BULLETIN DE LA S. M. F.

JOHN M. IRWIN ELBERT A. WALKER **On isotype subgroups of abelian groups**

Bulletin de la S. M. F., tome 89 (1961), p. 451-460 http://www.numdam.org/item?id=BSMF_1961_89_451_0

© Bulletin de la S. M. F., 1961, tous droits réservés.

L'accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Bull. Soc. math. France, 89, 1961, p. 451 à 460.

ON ISOTYPE SUBGROUPS OF ABELIAN GROUPS ;

BY

J. M. IRWIN and E. A. WALKER.

In his book Abelian groups, L. FUCHS asks the following question. Let G be a p-group and H be a subgroup without elements of infinite height. Under what conditions can H be embedded in a pure subgroup of the same power and again without elements of infinite height? (See [2], p. 96.) This question has been answered by Charles [1] and IRWIN [3]. Irwin's solution was effected by showing that any subgroup maximal with respect to disjointness from the subgroup of elements of infinite height is pure. For *p*-groups, the subgroups of element of infinite height is $p^{\omega}G$. Now for any Abelian group G, any prime p, and any ordinal α , one may define $p^{\alpha}G$, and this suggests the following problem. Is any subgroup of G maximal with respect to disjointness from $p^{\alpha}G$ pure in G? Or, more generally, does any such subgroup H of G have the property that $H \cap p^{\beta} G = p^{\beta} H$ for all ordinals β ? That is to say, is Hp-isotype in G? We will show that indeed any such His p-isotype, and we will give a partial solution to the problem of determining whether any two such H's are isomorphic. The foregoing considerations will lead to the solution of a more general version of the above mentioned problem of L. FUCHS.

All groups considered in this paper will be Abelian.

DEFINITION 1. — Let G be a group and p be a prime. Define $p^{\circ}G = G$. If $p^{\beta}G$ is defined for all ordinals $\beta < \alpha$, then define $p^{\alpha}G = \bigcap_{\beta < \alpha} p^{\beta}G$ when α is a limit ordinal. If $\alpha = \delta + 1$ for some ordinal δ , let $p^{\alpha}G = p(p^{\delta}G)$.

Thus we have defined $p^{\alpha} G$ for all ordinals α , and clearly the $p^{\alpha} G$'s form a chain of fully invariant subgroups of G.

DEFINITION 2. — Let p be a prime and $g \in G$. The p-height $H_p(g)$ of g is the ordinal α such that $g \in p^{\alpha}G$ and $g \notin p^{\alpha+1}G$. If no such ordinal α exists, then $H_p(g) = \infty$, where the symbol ∞ is considered larger than any ordinal. Let α be an ordinal or ∞ . Then a subgroup H of G is p^{α} -pure in G if and only if $H \cap p^{\beta}G = p^{\beta}H$ for all ordinals $\beta \leq \alpha$; H is α -pure in G if and only if H is p^{α} -pure in G for all primes p. A subgroup H is p-isotype in G if and only if H is p^{α} -pure in G. The subgroup H is isotype in G if and only if H is p^{α} -pure in G for all primes p.

It follows easily from the définitions that the properties of being isotype, α -pure, or p^{α} -pure are transitive. Moreover, the union of an ascending chain of subgroups with one of these properties is a subgroup with that property.

It is easy to see that there are groups in which not every pure subgroup is isotype. In fact, there exist reduced *p*-groups *G* such that $|p^{\beta}G| = \aleph_0$ and $|\beta| \ge 2^{\aleph_0}$. (See [2], p. 131, Theorem 38.2 for the existence of such a *G*.) Embed $p^{\beta}G$ in a pure subgroup *K* of *G* with $|K| = \aleph_0$. Clearly *K* is not isotype since $p^{\beta}K = o$ and $K \cap p^{\beta}G = p^{\beta}G \neq o$.

We now state and prove a few facts which will be useful in what follows, and which illustrate the relation between the above definitions and the ordinary notions of purity and height.

LEMMA 1. — For a positive integer n, let $n = \prod_{i=1}^{r} p_i^{s_i}$ be its prime decomposition. Then for any group G, $nG = \bigcap_{i=1}^{r} p_i^{s_i}G$.

