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THE FUNCTIONS THAT OPERATE
ON Bo(F) OF A DISCRETE GROUP r;

BY

NICHOLAS TH. VAROPOULOS.

Introduction and notations. — Let G be a locally compact abelian
group, and let G be the dual group. We shall, throughout in this paper,
follow well established and standardised notations.

We shall denote by Li(G) the Banach algebra of bounded Radon
measures on G which are absolutely continuous with respect to the Haar
measure of G; X(G)cL,(G) will denote the space of continuous func-
tions on G with compact support, and, when G is compact, h^ will
denote the normalised Haar measure of G.

We shall also denote by M(G)DMo(G) the Banach algebra of bounded
Radon measures on G, and the closed ideal of those measures whose
Fourier transform vanishes at the infinity of d M(G) has a natural
involution ^->p. ==^.(—x). Finally we shall denote by B(6) the
function algebra on G of all Fourier transforms of elements of M(G).

Let now G be a compact abelian group and let Li(G)cA cM(G)
be any, not necessarily closed, subalgebra of M(G) containing Li(G),
we then introduce the :

DEFINITION. — We shall say that the complex function C> operates
on A in [— a, a], for some a > o, if <^ is defined in [— b, b] and b^a,
and if for all aeA such that —a^a^^a we have ^[a^e^G),
i.e. if there exists a measure in M(G), which we shall denote by
€>[a]eM(G), such that (^[a])'(%) ̂  ^>[a(^)].

If now for some ^.eM(G) we denote by | Li(G); ^ ; the subalgebra
of M{G) generated by Li(G) and ^ we can state the main result of
this paper as follows :

THEOREM (F). — In every infinite compact abelian group G, there
exists ^eMo(G) such that the only complex functions that operate
on {Li(G); ^ } in [— i, i] are those that coincide with an entire function
in some neighbourhood of o.
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302 N. TH. VAROPOULOS.

The material of this paper is divided as follows :
§ 1. We make some general remarks and give an equivalent form

to the theorem (F).
§ 2. We prove the theorem for the particular case when G == T the

one dimensional torus.
§ 3. We prove the theorem for the particular case when

G=f|Z(p,),

for prime numbers pn (n ̂  i).
§ 4. We prove the theorem for the particular case when

G=u(p)==[z(p-)r
the group of p-adic integers, for some prime number p.

§ 5. We deduce the proof of the general theorem.

1. General remarks.
G denotes an infinite compact abelian group in this paragraph.
Then it is a well known theorem of Kahane-Katznelson (cf. [6], 6.5.4)

that if <^ operates on Li (G) in [— a, a] for some a > o, then there exists
a ̂  8 > o such that

^(O-I^yS7 for — ^ < S < ^ .
f=0

It is also immediate to verify that if Li(G)cAcMo(G) and a > o,
and if €> operates on A in [—a, a] then the function ^(O == ^(-RQ

for any R > o operates on A in — r>? D an(^ ^

e»(S)==^a;;/ for — a < ^ < 6 ;

^(O-I^^7 for -^<^<^;

using these observations it is easy to see that our theorem (F) is equi-
valent to the following :

THEOREM (^). — In every infinite compact abelian group G, there

exists ^eMo(G) such that for every Q>o and every <I»(S) ==Va;S7

(convergent for ;e[—^, ^]) which operates on { Li(G); ^ } in [—^, Q]
we must have ay= 0(i) as j ->oo.
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The above theorem motivates the following :
DEFINITION. — We shall say that, for a compact abelian group G,

^eMo(G) is a 0-measure if for every § > o, and every complex func-
tion C>, such that

a)(0=^a,^ for Se[—^]

and which operates on { Li(G); ^ } in [— ^ S], we can deduce that
^^ 0(i) as j -> oo. We prove the obvious :

LEMMA. — Le/ G be a compact abelian group and let H be a closed
subgroup, and suppose that GfH has ^-measures, then G has ^-measures
also.

