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ON THE CANONICAL TOPOLOGY
OF AN ANALYTIC ALGEBRA AND OF AN ANALYTIC MODULE ;

MARTIN JURCHESCU.

Introduction. — An analytic algebra A over a commutative field k
with a complete non-discrete valuation is a /c-algebra A isomorphic to
a non-zero quotient of an algebra A = k { Xi, . . . , Xn} of convergent
power series. If A is an analytic algebra, an A-module M is called
analytic if it is of finite type over A.

In this paper, we define and study the canonical topology on an ana-
lytic algebra and on analytic module. The work has its origin
in a tentative to explain and generalize the following theorem of
H. CARTAN [1] : If A is the algebra of all germs of holomorphic func-
tions at 0 € C", then for any integer r > o and any submodule H of A r,
there exists a stricts continuous epimorphism A^ -> H for the uniform
convergence of germs. A first but incomplete variant was exposed in
Stoilow's Seminar [3].

In paragraph 1, we define the canonical topology on the algebra
A == k { Xi, . . . , Xn } and we give the principal properties of this topo-
logy. We use this topological structure of A to give a proof of the
preparation lemma by successive approximations. In paragraph 3, we
define the canonical topology of an analytic algebra and of an analytic
module. The fundamental theorem asserts that any algebraically exact
sequence 0->M'->M->M"-^0 of analytic A-modules splits as
sequence of topological vector /c-spaces. A corollary is the following
generalization of Cartan's theorem : any homomorphism u : M -> N
of analytic A-modules is continuous strict for the canonical topologies
of M an N. For A = k, the analytic A-modules are exactly the vector
A-spaces of finite dimension, and the canonical topology of an analytic
A-module M is then the unique HausdorfY topology compatible with
the structure of vector A-space of M. Paragraph 4 details with bounded
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sets in analytic algebras and modules. In fact, only the case of the
algebra A = k { Xi, „ . . , X, } is treated because the extension of the
theory to the general case is straightforward.

1. The algebra A == k { Xi, .. . , Xn j.

Let N be the additive monoid of integers n ̂  o. If n e N and if M
is an object in a category with direct products and with a final object 0
we define M-to be the direct product MX ... xM (n times) when n > o
and M'1 ==0 when n --= o. For any m e N", we set | m = m, +... + nin.

Let A- be a fixed commutative field with a complete non-discrete valuation
and let TZ€N. We shall denote by k[[X,, . . . , X.]] the Tc-algebra of
formal power series in the variables X,, ..., X, with coefficients in k,
and by k [Xi, . . . , Xn] the subalgebra of polynomials in Xi, ..., Xn with
coefficients in k; for 77 = o, these algebras are defined to be = k.

Let A =A[[Xi, . . . , Xn]]. For each meN^, we shall denote by n,n
the canonical projection of index m of A/ i f /•== V ^X^...X^,

\ weN"\
then TTm(f) = a,nY ^m is A-linear. We define the weak topology of A.

to be the least fine topology of A for which all maps TT^ are continuous.
When k is locally compact, clearly the weak topology of A is Montel
(i. e. any bounded set in A is relatively compact).

For any /*eA, we shall denote by o(/) the order of f. The ring A
is local, its maximal ideal is

i t i==Ker7To={ / ' eA |o ( f )>o} ,

and its residue field is ^ k. The m-adic topology of A is strictly finer
as the weak topology because the valuation of k is non-discrete.

Let R^ be the set of all positive real numbers, and let n e N, n > o.
^^ = (ai, . . . , 0 and |3 = (pi, . . . , (^)(=R^, we shall write (B ̂  a
when P< ̂  a, for all i, and (3 < a when (3, < a, for all i.

DEFINITION. — For any fek[[X,, ...,X,]] and any aeR:", we
define ||/•||a by

ll/'lla== ^ |a,,,|a^...a^,
w€N"

where a,n== ^m(f).

THEOREM 1.1. —— || f [[a =0 <=>/'== 0,

ll/'+^la^imia+ll^lla. || fg f|a ̂  || f\\. \\ g ||a,

M|a=I, m|a=m.|[/-||a/br t^k,
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and

The proof is trivial and will be omitted.
Let A =/c[[Xi, ..., Xn]]. For any aeR^, we consider the set

Aa={feA[ | | f | |a<+(X) t .

Clearly Aa c Ap for (3 ̂  a.

COROLLARY. — Aa is a subalgebra of A, k [Xi, . . . , X^]cAa, ||.||a is
a norm on Aa, and f/ie maps Tr/Aa are continuous with respect to this norm.

For any aeR^, Aa will be considered as a normed Jc-algebra with
the canonical norm [|.| |a, and in particular as a topological Jc-algebra.

THEOREM 1.2.
i° The closed balls of A a are closed subsets of A for the weak topology.
2° Aa is complete (!).
3° If a, |3eR^" and (3<a, jfhen ^Ae canonical topology of A^ and f7ie

weak topology of A induce the same topology on any bounded set of Aa.

Proof.
i ° Let M be a closed ball in Aa with centre g e Aa and radius p (< + oo)

and let (fi)i^o be a sequence of elements fi^M, weakly convergent to
an element f e A. Let a,n = ^m{f\ a^ = ^m(fi) and bm == ^m(g\ Then

^^ I n1 7i 1 ^7/?! rt111!^ ^ r\/i 1 a,n -— o,n i a ̂ 4 . . . og» / t ^— p
wGN"

for all i ̂  o. Since lim a1^ == am for all m e N71, it follows that
;'

^ |a^—^|a^...a^^p
|m|<y

for all q > o, and therefore

l ] f——^ l | a= 2 l^——^l^"1...^1^
/neN"

that is f^M.
2° Let (fi)i^o be a Cauchy sequence in Aa. Since the canonical injec-

tion Aa-^ A is continuous for the weak topology of A, the sequence (fi)i^o

(1) The proof of completeness of A^ is due to C. FOIAS.
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is weakly Cauchy and consequently weakly convergent to an element
/'e A. Let £ > o. Then there exists an integer i'o(s) > o such that

[|/^-/-,[[^£

for all i ̂  i'o(£) and all p ̂  o. Since (f 1)1^0 is weakly convergent to f,
it follows from i° that

