John M. IRWIN
 Elbert A. Walker

On isotype subgroups of abelian groups

Bulletin de la S. M. F., tome 89 (1961), p. 451-460
http://www.numdam.org/item?id=BSMF_1961__89__451_0
© Bulletin de la S. M. F., 1961, tous droits réservés.
L'accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

ON ISOTYPE SUBGROUPS OF ABELIAN GROUPS ;

BY
J. M. IRWIN and E. A. WALKER.

In his book Abelian groups, L. Fccus asks the following question. Let G be a p-group and H be a subgroup without elements of infinite height. Under what conditions can H be embedded in a pure subgroup of the same power and again without elements of infinite height? (See[2], p. 96.) This question has been answered by Charles [1] and Irwin [3]. Irwin's solution was effected by showing that any subgroup maximal with respect to disjointness from the subgroup of elements of infinite height is pure. For p-groups, the subgroups of element of infinite height is $p^{\omega} G$. Now for any Abelian group G, any prime p, and any ordinal α, one may define $p^{\alpha} G$, and this suggests the following problem. Is any subgroup of G maximal with respect to disjointness from $p^{\alpha} G$ pure in G ? Or, more generally, does any such subgroup H of G have the property that $H \cap p^{\beta} G=p^{\beta} H$ for all ordinals β ? That is to say, is $H p$-isotype in G ? We will show that indeed any such H is p-isotype, and we will give a partial solution to the problem of determining whether any two such H^{\prime} 's are isomorphic. The foregoing considerations will lead to the solution of a more general version of the above mentioned problem of L. Fuchs.

All groups considered in this paper will be Abelian.
Definition 1. - Let G be a group and p be a prime. Define $p^{0} G=G$. If $p^{\beta} G$ is defined for all ordinals $\beta<\alpha$, then define $p^{\alpha} G=\bigcap_{\beta<\alpha} p^{\beta} G$ when α is a limit ordinal. If $\alpha=\delta+1$ for some ordinal δ, let $p^{\alpha} G=p\left(p^{\grave{\delta}} G\right)$.

Thus we have defined $p^{\alpha} G$ for all ordinals α, and clearly the $p^{\alpha} G^{\prime}$ s form a chain of fully invariant subgroups of G.

Defintion 2. - Let p be a prime and $g \in G$. The p-height $\boldsymbol{H}_{p}(g)$ of g is the ordinal α such that $g \in p^{\alpha} G$ and $g \notin p^{\alpha+1} G$. If no such ordinal α exists, then $H_{p}(g)=\infty$, where the symbol ∞ is considered larger than any ordinal. Let α be an ordinal or ∞. Then a subgroup H of G is p^{α}-pure in G if and only if $H \cap p^{\beta} G=p^{\beta} H$ for all ordinals $\beta \leqslant \alpha ; H$ is α-pure in G if and only if H is p^{α}-pure in G for all primes p. A subgroup H is p-isotype in G if and only if H is p^{∞}-pure in G. The subgroup H is isotype in G if and only if H is p-isotype in G for all primes p.

It follows easily from the definitions that the properties of being isotype, α-pure, or p^{α}-pure are transitive. Moreover, the union of an ascending chain of subgroups with one of these properties is a subgroup with that property.
It is easy to see that there are groups in which not every pure subgroup is isotype. In fact, there exist reduced p-groups G such that $\left|p^{\beta} G\right|=\mathbf{N}_{o}$ and $|\beta| \supseteq 2^{K_{0}}$. (See[2], p. 131, Theorem 38.2 for the existence of such a G.) Embed $p^{\beta} G$ in a pure subgroup K of G with $|K|=\mathbf{N}_{0}$. Clearly K is not isotype since $p^{\beta} K=0$ and $K \cap p^{\beta} G=p^{\beta} G \neq \mathrm{o}$.

