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ON THE CANONICAL TOPOLOGY
OF AN ANALYTIC ALGEBRA AND OF AN ANALYTIC MODULE ;

BY

MirTix JURCHESCU.

Introduction. — An analytic algebra A over a commutative field k
with a complete non-discrete valuation is a k-algebra A isomorphic to
a non-zero quotient of an algebra \ =k {X,, ..., X,,} of convergent
power series. If A is an analytic algebra, an A-module M is called
analytic if it is of finite type over A.

In this paper, we define and study the canonical topology on an ana-
Iytic algebra and on analytic module. The work has its origin
in a tentative to explain and generalize the following theorem of
H. CartaN [1] : If A is the algebra of all germs of holomorphic func-
tions at O € G, then for any integer r > o and any submodule H of \",
there exists a stricts continuous epimorphism A”— H for the uniform
convergence of germs. A first but incomplete variant was exposed in
Stoilow’s Seminar [3].

In paragraph 1, we define the canonical topology on the algebra
A=k {X,, ..., X,} and we give the principal properties of this topo-
logy. We use this topological structure of A to give a proof of the
preparation lemma by successive approximations. In paragraph 3, we
define the canonical topology of an analytic algebra and of an analytic
module. The fundamental theorem asserts that any algebraically exact
sequence O - M' - M —~ M" — 0 of analytic A-modules splits as
sequence of topological vector k-spaces. A corollary is the following
generalization of Cartan’s theorem : any homomorphism u : M — N
of analytic A-modules is continuous strict for the canonical topologies
of M an N. For A = Lk, the analytic A-modules are exactly the vector
k-spaces of finite dimension, and the canonical topology of an analytic
A-module M is then the unique Hausdorff topology compatible with
the structure of vector k-space of M. Paragraph 4 details with bounded
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sets in analytic algebras and modules. In fact, only the case of the
algebra A =k {X,, ..., X, | is treated because the extension of the
theory to the general case is straightforward.

1. The algebra A\ =k { X, ..., X, ].

Let N be the additive monoid of integers n > o. If neN and if M
is an object in a category with direct products and with a final object O,
we define M" to be the direct product M x ... xM (n times) when n > o
and M" = O when n == 0. For any meN", weset |m|=m;+...+ m,.

Let k be a fixed commutative field with a complete non-discrete valuation,
and let neN. We shall denote by k[[Xi, ..., X,]] the k-algebra of
formal power series in the variables X, ..., X, with coefficients in k,
and by k[X,, ..., X,] the subalgebra of polynomials in X, ..., X, with
coefficients in k; for n = o, these algebras are defined to be = k.

Let A =k[[X,, ..., X,]]. For each meN", we shall denote by #,

the canonical projection of index m of A (if f= 2 an X7 X0
meN"

then 7,.(f) = am>; fm is k-linear. We-define the weak topology of A

to be the least fine topology of A for which all maps #,, are continuous.
When £k is locally compact, clearly the weak topology of X is Montel
(i. e. any bounded set in Ais relatively compact).

For any fe A, we shall denote by o(f) the order of f. The ring A
is local, its maximal ideal is

wm=Ker#,={fel|o(f)>o},

and its residue field is ~ k. The tfi-adic topology of A is strictly finer
as the weak topology because the valuation of k is non-discrete.

Let R} be the set of all positive real numbers, and let neN, n > o.
If o = (a0, ..., @) and B = (B, ..., Br) ER}", we shall write 3 =«
when (3; = «; for all i, and B <« when $3; < «; for all i.

DEeFINITION. — For any fek[[X,, ..., X,]] and any «€R", we
define || f{|« by

Iflle=, lan|omn. .o,

meN"
where a,,= R, (f).

THEOREM 1.1. — ||flla=o0&f=o,

IF+glalfllatlglas  (fgllaZ[Fllall gl
Itlle=1,  [[#flla=1[t]. [fll« for tek
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and
()| = Ll for al menn,

my my
ayt. . LAy

The proof is trivial and will be omitted.
Let A =k[[X,, ..., X,]]. For any «€R}", we consider the set

Ag= % fefil ||f||a<+°°}5-
Clearly A cAg for § < a.
COROLLARY. — A, is a subalgebra of A, k[X,, ..., Xa]CAa, |||l is

a norm on \,, and the maps ®[A, are continuous with respect to this norm.
For any «e€R}”, A, will be considered as a normed k-algebra with
the canonical norm ||.[|4, and in particular as a topological k-algebra.
THEOREM 1.2,
19 The closed balls of A, are closed subsets of A for the weak topology.
20 \, is complete (').
30 If «, BeR:" and 3 < «, then the canonical topology of Ag and the
weak topology of A induce the same topology on any bounded set of A,.
Proof.

1° Let M be a closed ball in A, with centre g € A, and radius p (< + )
and let (fi):., be a sequence of elements f;eM, weakly convergent to

an element f € A. Let a,,= #,.(f), d), = #.(f:) and b,,= #,(g). Then

~ .
2‘ | @ — b |, ain=Zp
meN”

for all i >. 0. Since lim a,=a, for all meN~, it follows that

m

—
2‘ | @by | s, . Laliin Z0
Im|<q

for all ¢ > o, and therefore

H f—g ”0(- = 2 l ayp— bm l a’{". . .al""" ép,
meN"
that is feM.