\\f-fi\\.^

for all i ̂  io (0. Also f==f,+(f— f,) e Aa.
3° We have only to prove that, if a bounded sequence (/Y)/^o in Aa

is weakly convergent to an /*eA, then j feAa and (f 1)1^0 converges to f
in Ap. The first assertion follows from i°. Further since (fi)i^o is
bounded, there exists a number p > o such that

I <4

w€N"

llfdla= ̂  l^j^r1...^1^?

for all i ̂  o. Hence, for p < a,

ii/--^iip= 2 i^-^ip-...^^.p 2 (^)""-(t:r;
/n^N71 w e N »

Let £ > o. It follows that there exists an integer q >^o such^that

2 1 n — n1 I fi7"! fl"^ ̂  £-I "w "m I Pi • • • P/z ^ r>I °.
|m|>y

for all i ̂  o. Since (fi) is weakly convergent to /, there existe an
integer i'o(£) > o such that

2 | n __ (^ \Q'rit i^mn ^ II u/^ "m I Pi • • •P/i ^=
|m l^y

for all f^ ioQ). Thus

ii/'-^-n?- 2 i^-^i^1---^'1^8
w€N"

for all i^io(i), which completes the proof of the theorem.
Since Aa is complete, any normally convergent series of elements

fi^Ay. is convergent in Aa and its sum f satisfies

ll^lla^HAHa;
;^o



CANONICAL TOPOLOGY. 133

moreover the sum of a convergent series in A a coincides with its weak
sum and with its m-adic sum. For instance, if f eAa and a,n== ^m(f),
the series V^ dmX'i11.. .X^'1 is normally convergent in Aa and its sum

mGN"
is/-.

COROLLARY 1. — Assume k locally compact. Then, for (3 < a, the
canonical injection Aa->A^ is compact (more precisely : any closed ball
of A a is a compact subset of Ap).

Proof. — Let M be a closed ball in /Va. By Theorem 1.2, i°, M is
closed in A for the weak topology. As k is locally compact, A is Montel,
consequently M is compact in A for the weak topology. Hence, by
Theorem 1.2, 3°, M is compact in Ap.

Let £ be a vector A-'space. A non-empty set McE is called abso-
lutely convex if, for any couple of elements f, g^M and any couple of
elements s, tek such that | s \ + 1 1 ^i, sf + tg^M. (Note that for
any absolutely convex set M c E, o e M.) A topological vector A-space E
is called a locally convex k-space if o€£ has a fundamental system of
absolutely convex neighbourhoods.

Locally convex A-spaces and continuous A-linear maps form an addi-
tive category; we shall denote it by ELG. Also, we shall denote by ^
the full subcategory of ELG formed by all spaces e EEC which are
metrizable complete, and by ^^ the full subcategory of ELC formed
by all Hausdorf! spaces eELC which are inductive limits in ELC of
sequences of spaces e^.

A topological A-algebra A is called locally convex if so is the sub-
jacent topological vector /c-space of A. Similarly, if A is a locally
convex /c-algebra, a topological A-module M is called locally convex if
the subjacent topological vector A-space of M is locally convex.

DEFINITION. — The set
-^\JA.

aeRy

is a subalgebra of A == k [[Xi, . . . , Xn]], is called the algebra of convergent
power series in the variables Xi, ...', Xn with coefficients in k, and is
denoted by k { Xi, . . . , Xn }' , also we set m = A n m and TT^ == n,n A.

If ^eA == k {X^ ..., Xn } , we define the (< convergence domain "
of f to be

Df== \J [x^^Xi <a,|.

aeR^
/eA.

Then Df is an open set in /c71, and when k is such that the discs of k are
connected, Df is also connected.
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DEFINITION. —The finest locally convex topology on A = k {Xi,..., Xn j
such that all canonical injections A a — ^ A are continuous is called the
canonical topology of A.

We already know that the canonical injections Aa->A are conti-
nuous, hence the canonical topology of A is finer as that induced by the
weak topology of A; in particular the canonical topology of A is
Hausdorff (2).

The canonical topology of A is compatible with the structure of
vector A-space of A, and

A = lim Aa
a

in ELC. It follows that a ^--linear map from A to a locally convex
Tc-space E is continuous if an only if all maps u |Aa are continuous.
By convexity reasons, for A = k { Xi, . . . , Xn } and F = k { Yi, . . . , ¥ / , { ,
the product topology of AxT coincides with the locally convex direct
sum topology, consequently

Axr== l im ( A a X T a )
—>

a

in ELC. It follows that the multiplication A x A —^ A is also conti-
nuous. Thus A is a locally convex k-algebra (for its canonical topology);
clearly the subalgebra k [Xi, ..., Xn] is a dense subset of A.

Unless otherwise stated, A will be considered as a locally convex
A-algebra with the canonical topology.

COROLLARY 2. — For any integer r ̂  o. A7' is a k-space e ̂ .

COROLLARY 3. — If £'e^, a k-linear map u : E ^ A is continuous
if and only if there exists an aeR^ such that u(£)cAa and such that
the induced map E —>- Aa is continuous.

Proof. — By Theoreme 1 (p. 268, in [2]).
From Corollary 3, it follows that a J^-linear map

u: k{X,, . . . , X n } ^ k { Y , , ... , Y ^ j

is continuous if and only if, for any a € R^, there exists (3 e R^ and c > o
such that

\\u(f)\\^c\\f\\.
for all feAa.

(2) It is easily seen that the canonical topology of A is strictly finer than the weak
topology of A (i. e. the topology induced on A by the weak topology of A). As a
matter of fact it will be proved (Corollary to Theorem 4.2) that the canonical topo-
logy of A is not metrizable.
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Remark. — If A is a local A-algebra with residue field w k, and if m
is the maximal ideal of A, then xem if and only if i —tx is invertible
in A for any tek. Hence if A and B are local /c-algebras with residue
field w k, then any k algebra homomorphism u: A -> B is local, i. e.
u (m) c n, where m and n are the maximal ideals of A and B.

