Annales scientifiques de l'É.N.S.

MICHEL HERVÉ

Quelques propriétés des transformations intérieures d'un domaine borné

Annales scientifiques de l'É.N.S. 3^e série, tome 68 (1951), p. 125-168 http://www.numdam.org/item?id=ASENS 1951 3 68 125 0>

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1951, tous droits réservés. L'accès aux archives de la revue « Annales scientifiques de l'É.N.S. » (http://www.elsevier.com/locate/ansens) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

QUELQUES PROPRIÉTÉS

DES

TRANSFORMATIONS INTÉRIEURES D'UN DOMAINE BORNÉ

· PAR M. MICHEL HERVÉ.

INTRODUCTION.

L'objet de ce travail est l'étude des transformations intérieures d'un domaine D borné, univalent, du plan complexe ou de l'espace à deux dimensions complexes : ces transformations sont définies, dans le premier cas par une fonction z'=f(z) holomorphe sur D et à valeurs dans D, dans le deuxième par deux fonctions $x'=f_1(x,y)$, $y'=f_2(x,y)$ holomorphes sur D et telles que le point de coordonnées f_1 , f_2 appartienne à D. Dans les deux cas on écarte les transformations qui mettent D en correspondance biunivoque avec lui-même, plus brièvement : les automorphismes de D.

Lorsque D est un domaine plan simplement connexe, les automorphismes A de D ne se séparent pas des autres transformations intérieures, soit I, en ce sens qu'un A peut être limite (uniforme sur tout compact contenu dans D) d'une suite de I; il n'en est plus de même si D est un domaine plan d'ordre de connexion fini $p \geq 2$, dont la frontière sera, dans toute la suite, supposée formée de p continus non ponctuels C_1, \ldots, C_p : les A et les I sont alors séparés par des critères topologiques tels que celui-ci $\binom{4}{1}$: étant donné une transformation I, on peut trouver dans D une courbe fermée non équivalente à zéro dont la transformée par I soit équivalente à zéro.

17

⁽¹⁾ H. CARTAN, Math. Z., t. 35, 1932, p. 760.

Ann. Éc. Norm., (3), LXVIII. — Fasc. 2.

126 M. HERVÉ.

De là résulte en particulier que, si l'on considère les transformations I admettant un point z_0 donné de D comme point fixe, les modules de leurs dérivées en ce point ont une borne supérieure $\Omega(z_0, D) < \tau$: la « constante de point fixe » relative à D et au point z_0 . L'objet des trois premiers Chapitres de ce travail est de déterminer Ω et les transformations extrémales z' = f(z) pour lesquelles $\hat{f}'(z_0) = \Omega(z_0, D)$: le Chapitre II résout ce problème, dans le cas p = 2, pour l'ensemble des transformations I; le Chapitre III le résout, dans le cas $p \ge 3$, seulement pour les transformations I_0 dans lesquelles toute courbe fermée tracée dans D a pour image une courbe équivalente à zéro. Pour traiter ce problème, je le mets successivement en relation avec les deux suivants:

Problème A. — Étant donné les substitutions S_2 , ..., S_p génératrices du groupe des automorphismes de la fonction $z = \Phi(Z)$ qui met D en correspondance conforme avec le disque |Z| < 1, et les angles θ_2 , ..., θ_p , on appelle $\mathcal{BC}[\theta_2, \ldots, \theta_p]$ la classe des fonctions H(Z) holomorphes et de module au plus égal à 1 pour |Z| < 1 et vérifiant les p-1 identités $H(S_k Z) \equiv e^{-i\theta_k} H(Z)$; trouver alors, pour Z_0 donné, sup $|H(Z_0)|$ et les extrémales, pour lesquelles cette borne est atteinte.

Problème B. — Soit \mathcal{F} la classe des fonctions f(z) holomorphes (uniformes) sur D et telles que

$$\overline{\lim_{z=x_1\in C_1}}|f(z)| \leq 1, \qquad \overline{\lim_{z=x_k\in C_k}}|f(z)| \leq e^{M_k} \qquad (2 \leq k \leq p),$$

où les M_k sont des nombres donnés; trouver alors, pour z_0 donné, $\sup |f(z_0)|$ et les extrémales, pour lesquelles cette borne est atteinte.

Pour p=2, M. Heins (¹) a étudié le problème A par une méthode d'interpolation, mais sans expliciter les extrémales; le problème B a été traité par Teichmüller (²) (j'ignore par quelle méthode, n'ayant connaissance de ce Mémoire que par son compte rendu dans le Zentralblatt); d'autre part, pour p quelconque, le problème B a été résolu par M. Grunsky (³), qui établit d'abord deux propriétés importantes des extrémales; des problèmes voisins font l'objet de plusieurs Mémoires récents, dont ceux de MM. Ahlfors (⁴), Garabedian (⁵), Nehari (⁶).