Proof. — Indeed it suffices to observe that there exists a natural
identification of M(GIH) with the subalgebra of M(G) consisting of
all those elements of M(G) whose Fourier transform is identically
zero outside (G/^)'[(G/^)'c G]; and that in that identification
Mo(G/Jf)cMo(G) and L,(G/^)cL,(G) ([2], chap. 7, § 2).

2. The one dimensional torus.
In this paragraph, we shall prove :
THEOREM (T). — T the one dimensional torus has ^-measures.
The proof of this theorem will not be given before the end of the

paragraph; before that, we shall introduce some notations and definitions
and also prove some lemmas which are interesting for their own sake.

Let us denote by
00 00

^=a<'-)="[J^'==^^, where ^'= £l,= { o ; i j (n^i)
n=l n=.i

(the space of two points). Then using the binary expansion of the real
numbers in [o, i] we can find an onto mapp :

s : ^ -> T=R/Z

which identifies the two spaces modulo a denumerable set, using s the
continuous (diffused) measures on T and ^2 can be identified, i. e.
Mc(T) = Me (^), where Mc(X) for a general locally compact space X
denotes the space of continuous bounded Radon measures on X. We shall
also denote by

N N

^:Q. -> TT^
M -•-A

n= M

the natural projections of the Cartesian product ^2(= t2<2)).
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Let now
e=={^}^, R=[rn\^

be two sequences of positive integers such that

(i) rn—^^5n; qn+i—r^5n O^i) [^< Tn< qn+i]'

Let also :
E=={Cn}^

be a sequence of real numbers such that

(2)
°<^< lh ^—>o; V £^=4-oo all real cr^o

0 n-^~ <x> ^^
n=l

K^O];

0, R and £ being fixed once and for all in this paragraph we can define
for all o-e[i, + oo)

N -I

^,N=\ |T[l+2£^COS(2^0] \hT.
r N

^,N=\ ]j[l+

L ^=1
Then ^a,N^M^(T) =M^(i2), teT denotes an integration variable, and
where in general M^(X) = Mc(X)^\M+(X) for some locally compact
space X denotes the set of positive bounded continuous Radon mea-
sures on X.

Let us also define

^==lim^(T,^ for o-e[i ,+°o)
N

the limit being taken in the vague topology of measures. [It exists
because 11^^11=1(^^1) and, for every ^eT, ^cr,^(%) converges
as N—^oo, as we see in what follows.]

Let us now denote the subset of Z (== The integers)

J^= { f], 2^ + Yl2 2^2 +....+ f\M 2^; r]r =0, + I, —— I }.

We have then for all o-e[i, +00),

(3) { o } c^i c^c ... c^MC ... c \^J ^M= ^ = supppoCZ = t
M
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and also _ r,,n2
(,) ^c[-M^M^. -d ^-^

and . _ ^m+JMn^+l"+^=0•(5) m,neZ, n^" ^ . m -^ .̂̂  ̂ ^ ^ ̂  any KeZ.
Also if we denote in general by ^A t^ It is immediate that for each M^x

s^ana^z)^-^.
(6)

So from (3), (4), (S) and (6), it-follows that

[^ .l-n^' (y).=o,+i,-1)o) ^is-^j-y/"
^ using this. follows at once that for all ̂ ^

(S) M")̂ ° and ^-^^ • . .Prom (S),iUollows that.eM;(T, and from 0), it .onows that

. * y-p = .+P-
(9)

We now prove :
. If. f e3C(Z)and if for some N^i,

LEMMA 1. — •4 ^ ' v / y^,»
...r „'?» 2^1 and supp?Ca ^suppfcL—2 ' 2 -1

•^ /» ^acC^^^Z)]. Then for every
[^ means that , can l>e cons.dered as^.