COROLLARY 4. — Any homorphism of k-algebras

u: k[[X,, ...,X,]]-^[[Y,, ..., Y,]]

such that u(Xi) = g,ek { Yi, . . . , Yp } induces a continuous homo-
morphism

k{X,, ...,Xn}->k{Y,, ..., Yp\.

Proof. — Be the preceding remark, u is local and therefore o(^) > o.
Hence, if fek[[X,, .... X,]] and ^(/•) = a,n, then

"(ft = ̂  ̂  9T1 • • • 9'^ == f(g^ • • • > )̂
weN"

(here the second equality is a definition).
Assume now fek{ Xi, . . . , Xn} and let aeR^". Since o(^) > o,

there exists (3eR^ such that

l l ^ l l p ^ ^

for all i = i, . . . , n. It follows that the series ^ a^g7?^ • .^ is
mGN"

normally convergent in Ap and therefore

1 1 "(n 11^ ̂  iiam^1' • •^ 11^ 2 1 a w ia ? / l - • '^n = 1 1 ̂ i-
mGN" w€N"

COROLLARY 5. — The partial derivations in A = k {Xi, . . . , Xn } are
continuous. More precisely : for [3 < a and aZZ meN",

^ 1 / " 1 / ' ^^___ ________/]^_______
:1^... ox^ a — a7^... ̂  / _ ^ v1^1 ( , p, Y^ '/^Y'/"i ^)V/»M ^ —— r/"1! r/l^n / (^ \/"i+l / ft \ 7/^(4-1C^AI 1 . . .a^n'1 Up ^ i ' - . . ^ ^ / ^ / ' _ P i ^ . . . f i_i-^ ^

\ aj " \ a,J
w/iere m ! = mi !.. .mn !.

Proo/'. — For feA, we write f-^F if J ^ e R f X i , . . . , X ^ j and
17^(0 ̂  7r,,(F) for all meN^. Clearly f^ F implies || f||a ̂  || F ||a
for any aeR^, and

^ m i /'_ ^177
^x^^TT^x"1'" ' ̂ x;"1.. .^x"/"'
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Also f^— x y"^—x\ for ^Aa9(I-xl)...(I-x-)
\ a! / \ ^ I

and

1-^ ==1-^
a; 3 a;'

and the corollary follows.
By BOURBAKI, if G and G' are topological abelian groups, a conti-

nuous homomorphism u: G -> G' is called strict if the canonical map

__ J~\. / A \u: ——--^u(A)u-^o) v /

is a homeomorphism. For instance, if u has a left or a right inverse,
then u is strict. A continuous homomorphism of topological rings
(or algebras or modules) is called strict if it is strict for the subjacent
topological abelian groups.

COROLLARY 6. — Let A = k { Xi, .... X/,} and r an integer > o.
The A-linear map u: A7' -> k { Xi, . . . , X^+i j defined by

u(/o, ...,/.-O==^/\X-M
;=0

is continuous strict.
Proof.— Clearly u is continuous. Further let u : k { Xi,..., X/z+i { -> A/

be the map defined as follows. Any f^k { Xj, ..., X,^i { has a unique
expansion

f=^f.X^
i^Q

with f ;eA; then we set u(f) == (fo, ...,/*/-i). Clearly v is A-linear
continuous and uu == i\r,

From Corollary 6 it follows that, for n < p, the canonical injection
Z" ( Y Y ) ^ L. ( Y v )K ^ -A.I, . . ., -A.̂  t —>- K ( ^Vj, . . ., ^\p ^

is strict.

2. The preparation lemma.

In this paragraph we shall consider two examples of (( successive
approximations " for power series. We begin with the preparation
lemma.
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Assume n > o, and let s be an integer > o. We define the endo-
morphism u^ and Vs of A ==[[Xi, .. .,X^]] in the following way. Any
/eA has a unique expansion

f=2f<x';.
t=>»

with f,eA[[X,, .... X,,_,]]; we set
s—1

".(0-^x;, ^(f)-^xr.li^n

i=0 i^s

Clearly Us and Us are /c[[Xi, . . . , Xn-i]]-linear and in particular /c-linear.
Also, for any /•€ k [[X,, ..., Xn}},

f^u,(f)+X^Us(f)
and, for any aeR^",

||f||,=||^,(f)||,+a;,||i;,(f)[[a,
so that

||^(01|a^||f||a, 11^(0110^^-
'^/i

Thus u.s and ^ induce continuous endomorphisms of k { Xi, . . . , Xn !.
For any aeA-[[Xi, ..., X,,]] we define

( min (/Hi +... + rnn-i) if /'^ o,
GO(^) ==) ^H(/)T^O

( +00 if f==o.
Then

^(f)=+o) ^ f=o, ^(fg)=^(H+^(g)
and

^ (/'+ ̂ ) ̂  min (co (f), co ((/)).

Also, co(u,(/'))^co(/') and co(y,(/-)) ^co(/').
Let

a=={ / -eA co(f)>o}.

Then a is an ideal of A, acrfi, and clearly the a-adic topology of
k [[Xi, ..., Xn}] is Hausdorf! complete.

THEOREM 2.1 (The preparation lemma). — Let </eiti suc/i that
g(o,..., o,Xn)^o, and lets be the order of the series g(o, ..., o,X,;)eA'[[X^]].
For any f€k[[Xi, .... X,,]] y^re e.rf^s a unique 7 == 7/eA[[Xi, ..., Xn}]
such that
(i) ^(/_^)=o.
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Moreover the map f^ is k[[X,, . . . , Xn-,]]-linear and is continuous
for the weak, Hh-adic and a-adic topologies of A-[[Xi, ..., XJL

If geA == k {Xi, ..., Xn} then, for any /•eA, ^eA and the map
f—\f is continuous for the canonical topology of A (more precisely • there
exists a co final subset I , of R:- and for each aeJ^ a Ca>o such that
^/'eAa, y^eAa and \\ ̂  l l a^Ca [ I /•|[a).

Proof. — We write u and y instead of u, and y,. Then we have

9=u(g)+X^u(g)

with y(^) invertible and w(u(g)) > o. Let p = u(g) (u(g))-\ Then it
is immediate that a ^ek[[X,, . . . , X,]] satisfies the equation (i) if and
only if h = ^ u(g) satisfies the equation

(2) h==u(f)—u(ph).