Au Chapitre I de ce travail, j'aborde le problème A pour p=2, par une méthode nouvelle, partant des propriétés de la borne $\sup |H(Z_0)|$ demandée;

⁽¹⁾ M. Heins, Amer. J. Math., t. 62, 1940, p. 91.

⁽²⁾ O. TEICHMÜLLER, Deutsche Math., t. 4, 1939, p. 16.

⁽³⁾ H. GRUNSKY, Jahresbericht der D. M. V., t. 52, 1942, p. 118.

^(*) L. Ahlfors, Duke Math. J., t. 14, 1947, p. 1.

⁽⁵⁾ P. R. GARABEDIAN, Bull. Amer. Math. Soc., t. 53, 1949, p. 917 et Trans. Amer. Math. Soc., t. 67, 1949, p. 1.

⁽⁶⁾ Z. NEHARI, Trans. Amer. Math. Soc., t. 69, 1950, p. 161.

les extrémales sont exprimées sous forme de produits de Blaschke; les résultats sont appliqués au problème B et à d'autres problèmes d'extremum relatifs à un domaine D doublement connexe : citons une expression de la distance de Caratheodory de deux points de D à l'aide de la fonction de Green de D.

Les applications aux transformations I (toujours pour p=2) font l'objet du Chapitre II : $\Omega(z_0, D)$ est donnée sous forme de produit infini; pour chaque angle ψ (mod 2π), il existe une extrémale $\hat{f}(z)$ et une seule telle que

$$\hat{f}'(z_0) = e^{i\psi}\Omega(z_0, D);$$

chaque point de D a, dans la transformation $z'=\hat{f}(z)$, une infinité d'antécédents répartis en quatre suites qui, si C_1 et C_2 sont deux courbes simples de Jordan, convergent respectivement vers deux points de C_1 et deux points de C_2 ; la position de ces points est précisée par des conditions portant sur les mesures harmoniques, par rapport à D, des arcs de C_1 et C_2 qu'ils limitent; de même pour leur variation avec ψ . Le Chapitre s'achève avec l'étude du problème suivant : à quelle condition existe-t-il des transformations I changeant deux points donnés z_1 , z_2 de D en deux points donnés z_1' , z_2' , et, si oui, les arcs z_1' , z_2' images d'un même arc z_1 , z_2 par ces transformations sont-ils topologiquement équivalents dans D? La réponse fait intervenir la distance de Caratheodory de z_1 et z_2 .

Le Chapitre III considère le cas $p \ge 3$: la solution du problème B est empruntée à M. Grunsky; il en résulte celle du problème A et la constante de point fixe $\Omega_0(z_\bullet, D)$ relative aux transformations I_0 ; en supposant encore que C_1, \ldots, C_p sont des courbes simples de Jordan, chacune porte un ensemble parfait totalement discontinu de points d'accumulation des antécédents d'un point de D par une transformation extrémale I_0 . En ce qui concerne les transformations I, autres que les I_0 , qui laissent fixe le point z_0 , elles se répartissent en un nombre fini de classes disjointes fermées (dans la topologie de la convergence uniforme sur tout sous-ensemble compact de D), pour chacune desquelles je donne une borne supérieure de la constante de point fixe, analogue à la valeur exacte de Ω_0 .

Au Chapitre IV, D est un domaine de l'espace à deux dimensions complexes; le problème étudié est celui des transformations limites de suites d'itérées d'une transformation I donnée. Si l'une de ces transformations est intérieure, il en est de même de toutes les autres; le cas du point double attractif étant écarté, il existe une variété analytique E dans D, irréductible (au sens global du mot) qui est l'image de D par chacune des transformations limites; l'ensemble de celles-ci est fini ou a la puissance du continu selon que E est, ou non, conservée point par point par une itérée de la transformation donnée.

Une grande partie des résultats de ce travail a été publiée dans trois Notes aux Comptes rendus de l'Académie des Sciences, 230, 1950, p. 609, 707 et 1491.

- A M. P. Montel, qui me fait de nouveau l'honneur de présider mon Jury;
- à M. A. Denjoy, qui a bien voulu accepter d'être mon second directeur de recherches;
- à M. G. Valiron, qui, depuis mon entrée à l'École Normale Supérieure, n'a jamais cessé de guider mes travaux, qui m'a fourni le thème du présent travail et dont les précieux conseils m'ont permis de le développer;
- à M. H. Cartan, à qui je suis tant redevable également, particulièrement pour son enseignement à l'École Normale Supérieure;

J'offre ce Mémoire comme un hommage de ma très vive admiration et de ma profonde reconnaissance.

