S. YUAN

On logarithmic derivatives

Bulletin de la S. M. F., tome 96 (1968), p. 41-52

http://www.numdam.org/item?id=BSMF_1968__96__41_0
© Bulletin de la S. M. F., 1968, tous droits réservés.
L'accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Bull. Soc. math. France, $96,1968, p .41$ à 52.

ON LOGARITHMIG DERIVATIVES

BY

Sheen YUAN.

1. Introduction.

Let C be a ring, always commutative with identity and of prime characteristic $p>0$. Let C^{\star} denote the group of invertible elements of C. Given a derivation ∂ on C, the mapping

$$
\delta_{0}: \quad C^{\star} \rightarrow C^{+}
$$

defined by $\delta_{0}(u)=(\partial u) / u$ is a group-homomorphism. Now assume ∂ satisfies a polynomial

$$
X=\alpha_{0} t+\alpha_{1} t^{p}+\ldots+\alpha_{i} t^{p^{i}}+\ldots+\alpha_{n} t^{p^{n}}
$$

with coefficients in the ring $A=$ kernel ∂. For any c in C, let $L c$ denote the map $C \rightarrow C$ produced by multiplication by c. From the formula

$$
(\partial+L c)^{p}=\partial^{p}+L\left(\partial^{p-1} c+c^{p}\right) \quad([3], \text { p. 201 })
$$

it is easily seen that

$$
X(\partial+L c)=L\left(\delta_{1} c\right)
$$

where

$$
\delta_{1}(c)=\sum_{i=0}^{n} \alpha_{i}\left(\left[\partial^{p^{i}-1} c\right]+\left[\partial^{p^{i-1}-1} c\right]^{p}+\ldots+\left[\partial^{p^{i-j-1}} c\right]^{p i}+\ldots+c^{p^{\prime}}\right)
$$

is an element in A. It is also immediately clear that

$$
\delta_{1}: \quad C^{+} \rightarrow A^{+}
$$

is again a group-homomorphism. Let u be an element of C^{\star}. Then

$$
\partial+L\left(\delta_{0} u\right)=(L u)^{-1} \partial(L u)
$$

and so

$$
X\left(\partial+L\left(\delta_{0} u\right)\right)=(L u)^{-1} X(\partial)(L u)=0
$$

This means given ∂ and X , we have a complex :

When C is a finite dimensional field extension over A and X is the characteristic polynomial for ∂, a theorem of N. Jacobson ([7], theorem 15) states that the kernel of δ_{1} coincides with the image of δ_{0}.

The purpose of this paper is to describe, for a general commutative ring C, the group (kernel $\grave{\delta}_{1}$)/(image δ_{0}) in terms of classes of rank one projective A-modules which are split by C. If C is a noetherian integrally closed domain, a description is also given in terms of divisor classes of A which become principal in C. These are done in the next section. In the final section, some examples are given.

2. The rank one projective class group.

Lemma 2.1. - Let \mathfrak{g} be a set of derivations on a semi-local ring C of prime characteristic $p>0$, and let A denote the kernel

$$
\{x \in C \mid \partial x=\mathrm{o} \text { for all } \partial \in \mathfrak{g}\}
$$

of g. Assume C is a finitely generated projective A-module and $\operatorname{Hom}_{\mathcal{A}}(C, C)=C[\mathrm{~g}]$. Then both C and A are finite ring direct sums of indecomposable semi-local rings

$$
C=C_{1}+\ldots+C_{m}, \quad A=A_{1}+\ldots+A_{m} ;
$$

and for each i,

$$
C_{i} \cong A_{i}\left[t_{1}, \ldots, t_{r}\right] /\left(t_{1}^{\prime \prime}-a_{1}, \ldots, t_{r}^{p}-a_{r}\right)
$$

where a_{1}, \ldots, a_{r} are in $A_{i}, t_{1}, \ldots, t_{r}$ are indeterminates, and r depends on i.
Proof. - Given a prime ideal q in $A, \mathfrak{Q}=\left\{x \in C \mid x^{\prime \prime} \in \mathfrak{q}\right\}$ is a prime in C, and $\mathfrak{Q} \cap A=\mathfrak{q}$. If \mathfrak{q} is maximal, so is \mathfrak{Q}, hence A must be semilocal. Let e be any idempotent in C. We have $\partial e=\partial e^{p}=p(\partial e) e^{\mu-1}$ is zero. This shows e is in A. The ring C being semi-local contains no more than finitely many indecomposable indempotents $\left\{e_{1}, \ldots, e_{m}\right\}$. Put $C_{i}=C e_{i}$ and $A_{i}=A e_{i}$. We have

$$
C=C_{1}+\ldots+C_{m}, \quad A=A_{1}+\ldots+A_{m}
$$

Let N denote the radical of A_{i}, and put $\bar{A}=A_{i} / N, \bar{C}=C_{i} / N C_{i}$. Of course \bar{A} is a finite direct sum $\sum_{j} F_{j}$ of fields. Accordingly \bar{C} decomposes into a direct sum $\sum_{j} R_{j}$, where R_{j} is a finite dimensional
local F_{j}-algebra. Now C_{i} is a finitely generated projective module over a semi-local ring A_{i} with connected spectrum, so must be free ([1], p. i43). This shows the dimension of R_{j} over F_{j} is equal to the rank of C_{i} over A_{i} and hence is independent of j. If we denote by $\bar{\partial}$ the derivation on R_{j} induced by $\partial \mid c_{i}$, and by $\overline{\mathfrak{g}}$ the set $\{\bar{\partial} \mid \partial \in \mathfrak{g}\}$, then $\operatorname{Hom}_{F_{j}}\left(R_{j}, R_{j}\right)=R_{j}[\overline{\mathfrak{g}}]$ because

$$
\bar{A} \otimes_{A_{i}} \operatorname{Hom}_{A_{i}}\left(C_{i}, C_{i}\right)=\operatorname{Hom}_{\bar{A}}(\bar{C}, \bar{C})
$$