PROOF. Let $T = \bigcap p_i^{s_i} G$. Clearly $n G \subseteq T$. Now let $g \in T$. For $n_i = n/p_i^{s_i}$, there exist integers a_i with $\sum a_i n_i = 1$. But $g \in T$ yields $g = p_i^{s_i} g_i$, $i = 1, \ldots, r$. Hence

$$g = \sum a_i n_i g = \sum a_i n_i p_i^{s_i} g_i = \sum a_i ng_i = n \sum a_i g_i \in n G.$$

Hence nG = T, and the proof is complete.

COROLLARY 1. — A subgroup H of a group G is pure in G if and only if H is ω -pure.

PROOF. — Suppose *H* is pure in *G*. In particular, $H \cap p^m G = p^m H$ for each prime *p* and non-negative integer *m*. Now

$$H \cap p^{\omega} G = H \cap \left(\bigcap_{k < \omega} p^k G \right) = \bigcap_{k < \omega} (H \cap p^k G) = \bigcap_{k < \omega} p^k H = p^{\omega} H.$$

Hence H is ω -pure. Next suppose H is ω -pure, and n is a positive integer. Then

$$H \cap n G = H \cap \left(\left(\prod p_i^{s_i} \right) G \right) = H \cap \left(\bigcap p_i^{s_i} G \right)$$
$$= \bigcap \left(H \cap p_i^{s_i} G \right) = \bigcap p_i^{s_i} H = n H$$

by Lemma 1.

The following definition is standard.

DEFINITION 3. — The subgroup $G^1 = \bigcap_{n < \omega} n G$ is the subgroup of elements of infinite height in G.

We are now in a position to prove the following useful

COROLLARY 2. — Let P be the set of all primes. Then $G^1 = \bigcap_p p^{\omega} G$. PROOF. — Set $T = \bigcap_p p^{\omega} G$. Then from $p^{\omega} G = \bigcap_p p^n G$ for each $p \in P$,

it follows that
$$p^{\omega}G \supset \bigcap^{p} nG$$
 for each $p \in P$, and hence $T \supset G^{1}$. Now for

each *n* we have $nG = \bigcap_{i=1}^{n} p_{i}^{s_{i}}G \supset T$. Hence $G^{1} \supset T$, whence $G^{1} = T$.

This corollary shows that the subgroup G^1 of elements of infinite height in G is the set of elements of infinite p-height for each prime p. The following theorem and corollary are generalizations of Kaplansky's Lemma 7 ([5], p. 20)

THEOREM 1. — Let H be a subgroup of a p-group G, and let α be a limit ordinal or ∞ . Then H is p^{α} -pure in G if and only if whenever $\beta < \alpha$, $h \in H[p]$, and the p-height in G of h is $\geq \beta$, then the p-height in H of h is $\geq \beta$.

PROOF. — If *H* is p^{α} -pure, then clearly the elements in H[p] have the desired property. To prove the converse, it must be established that $H \cap p^{\delta} G = p^{\delta} H$ for all $\delta \leq \alpha$. Obviously $H \cap p^{\delta} G \supset p^{\delta} H$. Let P(n) be the statement : For $\beta < \alpha$, the elements in *H* of exponent $\leq n$ have p-height $\geq \beta$ in *H* if they have p-height $\geq \beta$ in *G*. We will prove P(n) is true for all *n* by induction and consequently have that $H \cap p^{\delta} G \subseteq p^{\delta} H$ for all $\delta < \alpha$. Now P(1) is true by hypothesis. Assume P(n) holds, and let $h \in H$ with $o(h) = p^{n+1}$, and suppose the *p*-height of *h* is $\geq \beta$ in *G*. Then *ph* has exponent *n* and *p*-height $\geq \beta + 1$ in *G*. Since $\beta + 1 < \alpha$, our induction hypothesis yields $ph = ph_{\beta}$ with $h_{\beta} \in p^{\beta} H$. Hence $(h - h_{\beta}) \in H[p]$, has *p*-height $\geq \beta$ in *G*, and so *p*-height $\geq \beta$ in *H*. Therefore $H \cap p^{\alpha} G \subseteq p^{\delta} H$ for all $\delta < \alpha$ and since α is a limit ordinal, this holds for all $\delta \leq \alpha$. Thus *H* is p^{α} -pure in *G*.