CHAPITRE I.

ÉTUDE DE LA CLASSE $\mathcal{H}[\theta]$ ET APPLICATION A DES PROBLÈMES D'EXTREMUM RELATIFS A UN DOMAINE DOUBLEMENT CONNEXE.

1. Soit, dans le plan de la variable z, un domaine D borné, univalent, dont la frontière se compose de deux continus non ponctuels disjoints, C_1 , C_2 : ce sera par exemple la couronne circulaire $R_2 < |z| < R_4$. Un tel domaine est mis en correspondance conforme (non biunivoque) avec le disque |Z| < 1 au moyen de la fonction $z = \Phi(Z)$, invariante par une substitution hyperbolique S conservant le disque; en désignant par SZ le transformé de Z par S, nous écrirons $\Phi(SZ) \equiv \Phi(Z)$ et nous poserons

(1)
$$\frac{SZ - \alpha}{SZ - \beta} \equiv \lambda \frac{Z - \alpha}{Z - \beta} (\lambda > 1, |\alpha| = |\beta| = 1, \alpha \neq \beta).$$

Soient encore Γ_4 et Γ_2 les deux arcs $\widehat{\alpha\beta}$ de la circonférence |Z|=1, qui représentent respectivement C_4 et C_2 .

En particulier, dans le cas de la couronne $R_2 < |z| < R_1$, la correspondance $z = \Phi(Z)$ entre cette couronne et le disque est donnée par la formule

(2)
$$i\log\frac{Z-\alpha}{Z-\beta} = \gamma_1 + \pi \frac{\log z - \log R_2}{\log R_1 - \log R_2},$$

où $2\gamma_1$ est la mesure en radians de Γ_1 et en supposant que $\Gamma_2 \alpha \Gamma_4 \beta$ est le sens direct sur la circonférence |Z|=1; ainsi

$$\log \lambda = \frac{2\pi^2}{\log R_1 - \log R_2}.$$

2. La représentation $z = \Phi(Z)$ permet d'associer, à chaque fonction f(z)

holomorphe (et uniforme) sur D, la fonction $F(Z) \equiv f[\Phi(Z)]$ holomorphe pour |Z| < 1 et invariante par S; si $F(Z_0) = 0$, F(Z) admet comme zéros tous les zéros du produit de Blaschke

(4)
$$B(Z_0, Z) \equiv \prod_{n=-\infty}^{n=+\infty} \frac{\overline{S^n Z_0}}{|S^n Z_0|} \frac{S^n Z_0 - Z}{1 - \overline{S^n Z_0} Z}.$$

Comme

$$\left|\frac{\underline{S^n}\underline{Z_0} - \underline{Z}}{\underline{I} - \overline{S^n}\underline{Z_0}\underline{Z}}\right| = \left|\frac{\underline{S^{n+1}}\underline{Z_0} - \underline{S}\underline{Z}}{\underline{I} - \overline{S^{n+1}}\underline{Z_0}\underline{S}\underline{Z}}\right|,$$

on a

$$|B(Z_0, Z)| = |B(Z_0, SZ)|,$$

donc

(5)
$$B(\mathbf{Z}_0, \mathbf{SZ}) \equiv e^{i\varphi} B(\mathbf{Z}_0, \mathbf{Z}).$$

Pour évaluer la constante réelle φ, considérons la fonction

$$u(z) = -\log |\mathbf{B}[\mathbf{Z}_0, \Phi^{-1}(z)]|,$$

où $\Phi^{-1}(z)$ désigne la fonction inverse, définie à la substitution S près, de $\Phi(Z): u(z)$ est uniforme sur D, harmonique à l'exception du point z_0 image de Z_0 , nulle à la frontière de D, telle enfin que $u(z) + \log|z - z_0|$ soit harmonique partout sur D, c'est donc la fonction de Green de D admettant z_0 pour pôle logarithmique:

(6)
$$G(z_0, z) \equiv -\log |B(Z_0, Z)|,$$

avec

$$z = \Phi(\mathbf{Z}), \quad z_0 = \Phi(\mathbf{Z}_0).$$

La fonction multiforme

$$v(z) = \arg \mathbf{B}[\mathbf{Z}_0, \Phi^{-1}(z)]$$

est telle que $v(z) + iG(z_0, z)$ soit analytique; d'après (5), φ est, à 2π près, l'accroissement de v(z) lorsque le point $\Phi^{-1}(z)$ subit la substitution S, donc (en nous bornant ici au cas où D est une couronne circulaire de centre O) lorsque le point z tourne de 2π autour de l'origine, par exemple le long de la circonférence extérieure C_1 ; à 2π près, φ est donc (1) le produit par 2π de la mesure harmonique de C_1 par rapport à D au point z_0 , ou le double de l'angle que font Γ_2 et l'arc de cercle $\alpha Z_0 \beta$. Nous pouvons écrire