We now state and prove a few facts which will be useful in what follows, and which illustrate the relation between the above definitions and the ordinary notions of purity and height.
Lemma 1. - For a positive integer n, let $n=\prod_{i=1}^{r} p_{i}^{s_{i}}$ be its prime decomposition. Then for any group $G, n G=\bigcap_{i=1}^{r} p_{i}^{s_{i}} G$.

Proof. - Let $T=\bigcap p_{i}^{s_{i}} G$. Clearly $n G \subseteq T$. Now let $g \in T$. For $n_{i}=n / p_{i}^{s_{i}}$, there exist integers a_{i} with $\sum a_{i} n_{i}=1 . \quad$ But $g \in T$ yields $g=p_{i}^{s_{i}} g_{i}$, $i=1, \ldots, r$. Hence

$$
g^{g}=\sum a_{i} n_{i} g=\sum a_{i} n_{i} p_{i}^{s_{i}} g_{i}=\sum a_{i} n g_{i}=n \sum a_{i} g_{i} \in n G .
$$

Hence $n G=T$, and the proof is complete.
Corollary 1. - A subgroup H of a group G is pure in G if and only if H is ω-pure.

Proof. - Suppose H is pure in G. In particular, $H \cap p^{m} G=p^{\prime \prime \prime} \boldsymbol{H}$ for each prime p and non-negative integer m. Now

$$
H \cap p^{\omega} G=H \cap\left(\bigcap_{k<(\omega)} p^{k} G\right)=\bigcap_{k<(t)}\left(H \cap p^{k} G\right)=\bigcap_{k<(t)} p^{k} H=p^{(\omega)} H .
$$

Hence H is ω-pure. Next suppose H is ω-pure, and n is a positive integer. Then

$$
\begin{aligned}
H \cap n G=H \cap\left(\left(\prod p_{i}^{s_{i}}\right) G\right) & =H \cap\left(\bigcap p_{i}^{s_{i}} G\right) \\
& =\bigcap\left(H \cap p_{i}^{s_{i}} G\right)=\bigcap p_{i}^{s_{i}} H=n H
\end{aligned}
$$

by Lemma 1.
The following definition is standard.
Definition 3. - The subgroup $G^{1}=\bigcap_{n<(1)} n G$ is the subgroup of elements of infinite height in G.

We are now in a position to prove the following useful
Corollary 2. - Let P be the set of all primes. Then $G^{1}=\bigcap_{p} p^{\omega} G^{G}$.
Proor. - Set $T=\bigcap_{p} p^{\omega} G . \quad$ Then from $p^{\omega} G=\bigcap_{n} p^{n} G$ for each $p \in P$, it follows that $p^{\omega} G \supset \bigcap n G$ for each $p \in P$, and hence $T \supset G^{1}$. Now for each n we have $n G=\bigcap p_{i}^{s_{i}} G \supset T$. Hence $G^{1} \supset T$, whence $G^{1}=T$.

This corollary shows that the subgroup G^{1} of elements of infinite height in G is the set of elements of infinite p-height for each prime p. The following theorem and corollary are generalizations of Kaplansky's Lemma 7 ([5], p. 20)

Theorem 1. - Let \boldsymbol{H} be a subgroup of a p-group G, and let α be a limit ordinal or ∞. Then H is p^{α}-pure in G if and only if whenever $\beta<\alpha$, $h \in H \mid p]$, and the p-height in G of h is $\supseteq \beta$, then the p-height in H of h is $\geqslant \beta$.