COROLLARY 3. — Let H be a subgroup of a p-group G. Then H is isotype in G if and only if the elements in H[p] have the same p-height in H as in G.

PROOF. — Since G is a p-group, we have qH = H for all $q \neq p$, and hence H is q-isotype for all $q \neq p$. To get H p-isotype, let α be ∞ in Theorem 1.

We proceed now to our main results and begin with the following definition :

DEFINITION 4.— Let K and L be subgroups of G. Then H is L-high in K if and only if H is a subgroup of K maximal with respect to the property that $H \cap L = 0$. A high subgroup H of G is a subgroup maximal with respect to the property $H \cap G^{1} = 0$. (See [3].)

The principal result of this paper is the following theorem :

THEOREM 2. — Let G be a group, let p be a prime, let α be an ordinal, let K be a subgroup of $p^{\alpha}G$, and let H be K-high in G. Then H is $p^{\alpha+1}$ -pure in G, and $p^{\beta}H$ is K-high in $p^{\beta}G$ for all ordinals $\beta \leq \alpha$.

PROOF. — To show that H is $p^{\alpha+1}$ -pure in G we need to establish that $H \cap p^{\beta} G = p^{\beta} H$ for all $\beta \leq \alpha + 1$. We induct on β , and if $\beta = 0$, the equality is trivial. Now suppose $0 < \beta \leq \alpha + 1$, and suppose the equality holds for all ordinals less than β . If β is a limit ordinal, then

$$H \cap p^{\beta} G = H \cap \left(\bigcap_{\delta < \beta} p^{\delta} G \right) = \bigcap_{\delta < \beta} (H \cap p^{\delta} G) = \bigcap_{\delta < \beta} p^{\delta} H = p^{\beta} H.$$

Next suppose β is not a limit ordinal. Then there is an ordinal δ such that $\beta = \delta + 1$. Then

$$p^{\beta}H \subseteq H \cap p^{\beta}G \equiv H \cap p(p^{\delta}G).$$

Let $h = pg_{\delta}$ with $h \in H$ and $g_{\delta} \in p^{\delta}G$. If $g_{\delta} \in H$, then

$$g_{\delta} \in H \cap p^{\delta}G = p^{\delta}H,$$

and

$$h = pg_{\delta} \in p(p^{\delta}H) = p^{\beta}H.$$

So suppose $g_{\delta} \notin H$. Since H is K-high in G and $K \notin p^{\alpha}G$, we have

$$h_1 + ng_0 \equiv k \neq 0$$
,

where $h_1 \in H$, $k \in K$, and *n* an integer. Clearly (n, p) = 1, and $k \in p^{\alpha} G$. Since $\delta \leq \alpha$, we have $h_1 \in p^{\delta} G$. The induction hypothesis yields $h_1 \in p^{\delta} H$. Now

 $ph_1 + npg_0 = ph_1 + nh = pk = 0.$

Therefore

$$nh = -ph_1 \in p(p^{\delta}H) = p^{\beta}H.$$

Also $ph \in p^{\beta}H$ since $h \in p^{\beta}G \subseteq p^{\delta}G$, consequently $h \in p^{\delta}H$. There exist integers a and b such that an + bp = 1. Thus

$$anh + bph = h \in p^{\beta}H.$$

Hence $H \cap p^{\beta} G = p^{\beta} H$ and H is $p^{\alpha+1}$ -pure in G as stated.

It remains to show that $p^{\beta}H$ is K-high in $p^{\beta}G$ for $\beta \leq \alpha$. Suppose this is not the case. Then there exists $g_{\beta} \in p^{\beta}G$, $g_{\beta} \notin p^{\beta}H$ such that the subgroup generated by $p^{\beta}H$ and g_{β} is disjoint from K. If $g_{\beta} \in H$, then since H is $p^{\alpha+1}$ -pure in G and $\beta \leq \alpha$, $g_{\beta} \in p^{\beta}H$ contrary to the choice of g_{β} . Hence $g_{\beta} \notin H$. Since H is K-high in G, we have $h + ng_{\beta} = k \neq 0$, where $h \in H$ and $k \in K \subseteq p^{\alpha}G$. From $\beta \leq \alpha$ we have that $h \in p^{\beta}G$, and hence $h \in p^{\beta}H$ by $p^{\alpha+1}$ -purity of H in G. But this together with the equation $h + ng_{\beta} = k \neq 0$ contradicts the fact that the subgroup generated by $p^{\beta}H$ and g_{β} is disjoint from K. This concludes the proof.