f f^ I•+oo)•we/lape. ^ <, f,>=<.,(f*^>-^fXi^^^"-^ vr /•^
„, - Observe .rst that in .ene^or ̂  and ̂ ,

an^ any locally compact group G, we have

„ <^>-<^>:=LJ.^^(x)da(s)•

Observe ̂ ^^^^————s)f

::t::s;.---^istofsinglepoints>s^•emma would follow by bilmeanty
Then it follows from (.0) and (4) ̂

(u) <„f><^(?>^o ^ V6sn
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which implies from (4) and (5) that

A R

n^^.^2^, v == ^ y^2^ some R> N,
/?=! p=:N+i

and (7) and (10) implie then that
7?<^o, r><^, $>= ̂ ri5^ =<^ (/** ^r>.

^=1

Also (n), taking into account (4), (5) and (6) implies that

^f^^y-o => n+v^l => <(^,(^cp)->^o

and this completes the proof of the lemma.
We now introduce some more notations and definitions :
For /e^(= i^2)), we define ̂ e^ by

^ (^)) = ̂ f (0 and .̂(^)) =^(^

where o === (o, o, 0,0, .. ,)e^.
We also define, for all integer N^i,

QA(O = 2 cos (a7^))— 2 fcos(2yN/(A))^r(0.
^Q

It is immediate then that

(12) ^(/)=^(f) ^ 9^(0=6.v(0

and

(13) I Q^(t)dhT(t)==o and ||0^||^4 (N^i)
^Q

and also since

\\t— tW ||,,, =0 [^+1] as N-^oo

[where in general for /'(^eC^X), X a topological space, we denote
|[f(01k.=sup[f(0|].

We see using (i) that

04) || 97v(0— 2 cos(217^) |]^ = O^-^-1] = 0[2-10^] as N-^oo.
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Let us further introduce the nets on i2
807

(i5)
R^(t) = ^ € ̂ ; ̂ (0 == CT(O)) c ^2,

5'̂ (0 == L € t2; y^1 (f) = ̂  (c*)) ( c i2,

and let us finally define using (2), (12) and (i3)

^= ^I[I+^^(0] Ar^M-^^),^0,^ =

V(7== lim^ a A
A7

for all o"e[i, + oo).

Our next task is to prove the

LEMMA 2. — Y(J and ^o. are equivalent measures for all o-e[i, +°o).
This lemma is the analogue of equation (3) of [8].

Proof. — We first compute a certain number of estimates :
ESTIMATE (A) :

N

2 rN^A[^A(0]——J - [ [ I+2S^COS(2^0]
n=l I, os

( N }\
OSC T I [ I + 2 £/? COS (2^' C^)] [ =0 [2^^] = 0 [2-'- A ]

c») e 7?., m < -1- -*- 1

as N—^oo by (i).

ESTIMATE (B). — Using (3), we see that

11^1^(0]— ̂ ,AWv(0] Ik -
I /^

^ 2 / cos(sGo)dhr(^)^.
. ^^-. c^:^ \ ^ J^^ji^N+i 5€J6 \6

r 30 "i
=0 ^ 2^-^ == 0 [<2N~q^l] as N-^oo.

|_^=7V+1 J

ESTIMATE (C). — Putting together (A) and (B), and using (i), we
see that

^M^A^Ol—^ti^^^cos^O] =0[2-4^] as N->oo.
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ESTIMATE (D). — Using (12) and (i4), we see that
Va[RN(.t)}==^,^[R^(t)]

and

2'^[^(o]-^[I+£'T6'^^.v ^
osc f[[^+z^W]\co e ̂  (^ x -1- 1

n=l ;

=0[^+^~Iy]=0[^N]

as N->co from (i).
ESTIMATE (E). — Using (C) and (D) above and the fact that [(2), (i3)]

N

a-^f^i+^MO]^^-
n=l

for all o-e[i, +00), we deduce that

I + 2 £^ COS (2^)^[R^W ==0[2-A] as N->oo.-n^[J?^(0] 11 i+£^6.(0
/z = 1

To complete now the proof of the lemma observe that because of (i4)

<16) n^^yWt^ ""^mlyfor<
/I = 1

for some function of t, ^(f); and that there exists (3^i such that

(17) P-^A^O^P.

