BULLETIN DE LA S. M. F.

L. Godeaux

Sur les surfaces algébriques possédant un système simple dont les courbes contiennent une involution

Bulletin de la S. M. F., tome 48 (1920), p. 9-13

http://www.numdam.org/item?id=BSMF 1920 48 9 1>

© Bulletin de la S. M. F., 1920, tous droits réservés.

L'accès aux archives de la revue « Bulletin de la S. M. F. » (http://smf.emath.fr/Publications/Bulletin/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

SUR LES SURFACES ALGÉBRIQUES POSSÉDANT UN SYSTÈME SIMPLE DONT LES COURBES CONTIENNENT UNE INVOLUTION:

PAR M. LUCIEN GODEAUX.

On sait que M. Castelnuovo a établi le théorème suivant (1):

Si une surface algébrique contient un réseau simple de courbes hyperelliptiques de genre p, cette surface est rationnelle ou réglée de genre p.

On étend facilement ce théorème au cas d'une surface possédant un réseau de courbes contenant des involutions d'ordre 2 et de genre quelconque (2). Plus tard, nous avons, en poursuivant cet ordre de recherches, déterminé les surfaces contenant un système linéaire simple ∞^3 dont chaque courbe possède une involution d'ordre 3 de genre donné (3). Actuellement, nous considérerons le cas plus général d'une surface contenant un système linéaire simple, de dimension r, dont chaque courbe possède une involution d'ordre r. Nous établirons précisément que :

Si une surface algébrique contient un système linéaire simple, de dimension r et de genre p de courbes contenant une involution d'ordre r et de genre π , cette surface est rationnelle, ou réglée de genre π ou p.

On remarquera que dans le cas r=3, que nous avions déjà considéré, le théorème auquel nous étions arrivé se trouve notablement précisé.

⁽¹⁾ Su le superficie che contengono una rete di curve iperellittiche (Rendiconti della R. Accad. dei Lincei, 187 sem. 1894).

⁽²⁾ Voir par exemple: L. Godhaux, Sur les surfaces algébriques dont les courbes canoniques sont elliptiques doubles (Math. Annalen, Bd LXXII, 1912).

⁽³⁾ L. Godeaux, Sur les surfaces algébriques contenant un système linéaire simple dont chaque courbe possède une involution de termes de points (Annaes da Accad. Polytechnica do Porto, t. VII, 1912).

1. Soit F une surface algébrique contenant un système linéaire simple, |C|, ∞^r , de genre p, dont chaque courbe possède une involution γ'_r , d'ordre r et de genre π .

Considérons les courbes C passant par un point P de F, quelconque, et, sur chacune de ces courbes, les groupes de r points dont P fait partie. Nous obtenons ainsi une variété V_P , de dimension r-1, de groupes de r-1 points variables. Il peut se faire que les groupes de V_P se trouvent tous sur une même courbe Γ_P ou qu'ils se distribuent sur toute la surface.

Dans la première hypothèse, trois cas peuvent se présenter : Si nous considérons les courbes Γ_Q lieu des variétés V_Q relatives aux points Q de la courbe Γ_P , il peut se faire que ces courbes Γ_Q se confondent avec la courbe Γ_P , ou se confondent en une seule courbe différente de Γ_P , ou encore soient toutes distinctes. Nous aurons donc en tout quatre cas à examiner :

- 1° Les groupes de V_p sont sur une courbe Γ_p qui ne varie pas lorsque le point P parcourt cette courbe.
- 2° Les groupes de V_P sont sur une courbe Γ_P et les groupes des variétés V_Q relatives aux points Q de Γ_P sont sur une même courbe Γ_O différente de Γ_P .
- 3° Les groupes de V_P sont sur une courbe Γ_P variable avec le point P.
 - 4º Les groupes de Vp remplissent toute la surface.

Nous examinerons successivement ces différents cas.

2. Dans le premier cas, nous voyons que la courbe $\Gamma_{\rm p}$ est rencontrée par les courbes C en des groupes de r points formant une série de dimension r. La courbe $\Gamma_{\rm p}$ est par suite rationnelle. De plus, cette courbe passe simplement par le point P, puisque celui-ci peut être choisi arbitrairement sur la courbe. Par suite, par un point arbitraire de F ne passe qu'une seule courbe de la famille $\{\Gamma\}$ lieu des courbes $\Gamma_{\rm p}$. Cette famille est donc un faisceau. Les courbes de ce faisceau découpent, sur une courbe C arbitraire, la série γ_r^i de genre π appartenant à cette courbe par hypothèse; c'est donc un faisceau de genre π . La surface F, contenant un faisceau de genre π de courbes rationnelles, se ramène,

par des transformations birationnelles, à une réglée de genre π

$$(p_a = -\pi, p_g = P_2 = \ldots = 0).$$

3. Passons au second cas et supposons d'abord les courbes $\Gamma_{\rm P}$, $\Gamma_{\rm Q}$ irréductibles. Ces courbes, appartenant à la même famille, doivent rencontrer les courbes C en un même nombre n de points. Fixons l'attention sur une courbe C. A chacun des n points de rencontre de cette courbe avec $\Gamma_{\rm P}$ correspondent r-1 points de $\Gamma_{\rm Q}$ situés sur cette courbe C. On doit donc avoir n=(r-1)n, d'où r=2. Si r>2, $\Gamma_{\rm Q}$ et $\Gamma_{\rm P}$ sont réductibles. Remarquons d'ailleurs que quand r=2, on a n=1, car, d'après la définition de $\Gamma_{\rm Q}$, cette courbe ne peut rencontrer une courbe C passant par Q qu'en un point variable et, éventuellement, en un certain nombre ν de points confondus en Q. Or, actuellement, Q variant sur $\Gamma_{\rm P}$ et $\Gamma_{\rm Q}$ étant irréductible, on a $\nu=0$, d'où $n=1+\nu=1$.