This reduction of (i) to (2) is due to ZARISKI and SAMUEL ([5], p. i4o).
We define the sequence (h^ by the conditions

ho==o,
hi+i=u(f)—u(ph,).

Since co(p)>o, we have

&) (hi^ — hi) > co (hi — hi-,)

and so, by induction on i,

co(/^—^)^i+co(f).

Thus the sequence (hi)^o is Cauchy and therefore convergent for the
a-adic topology of k[[X,, . . . , X,]] and clearly h == lim/^ satisfies (2).
If h' is another solution of (2), then

^(h'—h)^i

for any i ̂  o, whence h = h. Thus the solution h = hf of the equa-
tion (2) exists and is unique. Unicity of hf implies that the map f->hf
is /c[[Xi, . . . , X^_i]]-linear (and in particular /c-linear). Moreover,
we have

co(/0^(y(0)^o)(/1),

so that the map f-> hf is continuous for the a-adic topology of
k[[X,, ...,X^]. Also, for any meN", 7^ (A) == n^(h,) for a suffi-
ciently large i, whence the map f->hf is weakly continuous. But the
requirement A: non-discrete does not play any role in the proof, and
since for k discrete the weak topology coincides with the itt-adic topo-
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logy, the map f->hf is continuous also for the ifi-adic topology
of k[[X^, . . . , Xn]]. Thus \f= hf(u(g))~1 has the properties required in
the first part of the theorem.

Assume now geA = k { Xi, . . . , Xn j, and let Ig be the set of
all aeR^1 such that g and (i^y-^eAa and such that

l!PHa<^.

By the definition of p and since u(g) is a polynomial in Xn with coeffi-
cients in the maximal ideal of A ' jXi , ..., Xn}, it is clear that Ig is
cofinal with R^'. Let a e J^, and let

0= Plla

Then 6<i , and, given /'eAa, it follows from the inductive definition
of hi that all h;eAa and that

ll^illa^^+Ollfclla.

Hence, by induction on i,
II/'II.\\h |

'-(I-QK

for all f. Thus, the sequence (hi)^o is bounded in A a, and is a-convergent
(therefore also weakly convergent). By Theorem 1.2, (^)^o is conver-
gent to h == hf in A a, andii'./ii.̂ d -̂
As \/ = hf(u(g))~\ the theorem is completely proved.

Remark. — For any f e k { X ^ , ..., Xn} and x^Df, we define

/•(rc)= ̂  ̂ ^...^.
^GN"

Assume A- = C, and let D be a closed polydisc centred at o in C".
If DcDj, we define

|]f||z,=max[/^)|.
x^D

Cauchy's inequalities and the maximum principle yield

II u(f) \\^s || f\\n and [| u(f) \\^ s-^i- [| f\\^
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Thus in the above proof we may use [|.||.D instead of |[.||a. Also, by
means of an exhaustion with closed polydiscs, we may go on to open
polydiscs. We then obtain the following theorem of H. CARTAN [1] :

There exist a fundamental system of open polydiscs D (with centre o
in C^) and for each such aD a CD > o with the property that if f is holo'
morphic on D then ^/ is holomorphic on D and

sup tj (x) \ ̂ _ CD sup [ f(x) [.
x^D XQ.D

Next we shall consider another example of <( successive approxi-
mations " for power series.

Let A = k[[X,, . . . , X.]]. For /•= (/•„ . . . , fn)e^1, we define

<)(/•)= mm o(f0.

If h, f^A11 and if o(f)> o, we set
h(f)=(h^ ...,/,), ...,/^, ...,/,)).

THEOREM 2.2. — Let g, AeA^ such that o(g)>o and o(h)>i.
Then there exists a unique f eA^ such that

(o(0>o,
\f-9+h(f).

(3)

Proof. — Since o(h) > i, there exists a n x n-matrix M(X, Y) with
elements M^(X, Y) in the maximal ideal of /c[[Xi, ..., Xn, Yi, . . . , Yn]]
such that

h(X)—h(Y)==(X—Y)M(X, Y)

with a matrix product in the right side; in particular, we have
h(X)=XM(X,o).

We define the sequence (f(v))^o inductively by the conditions
f(o) = 0

/'(V+D = g + h(fw)'
Then

/ ' (V+1)———/' (V)= (/ '(V)———f(v_l))M(f(v), /'(V-l))

and so
O(/'(v+i)——f(v)) >o(/*(v)——/'(v-i))

because we have, by induction on v,
o(M(f^,f^))>o.

Thus (/'(v))^o is convergent for the fh-adic topology of A^, necessarily
to a solution fe^ of (3).
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If f is another solution of (3), then

o(f'-/')>o(r--/')

so that o(f' — / • ) = + oo, i. e. f == f.
Next suppose that the component series of g and h are convergent.

Then we may choose the series Mi/(X, Y) to be also convergent.
We define

|[ g ||a = max [ | g, ||a ' and || M(X, o) ||a = max n || M,y(X, o) ||a.
; iJ

Let aeR^ such that
.||M(X,o)[|a=9<i, -

and let p ̂  a such that

^1-^nnna,
i—O — ,

Then it is easily seen, by induction on v, that

11/ ' (V)11^

for all ^ ̂  o. (Indeed, if \\f^ ||p^£, then, by the proof of Corollary 4
to Theorem 1.2, we have

II M(f^ o) Hp^ || M(X, o) ||̂  || M(X, o) ||a = 0,

whence, by the inductive definition of f^+i), || ^v+i) | |p^£(i—&) + sO == s).
Thus the sequence (/*(v))v^o is bounded in A^. Hence, again by
Theorem 1.2, (/'(v))v^o is convergent to /* in A| and

imi^=-^
Q. E. D.

We remark that any system of „ implicit functions ,, can be easily
reduced to the equation (3).

3. Analytic algebras and analytic modules.

DEFINITION. — An analytic algebra over A- is a /c-algebra A such that
i° A ̂  o, and
2° there exists a A-algebra epimorphism c p : k { Xi, . . . , Xn } -> A.
Any analytic algebra (over k) is local and has residue field w k.

It follows that if A and B are analytic algebras (over k), then any
A-algebra homomorphism u : A -> B is local.