Then the estimate (E) and (16) imply that

/^.[^^^^-^A^^^) uniformly as t(E^

and this together with (17) imply the required result that ^ and Va
are equivalent measures. We prove next the

LEMMA 3. — p, o"€[i , + oo), p T^ o- => ^p J_ ^o.
proof. — For the proof of the lemma the technique developed in [7]

and [8] is very closely followed.
We introduce the following functions of te^,

^^-^^(Q-log1^^6^0 for p,^€[ i ,+oo)
1 ~T ^n ^ny-f
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and consider \Z{^l(5}\^ as a sequence of random variables with respect
to the probability distribution ^.

Then (2) and (i3) imply that { Zi^}^ are uniformly bounded;
and (12) that they are independent.

Assume now that o- > p ̂  i. We have

Z^ == ̂  [ 0^(0 + o( i)] as n -> oo uniformly in t e ̂

And therefore applying (8), (i4) and (17) and lemma 2, we see that
([5], chap. 7, sect. 43)

(18) E(Z^=£^ f6HO^.+o(i))^P-^^f fe^(0^+o(i))
Wa ) WQ /

=P- l^pf4 f cos2 (2^0^0+0(1))
\ J^ )

== (3-1 £^(2 + 0(1)) as n^oo,

also we have from (2) and (i3) (the complete analogue of equation (4)
of [8]) that

Ez^^^^i^^^ye^o^^o^p]
k=i ^

and that together with (18) implies that

^(Z^^s^l^+oO)] as n-^oo

and this in turn implies that

(19) ^(Z^)=+cx).
n=l

Now just as in [7] and [8], we use the following proposition of proba-
bility theory :

If i Un}^--_i is a uniformly bounded sequence of independent random
oo N

variables such that^(72Un= 4-°o; then we have lim Vu/z = 4 - 0 0
^~ N "̂"
n = 1 n = 1

almost surely.
From that proposition and (19), we deduce that for o- > p ̂  i

^v
(20) Mm Vzi^ =4-00 p. p. ^.

N A™
/z=l
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For the sake of completeness, we give here a proof of the above
proposition :

We consider another sequence i U'n}^ of random variables identi-
cally distributed with the sequence {Un }^i and such that the family
of random variables { U,n; U',, }^ ̂  is independent. We then consider
the uniformly bounded sequence of independent random variables
[Vn== Un—U'n}^ and observe that ^-Vn== '2^Un and E V ^ = = o
all n^ i. Now an application of Kolmogorov's inequality ([4], 16.2, A)

N

gives lim Vv/i == + oo almost surely; to deduce from that the propo-
n=l

sition it suffices to observe that if

P hm YUn =+oo < i,

then the zero-one law of probability theory would give

P lim V Un < + oo \ == i
I N ^—^ I

and therefore also

P hm VVn <+oo =i^ v n

which is a contradiction, and proves the proposition.
We are now in a position to complete the proof of the lemma just

as in [7] and [8].
For p and o"€[i , +00) arbitrary, the lower derivative of ^p with

respect Vy along a natural net (i5) of ^2 is given by

W/^A lim ̂ [^(01 limTT ^^MOD (0 ̂ M^O] ̂ ll i+^o.(Q'

Therefore it follows ([5], chap. 7, sect. 43; [I], § 5, n° 7) that the following
condition :

(i) lim^Z^==—oop.p.^ <^ jD^(/)==op.p.

implies that Vp _L ^o.



