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INTEGRATION ON A SEMIANALYTIC SET (*)
BY

Micver E. HERRERA.

Let M be a complex analytic subset of dimension p of the complex
analytic manifold X, and let M* denote the submanifold of the regular
points of dimension p of M. P. LeLonc has proved in [8] that a diffe-
rentiable form on X with compact support can be integrated on the
naturally oriented manifold M*, and that the current on X so obtained
is closed. We extend this result to the case in which M is a locally
closed semianalytic set of a real analytic manifold.

In chapter I, we summarize definitions and properties of semianalytic
sets, currents and Borel-Moore homology which are used in this paper.
Instead of relating the currents on a differentiable manifold to the
Borel-Moore homology by means of the identification of the latter with
singular differentiable homology, we have preferred to do it directly.
Some proofs can then be shortened, although the definition of integration
currents on a manifold appears to be somewhat different, formally, from
the classical one [14].

In chapter II, we prove, following the method of [8], that if the locally
closed semianalytic set M has dimension p, then each p-homology class ¢
of M with real coefficients defines a current I (M, c¢) on X, which can be
called an integration current of M (Theorem II, A, 2.1). In particular,
the current associated in [8] to a complex analytic set M is that defined
by the fundamental class of M [2].

The second result is a Stokes’ Theorem (Theorem II, B, 2.1). It is
proved that the border of I (M, c) is the integration current of the semi-

analytic set bM = M — M defined by the topological boundary dc
of ¢. It follows immediately that the only closed integration currents

(*) Results in this paper are part of the author’s thesis, presented at the University
of Buenos Aires, 1965.
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of M are those defined by projections onto M of homology classes of the
closure M. In particular, Lelong’s current is closed, since a complex
analytic set is closed.

Both theorems are proved locally, by projecting a semianalytic set
in R” into convenient subspaces. To do this, we use Lojasiewicz’ normal
decompositions, slightly modified.

Particular cases of these results have been announced in [6] and [7].
L. BuNcarT has announced a Stokes’ theorem for real analytic sets in [3a].

I am much indebted to Professors S. Losasiewicz and R. RicABARRA
for their valuable suggestions and help.

CHAPTER 1.

Preliminaries.

A. Semianalytic sets.

In this chapter, a summary of the theory of semianalytic sets is pre-
sented. The references for definitions, properties and some of the proofs
are [9], [10], [11], [12] and [13]). X is always a real analytic manifold of
dimension n and R and G denote the field of the real and complex
numbers, respectively.

1. Generalities.

1.1. DeFINITION. — For each re X, let S(x) be the smallest family
of germs in x of subsets of X such that:

(1) a, be S(x) implies aube S(z) and a — be S(x);
(2) if f is a real analytic function on a neighborhood of x, the germ

in z of the set (f (y) > o) belongs to S(x). Then asubset M of X is semi-
analytic if for each x€ X the germ of M in x belongs to S (x).

1.2. — A locally finite union and a finite intersection of semianalytic
sets is semianalytic. The complement of a semianalytic set is semi-
analytic. A subset of a closed analytic submanifold X' of X is semi-
analytic in X’ if and only if it is so in X. The image of a semianalytic
set under an analytic isomorphism is semianalytic. The closure, the
interior and the boundary of a semianalytic set are semianalytic. A semi-
analytic set is locally connected. The family of the connected compo-
nents of a semianalytic set is locally finite. A finite cartesian product
of semianalytic sets is semianalytic.

1.3. — Let M be a semianalytic set in X and p a natural number > o.
A point x€ M is p-regular if there is an open neighborhood U of x such
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that M n U is an analytic submanifold of dimension p of U; x is o-reqular
if it is an isolated point of M. The sets of regular points of M (i e.,
p-regular points for some p) is dense in M. The dimension dim M
of M is<p if there are not g¢-regular points of M with ¢> p;
dim M = p if dim M < p but not dim M < p —1.

Let dim M = p; then dim M = p and dim (M — M) < p(M denotes
the closure of M). We call the semianalytic set bM = M — M the
border of M; bM is closed if and only if M is locally closed. The set M*
of the p-regular points of M is a p-dimensional analytic submanifold
(not necessarily closed) of X, and sM = M — M"* is a semianalytic set
of X with dim sM < p. We call sM the singular part of M, and denote
OM = bMuyusM. dimJdM < p, and dM is closed if M is locally closed;
in this case, M* is a closed p-dimensional submanifold of X —dJdM.
Observe that, again, we have the decomposition sM = (sM)* + s(sM),
and that by repeating the process it is possible to express M as a finite
disjoint union of analytic submanifolds of X with strictly decreasing
dimensions. If U is an open subset of X, then M n U is a semianalytic
subset of U and

MAnU=MnUy, (GMAU=bMnU) and
@M)nU =d(Mn ).

2. Normal decompositions.

2.1. — A function H (z,, ..., z; z;) is called a distinguished poly-
nomial in z, centered at the origin of G*x G if it is a polynomial in z,
with leading coefficient equal to 1 and whose other coefficients are holo-
morphic functions defined on a neighborhood of the origin of G* and
vanishing at the origin; it is called a real distinguished polynomial if its
restriction H (i, ..., xx; ;) to R*X R is a real function.

A normal systemin R centered at the origin is a family (H} ; o = k << h=n)
of real distinguished polynomials Hf (x, ..., &x; ;) in the variable w;,
centered at the origin, with discriminants D} (xi, ..., 2x) # o, and such
that in some neighborhood of the origin

(@ H:'(ziy ooz 2) = HE 21y« s 23 22) = 0
implies Hf ' (21, ..., Zi13 21) =0

(b) Di(zis ..., zt) = o implies HY ' (z1, ..., Z—1; 2) = 0

forall ik <h<n.
A neighborhood Q = (x =(x), ..., ,); || <d,, T =1, ..., n) of the
origin of R” is called normal (for the above normal system) if the func-
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tions Hj(z:, ..., z; 1) are holomorphic on ((zi, ..., z,) €C"; | z: | = d),
satisfy (a) and (b) on ((z:, ..., z,)€C"; | z;| < d;), and if

©lzl<d,i=1, ...,k and Hi(z1, ..., zt; 21) = 0
implies | z,| <d,

for all k, h with o=k <h < n.

There exists a fundamental system of normal neighborhoods of the
origin.

Now let Q be a normal neighborhood for a normal system
Hf(o =Zk<h=n). For each k = o, ..., n, let us define

Vi=(eQ:H"'=...=H}, =0, H'#0) ()

and let Ti(x =...) the family of the connected components of V&,
Then the decomposition

n

VEEVIVE

k=0 %

is called the normal decomposition of Q for the given normal system;
the sets I's are the members of the decomposition.

Let c be a point of the real analytic manifold X. A normal system 9t'S
in X centered af c¢ is a pair (v, 9S,), where ¢ is a coordinate map
¢ : U~ 9(U)cR”such that ce Uc X and ¢ (¢) = o€R” and where 9L,
is a normal system in R* centered in o€R% A normal neighborhood
for 9t$s is a neighborhood Q = ¢—'(Q.), where Q,c¢(U) is a normal
neighborhood for 9t$,. The normal decomposition of Q for IS is the

decomposition Q = U ¢~ (T'%), the Ts being the members of the normal
k%

decomposition of Q, for 9tS,. In general, a normal decomposition at ce X

is the normal decomposition of a normal neighborhood of ¢ for a normal

system in X centered at c.

2.2. — (a) Every normal decomposition in X is finite, and its members
are semianalytic sets in X.

(b) Let Q = U‘I‘,‘; be a normal decomposition. Each set
k, %
(T*—T%)NQ is a union of some I, with j <k; consequently,
k—1 k
(VE— Ve nQc U Vi for each k =1, ..., n, and U Viis closed in Q.

i=0 i=0

@ Hy'=1.
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(c) Let Q0 = U T'f be a normal decomposition at oeR" for
k%
the normal system (H}; o < k<< h<n). Each I with o < k < n has
the expression
Ii=@eQ;u=(@, ...,x) €Qanda,=f,w),j=k+1,...,n),
where £ is an open set in R¥, o€~ and f; are analytic functions on
such that H% (u; f, (1)) = oin Q and lig})f,(u) =oforeachj =k +1,..,n.

(d) Each member T'i(o <k n) of a normal decomposition
at ce X is a k-dimensional analytic submanifold of X; the I'} are open
subsets of X and the only o-dimensional member I'j is equal to the
set ¢; cel% for all (k, »).

() Let Q=(|a|<dsi=1,...,n)=|_J Tibe a normal

k%
decomposition for the normal system IS =(H}; o=k <h-<n)
at o€R, and let o < p <n. Then 9S,= (Hf; 0=k <h=p)is a

normal system in R” at o€R” and Q,= (|z:| <d;, i =1, ..., p) is a
normal neighborhood for 9ts,. If

r P
Q,= = I
P P - pEv
k=0 k=0 v

is the normal decomposition of Q, for 9ts, and n:Q — Q, is the

map (i, ..., To) > (T, ..., Z,), each Tk with k = p verifies = (I's) = ,I'}
for some v.
2.3. DeriniTION. — Let A be a subset of X. A normal decompo-

sition U T in X is said compatible with A if TfcAor I'fcX—A
k%

for each k, ». A normal system 9t$ at ce X is said compatible with A
if there is a neighborhood basis of ¢ whose members are normal for 9t's,
and whose corresponding normal decompositions are compatible with A.
Such neighborhoods are also said compatible with A.