Thus no non-trivial ideal of R_{j} can be stable under $\overline{\mathfrak{g}}$, the structure of R_{j} is therefore known ([9], corollary 2.8) :

$$
R_{j} \cong F_{j}\left[t_{1}, \ldots, t_{r}\right] /\left(t_{1}^{\prime \prime}-f_{1}, \ldots, t_{r}^{\prime \prime}-f_{r}\right),
$$

where f_{1}, \ldots, f_{r} are elements of $F_{j}, t_{1}, \ldots, t_{r}$ are indeterminates. But r is independent of j, so

$$
\bar{C}=\sum R_{j} \cong \bar{A}\left[t_{1}, \ldots, t_{r}\right] /\left(t_{1}^{\prime \prime}-\bar{a}_{1}, \ldots, t_{r}^{\prime \prime}-\bar{a}_{r}\right) \quad\left(\bar{a}_{i} \in \bar{A}\right) .
$$

By [1], p. ıo5, this shows C_{i} is isomorphic to

$$
A_{i}\left[t_{1}, \ldots, t_{r}\right] /\left(t_{1}^{p}-a_{1}, \ldots, t_{r}^{p}-a_{r}\right)
$$

for some a_{1}, \ldots, a_{r} in A_{i} as desired.
Lemma 2.2. - Let A be a commutative ring of prime characteristic $p>0$, let

$$
C=A\left[t_{0}, \ldots, t_{n}\right] /\left(t_{0}^{\prime \prime}-a_{0}, \ldots, t_{n}^{p}-a_{n}\right),
$$

where a_{0}, \ldots, a_{n} are elements of A and t_{0}, \ldots, t_{n} are indeterminates. Assume ∂ is an A-derivation on C such that $\operatorname{Hom}_{A}(C, C)=C[\partial]$. Then the characteristic polynomial of ∂ is of the form

$$
\alpha_{0} t+\alpha_{1} t^{p}+\ldots+\alpha_{i} t^{p^{i}}+\ldots+\alpha_{n} t^{p^{n}}+t^{p^{n+1}} \quad\left(\alpha_{i} \in A\right) .
$$

Proof. - Let $\partial_{i}=\frac{\partial}{\partial t_{i}}$ be the A-derivation on C given by $\partial_{i} t_{j}=\delta_{i j}$ (the Kronecker delta function). So

$$
\partial^{p i}=b_{i 0} \partial_{0}+\ldots+b_{i n} \partial_{n}, \quad b_{i j}=\partial^{p i}\left(t_{j}\right)
$$

because $\partial^{\rho^{i}}$ as a derivation is completely determined by its actions on the t_{j} 's. Now from $\operatorname{Hom}_{A}(C, C)=C[\partial]$, we know $\left\{\partial^{i} \mid \mathrm{o} \leq i<p^{n+1}\right\}$ form a linearly independent C-basis for $\operatorname{Hom}_{A}(C, C)$. (Notice that ∂ as an A-endomorphism on the free A-module C of rank p^{n+1} has a characteristic polynomial of degree p^{n+1}. Therefore $\operatorname{Hom}_{A}(C, C)=C[\partial]$ implies that every A-endomorphism on C is a C-linear combination in
$\left\{\partial^{i} \mid 0 \leq i<p^{n+1}\right\}$. But $\operatorname{Hom}_{A}(C, C)$ is a free C-module of rank p^{n+1}, $\left\{\partial^{i} \mid o \leq i<p^{n+1}\right\}$ must be C-linearly independent.) So

$$
\partial_{i}=c_{i 0} \partial+c_{i 1} \partial^{p}+\ldots+c_{i n} \partial^{p^{n}}+\sum c_{i j}^{\prime} \partial^{j} \quad\left(c_{i j}, c_{i j}^{\prime} \in C\right)
$$

where the summation runs through all $j, o<j<p^{n+1}$ and j is not a power of p. So we have the matrix equation

$$
\left(\begin{array}{c}
\partial \\
\partial^{p} \\
\vdots \\
\partial^{p n}
\end{array}\right)=\left(\begin{array}{ccc}
b_{00} & \ldots & b_{0 n} \\
\vdots & & \vdots \\
\vdots & & \vdots \\
b_{n 0} & \ldots & b_{n n}
\end{array}\right)\left(\begin{array}{ccc}
c_{00} & \ldots & c_{0 n} \\
& & \vdots \\
\vdots & & \vdots \\
c_{n 0} & \ldots & c_{n n}
\end{array}\right)\left(\begin{array}{c}
c_{i j}^{\prime}
\end{array}\right)\left(\begin{array}{c}
\partial \\
\partial^{p} \\
\vdots \\
\partial^{p^{m}} \\
\vdots
\end{array}\right) .
$$

The linear independency of $\left\{\partial^{i} \mid o \leq i<p^{n+1}\right\}$ therefore asserts that $\left(b_{i j}\right)\left(c_{i j}\right)$ is the identity $n+1$ by $n+1$ matrix and $\left(b_{i j}\right)\left(c_{i j}^{\prime}\right)$ is a zero matrix. This shows $\left(c_{i j}^{\prime}\right)=\left(c_{i j}\right)\left(b_{i j}\right)\left(c_{i j}^{\prime}\right)$ is a zero matrix. In other words,

$$
\partial_{i}=c_{i 0} \partial+c_{i 1} \partial^{p}+\ldots+c_{i n} \partial^{\rho^{n}} \text { for all } i .
$$