Proof. - If H is p^{α}-pure, then clearly the elements in $\boldsymbol{H}[p]$ have the desired property. To prove the converse, it must be established that $H \cap p^{\grave{ }} G=p^{\grave{ }} H$ for all $\delta \leq \alpha$. Obviously $H \cap p^{\grave{ }} G \supset p^{\grave{ }} H$. Let $P(n)$ be the statement : For $\beta<\alpha$, the elements in H of exponent $\leq n$ have p-height $\geq \beta$ in H if they have p-height $\geq \beta$ in G. We will prove $P(n)$ is true for all n by induction and consequently have that $H \cap p^{\grave{\jmath}} G \subseteq p^{\grave{\jmath}} H$ for all $\delta<\alpha$. Now $P(1)$ is true by hypothesis. Assume $\dot{P}(n)$ holds, and let $h \in H$ with $o(h)=p^{n+1}$, and suppose the p-height of h is $\supseteq \beta$ in G. Then $p h$ has exponent n and p-height $\geq \beta+1$ in G. Since $\beta+1<\alpha$, our induction hypothesis yields $p h=p h_{\rho}$ with $h_{\beta} \in p^{3} H$. Hence $\left(h-h_{\beta}\right) \in H[p]$, has p-height $\geqslant \beta$ in G, and so p-height $\geq \beta$ in H. Therefore $H \cap p^{\circ} G \subseteq p^{\delta} H$ for all $\delta<\alpha$ and since α is a limit ordinal, this holds for all $\delta \leqslant \alpha$. Thus H is p^{α}-pure in G.

Corollary 3. - Let H be a subgroup of a p-group G. Then H is isotype in G if and only if the elements in $H[p]$ have the same p-height in H as in G.

Proor. - Since G is a p-group, we have $q H=H$ for all $q \neq p$, and hence H is q-isotype for all $q \neq p$. To get $H p$-isotype, let α be ∞ in Theorem 1.

We proceed now to our main results and begin with the following definition :
Defintion i.- Let K and L be subgroups of G. Then H is L-high in K if and only if H is a subgroup of K maximal with respect to the property that $H \cap L=0$. A high subgroup H of G is a subgroup maximal with respect to the property $H \cap G^{\prime}=0 . \quad($ See [3].)

The principal result of this paper is the following theorem :
Theorem 2. - Let G be a group, let p be a prime, let a be an ordinal, let K be a subgroup of $p^{\alpha} G$, and let \boldsymbol{H} be K-high in G. Then H is $p^{\alpha+1}-p u r e$ in G, and $p^{\beta} H$ is K-high in $p^{\beta} G$ for all ordinals $\beta \leqslant \alpha$.

Proof. - To show that H is $p^{\alpha+1}$-pure in G we need to establish that $H \cap p^{\beta} G=p^{\beta} H$ for all $\beta \leqslant \alpha+1$. We induct on β, and if $\beta=0$, the equality is trivial. Now suppose $o<\beta \leqslant \alpha+\mathrm{I}$, and suppose the equality holds for all ordinals less than β. If β is a limit ordinal, then

$$
H \cap p^{\beta} G=H \cap\left(\bigcap_{i<\beta} p^{\delta} G\right)=\bigcap_{i<\beta}\left(H \cap p^{\grave{\delta}} G\right)=\bigcap_{\delta<\beta} p^{\grave{\delta}} H=p^{\beta} H
$$

Next suppose β is not a limit ordinal. Then there is an ordinal δ such that $\beta=i+1$. Then

$$
p^{3} H \subseteq H \cap p^{\beta} G=H \cap p\left(p^{\grave{\omega}} G\right)
$$

$$
g_{\grave{\jmath}} \in H \cap p^{\grave{\jmath}} G=p^{\grave{\iota}} H
$$

and

$$
h=p g_{\grave{\jmath}} \in p\left(p^{\grave{\jmath}} \boldsymbol{I}\right)=p^{\beta} \boldsymbol{H}
$$