(a) Let A; (i =1, ..., s) be a finite family of semianalytic subsets
of X and let ce X. Then there is a normal system 9t at ¢ compatible
with each set A; and, in this case, a normal neighborhood basis for 9t's
compatible with each A..

(b) Q= U Vi= U I'% isa normal decomposition compatible with

i=0 k%

the semianalytic set M and if dim M = p, then
p
M:Mn< N V"> and  TZcM implies Tc M*—M — sM.
=0

BULL., SOC. MATH, — T. 94, FASC. 2. 10
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(¢) Let O’ (R*) be the family of all coordinate maps of R”* defined
by the orthonormal bases of R*; 0’ (R”) is identified with the space O (n, R)
of the orthogonal matrices of dimension n. Let A;(i =1, ..., s) be
semianalytic sets in a neighborhood of oeR* and let 0'(4,, ..., A,)
be the set of the maps in O’ (R?) for which there are normal systems
at oeR® compatible with each A;, Then 0’ (4,, ..., A;) is dense
in 0" (RY).

B. Homology.

The homology theory used in this paper is that of Borel-Moore for
locally compact spaces, as it is presented in [1] and [2] (or in the forth-
coming book by G. BRepoN [3]). We only state here for further refe-
rence, without proofs, some results not explicitly mentioned in the quoted
papers, which are direct consequences of the theory. Unless specifically
mentioned, notations and conventions of [2] are preserved. The cohomo-
logy is that defined in [4]. X is always a locally compact space, K a prin-
cipal domain, and Z the integer ring.

1. — Let F be a closed subspace of X and U = X — F. There exists
an exact sequence of homology

IFX XU l)l/l'v
...~H,(F; K)-—>H,(X; K)—>H,(U; K)—> H,_(F; K)—>...;

dyr is called the boundary homomorphism for the pair Fc X. The maps
in this sequence will occasionally be abbreviated by i, j and d, respecti-
vely. Let Y be another closed subspace of X, and V= X —Y. Then
in the diagram (1.1) (all homology groups with coefficients in K)

i‘ i }i

¥ i ¥
> H,(F) H, (X) ——> H, (U) ——>. ...
/l J Lf
M 4 / 0
(11) ""—%H'/(an) ">H//(V) >H,,(UnV) >
‘)‘ 9 ‘o
¥ v

o Hy i (FAY)—> Hy (V) ——> Hy(UN Y)— ...

v
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all squares commute, but the one with only boundaries, which anti-
commutes. In the case Y F, we have also the commutativity of

i j 9
o> Hy (F)—> Hy(X) > Hy(X — F) —> . ..
A A A

" ! g

e i—> H(Y)—> H,(X)—> H,(X — Y)—>. ..
i Vi 9

(1.2)

Let us suppose that the family U, (x € J) of the connected components
of U =X —F is finite. Then

NjoU: H(U; K)—> ¥ H,(Us; K)

aed aed

. . . VU . . . .
is an isomorphism andeU,‘,_ ¢ is the inverse isomorphism. For

e
each a € J, let

Ovr: H,(Us; K)y—H, (F; K) (qeZ)

be the boundary for Fc Fu U.. Then the following diagram commutes,
as it is deduced from (1.1)

dur
H,(U; K) —> HC,/{_1 (F; K)
UU, .
(1.3) =7 l S Bour @€ 0
: ) y
N H,(Us; K)
aeS
2. — For each integer ¢, there is a split exact sequence

o — Ext(HI* (X; K), K) > H,(X; K)—> Hom (H1(X; K), K) > o

which is compatible with the homomorphisms in the exact sequences of
homology and compact cohomology ([4], II, 4.10) for the pair FcX,
F being closed in X (3).

3. — The local homology sheaf #¢ (X; K) on X is the sheaf generated
by the presheaf U — H,(U; K) (U open in X). For each family ®
of supports on X, there exists a natural homomorphism

A: HY(X; K) > Hy (X; 00,(X; K)) =T (2¢,(X; K)).

(*) Cf. BRepoON [3], chap. V, § 5 and Ex. 30.
(*) Id., Ex. 29.
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The support of ce H? (X; K) is defined as the support of the section A (c).
If the cohomologic dimension dimyX is =< n,
A: HY(X; K)—>Tg(5,(X; K))
is an isomorphism ([2], 1.10). Note that if M is a semianalytic set,

then dim M = dimg M.

4. — Let X be an n-dimensional manifold with a finite number of
connected components. The sequence of 2 and the isomorphism

H:(X;R)—~H:(X;Z)QR
give natural isomorphisms

H,(X;Z)Q R—~Hom(H!(X,Z),ZyQ R and
H,(X; R)—>Hom(H:(X; Z) ® R, R).
As H!(X;Z) is a free finitely generated module, the natural homo-
morphism
Hom (H:(X; Z), Z) Q@ R~ Hom (H; (X; Z) R, R)

is an isomorphism, and by composition we obtain a natural isomorphism
H,(X; R)—~H,(X; Z)yQ R.

This isomorphism is compatible with the integer and real homology
sequences for a pair M c X, where M is an (n — 1)-dimensional closed
submanifold of X such that M and X — M have a finite number of
connected components. Moreover, an isomorphism

3,(X; R)—>3,(X; Z)QR
is induced.

5. Gartesian product of homology classes.
Let X and Y be topological spaces with dimyX = m and dim,x Y = n.
The sequence of 2 gives natural maps

ax®ay

> Hom (H" (X; K), K) ® Hom (H"(Y; K), K)
|
(5.1) Hom (H" (X; K) ® H'(Y; K), K)

Y
Hpn(XX Y; K)) Hom (H"*"(X x Y; K), K)

X< Y

H,(X; K) Q@ Hu(Y; K)
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that, except 2, are isomorphisms, because of the dimensions of X, Y
and XX Y; n is deduced from the Kiinneth’s isomorphism

H; ™ "(XXY; K)—~H(X; K)® H:(Y; K).
The composition gives an homomorphism
B.2) O: H,.(X; KQH.(Y; K)—>H,..(XxXY; K)

which can be proved to be associative. If H*(X; K) and H?(Y; K)
are finitely generated free modules, in particular if X and Y are mani-
folds with a finite number of connected components, then © is an
isomorphism ([2], 2.11, cf. also [3], chap. V, 13.4). In general, we abbre-
viate © (c® ¢') = c© ¢/, for each ce H,,(X, K) and ¢’ € H,,(X, K).

Let F be a closed subset of X with dimy F = m —r1andlet V =X —F.
Then the following diagram, in which all homology groups have coeffi-
cients in K, is commutative

rx®1

X,V i 9
H,.(X)® H(Y). &  H, (V) @ Hi(Y) 27, H, (F) @ Hu(Y)
5.3) lo o ol
HnH—n (XX Y) “'T"‘f\" Hm+n(V>< Y) _—()—} HIIL+IL—I(F >< Y)

6. The fundamental class of an open set in R~

We denote R_=(z€R;r<o)and R_= (reR;r=0). Lete,€ H,(R;Z)
be the fundamental class of R such that dg_, o jRR—(e,) is the canonical
generator of the homology of the point o, dg_,, being the boundary
for ocR_.

The canonical fundamental cluss of R is defined as the class

R

en=e0...0eaeH,R; Z) (V).

If R*= R” xR"™, then e,= e, ® e,_,, since © is associative. Let W
be an open set in R”; e;r = j® " (e,) is called the canonical fundamental
class of W. Then the commutativity of (5.3) and the definition of e,
imply :

6.1. — Let U be an open set in R*~' and W =R_XUcR". Then
dwu(en) = ey, dyy being the boundary for ox UcR_x U.

6.2. — Let now U and V be open subsets in R”, f: U— V a diffe-
rentiable homeomorphism of class ¢* (s >~ 1) and f, : H,(U, Z) -~ H,.(V; Z)
the induced map. Then f, (er) = e, if and only if the jacobian deter-
minant of fis > o on U. This follows from the similar fact for singular

(*) This definition is equivalent to that given in [2], 2.9.
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homology and from the identification, on a manifold, between this homo-
logy and Borel-Moore homology ([2], 1.11).

6.3. — Let f: X — U be a homeomorphism between X and the open
set U in R". Then e,=f,'(er)€e H,(X; Z) is called the fundamental
class of X defined by f. In particular, if E is a real vector space of
dimension n, each base of E defines an isomorphism E — R” and conse-
quently a fundamental class of E. Two bases of E define the same
fundamental class if and only if the determinant of the matrix of change
from one base to the other is positive. Thus an algebraic orientation
of E defines a fundamental class of E.

Let E' and E” be supplementary subspaces of E of dimensions p
and n — p, respectively. Let ¢'€H,(E'; Z) and e"€H, ,(E"; Z) be
fundamental classes corresponding to algebraic orientations of E’ and E”.
Then ¢’ ®e"€ H,(E; Z) is the fundamental class corresponding to the
sum of the orientations of E’ and E” (cf. [2], 2.11).

C. Currents.

We assume familiarity with definitions and general properties of
currents, as given in [8] and [14]. Unless otherwise stated, X is a para-
compact differentiable manifold of class ¢* and dimension n, not necessa-
rily connected. &7(X) denotes the space of differential forms on X of
degree p and class ¢*, @7 (X) the subspace of forms with compact sup-
port and

E(X) =X &(X), aX) =Y o (X).
p=0 p=0
&(X) and @ (X) are always considered with their usual structures of topo-
logical vector spaces. ®'(X) :Z(D}, (X) denotes the space of (impair)
currents on X, or topological dual of @ (X), and @), (X) the subspace of

currents of dimension p, or currents which are zero on Z @, (X).
qEP

&(X) and ' (X), together with the exterior differential d and the border b,

respectively, are differential graded vector spaces, and @ (X) is a diffe-

rential subspace of &(X). If Te®'(X), then bT (a) = T (da) for each

ae®(X); T is said to be closed if bT = o.