FUNCTIONS OPERATING ON B o ( J T ) . 311

But it is also true that the following condition
N

(ii) limYz^=+wp.p.^ <=> £)WFi(0=op.p.^
./v ^ws

n=l

implies that ^p _[_ ̂ .
To see that we assume that (ii) holds and yet ^p and Va are not ortho-

gonal. Then there exists £c^2 a Borel subset such that ^(£1) = i
and such that D^(t) == o for all teE. But then since vp(£) > o
(^p and V(j not being orthogonal) the zero-one law of probability applied
to the sequence ( 0 ^ j ^ _ i , considered as a sequence of random variables
for the probability distribution ^p, implies that v^[D^^(t) = o] == i,
which by condition (i) implies that ^p J_ T^. And that is a contra-
diction.

Now using (20) and the zero-one law of probability, we see that for o- > p
either (i) or (ii) must hold; so in either case Vp J_ ^, which proves the
lemma.

LEMMA 4. — p^cr, p, cre[ i , +oo)=^p_L^a.
This is a consequence of lemma 2 and lemma 3.
From lemma 4 and (9), it follows in particular that ^ is a singular

measure for all o-e[i, + oo).
We make a final observation before proving theorem (T).
If we denote by

r A

rir+-
L n=R

^=lim fj[i+^cos(2^0] Ar eMo(T)
[[_n=n J )

for J?^ i, then using the identification of the proof of the lemma of
paragraph 1, we see that

^ € Mo [ T/Z ( 2^)] c Mo (T).

And if we apply lemma 4 to the measures ^w which are all of the same
type as pcr^^ [for different but admissible choises of Q, R, and E],
we deduce that ^w is singular for J?^ i and o-e[i, + °o) and

(21) J^iand^p; ,7,pe[i,+oo) ^ ^)_L^f).

Proof of theorem (T). — We prove that ^i, as defined above, is a
^-measure of T.

Let ^ > o arbitrary and let ^>(S) ==y,^^ for ?e[—^, S] operate
7=0

in A = j -Li(T); fJLi (, we prove that ay = 0(i) as j -> oo.
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Let s be a positive integer such that S~s ̂  - and let us denote by

^ ==^.,== ^ f ( = A ; 7. = p.—hr== (^.i—Ar)'eA,

because of (9). We observe at once that, for q positive integer, we have

(22) ^=:^—hT=^i(r—hr^^i—h^eA,

and, also because of (8), that

(23) ii n^-\ 7 II l l °o—— ^

Now fixj a positive integer; and using the fact that ^7 == ^sj is a singular
measure, and also the fact that the real trigonometric polynomials of T
are dense in CR(T), we see that there exists N/ a positive integer and
/^eJC(Z) such that

W
and

(25)

SUpp^C [-2^, 2^-1 ^T,f/and

f j= f j \ II f/11.^ i; k-<>',f/>—^ ^i.
Now using (10) and (a3), we see that there exists My>j a positive

integer such that

(a6) ^|a,0'-J,>|^i.
r>^

Since now by (21) the measures

^•^eMoET^^1)] (p = i, 2,..., M,)

are singular and mutually orthogonal, and since the real trigonometric
polynomials of T/z(2'7^+l) are uniformly dence in CR[T/z(2^+l)],
we see that we can find cpy e JC (Z) such that

/ . ( supp^•C2^•+lz(4=>cp;ex[(^/z(2^•+l)r]
v / / ) .1 /1 , ^ \( and <^ nr? ?/ / == °
and
(28) ^y^? / and l l p / l l . ^ i

and also using (25)
Mj

ya,<^^^><^f,>-a,
^=0
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and from this and (27), we deduce that
I M,

3i3

(^9) ^^<^,^.><>,^.
p=o

a/ ^2.

Now from (22), (27) and (28), we deduce that for all positive integer q,
we have

<^?7>I^I

and from that and (26) and (29), we deduce that

,—^a/<^,^.><>,^.> ^3

and this together with the lemma 1 and (2 4) and (27) implies that

(3o) 7—Y^<>,cpy/)> =0(i) as j—oo.