So suppose $g_{i} \notin H$. Since H is K-high in G and $K \notin p^{\alpha} G$, we have

$$
h_{1}+n g_{\dot{\partial}}=k \neq \mathbf{o},
$$

where $h_{1} \in H, k \in K$, and n an integer. Clearly $(n, p)=1$, and $k \in p^{x} G$. Since $\delta \leq \alpha$. we have $h_{1} \in p^{\grave{\jmath}} G$. The induction hypothesis yields $h_{1} \in p^{\grave{\jmath}} H$. Now

$$
p h_{1}+n p g_{i}=p h_{1}+n h=p k=0
$$

Therefore

$$
n h=-p h_{1} \in p\left(p^{\grave{\jmath}} H\right)=p^{乡} H
$$

Also $p h \in p^{\beta} H$ since $h \in p^{\beta} G \subseteq p^{\delta} G$, consequently $h \in p^{\delta} H$. There exist integers a and b such that $a n+b p=\mathrm{I}$. Thus

$$
a n h+b p h=h \in p^{3} H .
$$

Hence $H \cap p^{\beta} G=p^{9} H$ and H is $p^{\alpha+1}$-pure in G as stated.
It remains to show that $p^{\beta} H$ is K-high in $p^{9} G$ for $\beta \leqslant \alpha$. Suppose this is not the case. Then there exists $g_{\beta} \in p^{\beta} G, g_{\beta} \notin p^{\beta} H$ such that the subgroup generated by $p^{\beta} H$ and g_{β} is disjoint from K. If $g_{\beta} \in H$, then since H is $p^{\alpha+1}$-pure in G and $\beta \leqslant \alpha, g_{\beta} \in p^{\beta} H$ contrary to the choice of g_{β}. Hence $g_{\beta} \notin H$. Since H is K-high in G, we have $h+n g_{\beta}=k \neq 0$, where $h \in H$ and $k \in K \subseteq p^{\alpha} G$. From $\beta \leq \alpha$ we have that $h \in p^{\beta} G$, and hence $h \in p^{\beta} H$ by p^{x+1}-purity of H in G. But this together with the equation $h+n g_{\beta}=k \neq 0$ contradicts the fact that the subgroup generated by $p^{\beta} H$ and g_{β} is disjoint from K. This concludes the proof.

As an easy consequence of Theorem 2 we obtain a generalization of Irwin's result mentioned above.

Corollary 4. - Let K be any subgroup of G^{1} and H be K-high in G. Then H is $(\omega+1)$-pure (and hence pure) in G. In particular, if H is high in G, then H is pure in G.

Proof.- Since $K \subseteq p^{\omega} G$ for each prime p, H is $p^{\omega+1}$-pure for each p. Hence H is $(\omega+\mathbf{r})$-pure.

Another result along these lines is
Corollary. B. - Let H be p^{α} G-high in G. Then H is p-isotype in G, and $p^{\beta} H$ is $p^{\alpha} G$-high in $p^{\beta} G$ for all \geqslant.

Proof. - Since H is $p^{\alpha} G$-high in G, then $H \cap p^{\beta} G=p^{\xi} H=0$ for all $\beta \geqslant \alpha$, and Theorem 2 yields H is p-isotype. For ordinals $\beta \geqslant \alpha$, the only $p^{\alpha} G$-high subgroup in $p^{\beta} G$ is o and $p^{\beta} H=$ o for such β. By Theorem 2, $p^{i} H$ is $p^{\alpha} G$-high in $p^{\beta} \mathrm{G}$ for all β.

Lemma 3. - For any group G and any ordinals α and $\beta, p^{\alpha}\left(p^{\beta} G\right)=p^{\beta+x} G$.
Proof. - Induct on α. The assertion is true for $\alpha=0$. Now assume $\alpha>0$ and that the assertion is true for all ordinals $\delta<\alpha$. Suppose α is a limit ordinal. Then

$$
\begin{aligned}
p^{\alpha}\left(p^{\beta} G\right) & =\bigcap_{i<\alpha} p^{i}\left(p^{\beta} G\right) \\
& =\bigcap_{i<\alpha}\left(p^{\beta+i} G\right)=\bigcap_{\beta \leq i<\beta+\alpha}\left(p^{i} G\right)=\bigcap_{i<\beta+\alpha}\left(p^{i} G\right)=p^{\beta+\alpha} G
\end{aligned}
$$