Let U be an openset of X and Te®'(X). T|U denotes the restriction
of T on U; that is, (T'| U) (a) = T(a) for all ae®(U). Let Se®'(U);
T e ®'(X) is called an extension of Son X if T|U = S.

Let X and Y be differentiable manifolds of class @¢” and f: X —> Y
a differentiable map. finduces a homomorphism of differentiable vector
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spaces f*: &(Y) — & (X) of degree o. If fis proper, f* (@ (Y))c® (X)
and a homomorphism f: @' (X) — @’ (Y) is defined by f (T) (b) = T(f* (b))
for all be® (Y); f(T) is called the image of T under f.

1. Metric properties.

1.1. — Let A be an open set in R*: The norm [ a| of ac®(A)
is the supremum on A of the modules of the coefficients of a, under the
natural coordinate system of R?. If T is a lineal form on @ (A) and G
is a relatively compact open set in R”, the norm || T|l; of T on G is
defined by

| Tlle=sup{|T(a)|; ae@(GnA)and|lal|<=1].

T is said to be o-continuous on A if || T (s is finite for each relatively
compact open set G in R* with Gc A. If this is so, Te®' (A).

Let X be a manifold. Te®’ (X) is said to be o-continuous if there
exists a family ¢, (U e€U) of coordinate maps of X,

Gyt U'%CPU(U)CR", UCX,

whose domains are a covering of X, such that ¢,(T|U)e® (¢, (U))
is a o-continuous current on ¢ (U). The definition is independent of the
particular family ¢, ®"°(X) will denote the space of o-continuous
currents on X.

1.2. — Let X be a manifold and W an open set in X. Te®' (W)
is said to be bounded on X if there is a family ¢,(U €l) of coordinate
maps of X, ¢p: U—>9p(U)cR?, UcX, whose domains are a covering
of X and such that

Ty=9u(T|UnW)ed (90 (UnW))

satisfies the following condition, for each Ue€ U : || Ty ||s is finite for every

relatively compact open set G in R* with Gcg (U).
The definition is independent of the particular family ¢,. If Te®’ (W)
is bounded on X, T is o-continuous on W.

1.3. TaEoREM (7).

(a) Let W be an open set in X. If Te®*(W) has an exten-
sion T"e€ ®'*(X), then T is bounded on X.

(b) Conversely, if T'€ ®@*(W) is bounded on X, there exists a unique
current, 7€ @'°(X), called the simple extension of T' on X, such that

() Cf. [8], § 1 and 2.
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for each coordinate map ¢ : U — ¢(U)cR?, UcX, of X, the following
condition holds :

[¢(T' [ O)la=1Io(TIWnU)lla

for all relatively compact open sets G in R* with Gco(U). [It is
observed that ¢(T'|U)e®@"(9(U)) and ¢ (T|UnW)e®@"(¢(UnW)).]

Under the conditions of 1.3 (b), let a€ ®(X) and let K be the support
of a. If K' is a relatively compact open neighborhood of K and u;
(j=1,2,...) is a locally finite differentiable partition of the unity
on K'nW, then

m

T'(@ = lim ¥ T(wa) ().

Let W be an open set in X, and S and T be currents on W bounded
on X. Then the simple extension of S + T on X is the sum of the
simple extensions of S and T.

1.4. — Let A be an open set in R*and Te ®'°(A). Let F be a subset
of A. The norm of T on F is said to be zero, and denoted || T ||, = o,
if for each compact set K in A and each ¢ > o, there is a relatively
compact open set G such that KnFc Gc Gc A and || T ||; < <.

Let FcX and Te®'*(X). The norm of T on F is said to be zero
(|| T ||r= o), iffor each coordinate map ¢ : U— ¢(U)cR", Uc X, we have
10(T| U)llsqvarm= o. Itisprovedthat,if Te®(X)and F; (i =1, 2, ...)
is a family of sets in X such that || T ||r,= o for each i, then || T'||yr, = o.

(@) Let A be an open set in R” and F a closed subset of A.
Let T"e®"(A) and T=T'|A—F. Then ||T'|r= o0 if and only
if | T|la=1| T'||z for all relatively compact open sets G in R~

Consequently :

(b) Let F be closed in the manifold X, Te®*(X — F) and T’ an
extension of T on X. Then T” is the simple extension of T if and only
if |T"||lr= o ([6], 2.2).

(c) Let F'c F be closed sets in the manifold X and T'€ (X — F')
such (| T'||p_p=o0;let T = T'| X —F. Then,if T or T" have a simple
extension on X, both simple extensions on X exist and are equal.

1.5. — Let Ac A’ be open sets in R* and 4 a real number > o.
Te®’'(A) is said to satisfy the condition C) on A’ if, for each relatively

(°) Cf. [8], § 1 and 2.
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compact open set G in R with Gc A’, there is a constant k (G)> o
such that

| T 5. <k(G).r*

for all open balls B, c G of radius r.
Let W be an open set in the manifold X and Te®'(W). T satisfies

the condition Gy on X if there is a family ¢,(U €4l) of coordinate maps
¢y: U —9r(U)ycR? UcX, such that, for each Uea,

v (T|WnU)e®(9,(UnW))

satisfies C; on ¢, (U). If this is so, T is bounded on X. The definition
is independent of the particular family ¢g. '

(@) Te®'(A) satisfies C), on A’ (A c A’ open sets in R”) if and only
if for each x,€ A’ there exists a ball By= B (x,, r;))CA’ and a cons-
tant k (B,) > o such that

| T {5, < k(B r*

for all balls B, c B, of radius r (cf. [8], theor. 5).

(b) Let Te®' (X) satisfy condition C, on X, with 2 > o. Then
[| T|ls= o for any submanifold M of X of dimension d < 2 (cf. [6], 2.4
and [8], theor. 3).

(c) Let us suppose, under the conditions of (b), that X is a real
analytic manifold. Then || T ||y» = o for each semianalytic set M with
dim M < A. This is a consequence of (b) and the decomposition of M
in submanifolds of X of dimensions < 2 (cf. A, 1.3).

2. Integration on a manifold.

2.1. — Let a be a form in ®*(R"»). If
a(@x)= a,(x)dz, A ... Adx,

where (x,, ..., x,) are the natural coordinates of R* and a,€®*(R"),

we define
e, denoting the canonical fundamental class of R* (B, 6).

Let now X be a connected manifold. If X is orientable, H,(X; Z) ~ Z;
let ee H,(X; Z) be a generator, or fundamental class, of X ([2], 1.11)
It is possible to choose a family U, (x € J) of coordinate maps

'\pg‘: Uaﬁqla([]x):VacR”, UQLCX,

a :f a,= integral of a, on the number space R”,
R

such that :
(@) Us(xeJ) is a locally finite covering of X, and
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(b) ex=j% V()€ H,(Uy; Z) is the fundamental class of U, defined
by Y. (B, 6.3). Let u,(x€J) a differentiable partition of the unity
on X subordinated to Us(x€J). We define, for each ae®(X),

Lea=2 Ya(Uux ),

aed R e,

where U, (u,a)e @ (V,)c®*(R") and only a finite number of terms of

the summatory are non-zero. Because of B, 6.2, and known properties

of Cauchy integral, | a is independent of the family {,. Moreover,
X.e

the family U,(x€J) defines an orientation of X in the sense of [14],

and f coincides with the current associated in [14] to such orientation.
X,e

It is immediate that j is a o-continuous current on X. It is called
X, e

the integration current on X defined by ee H,(X; Z). Clearly,

Jo =L

If X is not orientable, H,(X; Z) = o and we agree f = o.

X,0
Let X be now a manifold not necessarily connected, let X,(z€J)
be the family of its connected components and X,(x€J'cJ) be the
subfamily of the orientable components. Foreachce H,(X;R)andae€J,
let ¢, =j%%()eH,.(Xs; R). ca=0 or ca= A,®ca, where 2,€R
and e,e€ H,(X,; Z) is a fundamental class of X, (B, 6), according to
aeJ—J or aeJ'. We define

,K :2‘2\1/\[\'&,%'

Xe ser

It is immediate that 7, A [ is independent of the representation
o= T @ ex(ze ). e

2.2. ProrosiTiON. — The map f:H,I(X; R) — @, (X), cv—>f has
the following properties : ¥ e

(a) f is a monomorphism;
X

(b) f satisfies condition C, on X for each ce H,(X; R) (cf. 1.5);
X, ¢
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(¢) j is compatible with restrictions lo open subsets;
Xjfe

(d) The image of H,(X; R) under f is the subspace of the closed

X
currents in @, (X).

In fact, (a) and (c¢) are immediate; (b) follows because f satisfies C,
R~ e,
on R (d) is contained in [14], § 5 and § 19.
It is observed that (c) implies that the supports of [ and c are equal
Y X, ¢

for each ce H,(X; R); in particular, if ® is a family of supports in X
and ®@p (X) is the space of currents on X with support in @, / induces
X

a map HY(X;R)—>®p(X) by composing with the inclusion
H?(X; R)— H,(X; R) ([2], 1.4).