20 Let (fi):~, be a Cauchy sequence in A,. Since the canonical injec-
tion Aq— A is continuous for the weak topology of A, the sequence (),

(") The proof of completeness of A, is due to C. Foias.
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is weakly Cauchy and consequently weakly convergent to an element

felA. Let ¢>o. Then there exists an integer i,(<) > o such that
I ferp—TFilla=c¢

for all i > i,(c) and all p> o. Since (fi)i~o is weakly convergent to f,
it follows from 1° that

Nf—Filla=e
for all i>iy(:). Also f=f,4 (f—[)€Au

3° We have only to prove that, if a bounded sequence (f:);~o in Ay

is weakly convergent to an fe A, then fe A, and (f.);~, converges to f
in Ag. The first assertion follows from 1° Further since (fi)i~, is
bounded, there exists a number p > o such that

filla= ¥, ld,[aps. . amzp
meN”
for all i > o. Hence, for 3 < «,
Hf__f”3= Z [a —d I@m1 . ﬁm"42p 2 & nn.“ Eﬁ m,,'
i m m 1 e eMni = o, ).
meNn» meNn»
Let ¢ > o. It follows that there exists an integer ¢ >Jo suchJthat
) i m m ¢
Z Ialll—_a/n Iﬁll' . 'Bn"é 5
lm|>q

for all i> o. Since (f;) is weakly convergent to f, there existe an
integer i,(¢) > o such that

D lau—d, .. B =

Im|<q

3
2
for all i > iy(¢). Thus

If—fills =, lan—d, | B, . . Buw =

meN”"

for all i>.i,(c), which completes the proof of the theorem.

Since A, is complete, any normally convergent series of elements
fi€ Aa is convergent in A, and its sum f satisfies

I Fllaz X0 fielas

ix0
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moreover the sum of a convergent series in \, coincides with its weak
sum and with its w-adic sum. For instance, if fe A, and a,, = %.(f),

the series 2 a, X', .. X% is normally convergent in A, and its sum

meN”"
is f.

CoroLLARY 1. — Assume k locally compact. Then, for B < a, the
canonical injection Ay~ Ag is compact (more precisely : any closed ball
of Ay is a compact subset of Ag).

Proof. — Let M be a closed ball in A,. By Theorem 1.2, 1°, M is
closed in A for the weak topology. As k is locally compact, \ is Montel,
consequently M is compact in A for the weak topology. Hence, by
Theorem 1.2, 30, M is compact in Ag.

Let E be a vector k-space. A non-empty set M cE is called abso-
lutely convex if, for any couple of elements f, g€ M and any couple of
elements s, t€k such that |s|+|t|<Z1, sf + fgeM. (Note that for
any absolutely convex set M Cc E, o€ M.) A topological vector k-space E
is called a locally convex k-space if o€ E has a fundamental system of
absolutely convex neighbourhoods.

Locally convex k-spaces and continuous k-linear maps form an addi-
tive category; we shall denote it by ELGC. Also, we shall denote by &
the full subcategory of ELC formed by all spaces € ELC which are
metrizable complete, and by #F the full subcategory of ELC formed
by all Hausdorff spaces € ELG which are inductive limits in ELC of
sequences of spaces €.

A topological k-algebra A is called locally conver if so is the sub-
jacent topological vector k-space of A. Similarly, if A is a locally
convex k-algebra, a topological A-module M is called locally convex if
the subjacent topological vector k-space of M is locally convex.

;\=UAa

«ERY

DeriNniTiION. — The set

is a subalgebra of A = k[[X,, ..., X.]], is called the algebra of convergent
power series in the variables X, ..., X, with coefficients in k, and is
denoted by k { X,, ..., X, |; also we set m = Anfit and 7, = %, | \.

If fe\=k{X, ..., X,}, we define the ¢ convergence domain "’

of f to be
D=\ {zek

oeRA"
rel\,

|xil<3‘i:-

Then Dy is an open set in k?, and when k is such that the discs of k are
connected, D, is also connected.
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DEeFiNiTION. — The finest locally convex topology on A = k{ X, ..., X,}
such that all canonical injections A,— A are continuous is called the
canonical fopology of A.

We already know that the canonical injections A,-> A are conti-
nuous, hence the canonical topology of A is finer as that induced by the
weak topology of A; in particular the canonical topology of A is
Hausdorff ().

The canonical topology of A is compatible with the structure of
vector k-space of A, and

A= lirr; Ay

in ELC. It follows that a k-linear map from A to a locally convex
k-space E is continuous if an only if all maps u|A, are continuous.
By convexity reasons, for A =k { X, ..., X, }and L =k {Y,, ..., Y,},
the product topology of A xT coincides with the locally convex direct
sum topology, consequently

—>

[«

in ELG. It follows that the multiplication A XA — A is also conti-
nuous. Thus A is a locally convex k-algebra (for its canonical topology);
clearly the subalgebra k[X,, ..., X,] is a dense subset of A.

Unless otherwise stated, A will be considered as a locally convex
k-algebra with the canonical topology.

CoroLLARY 2. — For any infeger r > o, A" is a k-space € £7F,

CoroLLARY 3. — If E€F, a k-linear map u: E — A is continuous
if and only if there exists an «€R}" such that u(E)C Ay and such thal
the induced map E — A, is continuous.

Proof. — By Théoréme 1 (p. 268, in [2]).

From Corollary 3, it follows that a k-linear map

u: k(X ..., Xl >k{Y,...,Y,}

is continuous if and only if, for any « € R}", there exists 3€R" and ¢ > o
such that

lu(f)lls<Lcllflla
for all feA.. :

(?) It is easily seen that the canonical topology of A is strictly finer than the weak
topology of A (i. e. the topology induced on A by the weak topology of X). As a
matter of fact it will be proved (Corollary to Theorem 4.2) that the canonical topo-
logy of A is not metrizable.
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Remark. — If A is a local k-algebra with residue field ~ k, and if m
is the maximal ideal of A, then zem if and only if 1 —fx is invertible
in A for any fek. Hence if A and B are local k-algebras with residue
field ~ k, then any k algebra homomorphism u: A — B is local, i. e.
u (m)cn, where m and n are the maximal ideals of A and B.