since $\beta+\alpha$ is a limit ordinal. Suppose $\alpha=\delta+\mathbf{I}$. Then
$p^{\alpha}\left(p^{\beta} G\right)=p\left(p^{\grave{\partial}}\left(p^{\beta} G\right)\right)=p\left(p^{\beta+\grave{j}} G\right)=p^{(\beta+\grave{j})+1} G=p^{\beta+(\hat{\jmath}+1)} G=p^{\beta+\alpha} G$.
As a simple application of Lemma 3 we have
Corollary 6. - Let II be $p^{\alpha} G$-high in G. Then $p^{\beta} H$ is p-isotype in $p^{\beta} G$ for all β.

Proof. - By Corollary $3, p^{\beta} H$ is $p^{\alpha} G$-high in $p^{\beta} G$ for all β. If $\alpha \leq \beta$, then $p^{\beta} H=0$ and hence is isotype. If $\beta<\alpha$, then $\alpha=\beta+\delta$ for some δ. By Lemma 3 we have that $p^{\beta} H$ is $p^{\alpha} G=p^{\beta+\grave{\delta}} G=p^{\delta}\left(p^{\beta} G\right)$-high in $p^{\beta} G$, and Corollary ${ }^{3}$ completes the proof.

Making certain provisions about G, we are able to say when $p^{\alpha} G$-high subgroups are q-isotype for any prime q. In this connection we have

Theorem 3. - Let H be $p^{\alpha} G$-high in G, and suppose $p^{\alpha} G$ has no elements of order q, where q is a prime Then H is q-isotype in G.

Proof. - If $q=p$, the assertion follows from Corollary 3. Now assume $q \neq p$. We show that $H \cap q^{\beta} G=q^{\beta} H$ for all ordinals β. For this purpose it suffices to verify that $H \cap q^{\beta} G \subseteq q^{\beta} H$. For $\beta=0$ this is trivial. Let $\beta>0$, and suppose the inequality holds for all ordinals $\grave{ }<\beta$. If β is a limit ordinal, then

$$
H \cap \eta^{\beta} G=H \cap\left(\bigcap_{\grave{j}<\beta}\left(q^{\grave{j}} G\right)\right)=\bigcap_{i<\beta}\left(H \cap q^{\grave{j}} G\right)=\bigcap_{i<\beta}\left(q^{\grave{j}} H\right)=q^{\xi} H
$$

Next suppose $\beta=\grave{o}+1$. Let $h \in \Pi \cap q^{\beta} G=H \cap q\left(q^{\grave{\delta}} G\right)$. Then $h=q_{夕_{\grave{\jmath}}}$, where $g_{\grave{\delta}} \in q^{\grave{\delta}} G$. By the induction hypothesis, if $g_{\grave{\jmath}} \in H$, then $g_{\grave{\jmath}} \in q^{\grave{ }} H$
 high in G, we have $h_{1}+n g_{\dot{\delta}}=g_{\alpha} \neq 0$, where $h_{1} \in H, g_{\alpha} \in p^{\alpha} G$, and n is an integer. Thus $q h_{1}+n q g_{\delta}=q h_{1}+n h=q g_{\alpha} \in H$. Therefore $q g_{\alpha}=0$, and since $p^{\alpha} G$ has no elements of order $q, g_{\alpha}=0$. This contradiction establishes the theorem.

The following two corollaries follow immediately from Theorem 3.
Corolary 7. - Let H be $p^{\alpha} G$-high in G, and suppose $p^{\alpha} G$ is torsion-fre Then H is isotype in G, and in particular H is pure in G.

Corollary 8. - Let H be $p^{\alpha} G$-high in G, and suppose $p^{\alpha} f_{r}$ is a p-group. Then H is isotype in G. In particular, H is pure in G.

If G is a p-group, then the subgroup G^{1} of elements of infinite height in G is $p^{\omega} G$. Thus Corollary 8 implies that a high subgroup H of a p-group is isotype, and consequently pure. The answer to Fuchs' question is readily obtained from the purity of \boldsymbol{H}. (See [3].) However, we proceed now to derive more general results.