As an easy consequence of Theorem 2 we obtain a generalization of Irwin's result mentioned above.

COROLLARY 4. — Let K be any subgroup of G^1 and H be K-high in G. Then H is $(\omega + 1)$ -pure (and hence pure) in G. In particular, if H is high in G, then H is pure in G.

PROOF.— Since $K \subseteq p^{\omega}G$ for each prime p, H is $p^{\omega+1}$ -pure for each p. Hence H is $(\omega + 1)$ -pure.

Another result along these lines is

COROLLARY. 5. — Let H be $p^{\alpha}G$ -high in G. Then H is p-isotype in G, and $p^{\beta}H$ is $p^{\alpha}G$ -high in $p^{\beta}G$ for all β .

PROOF. — Since *H* is $p^{\alpha}G$ -high in *G*, then $H \cap p^{\beta}G = p^{\beta}H = o$ for all $\beta \geq \alpha$, and Theorem 2 yields *H* is *p*-isotype. For ordinals $\beta \geq \alpha$, the only $p^{\alpha}G$ -high subgroup in $p^{\beta}G$ is o and $p^{\beta}H = o$ for such β . By Theorem 2, $p^{\beta}H$ is $p^{\alpha}G$ -high in $p^{\beta}G$ for all β .

LEMMA 3. — For any group G and any ordinals α and β , $p^{\alpha}(p^{\beta}G) = p^{\beta+\alpha}G$.

PROOF. — Induct on α . The assertion is true for $\alpha = 0$. Now assume $\alpha > 0$ and that the assertion is true for all ordinals $\partial < \alpha$. Suppose α is a limit ordinal. Then

$$p^{\alpha}(p^{\beta}G) = \bigcap_{\delta < \alpha} p^{\delta}(p^{\beta}G)$$
$$= \bigcap_{\delta < \alpha} (p^{\beta+\delta}G) = \bigcap_{\beta \le \lambda < \beta+\alpha} (p^{\lambda}G) = \bigcap_{\lambda < \beta+\alpha} (p^{\lambda}G) = p^{\beta+\alpha}G$$

since $\beta + \alpha$ is a limit ordinal. Suppose $\alpha = \delta + \tau$. Then

 $p^{\alpha}(p^{\beta}G) = p(p^{\delta}(p^{\beta}G)) = p(p^{\beta+\delta}G) = p^{(\beta+\delta)+1}G = p^{\beta+(\delta+1)}G = p^{\beta+\alpha}G.$

As a simple application of Lemma 3 we have

COROLLARY 6. — Let H be $p^{\alpha}G$ -high in G. Then $p^{\beta}H$ is p-isotype in $p^{\beta}G$ for all β .

PROOF. — By Corollary 5, $p^{\beta}H$ is $p^{\alpha}G$ -high in $p^{\beta}G$ for all β . If $\alpha \leq \beta$, then $p^{\beta}H \equiv 0$ and hence is isotype. If $\beta < \alpha$, then $\alpha \equiv \beta + \delta$ for some δ . By Lemma 3 we have that $p^{\beta}H$ is $p^{\alpha}G \equiv p^{\beta+\delta}G \equiv p^{\delta}(p^{\beta}G)$ -high in $p^{\beta}G$, and Corollary 5 completes the proof.

Making certain provisions about G, we are able to say when $p^{\alpha}G$ -high subgroups are q-isotype for any prime q. In this connection we have

THEOREM 3. — Let H be $p^{\alpha}G$ -high in G, and suppose $p^{\alpha}G$ has no elements of order q, where q is a prime Then H is q-isotype in G.