BULL. SOC. MATH. — T. 93, FASC. 2. 10
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LEMMA 3.1. — Let A and B be analytic algebras, u: A -> B a homo-
morphism of k-algebras, and cp : A -> A, ^ : F -> B epimorphisms of
k-algebras, where A = k { X,, . . . , Xn }, T = k { Yi, ..., Yp { . Then
there exists a homomorphism of k-algebras u : A .-> F such that the following
diagram is commutative

A—>r
? I 1 ^^ ,̂
A—^B

Proo/*. — Since u is local, the elements u (cp (X,)) belong to the maximal
ideal of B, hence there exist elements gi in the maximal ideal of r
such that

^)=u(9(X,)).

Let u : A -> r be the homomorphism of /c-algebras such that u(Xi) == ^.
Then clearly the restrictions of u^ and ^u to A:[Xi, . . . , X^] are equal.
Since k[X,, ..., Xn] is dense in A = { Xi, . . . , X/,} for the m-adic
topology, while B is HausdorfT for its (maximal ideal)-adic topology,
we have UQ == ^u,

Q. E. D.

Let A be an analytic algebra over k and cp : A -> A a /c-algebra epi-
morphism, where A = A: { Xi, . . . , Xn j. We consider the quotient
topology of A by cp, that is the finest topology on A for which cp is
continuous. This topology is compatible with the A-algebra structure
of A, and moreover <p is strict. Also this topology is independent of
the choice of cp. Indeed, let ^ :T ->A be another Tc-algebra epimor-
phism, where r = k { Yi, . . . , Yp { . By Lemma 3.1, there exists a
A-algebra homomorphism u: A -> T such that cp = ^y. By Corollary 4
to Theorem 1.2, v is continuous, hence cp strict implies ^ strict, etc.

DEFINITION. — Let A be an analytic algebra and cp : A -> A a A--algebra
epimorphism, where A = A: { Xi, . . . , Xn j. The quotient topology
of A by 9 (which is independent of the choice of <p) is called the canonical
topology of A.

Any analytic algebra A will be considered as a topological A-algebra
for its canonical topology; and clearly any analytic algebra is locally
convex.

COROLLARY. — Let A and B be analytic algebras over k. Any k-algebra
homomorphism u: A -> B is continuous (for the canonical topologies of A
and B).

Proof. —- With the notations of Lemma 3 . 1 , u c p = = ^ y i s continuous
(since ^ and v are continuous), hence u is continuous because cp is strict.
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DEFINITION. — Let A be an analytic algebra. An A-module M is
said to be an analytic module over A if it is finite over A, i. e. if there
exists an A-module epimorphism.

a : AP->M
with p e N.

Any submodule of an analytic module over A is analytic over A,
and any quotient of an analytic module over A is analytic over A;
also any finite direct sum (or direct product) of analytic modules over A
is analytic over A. For A ==- k, the analytic modules over A are exactly
the vector A-spaces of finite dimension.

Let A be an analytic algebra, M an analytic module over A
and a :AP->M an A-module epimorphism. It is clear that for any
topology on M compatible with the A-module structure of M, a is
continuous. Thus the quotient topology of M by a is the finest topo-
logy on M compatible with its A-module structure, hence it is inde-
pendent of the choice of a. Clearly this topology is locally convex.

DEFINITION. — Let A be an analytic algebra, M an analytic module
over A, and a :A^->M an A-module epimorphism. The quotient
topology of M by a (which is independent of the choice of a) is called
the canonical topology of M,

For instance, the canonical topology of A^ is the product topology.
For A == k, any analytic module M over A is a vector Tc-space of finite
dimension and the canonical topology of M is the unique Hausdorff
topology compatible with the structure of vector A:-space of M.

Any analytic module M over an analytic algebra A will be considered
as a locally convex A-module with its canonical topology.

LEMMA 3.2.
a. Let M and N be analytic modules over A; then any A-module homo-

morphism u : M -> N is continuous (for the canonical topologies of M
and N).

b. If L is any submodule of A7' then L is analytic over A and is a
k-space e Q^ (for its canonical topology).

Proof. — To prove a, let a : AP->M be an A-module epimorphism.
Then a is continuous strict and u a is continuous, hence u is continuous.

To prove b, let i : L -> A be the canonical injection of L. By a, i is
continuous. Since A7 is Hausdorff, L is Hausdorff, hence L, being a
quotient of a A^, is a A-space e ̂  by Corollary 2 to Theorem 1.2.

LEMMA 3.3. — Let A be an analytic algebra over k and c p : A -> A a
k-algebra epimorphism, where A = k ( Xi, . . . , Xn }. Then any analytic
A-module M is also an analytic A-module with AX == ^(k)x for ^eA
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and x^M; moreover the vector k-space structures and the canonical topo-
logies of M as an analytic A-module and as an analytic A-module are
identical.

Proof. — Let a : AP-^M be an A-module epimorphism. The compo-
site map

^^lAr-^M

is continuous strict both for the canonical topology of M as an analytic
A-module and for the canonical topology of M as an analytic
A-module, etc.

DEFINITION. — Let e be an additive category. A sequence

S : O-^E'-^E^E'^O

in e is said to be split or to split if there exist morphisms p : E -> E'
and j : E" -> E such that pi = IE', pj = o, qi = o, qj = IE" and
IP +J^ == I^ i. e. E is a direct sum of E' and E" with canonical injec-
tions i, j and canonical projections p, ^.

If 5 splits, obviously i = Kerg and q = Cokeri. Conversely if
i = Ker<7 and ^ = Coken, the following statements on S are equivalents :

i° S splits;
2° i has a left inverse;
3° g has a right inverse.
In fact, assume 2° and let p : E -> E ' such that pi = IE'. Then

(IE— ip)i == i — i (pi) = o. Since q = Cokeri, qi = o and there exists
] : E " ->E such that IE— ip =jq' It follows that

qjq =q(iE—ip)=q— (qi)p = q,

hence qj = IE'. Also

PJq = P 0 — ^P) = P — (POP = o>

hence pj = o. Thus 2° ==> i° Also, if we have a j : E " -> E such that
qj = i^,, then we see that there exists p : E->E' such that
^—Jq^ ip, etc.

