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SEMICONTINUITY OF MULTIPLE INTEGRALS
OF THE CALCULUS OF VARIATIONS IN PARAMETRIC FORM

BY

UBIRATAN D'AMBROSIO C16).

In this paper, we study functionals of the type

T , F > = f F { x , T ( x ) ) d H / c ( x ) ,
^sp tT

->
where T is a A-dimensional rectifiable current in -R^, T(x) is aA-vector

associated with r,JF is ^-dimensional HausdorfT measure in R11, F^Xo T )
is a real valued continuous map in J?" x A.k (jR"), positively homogeneous
in T and quasi convex in the following sense : if -Fo(T) = F { x o , T ) ,
the solution of the problem of minimum of <( T, Fo ^>, with given planar
boundary C is the planar current 5' with ()S = C. It is then shown
that relatively to convergence in Whitney's flat norm, < T, Fo > is a
lower semicontinuous functional. Theorems of existence of minimum
are then easily obtained.

1. Introduction.

Rectifiable currents were introduced in [3], and subsequently applied
to the calculus of variations and area theory. The theory of integral
currents has been applied to the problem of Plateau, allowing for powerful
existence and continuity theorems ([3], [5]), and to the study of continuous
maps of finite area from a compact A-manifold into n-space ([4]). In
this paper, we study general variational problems formulated in terms
of rectifiable currents, specifically the problem of minimum of multiple
integrals in parametric form. By considering integrands which are

(*) Partially supported by a National Science Foundation grant.



37^ U. D'AMBROSIO.

quasi-convex in the sense first introduced by C. B. MORREY, Jr. ([7]),
we are able to give a very general semicontinuity theorem when conver-
gence of the rectifiable currents is understood with respect to a norm
similar to the one introduced by H. WHITNEY in [8] for polyhedral chains
and there called flat norm. This norm was recently used by
W. H. FLEMING as the basis of his theory of flat chains over a finite
coefficient group ([6]).

The proof of the semi-continuity theorem proceeds by classical argu-
ments, in a way similar to the procedure in [9], § 5, and then existence
theorems follow immediately from well known results in the theory of
integral currents ([3]).

The most thankful gratitude is due to Professor Wendell H. FLEMING
for his most generous amount of suggestions and aid and invaluable
encouragement.

2. Preliminaries.

We will recall briefly some definitions and results from [3], and establish
terminology and notations.

E^(U) is the real vector space of differential A-forms of class oo on
the open subset U of R", with the topology of uniform convergence
on each compact subset of U of each partial derivative of any order.
Ek(U) is the space of real valued continuous linear functionals on £^(0);
these are called k-dimensional currents, spt T stands for the usual
support of the functional TeEk(U), and throughout this paper only
currents with compact support will be considered.

The mass of T is defined as

M(T) = sup { T(cp) : cp eE^U) and M(cp) ̂  i }
where

^(?) -sup f | | ̂ ||: x^U\

and one recalls that a, differential form of Ek(U) may be regarded as
an infinitely differentiable map

cp : xeU-^^eA.^R^

where A^J^) stands for the space of A-covectors of R". Then,

1 1 (pa. | [ === sup {cp.y (y) : Y is a simple A:-vector of R^ with norm ̂  i }

All the currents in this paper will be supposed with finite mass.
The boundary of T is the (k —i)-dimensional current ()T defined

by ()T == T o d, where d is the exterior differentiation on 2^(?7). Also,
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if TeEk(U) and u^E'^U), T /\ c.) is the (A-m)-dimensional current
in U denned by

T A ^ (?) = T(G3 A q?) for all cp e E^'^U).

A /c-ce// A is the current ^ cp, ^eEk(Rft); finite linear combination
•/ /

of A-cells are called k-polyhedral chains.

The C" map y : jR^-^ JF?" induces a continuous linear transformation

/•*: ®J^(J^)->©,^(J?-),

where ^/.E^R1) stands for the direct sum of E^R^, all k. If T if
a Jc-dimensional current of R'1, the image of T by /" is the A-dimensionas
current of R" defined by /.T === T o /^.