From $\partial^{p^{n+1}}=b_{n+1} \partial_{0}+\ldots+b_{n+1} \partial_{n}$, we see that ∂ satisfies a polynomial

$$
\alpha_{0} t+\alpha_{1} t^{p}+\ldots+\alpha_{i} t^{p^{i}}+\ldots+\alpha_{n} t^{p^{n}}+t^{p^{n+1}}
$$

That this polynomial must coincide with the characteristic polynomial of ∂ follows from the fact that $\left\{\partial^{i} \mid o \leq i<p^{n+1}\right\}$ are linearly independent over C. This completes the proof of the lemma.

Remark 2.3. - Derivations satisfying the hypothesis $\operatorname{Hom}_{\mathcal{A}}(C, C)=C[\partial]$ always exist. For example, let ∂ be given by $\partial t_{0}=\mathrm{I}$ and $\partial t_{i}=\left(t_{0} \ldots t_{i-1}\right)^{p-1}$ for all $i>0$. It is easy to verify that the characteristic polynomial of this derivation is just $t^{p^{n+1}}$.

Theorem 2.4. - Let ∂ be a derivation on a ring C of prime characteristic $p>$ o with A as its kernel. Assume C is a finitely generated projective A-module of rank r and $\operatorname{Hom}_{A}(C, C)=C[\partial]$. Then ∂ satisfies a polynomial $X=\alpha_{0} t+\alpha_{1} t^{p}+\ldots+\alpha_{n-1} t^{p^{n-1}}+t^{p^{n}}$ with α_{i} in A and $r=p^{n}$. Moreover XC $[t]=\{f \in C[t] \mid f(\delta)=0\}$.

Proof. - Given a maximal ideal q in A, let Q denote the maximal ideal $\left\{x \in C \mid x^{p} \in q\right\}$ in C. It is clear that $C_{Q}=C \otimes{ }_{1} A_{q}$. So $\operatorname{Hom}_{A q}\left(C_{Q}, C_{Q}\right)=A_{q} \otimes_{A} \operatorname{Hom}_{A}(C, C)=C_{Q}[\partial]$. Hence by lemma 2.1 $r=p^{n}$ for some n. Let M be the A-submodule of $\operatorname{Hom}_{A}(C, C)$ generated by $d^{p^{i}}, i=0,1, \ldots, n$, and denote by M^{\prime} the A-submodule of M generated by $\partial^{p^{i}}, i=\mathrm{o}, \ldots, n-\mathrm{I}$. In view of [1] (р. н 12 , cor. 1)
to show the inclusion map $M^{\prime} \rightarrow M$ is onto it suffices to show at each maximal ideal q in A the corresponding map $M_{q}^{\prime} \rightarrow M_{q}$ is onto which according to lemma 2.2 is indeed the case. So there is a polynomial $X=\alpha_{0} t+\alpha_{1} t^{p}+\ldots+\alpha_{n-1} t^{p-1}+t^{p^{n}}$, with α_{i} in A and $X(\partial)=0$. Given $f \in C[t], f(\partial)=\mathrm{o}$, we may write $f=g X+h$, with g, $h \in C[t]$ and degree $h<p^{n}$. So $h(\partial)=0$. Since $\left\{\partial^{i} \mid o \leq i<p^{n}\right\}$ is linearly independent over C_{Q} at every maximal ideal Q in C, all coefficients of h must vanish because they vanish locally. So $f=g X$. This completes the proof of the theorem.

Corollary 2.5. - Let ∂ be a derivation on a ring C of prime characterictic $p>0$ with A as its kernel. Assume C is a finitely generated projective A-module and $\operatorname{Hom}_{A}(C, C)=C[\partial]$. Then

$$
\{f \in C[t] \mid f(\partial)=\mathrm{o}\}=X C[t]
$$

for some $X(t)=\alpha_{0} t+\alpha_{1} t^{p}+\ldots+\alpha_{i} t^{p^{i}}+\ldots+\alpha_{n} t^{p^{n}}$ with $\alpha_{i} \in A$ and α_{n} a non-zero idempotent.

Proof. - Since C is finitely generated and projective as A-module, the map $\rho: q \rightarrow\left(\right.$ rank of C_{q} over $\left.A_{q}\right)$ is locally constant on $\Omega=\operatorname{Spec} A$. For any positive integer r_{i} write $\Omega_{i}=\left\{q \in \Omega \mid \rho(q)=r_{i}\right\}$. So Ω_{i} is both open and closed in Ω and we have a finite disjoint union $\Omega=\bigcup \Omega_{i}$ because Ω is quasi-compact. If $\tilde{A}=(\Omega, \tilde{A})$ is the sheaf of local rings associated to A and $\tilde{A}_{i}=\tilde{A} \mid \Omega_{i}$, then $A=\tilde{A}(\Omega)$ decomposes into a finite ring direct sum $\oplus \tilde{A}_{i}\left(\Omega_{i}\right)$. So $A=\oplus A e_{i}$ and $C=\oplus C e_{i}$ where e_{i} is the identity element of $\tilde{A}_{i}\left(\Omega_{i}\right)$. Since $C e_{i}$ is a finitely generated projective $A e_{i}$-module of finite rank and $\operatorname{Hom}_{A e_{i}}\left(C e_{i}, C e_{i}\right)=C e_{i}\left[e_{i} \partial\right]$. An application of the theorem completes the proof of the corollary.