2.3. — Let ceH,(X; R). A form aeé&*(X) is said to be c-inte-
grable if ¥
s

f u,a
veJ N, ¢

tion uy(y€J) of the unity on X. In this case, it can be defined

W
f a::/\_‘f u,a,
X, ¢ veds X, e

and the number is independent of the partition.
If f: X— Y is a differentiable isomorphism between the manifolds X

and Y, then f f (@) = a for each ceH,(X; R) and for
X, e Y, ful€)

<oo for a locally finite differentiable parti-

each f, (c)-integrable form ae€&"(Y); f, denotes the map in homology
induced by f. This follows from the definitions. In particular,

)=

Let M be a p-dimensional closed submanifold of X. The inclu-
sion i : M — X is proper, hence the current i T'(a) = T (i*(a)) = T (a| M),
a€®(X), is defined. If T satisfies condition C on M, so does i T on X.

Let M be a p-dimensional submanifold of X, not necessarily closed,
and F=M—M. Then i:M->X—F is proper, and for each

ceH,(M; R) the current z(f )ea)},(X—F) is defined. Let us
M

¢
s

suppose that the simple extension T of i< f
M

1, ¢

> on X exists. Then
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by 1.3, the form a|Me&?(M) is c-integrable for each ae®” (X)
and T (a) =f al M.
M,c

2.4. — Let X; be differentiable manifolds of class ¢* and dimen-
sion n; (=1, 2), X=X,XxX, the product manifold, 7; : X— X; the
projections and 7} : &(X;) - &(X) the induced maps. Let

=i AT, R(X)RQ?P(X;) > (X), a;Q as— 1y (a) N\ 75 (a);

it is known that #*(®(X,)® #(X:)) is dense in @(X) and that,
if ®(X,)Q @(X,) is considered with its inductive tensor topology,
then 7* can be extended to a topological vector space isomorphism

T (X)) Q D(Xs) > (X)

of the complexion @(X)Q P (X.) of D(X)Q ®(X,) onto @(X)
(see [5], I, § 3 and [14], § 7). Hence, for each p;=_n; (i =1, 2) there
exists a monomorphism

Q: @ (X)®@®),(X) >y p(X), ST >SBT,

such that S® T (7' (a\® a:)) = S(a\). T (a:) for each pair of forms
a,€P(X;) (i=1,2). Moreover, the following diagram is commu-
tative (see B, 5).

H,(X; RY® H, (X; R)—2 H,,. .(X; R)

fel.] |,
@, (X)) ® @5, (X) ——> @), + 0,(X)
®

\

In fact, given ¢;€ H,,(X;; R) (i =1, 2), it suffices to see that [
VX, e (g
and ® are equal on the dense subspace 7" (@ (X)) ® @ (Xs)),
X ¢y Xy, g
which follows immediately from the definitions.

2.5. — We state here, for further reference, the following simple case
of Stokes’ Theorem.

LEmMMA. — Let x = (x), ..., Z,—1) be the natural coordinates of Rr’—!
and U a bounded open set in R*—'. Let f: U—R be a ¢”-differentiable
function such that f>o in U,

T'=(@ f);zeU, t=f@®) and L= §);zeU, o<l<f(x)).
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Let a: L->R be a continuous function such that a|Le &' (L), a is zero

9

on a neighborhood of Uxo and ol

each ce H,(L; R), we have

is integrable on L. Then, for

p
ngt/\dxl/\.../\dxp__1=f (@I dz A ... A deps,

Lc Fop rie

where d;, 1 is the boundary : H,(L; R)— H,_(T'; R) for the pair Tc LUT
(cf. B, 1).

Let c=%2®e, where AeR and e,eH,(L; Z) is the fundamental
class defined on L by the coordinates (¢, zi, ..., x,—) (B, 6.3). Since

onr(©) =1Q®4% and  f=0d.r(e)eH,.(T;2Z) (B, 4),

it suffices to prove the corresponding equality for [ and f - By
L, ey I,
definition, !
g [ 9g
f afdt/\dx”/\“'/\dx"'1—lLW’

L, e,
and partial integration on ¢ gives [ %(i] = f g, f(x)). The last
L [

integral is equal to (g|T)ydx A\ ...\ dx,—i, t, being the funda-
I

mental class of I' defined by the coordinate map I' — U, (z, f(x)) — x,

and we have to prove {,={,. But this follows from B, 6.1, after a

convenient homeomorphism.

3. de Rham’s Theorem.

Let & =Zé’5!’ the differential graded sheaf of germs of differentiable
p=0

forms of class ¢* on X; if U is an open set in X, ®(U) =T.(&| V) is
the space of differentiable forms on U with compact support. & is a
soft resolution of R on X. Let D =D(&) be the differential graded
sheaf U—Hom (@ (U), R), with the differential and grading deduced
from those of &, Then ®’, sheaf of germs of currents on X, is a diffe-
rential graded subsheaf of D, and j: ®@'— D will denote the inclusion.

If 5¢(X; R)=19¢(X; Z) @R is the local homology sheaf on X with
coefficients in R, / : 3¢(X; R) - @, denotes the sheaf homomorphism

induced by f :H,(U; R)— @, (U), for all open sets U in X (cf. 2. 2).
U
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Let ‘@ and ‘D be the sheafs @’ and D with modified gradings '®, =®,,_,

and 'D,=D,_, (p€Z) and corresponding differentials of degree 1.
The sheafs ‘@ and 'D, together with f and jo f » are known to be soft

resolutions of #¢(X; R) on X (cf. [14], § 19). Consequently, by [4], 4.7.1
and 4.7.2, we obtain :

H§ (X5 (X5 R) = Hoo) (03 (X)) = Hiey T2 (D) (pEZ),
for each family of supports @ in X; here @y (X) =I'¢p(®@’) denotes the

space of currents with support in ®. Since R is a field, D(&) is also
the dual sheaf of &, according to [1], 2.6, and we have

H,(T'¢ (D)) :H;I’(X; R) for each qeZ ([1], 3.4).
Then we obtain natural isomorphisms
3.1) v(X): HYX;R) —>Hy(@5(X)) (q€2)
which, in dimension n, are induced by f .
X

Finally, if M is a closed submanifold of X, then the following diagram
commutes, as it can be seen from the definitions :

HY (X5 R) ——— H, (@3 (X))

v(\)

oA A
. MX MX
3.2) lu' ’lw\

V(M

L H (g, (M))

HY 1" (M; R)

iux is the map induced by i: @y, (M) @y (X).

CuapTeEr II.

Integration on a semianalytic set.

A. Integration currents.

1. A lemma on normal decompositions.

Let A, be a p-dimensional vector subspace of Rt The linear
map {:Rr-—>A, is said to be an orthogonal representation of A, if it
preserves the natural scalar products in R” and R, i.e., if fu.fv =u.v
for all u,veR’. Let T = ({;;) the nxp-matrix corresponding to ¢
under the natural bases e; (j=1, ...,p) and f; (i=1, ..., n) of R”
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and R~ respectively; f(e;) =Eti,-fi for each j=1, ..., p, and the

i=1
P

functions xiZEtil‘ y; (i=1, ..., n) define the linear map R’— R~
j=1

y—, induced by f. For each set H = (i), ..., i,) of p integers with

10, <...<i,=<n, let Ty denote the pXxp-matrix defined by the

rows iy, ..., i, of T. Then, if {is orthogonal, the equality Z| TylP=1

H
holds, where | T | is the determinant of T.

,)
Let /\R” be the p-exterior product of R” (o< p<n); the p-vector

P
ve/\R” is said to be associated to A, if and only if v 20 andzA\v =0
for all ze A,. A family A [m =1,...,N= <;>—l of p-dimensional

P
subspaces of R is called regular if each family of p-vectors v, (m=1, ..., N)
such that v,, is associated to A’ is linearly independent, and conse-

P
P
quently a base of /\R”.

Let now #":R’— Aj' be orthogonal representations of p-dimen-
sional subspaces A7’ Im =1, ..., <z>] of R*. We denote g = " (e;)

P

(j=1,...,p;m=1, ..., N); then, for each m=1, ..., N, the
p-vector g =g"\... A\ g, is associated to A}, and can be expressed,
under the natural base f; (i =1, ..., n) of R%, as

g" =N Tji |fu
H
H=(=>U, ... 1p), 1Z11<...<i,=Zn); for each H=(,, ..., i,), we
denote here by T} the p x p-matrix defined by the rows iy, ..., i, of the
matrix 7" corresponding to #” under the bases e; and f; (m =1, ..., N),
and by fi the p-vector f, \...A f;,. It follows that the family A}
is regular if and only if the determinant

(.1) det(JT%|:m=r1,...,Ns H=(is, ..., ), 1=0,<...<i,=n)

is different from zero.
Under these conditions, let us define the following family of diffe-
rential forms in & (R"):

o (Ap) =3 (| T | deys H=(in, ., () 12 0<... <i,=n)
(m=1, ..., N),
where dry =dx;, A\ ...\ dx,, for each H = (is, ..., i)).
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It is easily seen that :

(i) (Ay) is independent of the particular orthogonal represen-

tation " of A}';

(i) if ¢ : & (R")—>6&7(R”) is the map induced by #, then
" (w(Ay) =dy \...Ndy, (m=r1, ..., N), where y,, ..., y, are the
coordinate functions of R7;

(iii) the family »(A)') (m =1, ..., N) is a base for the vector space

of the forms in &”(R”) with constant coefficients if and only if the deter-
minant (1.1) is 3£ o or, equivalently, if the family A}’ (m=1, ..., N)
is regular.