(7)
$$B(Z_0, SZ) \equiv e^{i\varphi(z_0)}B(Z_0, Z)$$

où $\frac{\varphi(z_0)}{2\pi}$ est la mesure harmonique de C_4 au point z_0 , ou bien

(8)
$$B(Z_0, SZ) \equiv e^{i\varphi(Z_0)}B(Z_0, Z),$$

⁽¹⁾ NEVANLINNA, Eindeutige analytische Funktionen.

où $\frac{\varphi(Z_0)}{2}$ est l'angle orienté (à π près) que fait le cercle |Z|=1 avec le cercle αZ_0 β au point β .

3. Nous dirons que la fonction $B(Z_0,Z)$ appartient à la classe $\mathcal{BC}[-\phi(Z_0)]$, $\mathcal{BC}[\theta]$ désignant la classe des fonctions H(Z) holomorphes pour $|Z| < \tau$ qui vérifient

$$| H(Z) | \leq I$$
 et $H(SZ) \equiv e^{-i\theta} H(Z)$.

Le problème étudié dans ce Chapitre est la recherche de $\sup_{\pi \in \mathcal{R}[\theta]} |H(Z)|$, pour un point Z donné, et des fonctions de la classe $\mathcal{H}[\theta]$ pour les quelles cette borne supérieure est atteinte : nous les appellerons extrémales de la classe $\mathcal{H}[\theta]$ au point Z.

Tout d'abord, cette borne supérieure ne dépend que de $\varphi(Z)$, car, si S' est une substitution hyperbolique de points doubles α et β , $H'(Z) \equiv H(S'Z)$ appartient à $\mathcal{B}[\theta]$ en même temps que H(Z) (S et S' étant permutables), donc l'ensemble des valeurs que prennent les fonctions de $\mathcal{B}[\theta]$ au point Z coïncide avec celui des valeurs qu'elles prennent au point S'Z. Nous poserons

(9)
$$\sup_{\Pi \in \mathcal{X}[\theta]} |H(Z)| = A[\theta, \varphi(Z)],$$

définissant ainsi une fonction $A(\theta, \theta')$ des deux arguments $\theta, \theta' \pmod{2\pi}$; notons que $A(o, \theta') \equiv I$.

Cette fonction $A(\theta, \theta')$ est symétrique: soit en effet à évaluer la distance $C(z_1, z_2)$, dans la métrique de Caratheodory (1) relative au domaine D, de deux points z_1 , z_2 de D, c'est-à-dire le maximum de la distance non euclidienne (dans le cercle |z| < 1) des valeurs $f(z_1)$, $f(z_2)$ en ces deux points d'une fonction f(z) holomorphe (uniforme) et de module inférieur à 1 sur D; suivant le principe énoncé au début du n° 2, on a

th
$$C(z_1, z_2) = \sup \left| \frac{F(Z_1) - F(Z_2)}{I - \overline{F(Z_1)} F(Z_2)} \right|,$$

avec

$$z_1 = \Phi(\mathbf{Z}_1), \qquad z_2 = \Phi(\mathbf{Z}_2),$$

la borne supérieure étant prise pour toutes les F(Z) holomorphes et de module inférieur à 1 pour |Z| < 1 et invariantes par S. On peut poser $F(Z_1) = 0$: alors

$$F(Z) \equiv B(Z_1, Z) H(Z),$$
 où $H \in \mathcal{H}[\varphi(Z_1)]$ d'après (8),

donc

$$(\text{10}) \qquad \qquad \text{th } \mathrm{C}(z_{\scriptscriptstyle 1},\,z_{\scriptscriptstyle 2}) = \sup |\,\mathrm{F}(\mathrm{Z}_{\scriptscriptstyle 2})\,| = |\,\mathrm{B}(\mathrm{Z}_{\scriptscriptstyle 1},\,\mathrm{Z}_{\scriptscriptstyle 2})\,|\,\mathrm{A}[\phi(\mathrm{Z}_{\scriptscriptstyle 1}),\,\phi(\mathrm{Z}_{\scriptscriptstyle 2})].$$

⁽¹⁾ CARATHEODORY, Math. Ann., t. 97, 1927, p. 76.