PROOF. — If q = p, the assertion follows from Corollary 5. Now assume $q \neq p$. We show that $H \cap q^{\beta} G = q^{\beta} H$ for all ordinals β . For this purpose it suffices to verify that $H \cap q^{\beta} G \subseteq q^{\beta} H$. For $\beta = 0$ this is trivial. Let $\beta > 0$, and suppose the inequality holds for all ordinals $\partial < \beta$. If β is a limit ordinal, then

$$H \cap q^{\mathfrak{z}} G = H \cap \left(\bigcap_{\delta < \mathfrak{z}} (q^{\delta} G) \right) = \bigcap_{\delta < \mathfrak{z}} (H \cap q^{\delta} G) = \bigcap_{\delta < \mathfrak{z}} (q^{\delta} H) = q^{\mathfrak{z}} H.$$

Next suppose $\beta = \delta + 1$. Let $h \in H \cap q^{\beta} G = H \cap q(q^{\delta} G)$. Then $h = qg_{\delta}$, where $g_{\delta} \in q^{\delta} G$. By the induction hypothesis, if $g_{\delta} \in H$, then $g_{\delta} \in q^{\delta} H$ and $h = qg_{\delta} \in q(q^{\delta} H) = q^{\beta} H$. Now assume $g_{\delta} \notin H$. Then since H is $p^{\alpha} G$ high in G, we have $h_1 + ng_{\delta} = g_{\alpha} \neq 0$, where $h_1 \in H$, $g_{\alpha} \in p^{\alpha} G$, and n is an integer. Thus $qh_1 + nqg_{\delta} = qh_1 + nh = qg_{\alpha} \in H$. Therefore $qg_{\alpha} = 0$, and since $p^{\alpha} G$ has no elements of order $q, g_{\alpha} = 0$. This contradiction establishes the theorem.

The following two corollaries follow immediately from Theorem 3.

COROLARY 7. — Let H be p^{α} G-high in G, and suppose p^{α} G is torsion-fre Then H is isotype in G, and in particular H is pure in G.

COROLLARY 8. — Let H be $p^{\alpha}G$ -high in G, and suppose $p^{\alpha}G$ is a p-group. Then H is isotype in G. In particular, H is pure in G.

If G is a p-group, then the subgroup G^1 of elements of infinite height in G is $p^{\omega}G$. Thus Corollary 8 implies that a high subgroup H of a p-group is isotype, and consequently pure. The answer to Fuchs' question is readily obtained from the purity of H. (See [3].) However, we proceed now to derive more general results.

THEOREM 4. — Let A be a subgroup of G, and let S be a non-void set of primes. For each $p \in S$, let α_p be an ordinal. Suppose that for each $a \in A$, $a \neq 0$, there exists $p \in S$ such that $H_p(a) < \alpha_p$. Then A is contained in a subgroup H of G such that H is p^{α_p+1} -pure in G for each $p \in S$, and for each $h \in H$, $h \neq 0$, there exists $p \in S$ such that $H_p(h) < \alpha_p$.

PROOF. — Since
$$A \cap \left(\bigcap_{p \in S} p^{x_p}G\right) = 0$$
, A is contained in a $\bigcap_{p \in S} p^{x_p}G$ -high

subgroup H of G. Now the proof follows immediatley from Theorem 2. The following result generalizes a theorem of Erdélyi ([2], p. 81).

COROLLARY 9. — Let H be a subgroup of G, let p be a prime, and let α be an ordinal. Suppose that for each nonzero $h \in H_p$, $H_p(h) < \alpha$. Then H is contained in a p-isotype subgroup A of G such that for each nonzero $a \in A$, $H_p(a) < \alpha$.

PROOF. — This proof is analogous to the proof of Theorem 4, using Corollary 5.

COROLLARY 10. — Let G be a p-group, and let A be a subgroup of G such that A has no nonzero elements of infinite height. Then A is contained in an isotype subgroup H of G such that H has no nonzero elements of infinite height.

PROOF. — The proof is similar to the proof of Corollary 9, using Corollary 8.

COROLLARY 11. — Let A be a subgroup of G with no elements of infinite height; i. e., $A \cap G^1 = 0$. Then A is contained in a pure subgroup K of G such that K has no elements of infinite height and such that $|K| \leq |\mathbf{x}_0| |A|$.

PROOF. — The subgroup A is contained in a high subgroup H of G, and H is pure in G by Corollary 4. Now A can be embedded in a pure subgroup K of H such that $|K| \leq \aleph_0 |A|$. (See [2], p. 78.) Clearly K has no elements of infinite height and is pure in G.