1.2. LEmma (7). — Let My, ..., M, be semianalytic sets in a neigh-
borhood of the origin of R", and let o<<p<<n. There exist N=(;>

coordinate maps "=z}, ..., x))(m=1, ..., N) in O (M,, ..., M,)

[cf. A, 2.3 (c)] such thal the family of subspaces A}} = (x)., =...=1x}' = 0)
is regular.
Let ¢;(i=1, ..., n) be an orthonormal base in R® For each

K=(@, ...,i,), with 1Zi,<...<i,Zn, let CK=(, ..., Jup)
1=ji <...<jn—p=n, be the complement of K in the set (1, ..., n),

and let ¢¥=g¢i, ..., 9,=9i» 951 =9 ---» gn =9, The family
of the N = <z> p-vectors gy =g¥ A ... A g5 (K =...) is linearly inde-
pendent, so the family of the subspaces Al =(yh., =...=y}=o0) is

regular, where y“= (y¥%, ..., y¥) is the map in O’ (R") defined by the
orthonormal base g% = (g%, ..., g¥).
Let TX be the transition matrix between ¢X and the natural base

(fis ..., fn) of R"; for each K we have gK:Z | T% | fu, where

H

fa=fuN-- A

ifH=(, ...,1,),and T4 is the minor of TX defined by the rows iy, ..., i,
and the first p columns of TX. As before, the regularity of A} (K =...)
implies det (| T4 |)3 0. According to A, 2.3 (c), there exist N maps
h=(@h, ...,z¢) in OM, ..., M,) so near the y* as to imply
det(| Q% |)+ o, where Q is the transition matrix between x* and the
natural coordinate map of R*. From this the regularity of the family
A=}, =...=2{=0) (K =...) follows.

(") For the complex case, see [8], § 5 and 6.
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2. Construction of integration currents.

2.1. THEOREM. — For each paracompact real analytic manifold X of
dimension n and each locally closed semianalytic set M in X of
dimension p (o < p = n), there exisls a unique monomorphism
H,(M; R) =@, (X)

c——>I(M, ¢)

I(M): {

of the real p-homology of M into the space of p-currents on X such that :

(a) For each ce H,(M; R), the support of I(M, c) is the closure in X
of the supporl of ¢. If p=o0, M is a point x, and A€ H,(x,; R) =R,
then I(xy, 2) = 20(xo); if p>o, M* is the p-regular part of M and

¢ ="M (c)eH,(M*; R), then I(M,c) coincides on M* with
(L C, 2.2). _ ‘

(b) I(M) is compatible with restrictions to open subsels, that is, the
following diagram commutes for each open set W in X :

M*,ex

I(M ,
H,(M; R)—" @,(X)

jM, Mnw le, w

H,(MAW; R) ——> @, (W)

—_—
IMnw)

where p*"" denotes the restriction homomorphism of currents.

(¢) For all ceH,(M;R), I(M, c) salisfies condilion C, on X
{d, C,1.5). I(M,c) is called the integration current of M defined by c.

Proof. — As usual, d(x,) denotes the o-current f— f(2,) (f€ @ (X)).
If dimM = o, M is discrete and, for each ce H,(M; R), (a) and (b) deter-

mine I(M, c) =Z(kv6 (x,); x,€eM and A, = j""(c)); condition (c) is

immediately verified. ‘

Let us suppose in the following that dim M >o. It is recalled that
bM = M —M, sM = M — M* and 0M = bM uU s M are semianalytic sets
in X with dimensions < p (I, A, 1.3), and that bM and JdM are closed
in X. In particular, H,(sM; R) = o in the homology sequence for the
pair sM c M, hence j""* : H,(M; R)— H,(M*; R)is injective. Since M*
is a closed analytic submanifold of dimension p of X — dM, the inclusion
i:®'(M)—®'(X—0JIM) is defined.

We denote by I'(M):H,(M; R) > ®,(X—0M), ¢c—I'(M, c), the
composition iof o jM:M*; since i and :H,(M*; R) > ®,(M*) are

M* M*

BULL. SOC. MATH, — T. 94, FASC. 2. 11
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injective (I, C, 2.2), I'(M) is a monomorphism. If W is an open set
in X, it is easily seen, according to I, B, 1.1 and I, C, 2.2, that the
diagram

H,(M; R)— Y @ (X —oM)
2. ) Mo MY W l
(2.2) J l | o
H,(MAW; R) > @,(W—0M)

commutes, where p denotes the restriction of currents. Moreover,
I, C, 2.2 (b) implies that I'(M, c) satisfies condition C, on X —0JM,
for each ce H,(M; R).

‘We shall prove that I' (M, c) satisfies C, on X, for each ce H,(M; R).
This is trivial if p = dim X, since in such case M* is an open set in X.
Let us suppose o< p<n.

Let ce H,(M; R), xzeX and ¢: U->9(U) = VcR" be an analytic
coordinate map with open domain Uc X such that x€ U and ¢(x) = o.
Because of (2.2), I'(M, ¢) | U—IM =1'(M n U, cy), where c;= j*MnY(c).
Moreover,

o(I'MnU,cy)=1IM,, c)e®,(V—M,),

where M= ¢(MnU) is a locally closed semianalytic set in V with
dimM,=p, and ¢,=¢,(cv)€eH,(M,; R) (I, C, 2.3). It will suffice to
prove that I'(M,, c,) satisfies C, on some neighborhood of the origin
{d, G, 1.5).

2.3. LEMmmA. — Let x = (x4, ..., Z,) be a coordinate map in 0’(M1, dMi)
I, A, 2.3 (c)), let IS be a corresponding normal system and Q C V a normal
neighborhood for 9ts. If w(A,) is the p-form associated to the subspace
A,= (Zps1=...=2x,=0) of R* (cf. § 1), there exisls a constant k> o
such that the current w(4,) N\ I' (M., ¢;) € @, (V—IM,) satisfies

lo(Ap) A 1" (M, ¢1) |

pk.r”
for each open ball B.c Q of radius r.
By definition, the normal decomposition @ = U I' for the system 9t's

'3

is compatible with M, and 0M,. Then
M, = U (r-ﬁ; T4 cM, and kéP)
and, since dimI'} = p and dimdM, < p, we have

U (r2; T cM,) c My— oM, =M:,
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and each I'Zc M, is an open subset of M}. Moreover,

is a closed semianalytic set of Q, dimS< p and oM, cS. Then S—0dM,
is a semianalytic set in Q — dM, of dimension < p and, since I' (M, c,)
satisfies C, on V—dJM,, it follows that

| I'(My, ¢ ||s—om, =0 [L C, 1.5 ()];

in particular, ||w(4,) A I' (M, ¢1) |ls—omu, = o. Now, by I, C, 1.4 (a), both
currents

w(Ay) N I'(My, ¢1) | Q—0M, and T'=w(@A,) NI'(My, ¢)|Q—S

have the same norm on the relatively compact open sets G with Gc Q.
Then it suffices to prove that T’ satisfies C, on Q.

Let B,cQ be an open ball of radius r and a€ ®*(B,— S) a function
with ||a||=<1. Let J = (x:T%cM,). We have

T'(a) = I' (M., ¢)) (aw (A,))

— [ aw@)= av(@) =3, [ as(4)
xes v Cx

M, c* M%—S8, 0y
where
=), e=jm (e
and
¢y =jMTi(c,) for each zeJ.
According to I, A, 2.9, if m: Q— Q, denotes the projection

@y ooy ) > @1y oo, Tp) =P,

each T is the graphic of an analytic map fy : 7 (I'4) >R, =(I'%) being
an open set in Q,. Consequently,

f an(d,) — [ a(@, fo@)) dzi ) . .. A da,

Il ex “m(Uh), e

for each x € J, where

¢, = (m|T%), (c.) e H, (= (T}); R).
1.
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Hence, if ¢, = 1, Q e, where }, R and e,€ H,(n(I'}); Z) is a generator
(€ J), we have

[T (@) | <, | M f a(@, fx@))du\ ... \ dz,
xeJt =(I7]),e.
=2[ Ml.arean(l‘;’)é<2| Ay |> aream(B,) < k.r’.
res reS

This implies the lemma.
Let nowz" = (', ..., x [m =1, ..., <:) ]bemapsin 0’(1\711, ()Ml)

such that the family of p-dimensional subspaces A} = (2., =...=x}' = o)
is regular. The associated family »(A}') is then a base for the space
of forms in 67(R") with constant coefficients, and each form

deg=dx, \ ...\ dz;, 120G <...<li,£n,
where (z,, ..., x,) are the natural coordinates of R”, can be expressed
as dx,,:Es{Zm(A}jl), with s?e€R (¢f. § 1). Then, for each form

a(x) = Z ay(x) dx;, we have
H

a :2 answ(AL) :ZPM(. e @iy ) (AN

H,m

the polynomials P,, depend only on the maps x, and constants k), > o
exist such that ([P,(...,am ...)[|<LK, . [|a]] for each ae®”(R")

=]

Let Q,, be a normal neighborhood for the map x”, and let k,,> o be the

constant that 2.3 yields for w (A7") A I' (M, ¢:) and Q. [m:I, cees (;>]

Then,ifB,cQ = m Q.. is an open ball of radius r, and if a € @7 (B,—dM,),

n

2.3 implies : :
(M, cl)(a)‘zlr(M,, c1)<ZPm(..., iy .. ) o (AL >\

m

=N |0 AT (M, ) (Pa)]

m

=N o) A (Mo, ) lla,- | Pul- s i ) |

£( 2k k',n> val.

m
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Hence I'(M,, c\) satisfies C, on Q and consequently so does I'(M, c)
on X. In particular, I'(M, c) is bounded on X.