CoroLLARY 4. — Any homorphism of k-algebras
w K[[X, ..., X > K[Yy, ..., Y]]

such that u(X;) =g¢.€k{Y, ..., Y, | induces a continuous homo-
morphism

k(X ..., X >k{Ys, ..., Y,

Proof. — Be the preceding remark, u is local and therefore o(g:) > o.
Hence, if fek[[X), ..., X,]] and #.(f) = a,, then

u(f) = N, augit...gin=[(gs - -5 gu)
meN”"

(here the second equality is a definition).

Assume now fek{X,, ..., X,}| and let «€R}". Since o(g;) > o,
there exists B e R}"” such that

[ g:llg= o

for all i =1, ..., n. It follows that the series Z A Q7. . .0, is

meN"
normally convergent in Ag and therefore
lu)lls< X, langie. . gunlls= X, | aw i oope = || flla
meN" meN”
COROLLARY 5. — The partial derivations in A =k { Xy, ..., X, | are
continuous. More precisely : for 3 < a and all meN",
0’"“'f m! [ £1la
m My 4 mn m : my+1 m +1’
XXy A (B (B
4 Apn
where m! =m,!...m, .

Proof. — For fe\, we write f<4F if FeR {X,, ..., X,| and
[T (f) ’< 7, (F) for all meN~. Clearly f-< F implies || f ||« < || F ||
for any «€R}", and

dl Iulf dl IILIF
dXHl, m,, .< dX1111 Xm,,
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Also
| flla
f—<< X1> < X,l> for feA,,
[ — — Jeoo|l T — —
a, a,
and
X; B
I—— || =1— —)
& |3 A

and the corollary follows.
By Boursaki, if G and G’ are topological abelian groups, a conti-
nuous homomorphism u: G — G’ is called strict if the canonical map

u: 'U_IJ{;(O)—}H(A)

is a homeomorphism. For instance, if u has a left or a right inverse,
then u is strict. A continuous homomorphism of topological rings
(or algebras or modules) is called strict if it is strict for the subjacent
topological abelian groups.

CoROLLARY 6. — Let A =k {X,, ..., X,} and r an inleger > o.
The A-linear map u: A" -~k { X,, ..., X,,., | defined by

r—1

U(fos + =y frt) =2 fi X

is continuous strict.

Proof.— Clearly u is continuous. Furtherletv:k{ X, ..., X\ | > \”
be the map defined as follows. Any fek | X,, ..., X,., | has a unique
expansion

f=XfiXe

ixo0
with f;e\; then we set v(f) =(fo, ..., [—1). Clearly v is \-linear
continuous and vu = 1~
From Corollary 6 it follows that, for n < p, the canonical injection
k;Xl, ...,X;L}‘%k;X“ ooy X/,}
is strict.

2. The preparation lemma.

In this paragraph we shall consider two examples of ¢ successive

approximations *’ for power series. We begin with the preparation
lemma.
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Assume n > o, and let s be an integer > o. We define the endo-
morphism u, and v, of X =[[X,, ..., X,]] in the following way. Any
fe€A has a unique expansion

f=XfiX,
ix0

with fiek[[X,, ..., X.]]; we set

u(f) =X X volf) =D [i XL

i=0 i>s
Clearly u, and v, are k[[X;, ..., X, ]]-linear and in particular k-linear.
Also, for any fek[[X,, ..., Xi]],

f=us(f) + X5 vs(f)

and, for any «€R}",

| Flle= [l ws(f) llac 4 i [| 05 (F) [|as
so that

la ezl et oz Ll

a,

Thus u, and v, induce continuous endomorphisms of k { X;, ..., X, .
For any a€k[[Xi, ..., X,]] we define

s min (m;+...+m,-) if fZo,

o(f) = Bntns
| +0 if f=o.
Then
“o(f)=+4+0 = f=o, w(fg) =0()+ (9
and

o (f+9) = min (2 (f), »(9))-

Also, o (u.(f)) =0 (f) and 0@ () = o(f).
Let

a={fel|o()>ol.

Then 4 is an ideal of A, Gc1h, and clearly the &-adic topology of
k [[Xi, ..., X,]] is Hausdorff complete.

Tueorem 2.1 (The preparation lemma). — Lef geiit such that
g(o, ..., 0, X;;) 7 0, and let s be the order of the series g(o, . . ., 0, Xy) € k[[X.]].
For any fek[[X,, ..., X,]] there exisls a unique % =1 ,€k[[X,, ..., X,]]
such that

() vs(f—29) = o.
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Moreover the map f—4, is k[[X,, ..., X,—i]]Hinear and is continuous
for the weak, W-adic and &-adic topologies of k[[X, ..., X,]].

If geA=k{X,, ..., X, | then, for any feA, A,€A and the map
f— 4, is continuous for the canonical topology of A (more precisely : there
exists a cofinal subset I, of R}"* and for each a€l, a cy,>o such that,
if f€Ma, Ay€Aa and || Ay [la = cu || fla)-

Proof. — We write u and v instead of u, and v,. Then we have
g=u(g) + X;v(9)

with v(g) invertible and w(u(g)) > o. Let p = u(g) (v(¢9))~'. Then it
is immediate that a A€k[[X], ..., X,]] satisfies the equation (1) if and
only if h = 2 v(g) satisfies the equation

(2) h = o(f) — v(ph).