De même, en posant $F(Z_2) = 0$, on a

(11)
$$\operatorname{th} C(z_1, z_2) = \sup |F(Z_1)| = |B(Z_2, Z_1)| A[\varphi(Z_2), \varphi(Z_1)].$$

D'après la formule (6) et la symétrie de la fonction de Green, on a

$$|B(Z_1, Z_2)| = |B(Z_2, Z_1)|;$$

la comparaison de (10) et (11) donne donc la relation

(12)
$$A(\theta, \theta') \equiv A(\theta', \theta),$$

établie ici en supposant θ et $\theta' \not\equiv o \pmod{2\pi}$, et qui nous conduit à poser $A(\theta, o) \equiv I$.

4. Montrons maintenant la *continuité* de la fonction $A(\theta, \theta')$, en supposant $\theta' \not\equiv o \pmod{2\pi}$ et en établissant séparément les deux semi-continuités :

Semi-continuité inférieure : soit $H_0(Z)$ une extrémale de la classe $\mathcal{B}[\theta_0]$ au point Z_0 ; la fonction $\left(\frac{Z-\alpha}{Z-\beta}\right)^{\frac{i(\theta_0-\theta)}{\log\lambda}}$ (où l'on a fait choix, une fois pour toutes, d'une détermination de $\arg\frac{Z-\alpha}{Z-\beta}$ qui, sur tout le cercle |Z|<1, soit du signe de $\theta_0-\theta$) appartient à $\mathcal{B}[\theta-\theta_0]$ et son module tend vers 1, uniformément sur

tout le cercle $|Z| < \tau$, lorsque $\theta \to \theta_0 \to \sigma$; la fonction $H_0(Z) \left(\frac{Z-\alpha}{Z-\beta}\right)^{\frac{\ell(\theta_0-\theta)}{\log \lambda}}$ appartient à $\mathcal{H}[\theta]$ et est de module au plus égal à $A[\theta,\phi(Z)]$, d'où la semi-continuité inférieure de $A(\theta,\theta')$ au point $\theta_0,\phi(Z_0)$.

Semi-continuité supérieure : si les suites θ_p , Z_p convergent respectivement vers θ_0 et Z_0 , et si $H_p(Z)$ désigne une extrémale de la classe $\mathcal{BC}[\theta_p]$ au point Z_p , de la suite $H_p(Z)$ on peut extraire une suite partielle $H_{p_k}(Z)$ uniformément convergente au voisinage de Z_0 , dont la limite H(Z) appartient à $\mathcal{BC}[\theta_0]$; comme

$$H(\mathbf{Z}_0) = \lim_{k \to \infty} H_{p_k}(\mathbf{Z}_{p_k}),$$

on a

$$A[\theta_0, \varphi(Z_0)] \ge \lim_{k=\infty} A[\theta_{p_k}, \varphi(Z_{p_k})].$$

Notons encore que l'on a toujours $o < A(\theta, \theta') < \iota$ pour θ et $\theta' \not\equiv o \pmod{2\pi}$.

5. Montrons maintenant que, θ étant fixé $\not\equiv o \pmod{2\pi}$, $\log A(\theta, \theta')$ est fonction *strictement convexe* de θ' sur $(0, 2\pi)$, c'est-à-dire que, pour

$$0 \leq \theta'_0 < \theta'_1 < \theta'_2 \leq 2\pi$$

on a

$$(\mathfrak{1}3) \quad (\theta_2'-\theta_0')\log A(\theta,\,\theta_1')+(\theta_0'-\theta_1')\log A(\theta,\,\theta_2')+(\theta_1'-\theta_2')\log A(\theta,\,\theta_0')< o.$$

Pour cela, plaçons-nous dans le cas où D est la couronne circulaire $R_2 < |z| < R_1$,

et considérons la classe $\mathcal F$ des fonctions f(z) holomorphes (uniformes) sur D et telles que

 $\overline{\lim_{z=\mathtt{R}_{\mathtt{I}}e^{i\omega}}}|f(z)|\! \leq\! \mathtt{I}, \quad \overline{\lim_{z=\mathtt{R}_{\mathtt{I}}e^{i\omega}}}|f(z)|\! \leq\! e^{\mathtt{M}},$

quel que soit l'angle ω : soit à chercher $\sup_{f \in \mathcal{F}} |f(z)|$ pour un point z donné de D.

