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REMARKS ON A PROBLEM
IN PRIMARY ABELIAN GROUPS ;

THOMAS J. HEAD
(Ames, Iowa).

1. All groups considered in this note are assumed to be p-primary
abelian groups. If A is a subgroup of G then A will denote the closure
of A in the usual topology of G ([2], page j i / j ) . The -closure of a subgroup
is a subgroup, but the closure of a pure subgroup need not be pure.
It is a consequence of lemma 20 of [3] that if G is a closed p-group (for
definition see [2], page ii4) then the closure of each pure subgroup of G
is pure.

PROBLEM. — If G is a primary abelian group without elements of
infinite height in which the closure of each pure subgroup is pure does
it follow that G is a closed p-group ?

We do not know the answer to this question, but we can give an
affirmitive answer in the case of direct sums of cyclic groups :

THEOREM. — If G is a direct sum of cyclic p-groups and the closure
of each pure subgroup of G is pure in G then G is a bounded p-group.

An outline of the proof of this theorem is given in paragraph 3 below.

2. The relation of the problem to minimal pure embeddings. —
Following B. CHARLES [I], when a subgroup S of a group G is contained
in a pure subgroup P of G which has the property that no proper pure
subgroup of P contains S we say that P is minimal pure containing S.
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When such a P exists we say that S has a minimal pure embedding in G.
We will denote the subgroup of elements of infinite height in a group
G by G1.

In the proofs below we use the following two observations :

If A is a subgroup of G then A is that subgroup of G containing A for
which A/A == (G/A)1. If a subgroup S of a group G is contained in
G1 and if P is minimal pure containing S then P is divisible.

The latter observation follows from the fact that is P were not divisible
P would contain a finite cyclic direct summand j x } and if P = { x } ® C
then S would be contained in C where C, being a direct summand of P,
would be pure in G.

For a subgroup S of G we denote by S ' the subgroup of G containing
<S for which S^S is the maximal divisible subgroup of G/5'.

PROPOSITION. — Let P be a pure subgroup of a primary abelian
group G. Let H be a subgroup of G for which PcHcP. Then H
has a minimal pure embedding in G if and only if H c P ' .

Proof. — Suppose Pi is minimal pure containing H. Then Pi/P
s minimal pure containing HfP in G/P. Since

^/PcP/P=(G/P)1,

Pi I P is a divisible subgroup of G/P. Then Pi c P' and H c P'. Conversely,
if H c P ' ^ then Hf? is contained in the maximal divisible subgroup of
G/P. Then there exists a subgroup Pi of G containing P such that
Pi/P is minimal divisible containing HjP in G/P. Then Pi is minimal
pure containing H in G.

It has been suggested ([I], page 224) that if G is a primary abelian
group without elements of infinite height and S is a subgroup of G which
s the union of an ascending chain of discrete subgroups of G then S

has a minimal pure embedding in G. The proposition and theorem
above are sufficient to show that this is not true even if the discrete
subgroups are finite :

Let G be a countable unbounded direct sum of cyclic jo-groups. Let
P be a pure subgroup of G for which P is not pure. P is the union of
an ascending chain of finite (hence discrete) subgroups of G. Since P'
is pure, P ̂  P'. Consequently P is not contained in any subgroup
of G which is minimal pure containing P.

This same example is a counter-example to part 2 of theorem 6 of [1]
because P is a pure subgroup of G which is dense in P and yet P has no
minimal pure embedding in G. Along this line we have :
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COROLLARY. — For a primary abelian group G the following two
conditions are equivalent :

(1) Each subgroup H of G that contains a subgroup P which is
pure in G and dense in H (relative to the topology of G) has a minimal
pure embedding in G.

(2) For each pure subgroup P of G, P is pure in G.

Proof. — Assume (i) and let P be pure in G. Then P has a minimal
pure embedding in G. By the proposition P == P ' and P is pure in G.

Assume (2) and let H be a subgroup of G which contains a subgroup
P which is pure in G and dense in H. We have PC He P. Since P
is pure in G it follows from the proposition that P == P'. The propo-
sition then gives the conclusion that H has a minimal pure embedding
in G.

3. Outline of the proof of the theorem stated in paragraph 1. —

It is sufficient to show that if G ==VZ(p^) where i (n) is a strictly

increasing sequence of positive integers, 1(1)^2, and Z(pi{n}) is a cyclic
group of order p1^ then G contains a pure subgroup P for which P is not
pure. For each positive integer n let g (n) be a generator of Z (p1^).
Then it may be verified that the following sequence of elements of G is a
linearly independent set and that the subgroup, P, generated by this
set is pure in G :

s(n) == g(^n — i) + p1^-^'1-^ g(in) + p^+^-^-^g^n + i),
( i^n<oo).

Let
rr=p^)-^(i).

Then x^P since modulo P we have :

x==p1^-1 ̂ (i)^-—?^1^)^.. .^(—lYp^^-^g^n + i )^ . . . .

Let y be any element of G for which p^)-' y = x. There is an integer
N such that the component of y in Z (p'^) is different from o and the
component of y in Z (p1^) is o for each n > N. By proceeding from
the fact the component of y in Z (p'^) is the unique component of y
which is not annihilated by p'^"1, it can be verified that the neighborhood
y + p ^ 2 G of y is disjoint from P. Then y^P and the equation
p;(i)-i^ ̂  ̂  which has the solution z == g (i) in G, is not solvable for
z in P. Thus P is not pure in G.



112 T. J. HEAD.

REFERENCES.

[1] CHARLES (Bernard). — Etude sur les sous-groupes d'un groupe abelien, Bull.
Soc. math. France, t. 88, 1960, p. 217-227.

[2] FUCHS (Laszlo). — Abelian groups. Budapest, Hungarian Academy of Sciences, 1958.
[3] KAPLANSKY (Irving). — Infinite abelian groups. Ann Arbor, University of Michigan

Press, 1954 {University of Michigan Publications in Mathematics, 2).

(Manuscrit recu Ie 16 septembre 1962.)

Thomas J. HEAD,
Iowa State University,

Ames, Iowa (Etats-Unis).