This reduction of (1) to (2) is due to Zariskr and SamukL ([5], p. 140).
We define the sequence (h:)., by the conditions

hy=o,
hivs = v(f) —v(phy).
Since w(p)>o, we have
o (hes1— hy) > o (hi— hi—y)
and so, by induction on i,
o (hii—h) > 1 4 o(f).
Thus the sequence (h;)., is Cauchy and therefore convergent for the

d-adic topology of k[[Xi, ..., X,]] and clearly h = limh; satisfies (2).
If b’ is another solution of (2), then

o' —h)>i

for any i> o, whence i’ = h. Thus the solution h = h, of the equa-
tion (2) exists and is unique. Unicity of h, implies that the map f—h,
is k[[X,, ..., Xun]Hlinear (and in particular k-linear). Moreover,
we have

o) = @) =)

so that the map f->h, is continuous for the @-adic topology of
k[[Xi, ..., Xu]l. Also, for any meN", f,(h) = ft,(h) for a suffi-
ciently large i, whence the map f—h, is weakly continuous. But the
requirement k non-discrete does not play any role in the proof, and
since for k discrete the weak topology coincides with the fit-adic topo-
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logy, the map f—h, is continuous also for the tfi-adic topology
of K[[X4, ..., Xi]]. Thus 2,= h,(v(g))~" has the properties required in
the first part of the theorem.

Assume now geA=k{X, ..., X,}, and let I, be the set of
all «eR}" such that ¢ and (v(g))~' €A, and such that

P lla<< .
By the definition of p and since u(g) is a polynomial in X, with coeffi-

cients in the maximal ideal of k{X,, ..., X, }, it is clear that I, is
cofinal with R}". Let a€l,, and let

o_ lpls.

oA

s
n

Then 6 <1, and, given f€A,, it follows from the inductive definition
of h; that all h,e A, and that

i oz 1L 0o

Hence, by induction on i,

1 lle
[l B o= G—0)a;

for all i. Thus, the sequence (h;)~, is bounded in A., and is d-convergent
(therefore also weakly convergent). By Theorem 1.2, (h), is conver-
gent to h = h, in Ay, and

IIf la
| hyllaZ G—0)ay

As %,= h;(v(g))~", the theorem is completely proved.
Remark. — For any fek { X,, ..., X, } and x€D,, we define

flx) = 2 An XM . . L,

meN"

Assume k = G, and let D be a closed polydisc centred at o in C~.
If DcD/, we define

Ifllo= Lngzj”(x) B

Cauchy’s inequalities and the maximum principle yield

lu(f)lo=s ] flo  and  [[o(f) o>

=20 flo
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Thus in the above proof we may use ||.||p instead of ||.[.. Also, by
means of an exhaustion with closed polydiscs, we may go on to open
polydiscs. We then obtain the following theorem of H. Carran [1] :

There exist a fundamental system of open polydiscs D (with centre o
in C") and for each such a D a c¢)>> o with the property that if f is holo-
morphic on D then )., is holomorphic on D and

sup | 4,(x) | = cp sup | f(@)].
x €D x€D

Next we shall consider another example of ¢ successive approxi-
mations ”’ for power series.

Let \ = k[[X,, ..., X,]l. For f=(f, ..., f)€r", we define
o(f) = min o(f).
If h, feA” and if o(f)> o, we set
R(f) = (hi(fis - s )y« s Ba(fis s fo))-

Tueorem 2.2. — Let g, heA” such that o(g)>o and o(h)> 1.
Then there exists a unique f € A" such that
o > o,
@ o)
 f=g+h().

Proof. — Since o(h) > 1, there exists a n X n-matrix M (X, Y) with
elements M;;(X, Y) in the maximal ideal of k[[X,, ..., X,, Y3, ..., Y,]]
such that

AX)—h(Y)=X—Y)MX,Y)

with a matrix product in the right side; in particular, we have
h(X) =XM(X, o).
We define the sequence (f(v)vo inductively by the conditions
fo=o
forn= g+ h(fw)-
Then
foen—"For={o—"Fo-1) M fo-n)

and so

o(firsy—Ff) >0(fy—Ffr-1)
because we have, by induction on v,
o(M(fv, fiv—1))) >o.

Thus (f).=0 is convergent for the th-adic topology of A necessarily
to a solution feA” of (3).
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If " is another solution of (3), then
o(f'—f)>o(f'—f)

so that o(f' —f) =+ o0, i.e.f' = f.
Next suppose that the component series of ¢ and h are convergent.

Then we may choose the series M;;(X, Y) to be also convergent.
We define

19 llo=max ] g: [l ~and [ M(X, o) =max n[| My(X, o) .

Let «eR}"” such that
MM, ) [la=0<1, -

and let 3 =< a such that

Il glls
1—0

= ¢ mina;.
i

Then it is easily seen, by induction on v, that

Ifollp=e

for all v>. 0. (Indeed, if ||f|[sg==¢, then, by the proof of Corollary 4
to Theorem 1.2, we have

[ M (fi, o) lls=1[ M(X, o) [[s= | M(X, 0) [la =10,

whence, by the inductive definition of fiv.1), || fivr1) [[p=Ze(1—0) + €0 =),
Thus the sequence (f,)..o is bounded in Ag. Hence, again by
Theorem 1.2, (f))v~o is convergent to f in Ag and

Ifllze = 1212,
Q. E. D.

We remark that any system of ,, implicit functions ,, can be easily
reduced to the equation (3).

3. Analytic algebras and analytic modules.

DEFINITION. — An analytic algebra over k is a k-algebra A such that
1° A # o, and

20 there exists a k-algebra epimorphism ¢:k{ X, ..., Xp}—>A.
Any analytic algebra (over k) is local and has residue field ~ k.

It follows that if A and B are analytic algebras (over k), then any
k-algebra homomorphism u: A — B is local.

BULL. SOC. MATH. — T. 93, FASC. 2. 10
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LemMmaA 3.1. — Let A and B be analytic algebras, u: A - B a homo-
morphism of k-algebras, and ¢: A — A, J:I'>B epimorphisms of
k-algebras, where A =k{X,, ..., Xs}, '=k{Y, ..., Y,}. Then
there exists a homomorphism of k-algebras v : A — I such that the following
diagram is commutative

A—5T
o[ lq;
A-'>B

Proof. — Since u is local, the elements u (9(X;)) belong to the maximal
ideal of B, hence there exist elements ¢; in the maximal ideal of T
such that ‘

$(9) = u(9(X)).