Finally using (10), (23), (25) and (28), we see that

2>-<^ ̂ -f^=^r<t, Cp, */•,>= <((D[^]r, ^.*f,>

r = 0 r = 0

= <<I>m,?/ / )>=0( i ) as j-^cx)

and that together with (3o) gives

a;=0(i) as j->oo

which completes the proof of theorem (T).

3. The Cartesian product,.

THEOREM (II). — If G=JjG/, where Gn^Z(pn) with pn prime
n--=-i

numbers (n ̂  i), then G has a ^-measure.
Proof. — We shall prove the theorem in the following two particular

cases :
Case A : pn= p (n^i) a fixed prime;
Case B : pn^n all n^i.
The general result follows from those cases and the lemma of para-

graph 1, since every group of the type considered in theorem (II) can
be written as H x K , where H is either as in case A or case B.
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So for the rest of the proof, we shall assume that we are in either
case A or case B. Then using the material of [7], we see that there exist
for each n^i :

^n^M+(Gn); ||^||=I; ^n==F-n

such that for every N^i,

(3i) (g) ̂  is ©-measure of Y[Gn [7]

and such that if we denote by ^ == (^) ̂ , then

(32) |[p_^|L<i.

We proceed to prove that this ^ above is the required ^-measure of G.

To that effect let 6 > o be arbitrary and let <^(0 ==Vay^' for
7=0

Se[—^, ^] operate on |L i (G) ;^} in [—S, 6], we shall prove that
a;= 0(i) as j -> oo.

By (82), we may chose s positive integer s. t., if we define for all n ̂  i :

(33) ^=^; ^ == (§)^=^eA; ^=^—^=^—/I^=(^—AG)',
n ==1

then

(34) [| \ |L^ d and ^=^—AG

for every positive integer p.

Fix nowj a positive integer. Then using the fact that v7' is a singular
measure and that the real trigonometric polynomials on G are dense
in CR(G), we see that there exists Ny^i and /y€<x(6) such that

N,

(35) supp/-,c^G. and <^,f ,>=off

n=l

and

(36) f,===f,; || fy H.^i; ^<^f/>—^l^i.

Using then (34) and (10), we see that there exists M/>j such that

(37) Sk<>Jy>|^i.Ctr

r>M,
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Finally using (36), the fact that (g) Vn is a ©-measure ofTI Gn== G^A
n^/V. XJLTO > Nj

n>N,
and the fact that the real trigonometric polynomials of G^ are uni-
formly dense in CR^^], we see that there exists cpyex(G) such that

(38) supp cpy c cX ^ ^ G,, \ and < A^,<AG, ^y^^O

\^>A; /

and

(3Q) 9/=?/; 9/IL^1 ;
J7
1^

^a,<A7-, ^•><//-, /}>—a/ ^2,

but since from (34), (38) and (3 9), we have for every positive integer q

|<^,^>|^i .

We see that (37) and (39) give

(4o) —^a/^^^A7,^) ^3,

but by (35) and (38), we have, for all r,

< A-, ̂  > < A-, f, > = < A7', f, ® $y> - < A7', (/•, ® Cp;)- >

and that together with (10), (34), (36) and (39) gives

^a-<A7, ^><//, f,>=^a,< A/', f, ® ^> = <((&[^]r, f, ® cp,>
r=0 r=:0

-^PU^^-OO) as j-^o)

which together with (4o) gives the required result that

ay=0( i ) as j—^oo.

And that completes the proof of theorem (II).