We will now discuss the question of how isomorphic the $p^{\alpha}G$ -high subgroups are. In particular we will show that if G is a countable p-group, then any two $p^{\alpha}G$ -high subgroups of G are isomorphic. When any two such subgroups of an arbitrary group G are isomorphic is not known. However, we will state and prove an interesting theorem concerning the relationship of the Ulm invariants of these subgroups to those of G when G is a p-group.

LEMMA 4. — Let L be a subgroup of a group G with H and K both L-high subgroups of G. Then

 $((H \oplus L)/L)[p] = ((K \oplus L)/L)[p]$

for each prime p.

PROOF. — For $h \in H$ we have that o(h + L) = p if and only if o(h) = p. If $h \in (H \cap K)[p]$, then h+L is in $((K \oplus L)/L)[p]$. Suppose $h \in H[p] \setminus K \cap H$. Then there exists $k \in K$, $x \in L$ with h - k = x, whence o(k) = p. Thus

$$h + L = k + L \in ((K \oplus L)/L)[p];$$

and since h was arbitrary, we have by symmetry that

$$((H \oplus L)/L([p] = ((K \oplus L)/L)[p])$$

as stated.

LEMMA 5. — Let H and K be $p^{\beta}G$ -high in a reduced p-group G. Then |H| = |K|.

PROOF.— If $p^{\beta}G = 0$, H = K, When β is finite, then $H \cong K$. (See[2], p. 99 and 104). When β is infinite and $p^{\beta}G \neq 0$, embed G in a divisible hull E of G. (A divisible hull of G is a minimal divisible group containing G.) Then r(H) = r(E/D) = r(K), where D is a divisible hull of $p^{\beta}G$ in E. That |H| = |K| follows now from easy set theoretic considerations.

LEMMA 6. — Let H be $p^{\beta}G$ -high in G. Then for each ordinal α we have

$$(p^{\alpha}H \oplus p^{\beta}G)/p^{\beta}G = p^{\alpha}((H \oplus p^{\beta}G)/p^{\beta}G).$$

PROOF. If $\alpha \geq \beta$, then both sides are zero. We prove the assertion for $\alpha < \beta$ by induction on α . So assume the equation holds for all ordinals $\delta < \alpha$. (If $\alpha = 0$, then the equality is trivial.) If $\alpha = \delta + 1$, then

$$(p^{\alpha}H \oplus p^{\beta}G)/p^{\beta}G = (p(p^{\delta}H) \oplus p^{\beta}G)/p^{\beta}G$$

= $p((p^{\delta}H \oplus p^{\beta}G)/p^{\beta}G)$
= $p(p^{\delta}((H \oplus p^{\beta}G)/p^{\beta}G)) = p^{\alpha}((H \oplus p^{\beta}G)/p^{\beta}G).$

Now assume α is a limit ordinal. Set

$$L = \left(\left(\bigcap_{\delta < \alpha} p^{\delta} H \right) \oplus p^{\beta} G \right) / p^{\beta} G \quad \text{and} \quad R = \bigcap_{\delta < \alpha} p^{\delta} ((H \oplus p^{\beta} G / p^{\beta} G)).$$

Since α is limit ordinal it suffices to prove L = R. Clearly $L \subseteq R$. Now let $h + p^{\beta}G \in R$. Then there exists $h_{\delta} \in p^{\delta}H$ such that $h + p^{\beta}G = h_{\delta} + p^{\beta}G$ for each $\delta < \alpha$. This means that for each $\delta < \alpha$ we have $h = h_{\delta} + g_{\beta\delta}$ for some $g_{\beta\delta} \in p^{\beta}G$. Thus since $\alpha < \beta$ and H is isotype, we have $h \in p^{\delta}H$ for each $\delta < \alpha$. Hence $h \in \bigcap_{\delta < \alpha} p^{\delta}H$, and $h + p^{\beta}G \in L$. This concludes the proof.