Let v: A - T be the homomorphism of k-algebras such that v(X;) = g..
Then clearly the restrictions of u¢ and v to k[X;, ..., X,] are equal.
Since k[X,, ..., X;] is dense in A ={ X, ..., X,} for the 1fi-adic
topology, while B is Hausdorff for its (maximal ideal)-adic topology,
we have uo = v,

Q. E. D.

Let A be an analytic algebra over k and ¢ : A - A a k-algebra epi-
morphism, where A =k {X,, v X }. We consider the quotient
topology of A by o, that is the finest topology on A for which ¢ is
continuous. This topology is compatible with the k-algebra structure
of A, and moreover ¢ is strict. Also this topology is independent of
the choice of ¢. Indeed, let ¢:I' -~ A be another k-algebra epimor-
phism, where ' =Fk{Y,, ..., Y, {. By Lemma 3.1, there exists a
k-algebra homomorphism v : A —T such that ¢ = ¢». By Corollary 4
to Theorem 1.2, v is continuous, hence ¢ strict implies ¢ strict, etc.

DEeriNITION. — Let A be an analytic algebra and ¢ : A — A a k-algebra
epimorphism, where A =k{X,, ..., X,{. The quotient topology
of A by ¢ (which is independent of the choice of ¢) is called the canonical
topology of A.

Any analytic algebra A will be considered as a topological k-algebra
for its canonical topology; and clearly any analytic algebra is locally
convex.

CoroLLARY. — Let A and B be analytic algebras over k. Any k-algebra
homomorphism u : A — B is continuous (for the canonical topologies of A
and B).

Proof. — With the notations of Lemma 3.1, u¢ = ¢ is continuous
(since ¢ and v are continuous), hence u is continuous because ¢ is strict.
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DEerFiNITION. — Let A be an analytic algebra. An A-module M is
said to be an analytic module over A if it is finite over A, i.e. if there
exists an A-module epimorphism.

a: AP—>M
with peN.

Any submodule of an analytic module over A is analytic over A,
and any quotient of an analytic module over A is analytic over A;
also any finite direct sum (or direct product) of analytic modules over A
is analytic over A. For A = k, the analytic modules over A are exactly
the vector k-spaces of finite dimension.

Let A be an analytic algebra, M an analytic module over A
and «:A”—> M an A-module epimorphism. It is clear that for any
topology on M compatible with the A-module structure of M, o is
continuous. Thus the quotient topology of M by « is the finest topo-
logy on M compatible with its A-module structure, hence it is inde-
pendent of the choice of «. Clearly this topology is locally convex.

DEeFINITION. — Let A be an analytic algebra, M an analytic module
over A, and a:A?—> M an A-module epimorphism. The quotient
topology of M by a« (which is independent of the choice of «) is called
the canonical topology of M.

For instance, the canonical topology of A’ is the product topology.
For A = k, any analytic module M over A is a vector k-space of finite
dimension and the canonical topology of M is the unique Hausdorft
topology compatible with the structure of vector k-space of M.

Any analytic module M over an analytic algebra A will be considered
as a locally convex A-module with its canonical topology.

Lemma 3.2.

a. Let M and N be analytic modules over A ; then any A-module homo-
morphism u: M —> N is continuous (for the canonical topologies of M
and N).

b. If L is any submodule of A" then L is analytic over A and is a
k-space € £F (for its canonical topology).

Proof. — To prove a, let «: A?— M be an A-module epimorphism.
Then « is continuous strict and ua is continuous, hence u is continuous.
To prove b, let i: L — A be the canonical injection of L. By a, i is
continuous. Since A” is Hausdorff, L is Hausdorff, hence L, being a
quotient of a A7, is a k-space € £F by Corollary 2 to Theorem 1.2,

LemmA 3.3. — Let A be an analytic algebra over k and ¢ : A — A a
k-algebra epimorphism, where A =k { Xy, ..., X, }. Then any analytic
A-module M is also an analytic A-module with ix = ¢(A)x for A€eA
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and x € M; moreover the vector k-space siructures and the canonical topo-
logies of M as an analytic A-module and as an analytic A-module are
identical.

Proof. — Let « : A?— M be an A-module epimorphism. The compo-
site map

Oe XD a
AP —> A7 > M

is continuous strict both for the canonical topology of M as an analytic
A-module and for the canonical topology of M as an analytic
A-module, etc.

DErFINITION. — Let € be an additive category. A sequence
S: 0>E-SESE">0

in € is said fo be split or to split if there exist morphisms p: E — E'
and j:E”"—E such that pi=1g, pj=o0, gi=o0, ¢j =1 and
ip + jq = 15, i. e. E is a direct sum of E’ and E” with canonical injec-
tions i, j and canonical projections p, ¢.

If S splits, obviously i = Kerq and ¢ = Cokeri. Conversely if
i = Kerq and ¢ = Cokeri, the following statements on S are equivalents :

1° S splits;

20 i has a left inverse;

30 ¢ has a right inverse.

In fact, assume 2° and let p: E - E’ such that pi = 1. Then
(1p—ip)i =i —i(pi) = o. Since ¢ = Cokeri, qi = o and there exists
j: E" — E such that 1g— ip = jq. It follows that

giq = q(1s—ip) = ¢—(q)p = ¢,
hence ¢j = 1g. Also
pig=p(—ip)=p—(p))p =o,

hence pj = o. Thus 20=> 1° Also, if we have a j: E” — E such that
¢j = 1w, then we see that there exists p : E—E' such that
1g— jq = ip, etc.

LemmA 3.4, — Let ¢ = £5 and suppose S is algebraically exact.
Then the following statements on S are equivalent :

() S splits;

(ii) i has a left inverse in €;

(iii) q has a right inverse in C.