A curent Q is an integral Lipschitzian chain in R'1 if it is the image ol
a polyhedral chain with integer coefficients in R^ by a Lipschitzian
function f : Rm -> R1. The Lipschitzian function f induces a map in
the space of polyhedral chains in the following way. Consider 0°' maps
fi : R^1 — jR" such that fi, f^, /':>„ . . . converge to f uniformly on spt T
and whose differentials are uniformly bounded on spt T. This gua-
rantees that lim fi#(T) exists and is independent of the choice of the

i ->- oc w

/7s (see [3], §3.5). Then put

/•T-lim/-, T.
•" /' -V oo •"

A ^-dimensional current T in R'1 is termed rectifiable if for every s > o
there exists an integral Lipschitzian chain Q of J?^ such that M (T—Q) < c.

With each T we can associate the non-negative measure |T|[ on
Borel sets defined by the formula

l|T[|(A)=M(TnA)

where TnA stands, in general, for T /\ %^, %./ being the characteristic
function of A. The operation T /\ %^ is defined in the following way.
By usual methods, the current T has a unique extension, which we will
also denote by T, to the class of all A-forms whose coefficients are bounded
Baire functions, and such that a given sequence of forms co;, with equally
bounded coefficients in spt T, if there is a form co such that lim Wi== co,

t-^OC

then T /\ c*) == lim T /\ c^. In particular, one can define T A 7 /
(see[3], §2.4).^

BULL. SOC. MATH. — T. 95, FASO. 4. 25
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For |j T [I almost every xe R^ we can consider the approximate tangent
unit A-vector £ (x) associated with T by the formula

?(^(t(^)) = ̂ ^ (^) ^ all cpe£^) (^ [3], § 8.8).

If Y is a Caratheodory measure over R1, A c i^, a (k) the volume of
the unit A-ball, and x^R^ the k-dimensional y density of A at x is

0 ^ ( Y , A , r r ) = = lim a (A-)-1 r-^-y (A n { ; / : [ x — y < r j ) .

Then, if T is a A-dimensional rectifiable current in R1, ^(\\ T\\, Rn, x)
is an integer for JF-almost all x in R^ where ̂  denotes ^-dimensional
HausdorfT measure ([3], § 8.16). We will assume throughout this paper
Q^(|] T [[, Rn, x) > o, for all the currents under consideration.

We will put

T(x)=l(x)^(\\T\\,R\x)

and consider functionals of the form

< T, F > = f p{x, ~f(x)) dHk (x)
^spt T

where the admissible integrands are maps

F : R^x \k(R^-^R

which are continuous, non-negative and positively homogeneous in
the second argument. \^(J?") stands for the space of Tc-vectors of J?\

3. The semicontinuity theorem.

We will say that F is quasi-convex if, putting

Fo(T)=F(^,T)

for each Xo, the solution of the problem of minimizing < T, Fo > with
a given planar boundary C is the planar current S with ()S == C.

We will consider for a A-dimensional current T the following norm :

W(T)==mi{M(U)+M(V):T=U+()V, U^E^R-), V^E^R-)}

and we will say that the sequence (Tz) of A-dimensional currents converges
in Whitney's sense to the ^-dimensional current T if

W(T—T)-vo.
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THEOREM. — If (T,) is a sequence of k-dimensional rectifiable currents
of R^-conuerging in Whitney's sense to the k-dimensional rectifiable
current T, then

< T, F > ̂  min lim< T,, F >

/br a/Z admissible integrands F that are non negative and quasi-convex.

Proof. — Since we are assuming that T is rectifiable, at [ T[| almost
every x^ there exists a hyperplane 7:(:ro) tangent to T, in the sense of
being the A-space of the /c-vector i^o), and by [3], §8.16, there exists
a submanifold Y (x^) of Rli of class C', tangent to n(x^ at n-o and such that

lima(A1) •r-^Tn^o^—O^II Ti|,^, ^) Y(^,)n5'(^, r)) =o

where 5'(rKo, ^^[ . reJR 7 ' : | x — x^ \ < r }.
Then, by this remark and by the hypothesis of quasiconvexity for

the admissible integrands, we can find, for a given 3 > o, a r, such that

(i) <T(^, r), Fo>—<D(^, r), F«>< la^r71.

whenever r ̂  rj, where

D(^o, r) = Y(^o) n S(.r«, r) and T(x,, r) = T r\ S(x^ r).