La fonction $F(Z) \equiv f[\Phi(Z)]$ associée à une fonction de \mathcal{F} doit être invariante par S et |F(Z)| doit avoir des limites supérieures au plus égales à 1 sur Γ_2 , e^{M} sur Γ_4 ; or ces valeurs limites sont celles du module de la fonction

$$e^{-\frac{\gamma_1 M}{\pi}} \left(\frac{\mathbf{Z} - \alpha}{\mathbf{Z} - \beta} \right)^{\frac{iM}{\pi}} = \exp\left(-\frac{\gamma_1 M}{\pi} + \frac{iM}{\pi} \log \frac{\mathbf{Z} - \alpha}{\mathbf{Z} - \beta}\right),$$

où la détermination choisie pour $\arg \frac{Z-\alpha}{Z-\beta}$ est celle qui vaut $-\gamma_1$ sur Γ_2 , $-(\gamma_1+\pi)$ sur Γ_1 ; par contre, cette fonction n'est pas invariante par S, mais appartient à la classe $\mathcal{BC}\left[-\frac{M}{\pi}\log\lambda\right]$; comme elle ne s'annule pas et que F(Z) est bornée, on a

$$F(Z) \equiv e^{-\frac{\gamma_1 M}{\pi}} \left(\frac{Z - \alpha}{Z - \beta} \right)^{\frac{iM}{\pi}} H(Z), \qquad H \in \mathcal{H} \left[\frac{M}{\pi} \log \lambda \right],$$

et par suite

$$\sup \log |F(Z)| = -\frac{M}{\pi} \Big(\gamma_1 + \arg \frac{Z - \alpha}{Z - \beta} \Big) + \log A \Big[\frac{M}{\pi} \log \lambda, \, \phi(Z) \Big],$$

ou, en comparant avec (2),

(14)
$$\sup_{f \in \mathcal{F}} \log |f(z)| = M \frac{\log |z| - \log R_2}{\log R_1 - \log R_2} + \log A \left[\frac{M}{\pi} \log \lambda, \varphi(z) \right] \cdot$$

Le premier terme du deuxième membre est la borne supérieure de $\log |f(z)|$ fournie par le théorème des trois cercles de M. Hadamard; cette borne est la borne exacte si l'on admet que f(z) soit multiforme; si au contraire, comme nous le faisons ici, on exige que f(z) soit uniforme, la borne exacte est donnée par la formule (14) au moyen de la fonction A.

Il peut arriver que cette borne exacte se réduise au terme fourni par le théorème des trois cercles : il faut et il suffit pour cela que

$$\frac{M}{\pi}\log\lambda \equiv o \qquad (\text{mod } 2\pi),$$

donc, d'après (3),

(15)
$$M \equiv o \qquad \left(\bmod \log \frac{R_1}{R_2} \right),$$

toute extrémale de la classe \mathcal{F} (c'est-à-dire toute fonction de \mathcal{F} pour laquelle la borne exacte est atteinte) est alors un monome en z (à exposant entier positif ou négatif).

6. Si au contraire (15) n'a pas lieu, je dis qu'une extrémale de \mathcal{F} en un point z_0 de D ne peut être un monome en z: le module d'un monome en z prend en effet sur les circonférences C_1 et C_2 des valeurs constantes m_1 et m_2 ; si ce monome appartient à \mathcal{F} , on a $m_2 \leq 1$, $m_1 \leq e^{M}$, les égalités $m_2 = 1$, $m_4 = e^{M}$ ne pouvant être réalisées en même temps puisque (15) n'a pas lieu; si l'on a $m_2 < 1$ et $m_1 < e^{M}$, le monome peut être multiplié par une constante de module plus grand que 1 sans cesser d'appartenir à \mathcal{F} , donc ne peut être extrémale de \mathcal{F} ; si $m_2 = 1$ et $m_1 < e^{M}$, le monome peut être multiplié par $\frac{1 + ae^{-i\theta_0}z}{1 + aR_2}$, où $\theta_0 = \arg z_0$ et le nombre positif a est choisi de manière que $\frac{1 + aR_1}{1 + aR_2} = \frac{e^{M}}{m_1}$; si $m_2 < 1$ et $m_1 = e^{M}$, même raisonnement avec $\frac{1 + \frac{ae^{i\theta_0}}{z}}{1 + \frac{a}{R_1}}$, où $\frac{1 + \frac{a}{R_2}}{1 + \frac{a}{R_1}} = \frac{1}{m_2}$.