COROLLARY 12. — Let H and K be $p^{\beta}G$ -high in G. Then for each ordinal α we have

$$(p^{\alpha}((H \oplus p^{\beta}G)/p^{\beta}G)[p] = (p^{\alpha}((K \oplus p^{\beta}G)/p^{\beta}G)[p])$$

PROOF. — This follows from Lemma 6, the fact that $p^{\alpha}H$ and $p^{\alpha}K$ are $p^{\beta}G$ high in $p^{\alpha}G$, and Lemma 4.

THEOREM 5. — Let H and K be p^{β} G-high in a p-group G. Then H and K have the same Ulm invariants (as defined by KAPLANSKY in [5]). Moreover for all $\alpha < \beta$, the α -th Ulm invariant of H is the same as the α -th Ulm invariant of G.

PROOF. — First observe that $H \cong (H \oplus p^{\beta} G/p^{\beta} G) = \tilde{H}$, and similarly $K \cong \tilde{K}$. We will show that \tilde{H} and \tilde{K} have the same Ulm invariants. From Corollary 12 we have for each ordinal α that

$$(p^{\alpha}((H \oplus p^{\beta}G)/p^{\beta}G))[p] = (p^{\alpha}((K \oplus p^{\beta}G)/p^{\beta}G))[p]$$

so that

$$((p^{\boldsymbol{\alpha}} \boldsymbol{\tilde{H}})[p])/(p^{\boldsymbol{\alpha}+1} \boldsymbol{\tilde{H}})[p] = ((p^{\boldsymbol{\alpha}} \boldsymbol{\tilde{K}})[p])/(p^{\boldsymbol{\alpha}+1} \boldsymbol{\tilde{K}})[p].$$

This shows that H and K have the same Ulm invariants. To prove the second part of the theorem notice that for $\alpha < \beta$ we have

$$\frac{((p^{\alpha}G)[p])/(p^{\alpha+1}G)[p] = ((p^{\alpha}H)[p] \oplus (p^{\beta}G)[p])/((p^{\alpha+1}H)[p] \oplus (p^{\beta}G))[p]}{\cong (p^{\alpha}H)[p]/(p^{\alpha+1}H)[p].}$$

The equality follows from Corollary 5 and the fact that $\alpha < \beta$. The isomorphism is the natural one.

As an easy application of Theorem 5 we have

THEOREM 6. Let H and K be $p^{\beta}G$ -high in G, and let G be a p-group. If H is countable, then $H \cong K$. Moreover if H and K are both direct sums of countable groups, then $H \cong K$.

PROOF. — Clearly *H* and *K* are reduced. For the first part, $|H| = |K| = \aleph_0$ by Lemma 5. Hence by Theorem 5 and Ulm's theorem, $H \cong K$. If *H* and *K* are both direct sums of countable groups, we have by a theorem of Kolettis (*see* [6]) that $H \cong K$.

We conclude with a corollary to Theorem 5.

THEOREM 7. — Let G be a group of type β . (G is a p-group.) Then for each ordinal $\alpha \leq \beta$, there exists an isotype subgroup H of G such that the first α Ulm invariants of G coincide with the Ulm invariants of H.

PROOF. — Let H be $p^{\alpha}G$ -high in G and apply Theorem 5

J. M. IRWIN AND E. A. WALKER.

BIBLIOGRAPHY.

- [1] CHARLES (Bernard). Étude sur les sous-groupes d'un groupe abélien, Bull. Soc. math. France, t. 88, 1960, p. 217-227.
- [2] FUCHS (Laszlo). Abelian groups. Budapest, Hungarian Academy of Sciences, 1958.
- [3] IRWIN (J. M.). High subgroups of Abelian torsion groups, *Pacific J. of Math.* (to appear).
- [4] IRWIN (J. M.) and WALKER (E. A.). On N-high subgroups of Abelian groups, Pacific J. of Math. (to appear).
- [5] KAPLANSKY (Irving). Infinite abelian groups. Ann Arbor, University of Michigan, Press, 1954 (University of Michigan Publications in Mathematics, 2).
- [6] KOLETTIS (G., Jr.). Direct sums of countable groups, Dake math. J., t. 27, 1960, p. 111-125.

(Manuscrit reçu le 10 mai 1961.)

J. M. IRWIN, New Mexico State University, University Park, N. M. (États-Unis);

E. A. WALKER, New Mexico State University, University Park, N. M. (États-Unis).