Hereafter we shall always denote by X the polynomial given by corollary 2.5 .

Theorem 2.6. - Let ∂ be a derivation on a ring C of prime characteristic $p>0$ with A as its kernel. Assume C is a finitely generated projective module over A and $\operatorname{Hom}_{A}(C, C)=C[\partial]$. Then the group $P(C / A)$ of classes of rank one projective A-modules split by C is isomorphic to the homology group $L(C / A)=\left(\right.$ kernel $\left.\delta_{1}\right) /\left(\right.$ image $\left.\delta_{0}\right)$ of the complex

$$
C_{\overrightarrow{\hat{b}_{0}}}^{\star} C^{+} \overrightarrow{\hat{b}_{1}} A^{+}
$$

defined by ∂ and X.
Proof (${ }^{1}$). - Let M be a rank one projective A-module such that the C-module $M \otimes C$ is free on one generator b. Let F be a finite subset

[^0]of A such that the ideal in A generated by F is A and such that for any $f \in F$, the A_{f}-module $\mathbf{M} \otimes A_{f}$ is free on one generator $b_{f}([1]$, р. г 38$)$. Given $f \in F, b=b_{f}\left(\mathrm{I} \otimes u_{f}\right)$ for some invertible element u_{f} of $A_{f .}$. Now let \mathfrak{Q} be a prime ideal of C, and let \mathfrak{q} denote the prime $\mathfrak{Q} \cap A$ in A. To any generator $b_{\mathfrak{Q}}$ for the free $A_{\mathfrak{q}}$-module $M \otimes A_{\mathfrak{q}}$, there is a unique invertible element $u_{\mathbb{Q}}$ in C_{Q} given by the equation $b=b_{\mathfrak{Q}}\left(\mathrm{I} \otimes u_{\mathfrak{Q}}\right)$. It is easily seen that the correspondence $\mathfrak{Q} \rightarrow\left(\partial u_{\mathfrak{Q}}\right) / u_{\mathfrak{Q}}$ is independent of the choice of $b_{\mathfrak{Q}}$. In particular, if $f \in F$ is not in \mathfrak{q}, then $\left(\partial u_{f}\right) / u_{f}$ goes to $\left(\partial u_{\mathfrak{Q}}\right) / u_{\mathfrak{Q}}$ under the canonical homomorphism $C_{f} \rightarrow C_{\mathfrak{Q}}$. This shows $\mathfrak{Q} \rightarrow\left(\partial u_{\mathfrak{Q}}\right) / u_{\mathfrak{Q}}$ is a section for the structural sheaf of Spec C. By [4], p. 86, there is a unique element $z \in C$ such that for all $\mathfrak{Q} \in \operatorname{Spec} C$, the canonical image of z in C_{Q} is $\left(\partial u_{\mathfrak{Q}}\right) / u_{\mathbb{Q}}$. Now $\delta_{1} z$ must be trivial because at each \mathfrak{Q},
$$
X(\partial+L z)=\left(L u_{\mathfrak{Q}}\right)^{-1} X(\partial)\left(L u_{\mathfrak{Q}}\right)=0 \quad([1], \text { p. } 112)
$$

If b^{\prime} is another generator for the free C-module $M \otimes C$, and z^{\prime} is the element in C to correspond, then $z^{\prime}=z$ modulo image δ_{0}. So we have a well-defined mapping $\lambda: P(C / A) \rightarrow L(C / A)$.

Obviously λ is a group-homomorphism. To show it is one-to-one, assume $z=\partial u / u$ for some $u \in C^{*}$. Then for any $\mathbb{Q} \in \operatorname{Spec} C, u_{\mathbb{Q}}=u a_{\mathfrak{Q}}$ for some $a_{\mathfrak{Q}} \in A_{\mathfrak{q}}^{*}$, $(\mathrm{r} \otimes \partial)\left(b\left[\mathrm{r} \otimes u^{-1}\right]\right)$ must be zero in $M \otimes C$ because at every \mathfrak{Q},

$$
(\mathrm{I} \otimes \partial)\left(b\left[\mathrm{r} \otimes u^{-1}\right]\right)=(\mathrm{r} \otimes \partial)\left(b_{\mathfrak{Q}}\left[\mathrm{r} \otimes a_{\mathfrak{Q}}\right]\right)=0
$$

But the sequence $\mathrm{o} \rightarrow M \otimes A \rightarrow M \otimes C \underset{1 \otimes 0}{ } M \otimes C$ is exact, $b\left(\mathrm{~s} \otimes u^{-1}\right)$ therefore is already contained in M. Let m be any element of M. Then $m \otimes \mathrm{i}=b\left(\mathrm{I} \otimes u^{-1} c\right)$ for some $c \in C$. Therefore c must be an element of A because $\mathrm{o}=(\mathrm{r} \otimes \partial)(m \otimes \mathrm{r})=b\left(\mathrm{r} \otimes u^{-1}[\partial c]\right)$. This shows M is free over A and hence λ is one-to-one (${ }^{2}$).

It remains to show λ is onto. So let $C[t ; \partial]$ be the non-commutative ring of differential polynomials with coefficients in C defined by $t c=c t+\partial c$. An inductive argument shows that

$$
t^{r} c=c t^{r}+\binom{r}{1}(\partial c) t^{r-1}+\binom{r}{2}\left(\partial^{2} c\right) t^{r-2}+\ldots+\left(\partial^{r} c\right)
$$

and so X is in the center of $C[t ; \partial]$ because $t^{p} c=c t^{p}+\partial^{p} c$.
Now to any z in the kernel of $\delta_{1}: C^{+} \rightarrow A^{+}$, we associate a ringhomomorphism

$$
\rho_{z}: \quad C[t ; \partial] \rightarrow \operatorname{Hom}_{A}(C, C) \text { given by } \rho_{z}(g)=g(\partial+L z) .
$$

$\left(^{2}\right)$ Note that the hypotheses C over A being finitely generated projective and $\operatorname{Hom}_{A}(C, C)=C[\partial]$ are not needed for the existance and the injectivity of λ. Similar remark applies to theorem 2.9.