Pour établir l'inégalité (13), nous choisissons M tel que $\frac{M}{\pi} \log \lambda = \theta$; comme la formule (14) peut encore s'écrire

(16)
$$\sup_{f \in \mathcal{F}} \log |f(z)| = \frac{M}{2\pi} \varphi(z) + \log A \left[\frac{M}{\pi} \log \lambda, \varphi(z) \right],$$

il suffit de montrer que le deuxième membre de (16) est fonction strictement convexe de $\varphi(z)$, ou de $\log|z|$ qui est lié à $\varphi(z)$ par une relation linéaire; choisissons donc dans D les points z_0 , z_1 , z_2 tels que

$$\phi(z_0) = \theta'_0, \qquad \phi(z_1) = \theta'_1, \qquad \phi(z_2) = \theta'_2,$$

et soient

$$r_0 = |z_0|, \qquad r_2 = |z_2|;$$

si m_0 , m_1 , m_2 sont les valeurs prises par le deuxième membre de (16) aux points z_0 , z_1 , z_2 , et $f_1(z)$ une extrémale de \mathcal{F} au point z_1 , on a

$$\log |f_1(z_1)| = m_1$$
 et $\log |f_1(r_0e^{i\omega})| \leq m_0$, $\log |f_1(r_2e^{i\omega})| \leq m_2$

quel que soit l'angle ω; d'après le théorème des trois cercles,

$$(\log |z_2| - \log |z_0|) m_1 + (\log |z_0| - \log |z_1|) m_2 + (\log |z_1| - \log |z_2|) m_0 \leq 0;$$

puisque $\varphi(z)$ est fonction linéaire croissante de $\log |z|$, cette inégalité donne (13) avec le signe \angle .

Si l'on avait le signe =, la borne fournie par le théorème des trois cercles serait atteinte par la fonction uniforme $f_1(z)$, donc (en appliquant à la couronne circulaire $r_0 < |z| < r_2$ le raisonnement fait à la fin du n° 5) $f_1(z)$ serait un monome en z; mais (début du n° 6) c'est impossible puisque par hypothèse $f_1(z)$ est une extrémale de la classe \mathcal{F} relativement au domaine D avec

$$\frac{M}{\pi} \log \lambda \neq 0 \pmod{2\pi}.$$

7. Les propriétés (12) (symétrie) et (13) (stricte convexité par rapport à l'une des variables) permettent de déterminer la fonction $A(\theta, \theta')$ et les extrémales de $\mathcal{H}[\theta]$ en un point donné Z_0 . Supposons d'abord qu'une telle extrémale, soit H(Z), ne s'annule pas pour |Z| < 1: une détermination, holomorphe pour |Z| < 1, de $\log H(Z)$ vérifie une identité de la forme

$$\log H(SZ) \equiv \log H(Z) - i\theta$$

qui détermine la constante θ , non plus seulement (mod 2π), mais complètement; la lettre θ désignera dans ce numéro ce nombre fixe. Si t est un nombre réel compris entre 0 et 1, chaque détermination de $[H(Z)]^t$ appartient à $\mathcal{H}[t\theta]$, chaque détermination de $[H(Z)]^{t-t}$ à $\mathcal{H}[(1-t)\theta]$, donc

$$\begin{cases} A[t\theta, \varphi(Z_0)] \geq \{A[\theta, \varphi(Z_0)]\}^{\ell}, \\ A[(t-t)\theta, \varphi(Z_0)] \geq \{A[\theta, \varphi(Z_0)]\}^{1-\ell}. \end{cases}$$

Mais d'autre part le produit d'une fonction de $\mathcal{H}[t\theta]$ et d'une fonction de $\mathcal{H}[(1-t)\theta]$ appartient à $\mathcal{H}[\theta]$, donc

(18)
$$A[\theta, \varphi(Z_0)] \ge A[t\theta, \varphi(Z_0)] A[(t-t)\theta, \varphi(Z_0)].$$

La comparaison de (17) et (18) donne

$$A[t\theta, \varphi(Z_0)] = \{A[\theta, \varphi(Z_0)]\}^t$$

quel que soit t(o < t < 1), contrairement à la stricte convexité de $\log A(\theta, \theta')$ par rapport à θ .

8. Une extrémale H(Z) de $\mathcal{H}[\theta]$ au point Z_0 s'annule donc nécessairement en un point Z_1 , et par suite aussi en tous les points $S^n Z_1$:

$$H(Z) \equiv B(Z_i, Z) K(Z),$$
 où $K \in \mathcal{X}[\theta + \varphi(Z_i)];$

on peut même affirmer que K(Z) est une extrémale de $\mathcal{B}(\theta + \phi(Z_1))$ au point Z_0 ; comme $B(Z_1, Z)$ appartient à $\mathcal{B}(-\phi(Z_1))$, on a donc

$$(19) \hspace{1cm} A[\theta, \phi(Z_0)] \underline{ \swarrow} A[-\phi(Z_1), \phi(Z_0)] \hspace{1cm} A[\theta+\phi(Z_1), \phi(Z_0)];$$

mais comme le produit d'une fonction de $\mathcal{B}([-\phi(Z_1)])$ et d'une fonction de $\mathcal{B}([\theta+\phi(Z_1)])$ appartient à $\mathcal{B}([\theta])$, on a aussi l'inégalité large analogue à (19) et de sens contraire, donc (19) est à remplacer par l'égalité correspondante, que nous écrirons

$$(20) \qquad \log A[\theta + \phi(Z_1), \phi(Z_0)] - \log A[\theta, \phi(Z_0)] = -\log A[-\phi(Z_1), \phi(Z_0)].$$