We now define I(M, c) as the simple extension of I'(M, ¢) on X,
for each ce H, (M ; R); it exists, and satisfies C, on X, because of I, C, 1. 3.
It is immediate that I(M):c— I(M, ¢) is a monomorphism, since
I'(M) is.

Condition (a) of 2.1 is direct consequence of the definitions. As to (b),
let¢ W be an open set in X, ceH,(M; R) and cp = j"¥n"(c).
IM, c)|W satisfies C, on W, thus [|I(M, ¢)|W|sunw=o0 and
I(M,c)|W is the simple extension on W of I(M,c)|W—dM
[1, C, 1.5(c) and 1.4 (b)]; because of (2.2), the last current is equal
to I'(MnW, cy), and this implies I(M, ¢) | W =IMnW, c).

Finally, to prove the uniqueness of I (M), let I°'(M): H,(M; R) — @, (X),
c— I'(M, c), be another monomorphism which satisfies conditions (a), (b)
and (c¢). (c¢) implies that I°(M, c¢) is the simple extension on X of
I'(M, ¢)| X—0JM, and (a) and (b) imply that the last current is equal
to I(M, ¢)| X—0M. The equality I(M, ¢) = I'(M, c) follows.

2.4. REMARKS.

(1) In the conditions of 2.1, I(M, c)(a) = a|M* for all

M *, c*
ceH,(M; R) and ae®@”(X), where ¢"=j"¥*(c), as it is deduced
from I, C, 2.3.

(2) Let ® be a family of supports in M. The composition of I(M)
with the natural inclusion H? " (M; R)— H,(M; R) ([2], 1.4 and 1.10)
gives a map I®(M):H g’“” (M; R)—~ @,(X) whose images have all
support in @. This is a consequence of 2.1 (a).

(3) Let X be a complex analytic manifold, M a.complex analytic
subset of X of (complex) dimension p and e€ H,,(M; Z) the funda-
mental class of M ([2], 3.4). Then I(M, 1 e) coincides with the current
associated by P. LeLong to M [8].

3. Properties of integration currents.

3.1. ProprosiTiON. — Let ¢ :X—>Y be an analytic isomorphism
between the real analytic manifolds X and Y. Let M be a locally closed
semianalytic sel in X of dimension p. Then o(I (M, ¢))=I1(M', ¢') for
each ce H,(M; R), where M'=¢(M) and ¢' = (¢| M), (c)e H,(M'; R).

This follows immediately from 2.4.(1) and I, C, 2.3.
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3.2. ProposiTION. — Let N c M be locally closed semianalytic sets in X,
with dimN = dimM = p. Then

(@) if N is a closed subset of M, I(N, c)= I(M, ixu(c)) for all
ceH,(N; R); :

(b) if S is a closed semianalytic set in X with dimS < p, then
IM, ¢)=I(M—S, j"¥=S5() for all ceH,(M;R) (I,B,1).
On account of the condition C,, it suffices to see that both currents
in the case (a) coincide on X — (M UJN), and that the currents in the
case (b) are equal on X — S, which is straightforward.

3.3. ProprosiTiON. — Let M, (he€ J) be a locally finite family of locally
closed semianalytic sets in X, with dimM,=p for all heJ. Let

S = U oM, M=\ Mi—S),

hed held
j,t :jlll;,,M},—S, ih: iMh——S,M (heJ)
and let
g || H Mu—S; R~ H,(M; R)

hedJ
be the homomorphism defined in [2], 1.7. Then, for each element (ci)res
in [[ H,(M;; R), we have

reJ

DI, ) = I(M, p(0),  where ¢ = (j* (e

reJ

Observe that S is closed with dimS < p and M is locally closed with
dimM = p. It suffices to prove the equality on a relatively compact
open set W in X. The restrictions of both currents to W are equal to

I1 :Z I(M/J\W, c/le) and I‘-): I(MnW’ Cl/"),
Thed’

respectively; here J' = (heJ; M,nW £ @) is finite,

Cryy = j‘""‘ Mrny ”'(C/I) (h € J') and Cyy = jy, un W(}Ju (L))
By 3.2,

I,= Z I(Mr—S)nW, j" (cuw)) = Z I(M AW, iy o j™ (ciw))

hedJ heJ

=IMnW, Z Lo J* (caw)),

heJ
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where th =j~”hﬁ (M= and i}l);/ = i(Mh—S)n W.MAW. By I, B, (1 . l),
the diagram

H,(M; Ry—2 s H,(My— S; R)—" > H,(M; R)
j l/' ‘1‘
Y

H,(MynW; R) = H,(Mi— S)n W; R)——> H,(Mn W; R)

/-/L w

commutes. Then, on account of [2], 1.7, we have
=X JI0 0o (jHE)) = ¥, inwo ¥ (),
heJ heJ

and this implies I, = I,, as wanted.

3.4. ProprosiTiOoN. — Let M, be a locally closed semianalytic set of
dimension p; in the real analytic manifold X,(h =1, 2). Then the
following diagram commutes (I, C, 2.4) :

®©
H, (My; R) ® H,),(M:; R)—> H,,..,,(M, X Ms; R)
I(M1)®](Ma)‘ ll(M,x My)

4
@, (X2) @ @), (Xo) ————> D1, (Xs X X)
®

Let C}LEth(Mll; R) (h =1, 2) and N = ((dMl)XMQ)V(M] X(()Mg)).
T =1(M,xXM,, c;© c,) satisfies condition C,,,, on X, xX, and, since
I(M;, c,) satisfies C,, on X;(h =1, 2), it is immediate that

Tl= I(M1, CO@ I(Mg, Cg)

satisfies C,,,,, on X, X X,. Clearly, dimN < p, 4 p,, and it suffices to
prove that T and T’ are equal on W = X, x X,— N. But

TIW=i f
M,*><M;‘,c;@c§
T’|W=i1<f ><§§i2<f >,
Mp,cx My

where c;, = j¥»Mu(cy),

in: @ (M})—>@ (Xr— M) (h=1, 2)

and

and
i: MixM3;)—>® (XyxX,—N).

Then T|W = T'| W because of I, C, 2.4.



168 M. E. HERRERA.

B. Stokes’ Theorem.

1. Projections of normal decompositions.

In this section a minor modification to normal decompositions is
introduced, which will be useful for the proof of Theorem 2.1.

Let 9t = (Hf (x1, ..., Zx; ©1); o=k <h=n) be a normal system
at o€eR” and let Q= (|x;|<d;;i=1, ..., n) be a normal neigh-
borhood for 9ts. For a fixed p, o < p<n, we define

A)i=(@xeQ,-1; H)Z17 o),

4, =(@eQ,; H)=iFo),

A =(@eQ; H,)Fo)
and [I, A, 2.2 (¢e)] :

Wr=VrnA =(@eQ; H'=...=H},, =0, H ' %0, H}=} £ 0),
Wr=,Vrnd,=(@xeQ,; H) ' # o, H)Z1 ;2 o).

Ifp=n, Wi=,W'=(xeQ; H, '~ 0, H)-} % 0).
Let Wr= U L? and ,W» = »Ls be the decompositions of W» and
T

G
»WP? in their connected components. The sets L? are called modi fied mem-
bers of 9t'S. Each L% is an open subset of some connected component I'}
of V», hence it is a p-dimensional analytic submanifold, and also a
semianalytic set of R”. Moreover, if 9US is compatible with a set A cR?,
so is the family (L%)..
If 9ts is compatible with a p-dimensional semianalytic set M in R*,
then '

P p—t
M:Mn<u V">=MnWP+Mn<V/’n(H§:%=o)+UVl'>.

The last term is a semianalytic set with dimension < p, because so
p—1

is U Viand V7 is an analytic manifold of dimension p such that H/-% = o

i=0
on all its connected components. For each v such that L?c M,

bL:=Lr—L2CcM—(MnAWPr).
We denote
Ty Q>Qp (@ oo, T) > (X, ..., Tp)
and
s Q> Qi (@, ., T) (T, o, ).
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Each member ,I',~' of the normal system 9, verifies
w0 =, X €ats, (1, A, 2.2 (9]

The sets ,_,I'/~' are the connected components of ,_,V/—1=4,_,.
For each , ,I'/7", let

fi,x . /:—lrl{]*l_>R (0 <S<lz’, Iéli)

be the analytic functions whose graphics in Q, are the sets T4 such
that =7, (,I%") =,-.I7""; we can suppose fi,<fisri(o<s<l),
and ,I'?-' will denote the member ,I';' corresponding in this way to f; s;
fio and f;, will denote the constant functions equal to —d, and +d,
on ,I/™", respectively.

1.1. PROPOSITION.

(a) Let o<p=<n. Each ,L; satisfiesw’_, (,Ls) = ,_1I'/"" for somei,
and then, for some s (o = s <),

(1.2) ple= (1, ..., 2,)€Qp; [i.s(@1, ...y Tp_1)
<x, <fis+1(@1s - .. Tp—1)).
In such case :
(l) /)r{?-i U/)Lcuprﬁ:i if o<s, s+1<l;

) Gi) ,Lou,I7! if o<s=l—1
1. Lonl,=
(1.3) ,Lon4, or o=s, S§-41<l;
(i) Lo if o—s=l—1.