If g is in the kernel of ρ_{0}, then $g(\partial+L z)$ is the zero endomorphism on C. This shows the kernel of ρ_{0} is contained in the kernel of ρ_{z}. So we have a ring-homomorphism $\rho_{z} \rho_{0}^{-1}: C[\partial] \rightarrow \operatorname{Hom}_{A}(C, C)$. In other words, $\mathrm{X}(\partial+L z)=$ o means that C is made into a $C[\partial]$-module with ∂ acting on C as $\partial+L z$. But if $C[\partial]=\operatorname{Hom}_{A}(C, C)$, the modules over the latter are well-known. Write $E=\operatorname{Hom}_{A}(C, C)$, then the formula is $\operatorname{Hom}_{E}(C, C) \otimes C \simeq C([1]$, p. ı8ı, exercice 18). Now each element of $\operatorname{Hom}_{E}(C, C)$ is determined by its action on $\mathrm{x} \in C$ which must go to an element of C annihilated by the new operation of ∂ since in the old operation of $\partial, \quad \partial \mathrm{I}=\mathrm{o}$. Thus $\operatorname{Hom}_{E}(C, C) \cong$ kernel $(\partial+L z)$ and so $C=C$.kernel $(\partial+L z)$. But C over A is a faithfully flat module : given any prime ideal q in $A, Q=\left\{x \in C \mid x^{p} \in q\right\}$ is a prime in C, and $Q \cap A=q$; if q is maximal, so is Q ([1], p. 5ı). $\operatorname{Hom}_{E}(C, C) \otimes C=C$ therefore implies that $\operatorname{Hom}_{E}(C, C)$ and hence kernel $(\partial+L z)$ is a rank one projective A-module ([1], p. 53, 142). Write $\pi_{z}=\operatorname{kernel}(\partial+L z)$, and let b be the element $\sum m_{i} \otimes c_{i}$ in $\pi_{z} \otimes C$ such that $\sum m_{i} c_{i}=\mathbf{1}$ in C. For each $Q \in \operatorname{Spec} C$, pick $m_{Q} \in \pi_{z}$ such that $b_{Q}=m_{Q} \otimes_{\mathrm{I}}$ is a generator for the rank one free A_{η}-module $\pi_{z} \otimes A_{q}$. We have, for all $i, m_{i} \otimes \mathrm{I}=m_{Q} \otimes a_{i}$ for some $a_{i} \in A_{q}$. Now with the notations introduced earlier in this proof, $u_{Q}=\sum a_{i} c_{i}$. But in C_{Q} $m_{Q} \sum a_{i} c_{i}=\sum m_{i} c_{i}=\mathrm{I}$. So

$$
\begin{aligned}
o & =\left(\partial m_{Q}\right)\left(\sum a_{i} c_{i}\right)+m_{Q} \sum a_{i}\left(\partial c_{i}\right) \\
& =-m_{Q}\left(z \sum a_{i} c\right)+m_{Q} \sum a_{i}\left(\partial c_{i}\right)
\end{aligned}
$$

This shows $\left(\partial u_{Q}\right) / u_{Q}=\left(\partial \sum a_{i} c_{i}\right) /\left(\sum a_{i} c_{i}\right)=z$, and hence λ is onto. This completes the proof of the theorem.

We list some special cases of theorem 2.6. When C is a field, the following is the well-known theorem of Jacobson ([7], theorem 15].

Corollary 2.7. - Let C be a semi-local ring of prime characteristic $p>0$. Let ∂ be a derivation on C with A as its kernel such that C is a finitely generated projective module over A and $\operatorname{Hom}_{A}(C, C)=C[\partial]\left({ }^{3}\right)$. Then the sequence

$$
\mathrm{o} \rightarrow A^{\star} \xrightarrow[\varepsilon]{\vec{\varepsilon}} C^{\star} \xrightarrow[\overrightarrow{\hat{c}_{0}}]{ } C^{+} \xrightarrow[{\overrightarrow{\delta_{1}}}^{+}]{A^{+}}
$$

is exact.
$\left({ }^{3}\right)$ When C is a finite dimensional field extension of A, this is always satisfied.

Proof. - Since A is also semi-local, we have $L(C / A) \cong P(C / A)=o$ ([1], p. ı43) hence the corollary.

Of particular interest is the following corollary.
Corollary 2.8. - Let C be either a noetherian ring or an integral domain of prime characteristic $p>0$. Let ∂ be a derivation on C with A as its kernel such that C is a finitely generated projective A-module and $\operatorname{Hom}_{A}(C, C)=C[\partial]$. Let L be the total ring of fractions of C, and denote by $L(C / A)$ the group

$$
\left[\hat{\delta}_{0}\left(L^{\star}\right) \cap C^{+}\right] / \partial_{0}\left(C^{\star}\right)=\left\{\partial x / x \mid x \in L^{\star} ; \partial x / x \in C\right\} \mid\left\{\partial x / x \mid x \in C^{\star}\right\} .
$$

Then there is an isomorphism

$$
\pi: \quad L(C / A) \rightarrow P(C / A)
$$

which takes class z to class kernel $(\partial+L z)$.
Proof. - Consider the commutative diagram given by ∂ and X,

$$
\begin{aligned}
& C^{\star} \xrightarrow{\delta_{0}} C^{+} \xrightarrow{\delta_{1}} A^{+} \\
& \cap \\
& \cap
\end{aligned}
$$

the lower sequence is exact by corollary 2.7. So z belongs to kernel $\left\{C^{+} \xrightarrow{\delta_{1}} A^{+}\right\}$if and only if $z=\partial x / x$ for some $x \in L^{*}$. By theorem 2.6, this shows π is an isomorphism as asserted.