LEMMA 3.4. — Lff ^ = ̂  and suppose S is algebraically exact.
Then the following statements on S are equivalent :

(i) 5" splits;
(ii) i has a left inverse in €;
(in) q has a right inverse in C.
Proof. — In the situation of (ii), q is strict by Banach's Theorem,

hence jq == IE— ip continuous implies j continuous. Also, in the
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situation of (iii), ip = IE— jq continuous implies p continuous by the
Closed Graph Theorem; in fact, if \imXn== o in E and \imp(Xn) == x'

n n
in E ' , then

i(x') = \mi(p(Xn)) = lim(ip) (Xn) == (ip) (o) = o,
n n

hence xf = o.

THEOREM 3.1. — Any algebraically exact sequence 0->M'-^M->M"->0
of analytic modules over an analytic algebra A splits in the category .̂

Proof. — By Lemma 3.3, it is enough to prove the theorem in the
case A = A = k { Xi, ..., Xn }. In this case we shall use induction
on n. For n = o, M, M' and M" are vector ^-spaces of finite dimension,
and the theorem is trivially true.

Next let n > o, let A' == k { Xi, . . . , X^,i !, and assume, by the
induction hypothesis, that the theorem is true for the analytic modules
over A'. We shall then prove that the theorem is true for the analytic
modules over A.

STEP 1. — For any ideal a of A, there exists a /c-linear continuous
map y : A — ^ a such that v a === i^ (a is an analytic module over A
and has the canonical topology).

The case a = { o } is trivial, hence we may assume a 7^ { o { Also,
it suffices to prove the proposition for r(a) instead of a, where T is any
automorphism of A (by Corollary 4 to Theorem 1.2, T is then topolo-
gical). Hence we may suppose that a contains a series g such that
g(o, . . . , o, Xn) 7^ o. Let s be the order of the series

g(o, ...,o,X.)e/c[[X.]],

and let H be the set of the elements h e A which are polynomials in X/;
of degree < s. By the preparation lemma, for any /'eA,

f-^f)g+W\
where a : A -> A and (3 : A —^ A are A'-linear continuous and (3 (A) c H.
Clearly H is an analytic module over A', canonically isomorphic to A^,
and (3 (a) is a submodule of H. By the induction hypothesis, there
exists a continuous /c-linear map

u ' : H-^^(a)

such that v ' \ (3 (a) == I R / ^ ) . We then define the map v : A —> a by

^n=^f)9+^(w^
[Since (3(a)ca, u(f)ea for all feA.] Clearly u is A-linear and clearly
i y : A — ^ A is continuous, where i : a — ^ A is the canonical injection.
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We know that A and a are Tc-spaces e ̂ ^. Thus, by the Closed Graph
Theorem, u is continuous. Finally, if fea, (3(/')e|3(a), hence

and therefore
^(D-PO)

^n^^ng+^n-f,
Q. E. D.

STEP 2. — For any submodule L of A7', there exists a continuous
^-linear map u.' : A/ ->L such that u'(f) == f when /'€ L, i. e. u' u == I L
where u :L-^A r is the canonical injection.

In order to prove this proposition we shall make induction on r.
We already know, by Step 1, that the proposition is true for r = = i .
Next let r > i. We assume, by the induction hypothesis, that the
proposition is true for r — i , and we shall prove it for r.

Let
p j

At^A^A7-1

i ff

be the canonical representation of A7' as direct sum of A and A7-1. Let
a == i~^(L) and N == q{L), let v : a ->A and w : N->A7-1 be the cano-
nical injections, and let a : a-^L and ^ : L->N be the maps induced
by i and q. Then a, L, N are analytic modules over A, and we know
by Lemma 3.2 they are A-spaces €^. We have a commutative
diagram with (algebraically) exact rows

a - ^ , ,o -> a -> L -> N -^o

o-^A-^A^A7-1-

Since the proposition is true for A and A/~1 there exist continuous
A'-linear maps

v ' : A -> a and w' : A7-1 -> N

such that v'v==i^ and M / W = = I A . From qu == w^ it follows that
w'qu == w'w^ = 4^ Let 9 == u ' p u . Then

cpa = v' plica. == y'pfy == y^y == i^,

hence 9 is a continuous Tc-linear left inverse of a. By Lemma 3.4,
the top row splits in the category x3^, hence there exists a continuous
A-linear map (3 : N—>L such that

acp + (3d^ = i^..
We define

u' = ai/p 4- (SM/^;



CONONICAL TOPOLOGY. 147

then u' is A-linear continuous and

u' u= y.v'pu + ^w' qu == acp-[- ^== I L ,
Q. E. D.

From Step 2 it easily follows that any submodule of A7 is closed,
hence any analytic module is Hausdorff and therefore is a k-space e G^\
in particular this is true for any analytic algebra.

STEP 3. — Let 0->M'U>M^M"->0 be an algebraically exact
sequence of analytic modules over A, and let a : A^-^M be a A-module
epimorphism. By Step 2 and Lemma 3.4, ya has a continuous /c-linear
right inverse, say s, hence v has a continuous A-linear right inverse
namely as. By Lemma 3.4, the sequence splits and the proof is
complete.

COROLLARY 1. — Let M and N be analytic modules over an analytic
algebra A. Then any A-module homomorphism u: M —^ N is conti-
nuous strict.

Proof. — We already know that u is continuous. Further we have
u == (3 a with a an epimorphism and (3 a monomorphism (of analytic
modules over A). Then a and (3 are continuous and, by Theorem 3.1,
a has a continuous A-linear right inverse, and (3 has a continuous A-linear
left inverse; hence a and (3 are strict, etc.

COROLLARY 2. — Any analytic algebra and any analytic module are
k-spaces e ̂ .

COROLLARY 3. — Any submodule of an analytic module M is a closed
subset of M (3).

4. Bounded sets.

DEFINITION. — We define f^g in R { X i , . . . , X,,} if and only if
^m (H ^=7r- (9) for all m e N".