Theorem 4. - Let A be a subgroup of G, and let S be a non-void set of primes. For each $p \in S$, let α_{p} be an ordinal. Suppose that for each $a \in A$, $a \neq \mathrm{o}$, there exists $p \in S$ such that $H_{p}(a)<\alpha_{p}$. Then A is contained in a subgroup H of G such that H is $p^{\alpha_{p}+1}$-pure in G for each $p \in S$, and for each $h \in H, h \neq \mathrm{o}$, there exists $p \in S$ such that $H_{p}(h)<\alpha_{p}$.

$$
\text { Proof. - Since } A \cap\left(\bigcap_{p \in S} p^{\alpha_{p}} G\right)=\mathrm{o}, A \text { is contained in a } \bigcap_{p \in S} p^{\alpha_{p}} G \text {-high }
$$

subgroup H of G. Now the proof follows immediatley from Theorem 2.
The following result generalizes a theorem of Erdélyi ([2], p. 81).
Corollary 9. - Let H be a subgroup of G, let p be a prime, and let α be an ordinal. Suppose that for each nonzero $h \in H_{p}, H_{p}(h)<\alpha$. Then H is contained in a p-isotype subgroup A of G such that for each nonzero $a \in A, H_{p}(a)<\alpha$.

Proof. - This proof is analogous to the proof of Theorem 4, using Corollary 3 .

Corollary 10. - Let G be a p-group, and let A be a subgroup of G such that A has no nonzero elements of infinite height. Then A is contained in an isotype subgroup H of G such that H has no nonzero elements of infinite height.

Proof. - The proof is similar to the proof of Corollary 9, using Corollary 8.

Corollary 11. - Let A be a subgroup of G with no elements of infinite height; i. e., $A \cap G^{1}=0$. Then A is contained in a pure subgroup K of G such that K has no elements of infinite height and such that $|K| \leq \mathbf{N}_{0}|A|$.

Proof. - The subgroup A is contained in a high subgronp H of G, and \boldsymbol{H} is pure in G by Corollary 4. Now A can be embedded in a pure subgroup K of \boldsymbol{H} such that $|\boldsymbol{K}| \leq \mathbf{N}_{0}|\boldsymbol{A}|$. (See [2], p. 78.) Clearly K has no elements of infinite height and is pure in G.

We will now discuss the question of how isomorphic the $p^{\alpha} G$-high subgroups are. In particular we will show that if G is a countable p-group, then any two $p^{\alpha} G$-high subgroups of G are isomorphic. When any two such subgroups of an arbitrary group G are isomorphic is not known. However, we will state and prove an interesting theorem concerning the relationship of the Ulm invariants of these subgroups to those of G when G is a p-group.

Lemma 4. - Let L be a subgroup of a group G with H and K both L-high subgroups of G. Then

$$
((\boldsymbol{H} \oplus L) / L)[p]=((K \oplus L) / L)[p]
$$

for each prime p.

Proof. - For $h \in H$ we have that $o(h+L)=p$ if and only if $o(h)=p$. If $h \in(H \cap K)[p]$, then $h+L$ is in $((K \oplus L) / L)[p]$. Suppose $h \in H[p] \backslash K \cap H$. Then there exists $k \in K, x \in L$ with $h-k=x$, whence $o(k)=p$. Thus

$$
h+L=k+L \in((K \oplus L) / L)[p]
$$

and since h was arbitrary, we have by symmetry that

$$
((H \oplus \mathrm{~L}) / L([p]=((K \oplus L) / L)[p]
$$

as stated.
Lemma 3. - Let H and K be $p^{j} G$-high in a reduced p-group G. Then $|\boldsymbol{H}|=|\boldsymbol{K}|$.