In the above corollary, if C is a noetherian integrally closed domain, the hypothesis that C over A is finitely generated and projective can be relaxed to C over A is finitely presented, that is, there is an exact sequence of A-modules

$$
F_{2} \rightarrow F_{1} \rightarrow C \rightarrow \mathrm{o},
$$

where F_{1} and F_{2} are finitely generated free A-modules. But instead of rank one projectives, we now have to describe $L(C / A)$ in terms of divisor classes.

The definition of Krull domain can be found in [2]. Noetherian integrally closed domains form the main example of Krull domains. If g is a set of derivations on a field L, and z a non-zero element in L, we shall denote by $\zeta_{z}: g \rightarrow L$ the map defined by $\partial \rightarrow(\partial z / z)$.

Theorem 2.9. - Let g be a finite set of derivations on a Krull domain C of characteristic $p \neq \mathrm{o}$, and let A be the Krull domain

$$
\{x \in C \mid \partial x=0 \quad \text { for all } \partial \in g\}
$$

Denote by L and K the fields of fractions of C and A respectively. Assume C is finitely presented as A-module and $\operatorname{Hom}_{A}(C, C)=C[g]$. Then the group $\Gamma(C \mid A)$ of divisor classes in A which become principal in C is isomorphic to

$$
L(C / A)=\left\{\zeta_{z} \mid z \in L^{\star} \text { and } \zeta_{z}(\partial) \in C \text { for all } \partial \in g\right\} \mid\left\{\zeta_{z} \mid z \in C^{\star}\right\} .
$$

Proof. - Let d be a divisor in A which becomes a principal divisor (z) in C. Then for each prime ideal Q of height one in C, there is some z_{Q} in K such that $|z|_{Q}=\left|z_{Q}\right|_{Q}$, where $\left|\left.\right|_{Q}\right.$ is the discrete valuation on C given by Q. So $z=u_{Q} z_{Q}$ for some invertible element u_{Q} in C_{Q}. This shows for any ∂ in $g, \partial z / z=\partial u_{Q} / u_{Q}$ is an element of C_{Q} for all prime Q of height one. So $\partial z / z$ is an element of C because C is a Krull domain. Since $\zeta_{z}=\zeta_{u}\left(z \in L^{\star}, u \in C^{*}\right)$ is equivalent to $\partial(z / u)=0$ for all ∂ in g, or in other words $z / u \in \mathrm{~K}^{*}$, the correspondence $d \rightarrow \zeta_{z}$ gives rise to a one-to-one group-homomorphism $\AA: \Gamma(C / A) \rightarrow \mathrm{L}(C / A)$.

To prove the map is onto, let z be an element of L^{\star} such that $\partial z / z \in C$ for all ∂ in g. We claim that if $|z|_{Q} \neq \mathrm{o}$ modulo p, then the ramification index $e(Q)$ of Q over A must be one. Let $t \in Q$ be a uniformizing variable for Q, that is, $t C_{Q}=Q C_{Q}$. So $z=u t^{n}$ for some invertible element u in C_{Q}, and

$$
(\partial u / u)+n(\partial t / t)=\partial z / z \in C \quad \text { for all } \partial \text { in } g
$$

This shows if $n \neq \mathrm{o}(p)$, then $t C_{Q}$ is stable under g. Now C is finitely presented as A-module, if $q=Q \cap A$, then

$$
A_{q} \otimes_{A} \operatorname{Hom}_{A}(C, C) \cong \operatorname{Hom}_{A_{q}}\left(C_{Q}, C_{Q}\right) \quad([1], \mathrm{p} .98)
$$

But A_{q} is a discrete valuation ring, C_{Q} as a finitely generated torsion-free A_{q}-module must be free, so

$$
\begin{aligned}
\hat{C_{Q}}[g] & \cong \hat{A}_{q} \otimes_{A} \operatorname{Hom}_{A}(C, C) \cong \hat{A}_{q} \otimes_{A_{q}}\left[A_{q} \otimes_{A} \operatorname{Hom}_{A}(C, C)\right] \\
& \cong \hat{A}_{q} \otimes_{A_{q}} \operatorname{Hom}_{A_{q}}\left(C_{Q}, C_{Q}\right) \cong \operatorname{Hom}_{\hat{A}_{q}}\left(\hat{C}_{Q}, \hat{C}_{Q}\right),
\end{aligned}
$$

where \wedge means taking completion. Now the ramification index of $t \hat{C}_{Q}$ is either I or p. If it is p, then there is an \hat{A}_{q}-derivation Δ on \hat{C}_{Q} such that $\Delta t=\mathrm{I}$. From $\hat{C}_{Q}(g]=\operatorname{Hom}_{\hat{A}_{q}}\left(\hat{C}_{Q}, \hat{C}_{Q}\right)$, we see that $\partial t \ddagger t \hat{C}_{Q}$ for some ∂ in g. This shows that if $Q C_{Q}=t C_{Q}$ is stable under g, then $e(Q)=\mathrm{I}$. Let d denote the divisor $\sum_{Q} \frac{|z|_{Q}}{e(Q)}(Q \cap A)$. Clearly λ maps class d to class $\partial z / z$. This completes the proof of the theorem.