(b) Let o<p<n. Then each L% verifies n,(L%)=,Ls for some c;
in this case 7, | L’ n A is a homeomorphism onto ,L,nA, and =, | L? is an
analytic isomorphism onto ,L,. Moreover,

@) TytuLzuTg
(1.4) LinA={ i) TZ'ulLs;
(i) L?
if ,Ls verifies (i), (ii) or (iii) of (a), respectively. If (i) holds, then

T, (T4 =14 and Tp (r;/;_l) =050

if (ii) holds, then
7, (T2 = T4

in all cases the maps =, |I'7—'... are analytic isomorphisms.
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Proof. — If 2'=(x\, ..., x,)€,Wr, then n/_ (x')€, V’r'=4, ;
let us suppose that ,_I/~' is the connected component of = _,(x)
in ,;V»=' Then

fz',s’(xlj’ LECEE] x;;_1) <xlp<fi,s+1(xlu LR ;;_1)

for some s(o<s < l;), and it is immediate that the connected compo-
nent ,L, of ' in , W7 has the form (1.2) and 7, (,L;) =, T% '. Hence
»Lsn A, has the form (1.3).

To prove (b), let M, = (x€Q; H}.,, =...= H/},= o); it follows from
I, A, 2(c) that n, | M, : M,— Q, is proper (*), and then so is

Ty | My n(H}™' 52 0) = Qpn(H ™' 52 0);

consequently =, | V» : V»— , V7 is proper, since I, A, 2 (a) implies that V»
is a closed subspace of M,n(H/ 's£0). m,|V’ is open too, since
I, A, 2.2 (c) and (e) imply that V» is a union of graphics of analytic
functions defined on the connected components of ,V~.

Since 7, | V7 : V27— , V7 is proper and open, sois 7, | V?nA—,V’n4A,,
and it follows that for each connected component L? of W» we have
n,(L%) = ,L, for some connected component ,L, of ,W». In such case

yLocm,(LInA)C,LsnA,.

Moreover, L?c V»c M, implies that L”nA is a closed subset of M, nA
and, since m,|M,nA->A, is proper, that m,(L’nA) is closed in A,.
Consequently, 7, (LrnA) =,L,nA,, as wanted. =,|L? is an analytic
isomorphism because L7 is an open subset of some I'? and, according
to I, A, 2.0, @ | T% is an analytic isomorphism.

To prove that &, I L7 A is a homeomorphism onto ,L,NA,, it suffices
to see that it is injective, since it is continuous and proper. Clearly =), | L?
is injective. Let us suppose that a point y’ € (,L,—,L,) N A, exists such
that =—'(y)nL!=(y';i=1,...,5) and s>1; let U=U,xU;,
(i=1, ...,s) be a disjoint family of neighborhoods of the points y,
where U, is a neighborhood of y’. Then there is a neighborhood U),

s

of ¥’ in Q, such that (=, | L)~ (U,)c U Ui In fact, if this were not

i=1

(®) f: X > Y is proper if f~'(K) is compact for each compact set K in Y.
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the case, a sequence U, ,(n€Z) of neighborhoods of y’ could be found,
with diameters tending to zero, together with a sequence

yne (ﬂ.l' l L'g’)_l (Up,n)“‘ U Ui;

i=1

then (y.).ez would have a cluster point yen;'(y)nL! different
from y' (i =1, ..., s), which is a contradiction. On account of (1.2),
it is now easily seen that a neighborhood U, of y’ in Q, exists such
that U, c U, and U), n ,Lsis connected. Then (r, | L)™' (U, n,Ls), as a

s

connected subset ofU Ui, is included in some U?%. This implies
i=1

y'¢ L7 if i # i,, which is a contradiction. The first part of (b) is proved.

To prove (1.4), let us suppose that ,Ls= m,(L{) verifies

])ZG N Ap == /1I‘§_l V) /'/Lc Y% pr/s’;: .

Then L'= (n,|LrnA)"" (,I7") and L" = (m, | L2 n A)™" (,T%!) are con-
nected subsets of L’nA, L'nNL"#@ and L/nA—L’=L'nL".
Since L? is a connected component of V7nA,

Lr'nA—Lrc(Vr—Vr)nAc Vet [I, A, 2.2 (b)].

Then, if xe L', it follows that xeT% ' for some « and x ¢ U I"é” ; since
Bra

the last set is closed in A [I, A, 2.2 (b)], a neighborhood W of z exists

such that L'AWcT% ', and the connection of L’ implies L'cT% .

By I, A, 2.2 (e), 7, (I')") =,I'’"" for some i; this, and 7,(L') =,I%"",

imply ,I'»~'=,I7"'. Then L'=Tj"', since m,|T5' is injective, and

also L"= I‘f;_‘. The other cases in (1.4) are proved similarly.

2. Stokes’ Theorem.

It is recalled that if M is a locally closed semianalytic set with

dim M =p, then bM =M —M is a closed semianalytic set with
dim bM <p (I, A, 1.3).
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2.1. THEOREM. — Let X be a paracompact real analytic manifold of
dimension n and M a locally closed semianalytic set in X of dimension p
(o< p=n). The following diagram commutes (') :

(M)

H,(M; R) > @, (X)

0 b
M, bﬂl’
: v

Y
H),.(bM; R) ;7= @), (X)

where b is the border in ®'(X) and d, ,u is the boundary in the exact sequence
of homology

M M Ill oM

o H,(3; R) 2 H,(M; Ry Y H,_,(0M; R)— ..

for the pair bMc M.

Proof. — Let ¢’eH,(M; R), t =0y ;u(c’) and xeX. It suffices to
prove that bI(M, ¢') and I(bM, t') are equal on some neighborhood of z.
Let ¢ : U—¢(U) = VcR"be an analytic coordinate map such that xe U
and ¢(x) =o. The set M, =¢ (M n U) is locally closed and semianalytic

in V and, according to II, A, 1.2, there are maps x*=(z3, ..., x},
[s =1, ..., <p—n—1>J in 0'(M,, 0M,, sM,) such that the family
=@, =...=,=0)

of associated (p —1)-dimensional subspaces is regular.
Foreachs =1, ..., < i : >, let 918 be a normal system for the map z*

compatible with M,, M, and s M,, and let Q* be a corresponding compa-
tible normal neighborhood. We denote Q,=n <Q-‘; S=1, ..., <p i . ))
ane W =09¢'(Q,), and we are to prove bI(M,c)|W=I(bM,t)|W.
Because of A, 2.1,

bIM, )| W=bI(MnAW,cy) and IMBM,t)|W=IbMnAW,b,),
where
Cy =j‘”’Mn W(C'), ty =j[""’]"”n ”>(t/) = du/n " bMN Il”(clll') (I, B, 1. I)'

Let bI(N,c¢) and I(DN, t)e®,(Q,) denote the image currents of
bIMnW, cy)and I(bMnW, t,) under ¢ | W, where

N=MnQ=9eMnW)

) I(bM) = o it dim bM < p— 1.
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is semianalytic in Q,,

c=09,(cyr)eH,(N; R) and t=09,(tw) =0~ in(c)€H,_(bN;R).
It is sufficient to prove

2.2) bI(N,c)=1(bN, ).

Let us consider a fixed normal system 9tS, and its neighborhood Q..
In the following lemmas the other normal systems will not be used, so the

subindex s will be dropped from all notations. N will always denote
the closure of N in Q.

The decomposition Q = ULQ corresponding to 9US is compa-
k%
tible with N, JN and sN, and consequently so is the family (L”): of

modified members of 9US (see. No. 1). It follows that LZc N implies
L?cN*=N—0N, since dimL?=p and dimdN <p (I, A, 1.3);
consequently, L? is an open submanifold of N*. Moreover,

NAWr = U (L2:L2cN),
S=N—NnW” is a closed semianalytic set in Q of dimension < p,
and (D{——Lé‘)chS for each 7 such that L”cN.
2.3. LEmma. — Lel J = (z: L?cN). Then
I(N, o) = Y, I(L, c2),
Ted
where ¢. = j¥Y(c)e H,(L?; R) (€ J).
Because of 11, A, 3.2 (b), I(N, ¢) = I(N — S, ¢), where ¢, = jV,Y=5%(c).
But then II, A, 3.3 implies I(N — S, ¢) = 2 I(LZ, c;), and the lemma

=
follows.

2.4. LEMmA. — Let
N,=NnWr, Ji=(h;T;"cbN) and Jo=(h;T}"'cN).

Then :
I(bN, dN, //N(c)) = 2 I(rﬁ--l’ t/z>’

hed,
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where {, = dy o j¥.-Y(c) and 9, is the boundary corresponding fto the exacl
sequence of real homology

(2.5) o—H,(N,uTZ™ )5 H,(N) L H,_ (T} ) ...

of the pair T,7' <N U},

We observe that, for each he J,, I}, is a closed subset of N,uT}™",
p—2

since N,c V7 and I,"' —T% ' ¢ U Vi[l, A, 2.2(b)]. Moreover, as IS
i=0

is compatible with bN, we have

N =\ J T + an< O Vl'>,

hedy i=0

p—2

where S'=bN n< U V"> is a closed semianalytic set in Q of dimen-

i=0
p—1

sion <p—1 and the I} (heJ,) are open subsets of bN. Reasoning
as in the last lemma, we obtain

(2.6) I(N, ox,v(@) = X, I(T", 1),

hed,
where

th= jon, T Oy sn()€H,—(T77"; R) (hed)).
Note that J,# ¢ if and only if dimdN = p —1; if J, = @, both members
in (2.6) are zero. To prove the lemma it suffices to see that
(i) heJ,—J, implies {,= o and
(i) heJ, implies " = {,.