4. The p-adic integers.

We shall prove in this paragraph the

THEOREM (U). — If G = U (p) is the additive group of p-adic integers
for some prime p, then G has a ^-measure.
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Observe at once, that

^^imZO^)^^?-)?.
A^

The key reference for the proof of theorem (U) is [8], and to avoid unne-
cessary repetitions we follow it very closely indeed; we start by giving a :

Summary of results and notations of [8]. — There exist canonical iden-
tifications of Z(p7v) with

A" Nn^ip
n == 1 n = 1

and of G == U(p) with

^2 == ̂  =ff^n == I'J^r, where ^ = 12̂  = { o; i; . . . ; p — i }
n=l n^l

(the space of p elements); and with those identifications the canonical pro-
N

jections TT^ : U(p)-^Z(pN) are identified with CT, where S : ̂ ^V}^n1 ^f JL JL
7Z= M

are the canonical projections of the cartesian product.
Now let {Kn}^ be a sequence of integers and {zn}^ a sequence of

real numbers such that Xo^2 and Kn+i—Kn^n +i and

Q^n^- ^'n^f0' ^/^=+co all real cr^o [^^o].
n=i

For those sequences, we can construct two families of singular conti-
nuous measures on G == U(p)

(^(r)i^a<+oo and (V(T)i^a<+oo

such that for all o-e[i, + oo) [equation (3) of [8]]

(40 ^<7 and Va are equivalent

and such that

(42) ^o^O, ^(7^0; H ^ H = H ^ ^ l l == I

and which also satisfy the following list of properties

(43) ^ * ^-T == ^-(74-T ; ^(7 = ?0 ; ^(7 € Mo ( G)

for all (7, Te[i, + oo) [equation (i) of [8]]

(44) |]^_^[|^8-
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This follows from straight computation of the Fourier transform of ^ry,
as defined in [8], and the fact that o^s/^i/8.

/ Kn \
(45) ^=(g)^ for some v^€M+{ TT ̂  ),

n = 1 \ /
\A-«-i4-l /

where we use the identification of G and t2

(46) (g) ̂ ) _L 0 ̂ T) for <7, T e [i, + oo) and cr ̂  7,
n ̂  N n^N

where of course

(g)<)eM+/ IT ^V ^e[i ,+oo)
ft^M \ I

\ /^<u_i+l /

this is seen the same way as the equation (7) of [8].

(4?) I ' ^ — ^ H ^ O t S ^ ] as cr-^oo

this is a consequence of (4i) and the relation (2) of [8] together with
([5], chap. 7, sect. 43). [It is in fact a refinement of equation (3) of [8].]

Proof of theorem (U). — We prove that the ^i defined in [8], some
of whose properties we have summarised above is a ^-measure of G.
To that effect let 3 > o be arbitrary and let

^(0-^/S7 for ee[—M]
/•=r0

operate on A == { L i ( G ) ; f ^ i } in |— ^, ^], we shall prove that ay= 0(i)
as j -> oo.

Let us chose s a positive integer such that 8~s^ ^/2 and let us denote
using (43) by

^.=^==^eA; '}.==p.—ho; r]k==vsk—ho

for k all positive integers.
We then observe at once using (43) that, for all q positive integers,

we have

(48) ^== ^—hG== ̂ —ho^ ^—hc^^—hc)^.

We have also by (44)

(49) II ^ II.= II P-i -^ II. == II [(^-^)T IL^ 8-^ ̂2
BULL. SOO. MATH. — T. 93, FASC. 4. 21
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using (47) and (48), we see also that

(5o) | ] ^ — ^ | | = o l ( ^ y 1 as q->w.

Fix nowj an arbitrary positive integer. Since Vsj is a singular measure

on G, and since the set of functions ^ P o ^ ; N^i, Pe CR( I | ^n } /
V \n=i / ]

are uniformly dense in CR(G) [the identification of G and 12 being tacitly
used here and subsequently], we see that there exists Ny^ i and

Pj = pj o ^ for some P j e CR^ \ J ̂ 2^ )
x /i=i /

such that

(51) HP/H.^I; <^,P;>=o |a,<^.,P,>-a;[^i.