Remark 2.10. - When L is a field extension over K of dimension p, g has only one element ∂, and $\partial(C)$ contained in no prime ideal of
height one, theorem 2.9 is given by Samuel ([8], theorem 2). The monomorphism part of theorem 2.9 is also given by Hallier ([6], p. 3924). That this monomorphism in general is by no means onto is clear from the following.

Remark 2.11. - The hypothesis $\operatorname{Hom}_{A}(C, C)=C[\partial]$ cannot be dropped from theorems 2.6 and 2.9. Consider the polynomial ring $C=E[x, y, z]$ where E is a field of characteristic 2. Let ∂^{\prime} be the E-derivation on C given by

$$
\partial^{\prime} x=y^{4}, \quad \partial^{\prime} y=x^{2} \quad \text { and } \quad \partial^{\prime} z=x y z .
$$

Then C is a free module over $A=$ kernel $\partial^{\prime}=E\left[x^{2}, y^{2}, z^{2}\right]$. The latter is a unique factorization domain, so both $P(C / A)$ and $\Gamma(C / A)$ are trivial. $L\left(C / A, \partial^{\prime}\right)$ however is not trivial : $\partial^{\prime} z / z=x y$ is an element of C while C^{\star} is just E^{\star}, the image of C^{\star} in C^{+}is trivial.

If instead of ∂^{\prime}, we consider the E-derivation ∂ on C given $b y \partial x=\mathrm{I}$, $\partial y=x \quad$ and $\quad \partial z=x y$, then $\operatorname{Hom}_{A}(C, C)=C[\partial]$. The sequence $C^{*} \rightarrow C^{+} \rightarrow A^{+}$given by ∂ and its characteristic polynomial t^{8} is exact, and

$$
L(C / A)=L(C / A, \partial)=\mathrm{o} .
$$

3. Examples.

3.1. Counter-example for a conjecture of Samuel. - Let C be the polynomial ring $E[x, y]$ where E is a field of characteristic 2. Let ∂ be the E-derivation on C given by $\partial x=1$ and $\partial y=y^{2}$. Then C is a free module over $A=$ kernel $\partial=E\left[x^{2}, y^{2}, x y^{2}+y\right]$ and $\operatorname{Hom}_{A}(C, C)=C[\partial]$. The characteristic polynomial for ∂ is t^{2}, and the map $\delta_{1}: C^{+} \rightarrow A^{+}$given by ∂ and t^{2} is $c \rightarrow \partial c+c^{2}$. Now C^{\star} is just E^{\star}, so $\delta_{0}\left(C^{\star}\right)$ is trivial. The kernel of δ_{1} is $\{o, y\}$. So $P(C / A)=\boldsymbol{\Gamma}(C / A)[=P(A)=\boldsymbol{\Gamma}(A)$ because C is a unique factorization domain] is cyclic of order 2. The non-trivial rank one projective A-module is the ideal $y^{2} A+\left(x y^{2}+y\right) A$. Since $\partial y / y=y$ is an element of $C=(\partial C) C$, we get a counter-example for the following conjecture of Pierre Samuel ([8], p. 88) :

Let ∂ be a derivation on an integral domain of characteristic $p>0$. If Q is the ideal in C generated by the image of ∂, then $\partial c / c \in Q(c \in C)$ implies $\partial u / u=\partial c / c$ for some $u \in C^{*}$.

Some special cases of this statement have been verified by Hallier [5] and also by Samuel [8], and was used by Samuel to compute the divisor class group of the following example when the characteristic of C is 2 , 3 and 5.
3.2. - Let $C=E[[x, y]]$ be the formal power series ring over a field E of characteristic $p>0$. Let ∂ be the E-derivation on C given by $\partial x=x$ and $\partial y=-y$. So $A=$ kernel $\partial=E\left[\left[x^{p}, y^{p}, x y\right]\right]$. Both A and C are noetherian integrally closed. Since C is finitely generated
as A-module, C is finitely presented also [1], p. 36. The rank one projective class group $P(A)$ is trivial because A is a local ring. We propose to verify the following statements :
(i) $C[\partial]=\operatorname{Hom}_{A}(C, C)$;
(ii) $\Gamma(A)=\Gamma(C / A)$ is cyclic of order p;
(iii) the A-module C is not flat, and hence not projective.

Given f in $\operatorname{Hom}_{A}(C, C)$, we have $f=x_{0}+x_{1} \partial+\ldots+x_{p-1} \partial^{p-1}$ with $x_{i} \in L$ because $\operatorname{Hom}_{K}(L, L)=L[\partial]$ and $[L: K]=p$. Now $x_{0}=f(\mathrm{I}) \in C$, so we may assume $x_{0}=\mathrm{o}$ and

$$
f=x_{1} \partial+\ldots+x_{\rho-1} \partial^{p-1} .
$$

From $\partial^{i}\left(x^{i}\right)=j^{i} x^{j}, \partial^{i}\left(y^{j}\right)=(-j)^{i} y^{j}$, we get two systems of linear equations in x_{i} :

$$
\begin{equation*}
i x_{1}+i^{2} x_{2}+\ldots+i^{p-1} x_{p-1} \quad=f\left(x^{2}\right) / x^{i} \quad(o<i<p) ; \tag{I}
\end{equation*}
$$

(II) $(-i) x_{1}+(-i)^{2} x_{2}+\ldots+(-i)^{p-1} x_{p-1}=f\left(y^{i}\right) / y^{i} \quad(o<i<p)$.