Proof.- If $p^{\beta} G=0, \boldsymbol{H}=\boldsymbol{K}, \quad$ When β is finite, then $\boldsymbol{H} \cong K . \quad$ (See [2], p. 99 and io4). When β is infinite and $p^{\beta} G \neq 0$, embed G in a divisible hull E of G. (A divisible hull of G is a minimal divisible group containing G.) Then $r(\boldsymbol{H})=r(\boldsymbol{E} / \boldsymbol{D})=r(\boldsymbol{K})$, where D is a divisible hull of $p^{\beta} G$ in E. That $|H|=|K|$ follows now from easy set theoretic considerations.

Lemma 6. - Let H be $p^{\beta} G$-high in G. Then for each ordinal α we have

$$
\left(p^{\alpha} H \oplus p^{\beta} G\right) / p^{\beta} G=p^{\alpha}\left(\left(H \oplus p^{\beta} G\right) / p^{\beta} G\right)
$$

Proof. - If $\alpha \geq \beta$, then both sides are zero. We prove the assertion for $\alpha<\beta$ by induction on α. So assume the equation holds for all ordinals $\delta<\alpha$. (If $\alpha=0$, then the equality is trivial.) If $\alpha=\delta+\mathrm{r}$, then

$$
\begin{aligned}
\left(p^{\alpha} H \oplus p^{\beta} G\right) / p^{\beta} G & =\left(p\left(p^{\delta} H\right) \oplus p^{\beta} G\right) / p^{\beta} G \\
& =p\left(\left(p^{\grave{\delta}} \boldsymbol{H} \oplus p^{\beta} G\right) / p^{\beta} G\right) \\
& =p\left(p^{\delta}\left(\left(H \oplus p^{\beta} G\right) / p^{\beta} G\right)\right)=p^{\alpha}\left(\left(H \oplus p^{\beta} G\right) / p^{\beta} G\right)
\end{aligned}
$$

Now assume α is a limit ordinal. Set
$L=\left(\left(\bigcap_{\grave{\delta}<\alpha} p^{\grave{\delta}} \boldsymbol{H}\right) \oplus p^{\beta} G\right) / p^{\beta} G \quad$ and $\quad R=\bigcap_{\grave{j}<\alpha} p^{\grave{\jmath}}\left(\left(\boldsymbol{H} \oplus p^{\beta} G / p^{\beta} G\right)\right.$.
Since α is limit ordinal it suffices to prove $L=R$. Clearly $L \subseteq R$. Now let $h+p^{\beta} G \in R$. Then there exists $h_{\delta} \in p^{\delta} H$ such that $h+p^{\beta} G=h_{\delta}+p^{\beta} G$ for each $\delta<\alpha$. This means that for each $\delta<\alpha$ we have $h=h_{\delta}+g_{\beta \delta \delta}$ for some $g_{\beta \grave{ }} \in p^{\beta} G$. Thus since $\alpha<\beta$ and H is isotype, we have $h \in p^{\delta} H$ for each $\delta<\alpha$. Hence $h \in \bigcap_{\dot{\delta}<\alpha} p^{\grave{ }} H$, and $h+p^{\beta} G \in L$. This concludes the proof.

Corollary 12. - Let H and K be $p^{\beta} G$-high in G. Then for each ordinal α we have

$$
\left(p^{\alpha}\left(\left(\boldsymbol{H} \oplus p^{\beta} G\right) / p^{\beta} G\right)[p]=\left(p^{\alpha}\left(\left(K \oplus p^{\beta} G\right) / p^{\beta} G\right)[p] .\right.\right.
$$

Proof. - This follows from Lemma 6, the fact that $p^{\alpha} H$ and $p^{\alpha} K$ are $p^{3} G_{i}$ high in $p^{\alpha} G$, and Lemma 4 .

Theorem 5. - Let \boldsymbol{H} and K be $p^{\beta} G$-high in a p-group G. Then \boldsymbol{H} and K have.the same Ulm invariants (as defined by Kaplansky in [5]). Moreover for all $\alpha<\beta$, the α-th Ulm invariant of H is the same as the $\alpha-$ th Ulm invorriant of G.