Proof. — In the situation of (ii), ¢ is strict by Banach’s Theorem,
hence jq = 1g—ip continuous implies j continuous. Also, in the
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situation of (iii), ip = ir— jg continuous implies p continuous by the
Closed Graph Theorem; in fact, if limz,= o in E and limp(z,) = «'

in E’, then
i(@) = limi(p (x,)) = lim (ip) (@) = (ip) (0) = o,

hence z' = o.

THEOREM 3.1.— Any algebraically exact sequence O — M'— M - M"—0
of analytic modules over an analytic algebra A splits in the calegory £7F.

Proof. — By Lemma 3.3, it is enough to prove the theorem in the
case A=A=k{X, ..., Xy}. In this case we shall use induction
onn. Forn = o, M, M' and M" are vector k-spaces of finite dimension,
and the theorem is trivially true.

Next let n>o, let A'=k{X,, ..., Xo—r |, and assume, by the
induction hypothesis, that the theorem is true for the analytic modules
over A’. We shall then prove that the theorem is true for the analytic
modules over A.

Step 1. — For any ideal a of A, there exists a k-linear continuous
map v: A —a such that v|a =1, (a is an analytic module over A
and has the canonical topology).

The case a = {o} is trivial, hence we may assume a;2{o} Also,
it suffices to prove the proposition for z(a) instead of a, where = is any
automorphism of A (by Corollary 4 to Theorem 1.2, v is then topolo-
gical). Hence we may suppose that a contains a series g such that
g(o, ..., 0, X,) 7 o. Let s be the order of the series

g(o, ..., 0, X)) €k[[X.]],

and let H be the set of the elements h€ A which are polynomials in X,
of degree <<s. By the preparation lemma, for any feA,

f=a(f)g+ B/

where @ : A— A and B: A— A are A'-linear continuous and 3(A)cH.
Clearly H is an analytic module over A’, canonically isomorphic to A’s,
and B(a) is a submodule of H. By the induction hypothesis, there
exists a continuous k-linear map

v': H-—{(a)
such that v'|B(a) =15,). We then define the map »: A —a by
v(f) ==2(g+ v E()

[Since B(a)ca, v(f)ea for all feA.] Clearly v is k-linear and clearly
iv: A— A is continuous, where i:a-—>A is the canonical injection.
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We know that A and a are k-spaces € £#F. Thus, by the Closed Graph
Theorem, v is continuous. Finally, if fea, 3(f)€B(a), hence

' (B(f) = B(f)

and therefore

v(f)=a()g+B(H =T

Q. E. D.

Step 2. — For any submodule L of A”, there exists a continuous
k-linear map u': A"—L such that u'(f)=f when fe L, i.e. v'u =1,
where u: L— A" is the canonical injection.

In order to prove this proposition we shall make induction on r.
We already know, by Step 1, that the proposition is true for r =1.
Next let r > 1. We assume, by the induction hypothesis, that the
proposition is true for r —i1, and we shall prove it for r.

Let

be the canonical representation of A” as direct sum of A and A™!. Let
a=1i"(L)and N=gq(L), let v:a—A and w: N> A" be the cano-
nical injections, and let «:a —L and ¢ : LN be the maps induced
by i and ¢q. Then a, L, N are analytic modules over A, and we know
by Lemma 3.2 they are k-spaces € £%. We have a commutative
diagram with (algebraically) exact rows

0> a->L iN —0

v ‘ u ’ w
Y Y

¥
i
o> A>A L A1,

Since the proposition is true for A and A’—' there exist continuous

k-linear maps
A

v: A—>a and w: AN'>N

such that v'v=1, and w'w=15 From qu=wy it follows that
waqu=ww=1y. Let ¢ =0v'pu. Then
oa =v'pua =v'piv =0V =14,

hence ¢ is a continuous k-linear left inverse of «. By Lemma 3.4,
the top row splits in the category £, hence there exists a continuous
k-linear map 8 : N — L such that

ag + B =1,
We define

u'=av'p + fw'y;
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then u’ is k-linear continuous and

v'u=oav'pu+ Bwqu=ap+ =1y,
Q. E. D.

From Step 2 it easily follows that any submodule of A” is closed,
hence any analytic module is Hausdorff and therefore is a k-space € £F;
in particular this is true for any analytic algebra.

Step 3. — Let O >M'->M->M"->0 be an algebraically exact
sequence of analytic modules over A, and let o : A?— M be a A-module
epimorphism. By Step 2 and Lemma 3.4, va has a continuous k-linear
right inverse, say ¢, hence v has a continuous k-linear right inverse
namely «:. By Lemma 3.4, the sequence splits and the proof is
complete.

CoroLLARY 1. — Let M and N be analytic modules over an analytic
algebra A. Then any A-module homomorphism u:M — N is conti-
nuous strict.

Proof. — We already know that u is continuous. Further we have
u = 3o with « an epimorphism and 3 a monomorphism (of analytic
modules over A). Then « and {3 are continuous and, by Theorem 3.1,
« has a continuous k-linear right inverse, and (8 has a continuous k-linear
left inverse; hence « and $ are strict, etc.

CorOLLARY 2. — Any analytic algebra and any analytic module are
k-spaces € r7.

CoroLLARY 3. — Any submodule of an analytic module M is a closed
subset of M (®).

4. Bounded sets.

DeriNiTION. — We define f<¢ in R{X,, ..., X,,} if and only if
T (f) < 7w (g) for all me N~

Clearly, this is an order relation on the R-algebra R { X, ..., X, } and
makes it an ordered R-algebra,i.e. (f' < ¢ and f' L g¢")=f' +f' <9 +¢g"
and (f<g¢ and h>.o)= hf<hg, in particular (f<¢g and {>o
in k) = If Z1g.