Consider now currents U,-e E/, (R1), Vie E/^ i (R1) such that
T—T= U,+()V,, i =i, 2, 3, . . . and since (T,) — T in Whitney's
sense,

l im(M(^)+M(yO)=o.
?:^cc

For each i, we have

r,(.To, r) — T(.To, r) = ̂ (rro, r) + (^VQ (.To, r),

where in general A (.To, r) == A n S(rKo, r).
From this we have

T/(.ro, r) — T(^o, r)= U^ r) + ̂ (Y.^o, r))—(^(V,(^, r))—(^.)(^, r)).

Now, letting p be an orthogonal projection of R into r.(x^, we can
use the same argument as in [3], § 8.12, to get

p^(rKo, r)—p^T(:ro, r) =p^:(rco, r) —P^(V^ r)) — (^VO^o, r)];

in fact y/(:To, r) is, as a (A: +i ̂ dimensional current in -R71, the zero,
current and p,.V,(x^ r) == o and since () and p commute, the above
relation holds.

25.
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Then,

f ̂ (p^o, r)-p^T(rro, r)) dr

r ' ' 1 r '1

^1 M{p^ ui(x(}9 ry) dr + j M(P^()(yi(x^ r)) — (̂ -) (̂  ^))) dr

^ PM^^., r))dr + f^M^Y^o, r))—^)^,, r)) dr
17 0 ^'0

since projection does not increase mass.
But now, for each i the last integral remains bounded by

fi M (Ui) + M (Vi). So, applying Fatou's lemma and passing to a
subsequence, which we will not distinguish in notation from the original
sequence, we have, for sufficiently large indices of this subsequence, the
following estimate :

M(p^T,(:ro, r)-p^, r))< y^(^

for ^-almost every r ^ f i , where ^ stands for Lebesgue measure on the
line and 2 K is an upper bound for F« (T (rr)), which is a continuous
function on a compact subset of AA^).

But then, in view of [3], § 8.16, we have

(2) ^ (?^ T, (,;o, r) — p^T (0:0, r)) < -̂  a (k) r'-•.

Since Tr^o) is the tangent hyperplane to T at re,,, there exists a r^ such that

(3) ^A ̂  T (rco, r) — £ (0:0, r)) < ̂  a (/c) r

for r ̂  r,.
Hence, we can find a r,,, depending on £ and a:o, such that whenever

r ̂  fo, and for sufficiently large indices i, we have, in view of (2) and (3),
the following estimate
(4) ffl ̂  T, (x,, r)—E (^o, r)) < ̂  ̂  (k) r1' -.

Now, in view of the convergence of (T;) to T in Whitney's sense,
T—T==Ui+()Vi, with UieE^R^, y,e£^i(^) and M([/0-^o,
M (Vi)-^o. Hence, we can add to Ti(Xo, r) a A-dimensional current
of small mass, such that the resulting current will have boundary
OE(x,, r).

But then, considering the problem of minimizing <( T(Xo, r), Fo )> with
planar boundary ()E(xo, r), the hypothesis of quasi-convexity yields

< £(rro, r), Fo > « T, (a-o, r), Fo > + ^ a (k) r<
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Clearly,
< E(xo, r), Fo > > < P^ T, (.To, r\ Fo >

so we get the inequality

< T, (a-o, r), Fo > > < P^ T,(x,, r), Fo > — ^ a (Jc) r^

and from this

< F(;To, r), Fo > — < Ti(x,, r), Fo >

< < F(.ro, r), Fo > - < p^ T,(x,, r), Fo > + ̂  W ̂

But, in view of (4),
<£(^o, r\ Fo> —<p^T, (^o, r), Fo> < K^a(/c) ̂

and so we have

< E(x,, r), Fo > — < r,(rco, r), Fo > < | a (Jc) J^.

Observe also that

lim r-^ | <F(.To, r), Fo >—<D(;Ko, r), Fo > | = o
r-^0+

and hence
(5) <D(o;o, r), Fo > — < Ti(x,, r), Fo > < | a (A:) r^.

Then, using (i) we obtain the estimate

(6) <T(a-o, r),Fo>—<T,(a;o, r), Fo> < ^a(Jc) r'-.