Now since Py can be factored through Tr^ there exists /'yex(^)

such that fy=Py. Therefore by (10) and (4g) we see that

^ a/<A-,P,>]<+0)
r=0

which implies by (5o) that

^[oc/<^, ?;>[<+oo.
r==0

Thus we can find M/>j such that

(52) ^ |^<^,P,-> ^T.

r>^y

Now using (45), (46), (5i) and the fact that (^)i^<T<+oo are all singular

and continuous, we see that there exists fe CR^ | | ^n \ such that if
\^^ )

f == fa ^ ̂  ^ e Cp(^), then
1N/

M,

^^r\ ^r;

r=0

llfll^i; <^/->=o; ar< ̂ r, /*> < ̂ r, P/ > —— aj < 2.
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We can then approximate uniformly f by a function of the form

. ^ r K R J 1
(?7=(?/°^^ for some J?y>Ny and some (?/€CR fj^ and

A. +1

which satisfies

(53) ne/ii^i; <^,e;>==o; ^a/<^e,><^,p,>_a, ^2
r=:o

let then
r ^ -i

(54) 5y=P,®e;eCR FI42" ancl ^•=Syo^'=$,
L n=l J

for some cpye^(G).
Then we see from (5i) and (53) that for all positive integer q we have

1<^(?/> ^i and <^,P/><^, 0y>=<^, S/>

and that together with (5a) and (53) implies that

a/—^a,.<^, 5/> ^3.
r=0

From this using (5o) and the fact that || Sj ||,^i, we deduce that

(55) a,-^a/<^,5y> = 0(i) as j-^oo.
r==0

On the other hands from (10), (4g) and (54) we have

^<^, 5y>=^<^, ^.>=<(I»[^, cp,>=0(l)

asj-^oo since || cpy [|,^i, and this together with (55) gives the required
result that

a y = = 0 ( i ) as j->oo

which completes the proof of theorem (U).

5. Proof of the theorem <I>.

To prove the theorem for a general infinite compact group G, we
consider Q the discrete dual group of G, and observe that we can
distinguish three mutually exclusive and exhaustive possibilities for G.
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(A) G is not a torsion group.
(B) G is a torsion group and has a subgroup Kc G which for some

prime p is K =^ Z(p00).
(C) G is a torsion group, and no subgroup of G is isomorphic to

any Z(p°°) for any prime p.

We prove that in case (C), Gr has a subgroup Kc G which is

JC^Vz(p/,) for prim.e numbers pn.
n=i

To that effect, we shall need the following lemma due to PRUFER
([3], § 25, vol. 1, p. 181) stating that :

The only infinite indecomposable, torsion, abelian groups are the Z(pao),
where p runs through all primes.

Using that lemma, we see that we can construct inductively two
sequences of subgroups of G

( A \^ . ^ R \w
( ^n \n--\ 9 ( ^n \ n=-Q

such that B()= G; An^ { 0 } (n^i); Bn is infinite (n^o). And also
such that

Bn == An+i © Bn+i for all n ̂  o.

Indeed it suffices to observe that if Bn has been constructed, since it
is infinite and ^ Z(p'°) for any prime p, it is non indecomposable and
thus can be written as the product of two non trivial subgroups
Bn == An+i ® Bn+i were we may assume Bn+i to be infinite and of course
An+i ̂  { 0{ .

We see then that

J^Z(pn)^KC^An=A

n=i 72=1

and A can be identified with a subgroup of Gr which completes the proof
of our assertion.

Now by duality it follows that in
Case A : G~^H a closed subgroup such that GfH ^ T.
Case B : G^H a closed subgroup such that GIH^ U{p) = ^(p00)]"

some prime p.

Case C : G^H a closed subgroup such that G/jy^rTZ(p^) for
n=l

prime numbers pn.
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From that our theorem (0) is seen to be correct in each case (A), (B)
and (C) by the lemma of paragraph 1 and theorems (T), (U) and (II)
respectively. The proof of our result is completed.

It is my great pleasure to finish up by expressing my gratitude to
Paul MALLIAVIN, who has read throughout several versions and drafts
of those methods and results and has made many valuable suggestions
and criticisms.
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