(®) Prof. H. CarTaN kindly communicated me the following :

« Tout le paragraphe 3 pourrait aussi étre traité pour la topologie faible (4 partir
de la topologie faible de A, on définit la topologie faible pour tout module de type
fini sur une k-algébre analytique A). On a les mémes résultats, et I’on en déduit que
la topologie faible d’un module analytique est séparée. En particulier, tout idéal
de A est fermé pour la topologie faible; c’est 1a un résultat trés utile, et plus intéressant
que le résultat analogue pour la topologie canonique. »
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DEeFINITION. — Let A =k{X,, ..., X,]. We define the map
®: A>RI(X, ... X

by setting
o(f) = 2 [ @ | X ... X
meN®
for any f= ¥ @, X7t ... Xpo.
meN"

It will be convenient sometimes to use the notation | f| instead of @ (f).

LEmMA 4.1. — The map ® has the following properties :
1° ®(f)>o0, and ®(f) = o= f=o;

20 O(f+ g) = O(f) + ®(9);

30 @(fg) =®(f) ®(9);

4o ®(f)y=|t| @(f) for tek, and ®(1) =1;

5o | @(f) lla= I fla

The proof is trivial and will be omitted.

DEeFINITION. — A subset D of A is called a disc (centred at o€ A) if
1° D is absolutely convex, and

20 (feD and ®(g) Z P (f))=g€D.

Clearly any ball in a A, is a disc in A.

CoroLLARY. — If D is a disc in R {X,, ..., X, }, then ®(D) is a
disc in A and f+ ®'(D)c®'(|f| + D) for any feA.

NoratioNn. — We shall denote by Top the category of all topological
spaces and continuous maps.
Tueorem 4.1. — For k locally compact, the following statements hold :

1° A =lim A, in Top, i.e. a set M CA is open (closed) in A if and
—>

[+
only if M nA, is open (closed) in A, for all « e R*".
20 The discs D (cenired at o) such that o€D form a fundamental
system of neighbourhoods of o in A.

30 The sets ®—1(V) with V a neighbourhood of o in R{X,, ..., X,}
form a fundamental system of neighbourhoods of o in A.

The proof will be preceded by some lemmas.

Lemma 4.2, — Let k =R or k= Q. Then if D' and D" are disc in A,
so is D =D' + D".
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Proof. — We begin with a remark : if a, b, c€ k (where k = Ror k = C)
and if |c|<|a|+|b]|, then there exist x, yek such that |x|=|a]|,
lyl<|bland 2 +y =c ‘

Indeed, let ¢ =|c|e®. Since |c|=|a|+|b|, we may write
lc|==¢+0 with o<e<|a| and o<=0|b|. We define x=ce?
and y=0de’. Then |z||al, |y|=|b| and = + y =c. Moreover,
if ¢ is real, x and y are real.

Now let f'eD’ and f"e€D"’, and let f€ A such that ®(f) Z®(f' + ).

Then @(f) = ®(f") + ®(f"), hence |7, (f)|<L|mn(f)] 4+ |7n(f")] for
all meN”. By the preceding remark, there exist b, b}, €k such that
I blm I é [ Tf"l(f,) ]’ I b,I,n [é l 7T"l(f”) l and ﬂ.”l(f) = b’lll + b,/,n' Let

8
g= N B.Xm X, gt= Y B Xy X,

meN”" meN”"

Clearly ¢, g"€ A, ®(¢)ZP(f"), P(¢") L P(f")and f= ¢ + g". AsD’
and D" are discs, ¢'€D’ and g”€D’, whence feD.
Q. E. D.

Lemma 4.3. — For k locally compact and A =k{X,, ..., Xu},
let T be a topological space, U an open set in T and W :T > A a map
such that

1 W {s continuous;

20 for any o € RY¥" and any compact set M C A4, the set W' (M) is compact;

3o ¥-i(o)c U.

Then there exists a neighbourhood D of o in A such that ¥—'(D)c U.
Moreover, for k = R or k = G, we may choose D to be a disc.

Proof. — For any integer i>.1, let a(i):Ga ,§> and let

Ai= Aqu.  Since k is locally compact, each canonical injection A;— Ay
is compact (by Corollary 1 to Theorem 1.2); also
A =limA,
——i—>

in ELG. We shall construct, inductively, a sequence (D;);.., such that :

1°D,=1{o};

20 for i >1, D; is an absolutely convex bounded open neighbourhood
of oin A,

30 DiCDi_H, and

4o ‘Ifﬂl(ﬁ')c U, where D; is the closure of D; in A,,.

In fact, let p >1 and assume the construction made for i < p.
Then D,_, is compact in A, and

W'—1<E/)_1 ) C U.
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Clearly
Dy = n Dp-1+ N)
N

for N in the set of all neighbourhoods of o in A,,,. Hence

(D) =Y ¥' Dy + N).
N

But, for N bounded, D,_,+ N is relatively compact in A,.,, hence
W—1(D,_,+ N) is relatively compact in 7. It follows that there exists
an N = W, such that

p—1 (Dp—1 + W11+1) cU.

Let V,.: be a neighbourhood of o in A,,, such that
\ + Vpir €W iy,

let B, be a bounded open ball centred at o in A, such that B,c U,
and let
D/; == D/)AI + Bp.

Then D, is an absolutely convex bounded open neighbourhood of o in A,
D, ,cD,, and D,cD,,+B,+V,.CD,  +W,.,,

hence .
¥-1(D,)c U.

This completes the induction.

Let D = U D;. Then D is an absolutely convex neighbourhood of o
in A and =

v (D)= v D)cU.

it

Moreover, for k=R or k= G, each D,=D,_,+ B, is a disc by
Lemma 4.2, hence D is a disc, and the proof of Lemma 4.3 is complete.