In any case, N,ul%™" is an open subset of N. For

N—(N,uT; ") =(N—TI}")n(N—N,)
=(N=T7")n( V?'n@H;2 =0)+ Vi> =A,UA,

i=0

(cf. No. 1). Here

p—1
A, = (N——I‘Z")n< U Vl'> =\J @i T N—14", kzp—1)
i=0
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and, since Ts—T%c | ) V! for all it follows A,= A,. Now let
i=o0

reA,—A, where A,=(N—T7"! )n(V”n(H —} = 0)); it follows that

xeN—TI,7", since H7} % o on I';”"; hence

P2

e VPn(H, = 0)— VPn(HI= = o) C U Vi,

and we obtain A,— A, cA,. Then A,U A, is closed, as wanted.
If heJ,—J,, then N,uI',"" cN, and consequently

J¥ N (c) =J-A\gu[‘§l’_',1\; (jN, Nyu ! (c));
then f,= o, since (2.5) is exact. If heJ,, t,=1t" follows from the
commutativity of the diagram (I, B, 1.1) :

Nb

H,(N; R)—"% H, ,(bN; R)

jA\,N¥I lij,Iﬂ !
Y

H,(N,; R) —()—>H,,_1(I”,':_1 ; R)
h

This prove the lemma.

2.7. LEmma. — For each LZ(v€J), each ce H,(L?; R) and each form
ac@1(Q), a@x) =a(x)dx, A\ ...\ dx,_,, where x = (xy, ..., ) is the
coordinate map previously chosen, we have

bI(LZ, c) (a) = I (r”" ts) (a),
he o
where t, = d:(c) and d-: H,(L”; R)—~ H,_(I'},""; R) is the boundary for
the pair 7' c LZuT} .

Note that I'/' is a closed subset of L?uT% ™", since I} ' c U Vi
i=0
and L?c Vr. Let us first suppose o <p <n and choose a member L’
with reJ.

I7'ALf=T2"nL"nA for all h,

since H/ >0 on I, (see No. 1), and LZnA has the form described
in (1.4). Suppose, for example, that LZnA =TI, ' U L”; then each I’}
with h# o is a connected component of L?UT,™", hence ¢, = o and we
are reduced to prove

bI(LZ, ¢) (a) = I(T4', &) (a).
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Let ,L,€,W” and ,I'/~" be the members in Q, such that =, | LZuT%™
is a homeomorphism onto ,L,U ,I/™" and 7, | L and =, | T'5" are analytic

ismorphisms onto ,L, and ,I'/™', respectively. Let
g: LU, T/ LIuTL!
be the inverse homeomorphism. We can suppose that

,;L0-= ((xl, e e ey xp)er; (xl, oo ey x,;~|)€,,__]r{)71
and
—d,,< x,,< f(x1, ey :L',,_1)),

where f: ,_.I'/"'—R is the analytic map whose graphic in Q, is ,I/".
Because of II, A, 2.4.(x),

I %fc)(da)zf da  and z(rg—l,w(a):f a;
l:,c I

r Pt e,
moreover,
da= [ (g1,Loy (@)
L e vls, Co
and
fooa=f @,
P14, LG
where

¢o=(m,| L), ()€ H,(,Ls; R),
ti=(m, |04 ), ) €H,m (T3 R), (g1 ,Lo) (da| L2) €6 (,Lo)

and
(g1,L7 ") (alTa ) es(,17™");

note that # =0 (c;), where J is the boundary corresponding to the
pair ,I77'c,L,u,I/"'. Then it suffices to see that

f , 91Lo) (da) = f (g1,077)" (@),

—1
p]"i’ >l

which is a consequence of I, C, 2.5, since
(g1, 077") (@ = a(g) dxi A - .. \ dxpy

—1
on I/,

d(g| yLs) (a) = di;g—@dt AdT A oo\ ATy

is integrable on ,L, because so is da on L%, and a,(g) is continuous
on ,Lsu,T/'. If L/nA has one of the other forms described in (1.4),
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the proof of the lemma is similar. The case p =n is simpler, since
then LY nA = ,L.n A verifies (1.3) and I, C, 2.5 can be directly applied.

2.8. LEmMa. — For each form a(x) = a,(x)dx, A\ ... A dx,_,, where
ay(x) e (Q) and x = (xy, ..., x,) is the map previously chosen, we have

bI(N, c)(a) = I(bN, dv,,n(C)).
By 2.3 and 2.7,

BI(N, ¢) (@) =¥ bI(LY,c) (=¥ I, tw) =¥ 1T, ) (a),

Tel ThE S X, hed,
where ¢, = jV'**(c) for each € J,
tn = dzn(cs), da: H,(L{; R)—H,_, (I‘p_l R)

being the boundary for the pair I',"' c L UT}™" and ¢ =2trh. Because
=

of 2.4, it suffices to prove {, = t" for each he J,, and this follows from

the commutative diagram of real homology (I,B, 3):

LN, Ny
H,(N) >H,(N,) >H, (I77")
AN S
\ \Y v, LP /
PIVALAN R O
J AN J/ J
v /
Y H, (L)
J

In fact,
b= 010NN (c) = N, 0n0 jNH(e) = N da(er) = 1N,
J .I

To finish the proof of the theorem, let us consider the chosen family

of maps x*= (z}, ..., T, [s =1, .. Kp-l) .
subspaces A*=(r,=...=1x,==0) is regular, the family «(A")
: -

A p—
forms in & —'(R") with constant coefficients (A, 1). Consequently, each

Since the family of

S$=1, ... )J of associated forms is a base for the space of

form ae ®”—'(Q,) can be expressed as a = \ a,»(A*), where a, € @"(Q,)

and o(A") =dz} \... A dx). ,[ =1, .. <p—1 l Then 2.8 can
be applied to each term a,»(A*), and we obtain

bI(N, c)(a) = I(bN, dx,,~(c)) (a),
as wanted.
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2.9. CoroLLARY. — In the conditions of Theorem 2.1, I (M, c) is closed
if and only if cej®™(H,(M;R)). Hence I(M,c) is closed if
H, (bM; R) = o or, in particular, if dimbM <p—r1.

It suffices to consider the exact sequence of homology of b M c M and
the fact that I (M) is injective.

2.10. CoroLLARY. — The curren! associated by P. LELONG in [8] to a
complex analytic set is closed [A, 2.4.(3)].

2.11. REMARKS.

(1) If @ is a family of supports in M, we have also a commutative
diagram
* o)
HYoM(M; R)———— @,(X)

)| :

Y
[ . !
Hp“[lb M(bM, R) W (D/)-l (X)
(bM)

where ¢ has been defined in [2], 7.10 [see A, 2.4.(2)]. This follows
because the natural homomorphisms

HENM(M; R)—>H,(M;R) and H2UMOM; R)—~H (bM; R)

are compatible with o.

(2) If dimbM < p—1, it can be proved that b1 (M, c) = o with the
method of [8], without using Stokes’ Theorem. This has been sketched
in [6]. :

(3) If M is an oriented affine simplex of dimension p, the usual
integration on M coincides with I (M”*, 1Q e), where ee H,(M*; Z) is
the generator associated to the orientation of M ([1], p. 148). Then
Theorem 2.1 reduces to the classical Stokes’ Theorem, as presented for
example in [14], § 6.

3. The homology class of an integration current.

According to 2.9, if M is a closed semianalytic set of dimension p
of X, then I (M, c) is closed for each ce H,(M; R). Let us denote by
Iyx:H,(M; R)y— H,(®@' (X)) the induced map into the p-homology
of the currents on X.
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3.1. ProposiTioN. — The diagram

v (X)

> H, (0'(X))
A

iM, XT //IM, x
H,(M; R)

H,(X; R)

is commutative (I, C, 3.1) (*°).
Since M is closed, bM =@ and M =sM =M — M*;let X* =X —0M
and let
e Hy (@' (X)) —> Hp (@' (X))

be the map induced hy the restriction of currents. Then
pP ¥ oy (X) = v(XT)e ittt (I, G, 3.1)

and p*¥" is injective, since dimdM < p implies that j*X* is injective
in dimension p. It will suffice to prove that

p¥ ¥ o Iy x = p% X 0y (X) o lny, x.
By A, 2.1 (b)s

pY X% o Iy x = Ips, xx0 j" M7,

and the last map is equal to v(X*)o iy« x:oj""#* [I, C, (3.2)], which
coincides with v(X*) o j¥** o iy x=p%*"0v(X)oiy, x, as wanted.

3.2. Remarks.

(1) The last proposition holds for any family of supports ® on X,
as it can be seen by composing v (X) and I, x with H;}’ X; R)— H (X; R)
and HY'"(M; R)—H,(M; R) [A, 2.4.(2)].

(2) Let X be oriented by a fundamental class ee H,(X; Z). Let M,
and M, be closed semianalytic sets in X such that dimM,=p and
dimM,=q=n—p. Let c,eH;(M,; R) and c;eH,(M,; R). Then
the intersection product of ¢ = iy, x(c:) and ¢, = iy, x(c:) is an element
¢ .c;eH{(X; R) (2], 1.12). Lete: H;(X; R)—R be the map induced
by mapping X into a point. Then &(c,.c,) = I(M,, c1) A I(M-, ¢) (1),
where the last symbol denotes the Kronecker index of the currents
I(M;, ¢) and I(M,, ¢;) ([14], § 20). This can be deduced from 3.1,
the definition of the intersection product and the properties of the
Kronecker index.

(**) Particular cases of this property can be found in [2], 3.4 and [7], Theor. 3.
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