Supposons r>2 et soit Γ_p' une des parties irréductibles de Γ_p . Nous supposerons que la courbe Γ_Q relative à un point Q (variable) de Γ_P' se décompose en k-1 fois Γ_P' et en une courbe Γ_Q' . Indiquons par n' le nombre de points communs à une C quelconque et à Γ_P' et fixons l'attention sur une courbe C générique. A un point commun à cette courbe et à Γ_P' correspondent r-1 points dont k-1 sont sur Γ_P' et les r-k restant parmi les intersections de la courbe C considérée et de Γ_Q' . La courbe Γ_Q' rencontre donc les courbes C en $\frac{n'}{k}(r-k)$ points. Comme les parties irréductibles de Γ_Q' appartiennent évidemment à la même famille $\{\Gamma_P'\}$ que Γ_P' , on voit que Γ_Q' se décompose en $\frac{r-k}{k}$ courbes que nous désignerons par Γ' .

Observons que la courbe $\Gamma_{\bf Q} \equiv (k-1)\Gamma_{\bf P}' + \Gamma_{\bf Q}'$ relative à un point Q déterminé de $\Gamma_{\bf P}'$ rencontre une courbe C passant par Q en r-1 points variables et en ${\bf v}$ points fixes confondus en Q. Il s'ensuit que $\Gamma_{\bf Q}'$ rencontre une courbe C en r-k points seulement et que, par conséquent, on a

$$\frac{n'}{k}(r-k) = r - k,$$

d'où n' = k.

Si k est supérieur à l'unité, les courbes C passant par Q

déterminent, sur la courbe Γ'_{p} , des groupes de k-1 points en nombre ∞^{r-1} ; on a donc $k \ge r$. Mais $\frac{r-k}{k}$ doit être un entier positif, donc on a nécessairement k=1.

Les courbes Γ_P , Γ_Q se décomposent donc en r courbes Γ' rencontrant chacune les courbes C en un point. Ces courbes sont par suite rationnelles et, de plus, elles forment un faisceau $|\Gamma'|$ de même genre p que les courbes C.

La surface F, possédant un faisceau de genre p de courbes rationnelles, se ramène, par des transformations birationnelles, à une réglée de genre $p(p_a = -p, p_g = P_2 = \ldots = 0)$.

- 4. Dans le troisième cas, la courbe Γ_p est rencontrée, par les courbes C passant par P, en ∞^{r-1} groupes de r-1 points. La courbe Γ_p est donc rationnelle. La surface F, contenant ∞^2 courbes rationnelles Γ_p , est, d'après un théorème bien connu de M. Castelnuovo, rationnelle $(p_a = P_2 = 0)$.
- 5. Reste à traiter le dernier cas, celui où les groupes de r-1 points dont la variété V est formée se distribuent sur toute la surface F.

Considérons les groupes de r-1 points de V_P appartenant aux courbes C (passant par P) d'un faisceau. Ces ∞^1 groupes engendrent une courbe que nous désignerons aussi par Γ . La courbe Γ relative à un faisceau déterminé de courbes C passant par P est rencontrée par ces courbes en r-1 points variables et en un certain nombre de points confondus en P; par conséquent, toutes les courbes C passant par P rencontrent une courbe Γ en r-1 points.

Supposons r > 3 et rapportons projectivement les courbes C passant par Paux hyperplans d'un espace S_{r-1} à r-1 dimensions. La surface F se transforme en une surface simple F* et aux courbes Γ correspondent sur F* des courbes Γ * d'ordre r-1. Or, une courbe d'ordre r-1 située dans un espace linéaire à r-1 dimensions est rationnelle, donc les courbes Γ * et par suite les courbes Γ sont rationnelles. Il se pourrait que le système $\{\Gamma\}$ formé par les courbes Γ construites plus haut en partant du point P soit composé au moyen d'un faisceau. Mais ce faisceau varie néces-

sairement avec le point P, car autrement on retomberait sur un des cas précédemment étudiés, puisque tous les groupes de r points des séries γ'_r appartenant aux courbes C se distribuerait sur les courbes d'un unique faisceau. On voit donc que la surface F, dans le cas actuel, possède au moins ∞^4 courbes rationnelles et est, par suite, rationnelle $(p_a = P_2 = 0)$.

Supposons enfin r=3. A chaque point P correspond une variété ∞^2 V_P de couples de points qui est rationnelle, car à une courbe C passant par P correspond un couple de V_P et inversement.

Soit π un plan. Entre π et V_P établissons une correspondance birationnelle. A une courbe Γ correspond alors, sur π , une courbe double Γ^* .

Une courbe C passant par P rencontre chaque courbe Γ en deux points variables. Les ∞^2 courbes C passant par P déterminent donc, sur une courbe Γ , soit une g_2^2 , soit une g_2^1 . Mais une Γ contient ∞^1 groupes de deux points de V_P ; dans l'hypothèse d'une g_2^1 , les courbes C découperaient, sur Γ , les ∞^1 groupes de V_P qui se trouvent sur cette courbe. Aux courbes C passant par P correspondent alors sur π des courbes doubles. Or, cela est en contradiction avec l'hypothèse initiale que |C| est simple. On conclut donc que chaque courbe Γ contient une série g_2^2 et est par suite rationnelle: On démontre alors, comme plus haut, que Γ est rationnelle