Now, the continuity of the admissible integrands yield the following
estimates

< T,(rco, r), F > — < T,(^o, r), Fo > < ^(r) M(T,(o;o, r))
< T (0:0, r), F > — < T(o;o. r), Fo > < ^ (r) M(T(x,, r))

where ^(r) -> o as r -> o.
But then

< T(:Co, r), F> — < r,(a;o, T'), F>
< o' (r) (M(T) — M(TQ) + < T (a;o, r), Fo > — < T,(a;o, r), Fo >

and since M is semicontinuous with respect to convergence in Whitney's
sense, we can, passing to another subsequence which again we will not
distinguish in notation, estimate the first term in the right hand side

by|a(;c)/<
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Now using (6) we obtain

(7) <T(:ro, r), F>—<T,(^., r), F>< 3^)r71

for sufficiently large i and almost all r ̂  r,; clearly this r,, depends on x^
Then, for each x e spt T, given 3 < o, we can find r (x) such that

for almost all r ̂  r (x) we have (7). For a given p suppose for each
rrespt T we have r (x) < p, which is not restrictive since otherwise we
could consider r' (x) < min i p, r (.r) i in place of r (re) for what follows.
Then, each .re spt T will be the center of arbitrarily small balls for
which (7) holds for a given s < o. Using a covering theorem due to
BESICOVITCH [I], we can select a sequence of pairs ( x / , r/) where x, e spt T
and T j << p such that

5 (^, r/) n S {x,, ry) == 0 with i ̂  j

and I J 5 (Xj, /y) covers JF-almost all of spt T.
7

Now we apply the above procedure for the pair (rcj, fi) getting a sub)
sequence for which (7) is valid for almost all r < r,; apply now the
same procedure for this subsequence and, relatively to the pair (x.,, r,-
obtain another subsequence. Repeating the process, we obtain a
subsequence of the original sequence of currents such that

(8) < T ̂  ry), F > — < T, (x,, r,), F ; < ̂ . (k) ̂

for almost every real number r/ < p, and j == i, 2, 3, . . . .
Now, take a finite number of spheres S (x^ r/), j = i, 9., . . ., m, from

the above sequence of spheres, apply (8) and sum, getting

/ / / / \ / / / / \
(9) ( Tn U s^- r/)? F )-\ T;n U s{x- r/)5F /

7=1 / \ - -1 /

<^WP'S-r/- V -^.
•̂J >

Since F is non negative we have, for every m,

<r, F)^7 T.n ̂  S(x,, r,), F ,);
\ i^ /

now letting m -> oc in (9), and having in mind that

Wsptr-^J^,r,))=o
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we have
< T, F > ̂  min lim < T,, F ̂

/' ->- y.

which finishes the proof.

4. Existence theorem.

The above theorem allows for a general existence theorem. Before
we give this theorem, let us recall some more definitions and results
from [3].

An integral current is a current T such that both T and <)T are rec-
tifiable. Calling norm of T the number

N(T) ==. M(T) + M(()T)

we will call normal a current T such that N (T) < + 20.
Integral currents are rather smooth, in the sense that they are limit,

in convergence in the above N-norm, of a sequence of currents fi^ (Pi),
where P; are polyhedral chains with integer coefficients and fi ar diffeo-
morphisms of class i converging to the identity map ([3], §8.22).
Call J/,(U) and N/,((7) respectively the class of integral and normal
A-dimensional currents on U cR".

From [3], §8.13, we have the following compactness theorem :
If A is a compact subset of R'1 and c is a positive number,

J/,(A)n ; T : N (T) ̂  c } is compact.

This theorem, allied to the semicontinuity theorem given in § 3, and
the fact that every normal rectifiable current is integral ([3], §8.14),
yields the following :

THEOREM. — The problem of minimizing <( T, F / admits a solution
in the class of alt k-dimensional rectifiable currents which have equibounded
norm, provided the admissible integrands are non-negative and quasi-
convex.

5. Remarks.

The same proof given in § 3 for the semicontinuity theorem applies
for flat chains over a finite coefficient group [6]. Also, this result
generalizes a previous one, in the case k = n — i, obtained in the setting
of the theory of sets of finite perimeter, convergence in the Lebesgue
measure of symmetric difference and F a norm [2].

/ -^ \ | -> |
In the case F[x, T (x)) = | T (x)\, which corresponds to the problem

of minimal surfaces, existence theorems, as well as some regularity
theorems, have been given in [3] and [5].
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