^i)^{p^n} \qquad (s_j \in A)$$

is solvable in s_j . This proves $\Gamma(A)$ is cyclic of order p since elements in the image of $\delta_0 : C^* \to C^+$ has no constant terms.

Finally, C is finitely presented as A-module, if C is flat over A, C would be projective over A ([1], p. 140); according to corollary 2.8, that would imply $P(C|A) = L(C|A) = \Gamma(C|A)$ is cyclic of order p. But A is a local ring, P(C|A) must be trivial, therefore the A-module C is not flat.

REFERENCES.

- BOURBAKI (Nicolas). Algèbre commutative. Chap. 1 et 2. Paris, Hermann, 1961 (Act. scient. et ind., 1290; Bourbaki, 27).
- [2] BOURBAKI (Nicolas). Algèbre commutative. Chap. 7, Diviseurs. Paris, Hermann, 1965 (Act. scient. et ind., 1314; Bourbaki, 31).
- [3] CARTIER (Pierre). Questions de rationalité des diviseurs en géométrie algébrique, Bull. Soc. math. France, t. 86, 1958, p. 177-251 (Thèse Sc. math., Paris, 1958).
- [4] GROTHENDIECK (Alexander) et DIEUDONNÉ (Jean). Éléments de géométrie algébrique, I. Le langage des schémas. — Paris, Presses Universitaires de France, 1960 (Institut des Hautes Études Scientifiques, Publications mathématiques, 4).
- [5] HALLIER (Nicole). Quelques propriétés arithmétiques des dérivations, C. R. Acad. Sc., t. 258, 1964, p. 6041-6044.
- [6] HALLIER (Nicole). Utilisation des groupes de cohomologie, C. R. Acad. Sc., t. 261, 1965, p. 3922-3924.
- [7] JACOBSON (N.). Abstract derivations and Lie algebras, Trans. Amer. math. Soc., t. 42, 1937, p. 206-224.
- [8] SAMUEL (Pierre). Classes de diviseurs et dérivées logarithmiques, Topology, Oxford, t. 3, 1964, p. 81-96.
- [9] YUAN (Shuen). Differentiably simple rings, Duke math. J., t. 31, 1964, p. 623-630.

(Manuscrit reçu le 15 septembre 1967.)

Shuen YUAN, 8420 Main, Williamsville, N. Y. 14221 (États-Unis).