Remark. — Obviously, in Lemma 4.3, we may replace A with any
A =1lim A; (in ELC), where (A;);~. is an increasing sequence of normed
—>
k-spaces with compact canonical injections A;— A,,4. Then Lemma 4.3
can be interpreted as a generalisation of Teorema 1 of SEBASTIAO E SiLva
in [4].
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Proof of Theorem 4.1. — Let Trop the finest topology on A for which

all canonical injections A,— A are continuous, and let T be the topo-

logical space A with the topology o, ,; then T = h_m> Ay in Top. Clearly
: a

the map W =1 satisfies conditions 1° and 2° of Lemma 4.3 and

W (o) ={o}. From Lemma 4.3 it follows that any neighbourhood

of oin T contains a neighbourhood of o in A (for the canonical topology),

which proves 1°.

Also from Lemma 4.3 it follows that for k = R or k = G, the discs D
centred at o in \ such that o €D form a fundamental system of neigh-
bourhoods of o.

Before ending the proof of Theorem 4.1 we shall establish the following.

Lemma 4.4. — For k arbitrary, the map ® : A - R {X 4, ..., X,} is
continuous. When k is locally compact, for any « € R*"* and any compact
set McCR{X,, ..., X,}a the set ®1(M) is compact.

Proof. — Let D be a disc in R{X,, ..., X,}. Then ®'(D) is a
disc in A, in particular ®—!(D) is absolutely convex. For any « we
have a commutative diagram

Ay —

A
. e
Y

Y
R{X, ..., Xula>RIX,, ..., Xu}

with @, continuous at o (since @, isinduced by ® and since||® (f) [l = || ||«).
It follows that, for any «, ®-{(D)n A, is a neighbourhood of o in A.
Hence ®—'(D) is a neighbourhood of o in A (for the canonical topology).
Since the discs D centred at o in R{X,, ..., X,} such that oeD
form a fundamental system of neighbourhoods of o, and by Corollary
to Lemma 4.1, we conclude that ® is continuous.

Now assume k locally compact. If M is a compact set in
R{X, ..., X,}a then M is bounded in R { X, ..., X, |a, hence ®—' (M)
is bounded in A, (since ||®(f)|l« =]/ fll«) and consequently relatively
compact in A (by Corollary 1 to Theorem 1.2). As M is also closed
inR{X,, ..., X, and ® continuous, ®—!(M)is closedin A. Thus ®— (M)
is compact in A, which completes the proof of Lemma 4.4.

We now return to the proof of Theorem 4.1, Let 7= A and ¥ = ®.
By Lemma 4.4, ® satisfies conditions 1° and 2° of Lemma 4.3 and
®'(0) ={o}. From Lemma 4.3 it follows that any neighbourhood
of o in A contains a set ®'(V) with V a neighbourhood of o in
R{X,, ..., X,}|. This proves 3°. Since for V disc, ®*(V) is a disc,
we see that 20 is also true. Thus Theorem 4.1 is completely proved.
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CoroLLARY. — For k locally compact, the following statements hold :

a. For any bounded set M C A, there exists an « such that M c A, and M
is bounded in A,.

b. For any convergent sequence o in A, there exists an o such that o is
“ contained >’ in A, and is convergent in A.,.

¢. A is Montel (in particular : quasi-complete).
Proof. — Only the first statement needs to be proved. Suppose
the contrary would hold for some bounded set M cA. Let {t€k such

that o < |f] <1. Then there exists a sequence of elements f,e M
such that

ltfillew>1 and  #fiZ2Uf; fori=j.
Let N be the set {{fi, £f,, ... }. Since M is bounded in A,

lim f, = o,

hence N is not closed in A. However it is easily seen that each set Nn A;
is closed in A, which is a contradiction by Theorem 4.1.

Remark. — From the preceding Corollary and from Cauchy’s inequa-
lities it follows that, for k = G, a sequence of elements f;€ C { X,, ..., X, }
is convergent if and only if there exists a closed polydisc D centred at o

in G~ such that Dc n Dy, and such that the sequence of functions f;(z)
i

is uniformly convergent on D.
We shall now extend the preceeding corollary to the general case :

Tueorem 4.2 (*). — For k arbitrary, the following statements hold :

a. For any bounded set M C A, there exists an « such that M c A, and M
is bounded in A..

b. For any convergent sequence ¢ in A, there exists an « such that o is
‘ contained ” in A, and is convergent in A,.

c. A is quasi-complete.
Proof. — Let M cA be bounded. From Lemma 4.4 it follows

that ® (M) is boundedinR { X, ..., X, |. By Corollary to Theorem 4.1,
there exist « and ¢ > o such that

| flla=1®(f) lla==c for all fe M.

Also any Cauchy sequence in A is bounded and weakly Cauchy (therefore
weakly convergent), etc.

(*) The idea of using the map @ to extend Corollary of Theorem 4.1 to the general
case and the proof of Theorem 4.2 are due to C. Foias.
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COROLLARY. — A is not meirizable.

Proof (°). — Assume A would be metrizable, Then A € being
quasi-complete. By Corollary 1.3, for E = A and u =15, A = A,
for some a, which is a contradiction (as is easily seen).

Remark. — Since the discs D centred at o in R{X,, ..., X,} such

that oeD form a fundamental system of neighbourhood of o, it is
easily seen that the sets ®—*(V) with V a neighbourhood of o in
R{X, ..., X,} form a fundamental system of neighbourhoods of o
in A for a locally convex topology 7¢ on A, compatible with the struc-
ture of k-algebra of A. For klocally compact, we know, by Theorem 4.1,
that 79 = 7y ¢ = Tgop, Where vy o is the canonical topology of A.  Inthe

general case we have
e CTeLe S Trop:

It is also easily seen that the bounded sets in A for the topology ¢ are
the same with those for the canonical topology 7z . The question,

if 7¢ = 7y q OF if Tgy g = T,y in the general case, remains open.
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