Clearly, this is an order relation on the R-algebra R {Xi, ..., Xn} and
makes it an ordered R-algebra, i. e. (f ̂  g ' and f^ g " ) => f 4- f" ̂  g ' 4- g '
and (f^g and h^o)=>hf^hg, in particular (f^=g and ^ ̂  o
inA-)=>y^^.

(3) Prof. H. CARTAN kindly communicated me the following :
« Tout Ie paragraphe 3 pourrait aussi etre traite pour la topologie faible (a partir

de la topologie faible de A, on defmit la topologie faible pour tout module de type
fini sur une /:-algebre analytique A). On a les memes resultats, et Foil en deduit que
la topologie faible d'un module analytique est separee. En particulier, tout ideal
de A est ferme pour la topologie faible; c'est laun resultat tres utile, etplus interessant
que Ie resultat analogue pour la topologie canonique. »
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DEFINITION. — Let A =k{X,, . . . , X ^ j . We define the map

^: A--^R{X, , . . . Xn}
by setting

^(0= 2 l^l^1 • • • x ^
m€N"

for any f= ^ c^X7^ ... X^./^^l . • • ^n •

mGN"

It will be convenient sometimes to use the notation [ f\ instead of ^(/).

LEMMA 4.1. — The map <D Aas /Tie following properties :
i<> <D(f)^o, and ^(f) = o <=»/*= o;
2° ^(/'+^)^^(0+^(^;
30 ^(/^^(O^);
^o^(tf)=\t < X > ( / ' ) f o r ^ A ' , a n d € » ( i ) = i ;
^ II^WIIa^H/'lla.

The proof is trivial and will be omitted.

DEFINITION. — A subset D of A is called a disc (centred at oeA) if
i° D is absolutely convex, and
2° (/*€Dand ^(g)^^(f))=>gfED.
Clearly any ball in a Aa is a disc in A.

COROLLARY. — If D is a disc in R {Xi , . . . , X,,}, then €>-'(D) is a
disc in A and f + ̂ -l(D)c^-i(\f\ + D) for any /'eA.

NOTATION. — We shall denote by Top the category of all topological
spaces and continuous maps.

THEOREM 4.1. — For k locally compact, the following statements hold :
1° A = Urn Aa in Top, i. e. a set Me A 15 open (closed) in A if and

a

only if MnAa is open (closed) in Aa for all aeR*".
2° The discs D (centred at o) such that oeD form a fundamental

system of neighbourhoods of o in A.
3° The sets ^(V) with V a neighbourhood of o in R { X i , . . . , Xn}

form a fundamental system of neighbourhoods of o in A.
The proof will be preceded by some lemmas.

LEMMA 4.2. — Let k == R or k = C. Then ifD1 and D" are disc in A,
so is D = D' + D " .
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proof. — We begin with a remark : if a, b, c e k (where k == R or /c == C)
and if \c\^\a\+\b , then there exist x, y e k such that [ .r [ ̂  | a |,
[ y ^\b\ and re 4- V === c-

Indeed, let c = \ c \ e^. Since \c\^ a\+\b\, we may write
] c | == £ + ^ with o ̂  s ̂  | a [ and o ̂  ^ ̂  | & . We define a; = £ e^0

and y = ̂  e^0. Then \x\^\a\, \y\^=\b\ and .r + y = c. Moreover,
if c is real, x and y are real.

Now let f ' ^ D ' and feD", and let feA such that ̂ (f)^(f' + D-
Then e»(f)^(D + ̂ (D. hence |7r,,(f) ^|7r,,(r)|+|^(f)| for
all m e N". By the preceding remark, there exist &„„ b"^ e A: such that
i ̂  i ̂  i ̂ .(D i» ^ i ̂  i ̂ -(r) iand ̂ (o = 6- + ̂ - Let

g ' = ^ ^X^...X;^, ^= ^ ^X^...X^.

"^ € N" m € N"

Clearly ^, g " e A, €»(^) ̂  €>(D, ^(^//) ̂  ̂ (D and f = g 1 + g " . As D'
and IV are discs, g ' ^ D ' and g ' 1 e.D", whence feD.

Q. E. D.
LEMMA 4.3. — For k locally compact and A == k j Xi, . . . , X ^ ( ,

Ze^ T be a topological space, U an open set in T and ^ : T -> A a map
such that

i° W is continuous;
2° /or any a e R*" and any compact set M c Aa, the set W-1 (M) is compact;
30 iF-i(o)c[7.
Then there exists a neighbourhood D of o in A such that W-^D^cU.

Moreover, for k = R or k == C, we may choose D to be a disc.

Proof. — For any integer i^i, let a(f) = (^ ' • . ? ̂  and let

A; = Aa(z). Since /c is locally compact, each canonical injection A,-^ A,+i
is compact (by Corollary 1 to Theorem 1.2); also

A = = l i m A ,
—>-;

in EEC. We shall construct, inductively, a sequence (D,)^i such that :
i o A = { o j ;
2° for i > i, Di is an absolutely convex bounded open neighbourhood

of o in A;,
3° AcA+i, and
^o W-^D^c U, where A is the closure of A in A;+i.
In fact, let p > i and assume the construction made for i < p.

Then Dp-i is compact in Ap and

W-^D^cU.
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Dp-1 = 0 <^-1 + N)
N

for N in the set of all neighbourhoods of o in A^+i. Hence

^-1 (Dp_,) == ̂  W-i (D,_, + N).
N

But, for N bounded, Dp^+N is relatively compact in A^>, hence
^''C^-i + N) is relatively compact in T. It follows that there exists
an N == Wp+, such that

^(Dp^+Wp^cU.

Let V^+i be a neighbourhood of o in A^+i such that

V/^+i + Vp+i c W/,+1,

let B^, be a bounded open ball centred at o in Ap such that Bp c C/,,+i
and let

Dp=Dp^+Bp.

Then £)^ is an absolutely convex bounded open neighbourhood of o in Ap,

2^-i c Dp, and Dp c Dp^ +Bp+ Vp^ c Dp,, + Wp^,

hence
W-^Dp)cU.

This completes the induction.

Let D = \^J Di. Then D is an absolutely convex neighbourhood of o
;^i

in A and

W-^^^^Jw-^D^cU.