Proof. - First observe that $H \cong\left(H \oplus p^{\beta} G / p^{\beta} G\right)=\tilde{H}$, and similarly $K \cong \tilde{K}$. We will show that \tilde{H} and \tilde{K} have the same Ulm invariants. From Corollary 12 we have for each ordinal α that

$$
\left(p^{x}\left(\left(\boldsymbol{H} \oplus p^{\beta} G\right) / p^{\beta} G\right)\right)[p]==\left(p^{\alpha}\left(\left(K \oplus p^{\beta} G\right) / p^{\xi} G\right)\right)[p]
$$

so that

$$
\left(\left(p^{\alpha} \tilde{\boldsymbol{H}}\right)[p]\right) /\left(p^{x+1} \tilde{H}\right)[p]=\left(\left(p^{\alpha} \tilde{\boldsymbol{K}}\right)[p]\right) /\left(p^{\alpha+1} \tilde{\boldsymbol{K}}\right)[p] .
$$

This shows that H and K have the same Ulm invariants. To prove the second part of the theorem notice that for $\alpha<\beta$ we have

$$
\begin{aligned}
\left(\left(p^{\alpha} G\right)[p]\right) /\left(p^{\alpha+1} G\right)[p] & =\left(\left(p^{\alpha} \boldsymbol{H}\right)[p] \oplus\left(p^{\beta} G\right)[p]\right) /\left(\left(p^{\alpha+1} H\right)[p] \oplus\left(p^{3} G\right)\right)[p] \\
& \cong\left(p^{\alpha} H\right)[p] /\left(p^{\alpha+1} H\right)[p] .
\end{aligned}
$$

The equality follows from Corollary 3 and the fact that $\alpha<\beta$. The isomorphism is the natural one.

As an easy application of Theorem 30 we have
Theorem 6. Let H and K be $p^{\beta} G$-high in G, and let G be a p-group. If H is countable, then $H \cong K$. Moreover if H and K are both direct sums of countable groups, then $H \cong K$.

Proor. - Clearly I and K are reduced. For the first part, $|\boldsymbol{H}|=|\boldsymbol{K}|=\boldsymbol{N}_{0}$ by Lemma 5. Hence by Theorem 3 and Ulm's theorem, $H \cong K$. If H and K are both direct sums of countable groups, we have by a theorem of Kolettis (see [6]) that $H \cong K$.

We conclude with a corollary to Theorem 3.
Theorem 7. - Let G be a group of type β. (G is a p-group.) Then for each ordinal $\alpha \leqslant \beta$, there exists an isotype subgroup H of G such that the first α Ulm invariants of G coincide with the Ulm invariants of H.

Proof. - Let H be $p^{\alpha} G$-high in G and apply Theorem 3

BIBLIOGRAPHY.

11] Charles (Bernard). - Étade sur les sous-groupes d'un groupe abélien, Bull. Soc. math. France, t. 88, 196o, p. 217-227.
[2] Fuchs (Laszlo). - Abelian groups. - Budapest, Hungarian Academy of Sciences, 1958.
[3] Irwin (J. M.). - High subgroups of Abelian torsion groups, Pacific J. of Math. (to appear).
[4] Irwin (J. M.) and Walker (E. A.). - On N-high subgroups of Abelian groups, Pacific J. of Math. (to appear).
[5] Kaplansky (Irving). - Infinite abelian groups. - Ann Arbor, University of Michigan, Press, 1954 (University of Michigan Publications in Mathematics, 2).
[6] Kolettis (G., Jr.). - Direct sums of countable groups, Duke math. J., t. 27, i960, p. 111-125.
(Manuscrit reçu le ıo mai 196 I .)
J. M. Irwin,

New Mexico State University,
University Park, N. M. (États-Unis);
E. A. Walker,

New Mexico State University,
University Park, N. M. (États-Unis).