The first system of equations shows x_{i} is a polynomial in I / x with coefficients in C, while the second system shows x_{i} is a polynomial in $1 / y$ also with coefficients in C. So $x_{i} \in C$ and $f \in C[\partial]$.

The divisor class group $\Gamma(A)$ is just $\Gamma(C / A)$ because C is a unique factorization domain. So $\Gamma(A)=\left[\grave{\delta}_{0}\left(L^{*}\right) \cap C^{+}\right] / \partial_{0}\left(C^{*}\right)$. Now the minimal polynomial for ∂ is $t^{p}-t$. The mapping $\partial_{1}: C^{+} \rightarrow A^{+}$with respect to ∂ and $t^{p}-t$ is given by $\delta_{1}(s)=\partial^{p-t} s-s+s^{p}(s \in C)$.

Assume z is an element of kernel $\dot{\delta}_{1}$, and write

$$
z=\alpha+\beta+\sum_{i=1}^{p-1}\left(u_{i} x^{i}+v_{i} y^{i}\right)
$$

where $\alpha \in E, \beta, u_{i}, v_{i} \in A$, and β has no constant term. We have

$$
\left(\alpha^{p}-\alpha\right)+\left(\beta^{p}-\beta\right)+\sum_{i=1}^{p-1}\left(u_{i} x^{i}+v_{i} y^{i}\right)^{p}=0
$$

So $\alpha=\alpha^{p}$, which implies α is an element of $\{0,1, \ldots, p-1\}$, and

$$
\begin{aligned}
\beta & =\sum_{i=1}^{p-1}\left(u_{i} x^{i}+v_{i} y^{i}\right)^{p}+\beta^{p} \\
& =\sum_{i=1}^{p-1}\left(u_{i} x^{i}+v_{i} y^{i}\right)^{p}+\sum_{i=1}^{p-1}\left(u_{i} x^{i}+v_{i} y^{i}\right)^{p^{2}}+\beta^{p^{2}} \\
& =\sum_{n=1}^{\infty} \sum_{i=1}^{p-1}\left(u_{i} x^{i}+v_{i} y^{i}\right)^{p^{n}} .
\end{aligned}
$$

This shows z is an element of kernel δ_{1} if and only if

$$
z=\alpha+\sum_{i=0}^{\infty} \sum_{n=1}^{p-1}\left(u_{i} x^{i}+v_{i} y^{i}\right)^{p^{n}}
$$

with $\alpha \in\{0,1, \ldots, p-1\}, u_{i}, v_{i} \in A$. But given $u \in A, o<i<p$, the element $u x^{i}+\left(u x^{i}\right)^{p}+\left(u x^{i}\right)^{p^{2}}+\ldots$ always lies in the image of $\delta_{0}: C^{\star} \rightarrow C^{+}$because the equation

$$
\partial\left(\sum_{j=0}^{p-1} s_{j} x^{j}\right)=\left(\sum_{j=0}^{p-1} s_{j} x^{j}\right) \sum_{n=0}^{\infty}\left(u x^{i}\right)^{p^{n}} \quad\left(s_{j} \in A\right)
$$

is solvable in s_{j}. This proves $\Gamma(A)$ is cyclic of order p since elements in the image of $\delta_{0}: C^{\star} \rightarrow C^{+}$has no constant terms.

Finally, C is finitely presented as A-module, if C is flat over A, C would be projective over A ([1], p. r40); according to corollary 2.8 , that would imply $P(C / A)=L(C / A)=\Gamma(C / A)$ is cyclic of order p. But A is a local ring, $P(C / A)$ must be trivial, therefore the A-module C is not flat.

REFERENCES.

[1] Bourbaki (Nicolas). - Algèbre commutative. Chap. 1 et 2. - Paris, Hermann, i96ı (Act. scient. et ind., 1290; Bourbaki, 27).
[2] Bourbaki (Nicolas). - Algèbre commutative. Chap. 7, Diviseurs. - Paris, Hermann, 1965 (Act. scient. et ind., 1314; Bourbaki, 31).
[3] Cartier (Pierre). - Questions de rationalité des diviseurs en géométrie algébrique, Bull. Soc. math. France, t. 86, i958, p. 177-25 (Thèse Sc. math., Paris, 1958).
[4] Grothendieck (Alexander) et Dieudonné (Jean). - Éléments de géométrie algébrique, I. Le langage des schémas. - Paris, Presses Universitaires de France, 1960 (Institut des Hautes Études Scientifiques, Publications mathématiques, 4).
[5] Hallier (Nicole). - Quelques propriétés arithmétiques des dérivations, C. R. Acad. Sc., t. 258, 1964, p. 6041-6044.
[6] Hallier (Nicole). - Utilisation des groupes de cohomologie, C. R. Acad. Sc., t. 261, 1965, p. 3922-3924.
[7] Jacobson (N.). - Abstract derivations and Lie algebras, Trans. Amer. math. Soc., t. 42, 1937, p. 206-224.
[8] Samuel (Pierre). - Classes de diviseurs et dérivées logarithmiques, Topology, Oxford, t. 3, i964, p. 8i-96.
[9] Yuan (Shuen). - Differentiably simple rings, Duke math. J., t. 31, 1964, p. 623-63o.
(Manuscrit reçu le 15 septembre 1967.)
Shuen Yuan,
8420 Main,
Williamsville, N. Y. 1422 I
(États-Unis).

[^0]: ${ }^{(8)}$ Henceforth all tensor-product signs without subscripts will denote tensor product over A.