Moreover, for k = R or k = C, each £^==£^_i+j^ is a disc by
Lemma 4.2, hence D is a disc, and the proof of Lemma 4.3 is complete.

Remark. — Obviously, in Lemma 4.3, we may replace A with any
A = hm Ai (in ELC), where (A^^i is an increasing sequence of normed

->
i

/c-spaces with compact canonical injections A, -> A,+i. Then Lemma 4.3
can be interpreted as a generalisation of Teorema 1 of SEBASTI^O E SILVA
in [4].
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Proof of Theorem 4.1. — Let T^ the finest topology on A for which
all canonical injections Aa->A are continuous, and let T be the topo-
logical space A with the topology T .̂ ; then T == lim Aa in Top. Clearly

a
the map W = IA satisfies conditions i° and 2° of Lemma 4.3 and
W-^o) == { o } . From Lemma 4.3 it follows that any neighbourhood
of o in T contains a neighbourhood of o in A (for the canonical topology),
which proves i°.

Also from Lemma 4.3 it follows that for k == R or k == C, the discs D
centred at o in A such that o e D form a fundamental system of neigh-
bourhoods of o.

Before ending the proof of Theorem 4.1 we shall establish the following.

LEMMA 4.4. — For k arbitrary, the map €> : A -^R jXi, . . . , Xn} is
continuous. When k is locally compact, for any aeR*7' and any compact
set McR { X i , . . . , X,,ja, the set ^(M) is compact.

Proof. — Let D be a disc in RiX, , .... X,j. Then ^(D) is a
disc in A, in particular ^(D) is absolutely convex. For any a we
have a commutative diagram

Aa -> A

^a[ ^

R { X , , . . . , X , } a - ^ - R S X i , . . . , X . j

with <Da continuous at o (since C»a is induced by ̂  and since |[ <D (f) ||a = || f ||a).
It follows that, for any a, ^-^(I^nAa is a neighbourhood of o in Aa.
Hence ^(D) is a neighbourhood of o in A (for the canonical topology).
Since the discs D centred at o in R { X i , . . . , X n } such that oeD
form a fundamental system of neighbourhoods of o, and by Corollary
to Lemma 4.1, we conclude that <I> is continuous.

Now assume k locally compact. If M is a compact set in
R { Xi, . . . , X,,ia, then M is bounded in R ( Xi, . . . , X,, ja, hence €>-1 (M)
is bounded in Aa (since ||^(f) ||a = || /'||a) and consequently relatively
compact in A (by Corollary 1 to Theorem 1.2). As M is also closed
in R { Xi, . . . , X/,; and C> continuous, <t>-1 (M) is closed in A. Thus <t>-1 (M)
is compact in A, which completes the proof of Lemma 4.4.

We now return to the proof of Theorem 4.1. Let T == A and W == €>.
By Lemma 4.4, C> satisfies conditions i° and 2° of Lemma 4.3 and
<|>-i(o) = ( o ( . From Lemma 4.3 it follows that any neighbourhood
of o in A contains a set ^^(V) with V a neighbourhood of o in
R jXi, . . . , Xn}. This proves 3°. Since for V disc, ^D-^V) is a disc,
we see that 2° is also true. Thus Theorem 4.1 is completely proved.
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COROLLARY. — For k locally compact, the following statements hold :
a. For any bounded set Me A, there exists an a such that McAa and M

is bounded in Aa.
b. For any convergent sequence a- in A, there exists an a such that o- 15

(< contained ff in Aa and is convergent in Aa.
c. A is Montel (in particular : quasi-complete).

Proof. — Only the first statement needs to be proved. Suppose
the contrary would hold for some bounded set Me A. Let t^k such
that o < 1 1 < i. Then there exists a sequence of elements fi € M
such that

||^|[a(.)>i and i^i^i^j io r i ^ j .

Let N be the set { t f i , t^f^, . . . j. Since M is bounded in A,

lim t1 fi == o,

hence N is not closed in A. However it is easily seen that each set N r\ A^-
is closed in A, which is a contradiction by Theorem 4.1.

Remark. — From the preceding Corollary and from Cauchy's inequa-
lities it follows that, for k == C, a sequence of elements fi: € C { Xi, . . . , Xn}
is convergent if and only if there exists a closed polydisc D centred at o

in C^ such that D c f^\ D^ and such that the sequence of functions fi(x)
i

is uniformly convergent on D.
We shall now extend the preceeding corollary to the general case :

THEOREM 4.2 (''). — For k arbitrary, the following statements hold :
a. For any bounded set M c A, there exists an a such that M c Aa and M

is bounded in Aa.
b. For any convergent sequence a- in A, there exists an a such that a- is

< ( contained ? ? in Aa and is convergent in Aa.
c. A is quasi-complete.
Proof. — Let Me A be bounded. From Lemma 4.4 it follows

that C> (M) is bounded in R j Xi, . . . , Xn;. By Corollary to Theorem 4.1,
there exist a and c > o such that

|l/11a=|W)^c for all /€M.

Also any Cauchy sequence in A is bounded and weakly Cauchy (therefore
weakly convergent), etc.

(4) The idea of using the map 4> to extend Corollary of Theorem 4.1 to the general
case and the proof of Theorem 4.2 are due to C. FOIAS.
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COROLLARY. — A is not metrizable.
Proof (°). — Assume A would be metrizable. Then A e S being

quasi-complete. By Corollary 1.3, for E == A and u = IA» A == Aa
for some a, which is a contradiction (as is easily seen).

Remark. — Since the discs D centred at o in R { X i , . . . , Xn} such
that oeD form a fundamental system of neighbourhood of o, it is
easily seen that the sets ^-^(Y) with V a neighbourhood of o in
R j X i , . . . , X n j form a fundamental system of neighbourhoods of o
in A for a locally convex topology T$ on A, compatible with the struc-
ture of A-algebra of A. For k locally compact, we know, by Theorem 4.1,
that T$ = T^Q = T.F , where T^^ is the canonical topology of A. In the
general case we have

^^ELC^ ̂ op'

It is also easily seen that the bounded sets in A for the topology T$ are
the same with those for the canonical topology ^LC- ^le q^^ion,
if T$ = T^^ or if T^^ = T.p in the general case, remains open.
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