Je dis que $\theta + \varphi(Z_1) \equiv o \pmod{2\pi}$; supposons que ce ne soit pas le cas, et précisons les deux angles θ , $\theta + \varphi(Z_1)$, jusqu'ici définis $\pmod{2\pi}$, en leur imposant d'être compris entre o et 2π ; si $o < \theta + \varphi(Z_1) < \theta < 2\pi$, on a $o < -\varphi(Z_1) < \theta$; si l'on marque, sur la courbe représentative de la fonction $\log A[\theta, \varphi(Z_0)]$ pour $o < \theta < 2\pi$, les points A, B, C d'abscisses $\theta + \varphi(Z_1)$,

 θ , $-\varphi(Z_1)$, la relation (20) exprime le parallélisme des droites AB et OC; mais, comme C est à gauche de B, cela est en contradiction avec la stricte convexité de $\log A[\theta, \varphi(Z_0)]$. Si au contraire, $0 < \theta < \theta + \varphi(Z_1) < 2\pi$, même raisonnement, à cela près que C sera le point d'abscisse $2\pi - \varphi(Z_1)$ et sera joint, non plus à l'origine, mais au point d'abscisse 2π .

9. Ainsi $\theta + \varphi(Z_1) \equiv o \pmod{2\pi}$, et K(Z), extrémale de la classe $\mathcal{H}[o]$, est une constante de module I:

$$(21) \qquad \qquad \mathrm{H}(\mathrm{Z}) \equiv \mathrm{B}(\mathrm{Z}_1,\,\mathrm{Z})\,e^{i\omega}, \qquad \varphi(\mathrm{Z}_1) = -0 \qquad (\bmod 2\ \pi).$$

Reste à déterminer Z_1 , c'est-à-dire le maximum de $|B(Z_1, Z_0)|$ pour Z_0 donné, Z_1 vérifiant la deuxième condition (21); en supposant encore que D soit la couronne circulaire $R_2 < |z| < R_1$, cela revient, d'après (6), à trouver le minimum de $G(z_1, z_0)$ pour z_0 donné, z_1 variable sur un cercle de centre O: il est atteint lorsque z_0 et z_1 sont alignés avec O et de part et d'autre de O.

Pour le montrer, prenons dans D deux points z_1 , z_1' tels que $|z_1| = |z_1'|$, et considérons les deux fonctions de Green $G(z_1, z)$, $G(z_1', z)$: elles sont égales sur la médiatrice de z_1 , z_1' ; dans la demi-couronne limitée par cette médiatrice et contenant le point z_1 , la deuxième est harmonique tandis que la première est surharmonique, donc $G(z_1, z) > G(z_1', z)$; cela prouve que $G(z_1, z_0)$ ne peut être minimum si $\widehat{z_0} O z_1 < \pi$.

L'alignement $z_0 O z_1$ se traduit sur les points Z_0 et Z_1 par la condition

$$\left|\frac{\mathbf{Z}_1 - \alpha}{\mathbf{Z}_1 - \beta}\right| : \left|\frac{\mathbf{Z}_0 - \alpha}{\mathbf{Z}_0 - \beta}\right| = \lambda^{m + \frac{1}{2}} \qquad (\textit{m entier}),$$

qui, jointe à la deuxième équation (21), détermine Z_i à la substitution S près. Nous pouvons donc énoncer :

Théorème. — Les extrémales de la classe $\mathcal{H}[\theta]$ en un point donné Z_0 ne diffèrent entre elles que par une constante multiplicative de module 1, elles sont données par

(21)
$$\begin{cases} H(Z) \equiv e^{i\omega} B(Z_1, Z), \\ \text{avec} \\ \varphi(Z_1) = -\theta \pmod{2\pi}, \qquad \left| \frac{Z_1 - \alpha}{Z_1 - \beta} \right| : \left| \frac{Z_0 - \alpha}{Z_0 - \beta} \right| = \lambda^{m + \frac{1}{2}} \pmod{m}. \end{cases}$$

10. Applications. — 1° Distance de Caratheodory de deux points z_1 , z_2 , de D. — Si l'on reprend la formule (10), le théorème ci-dessus donne

(22)
$$\log \operatorname{th} C(z_1, z_2) = -G(z_1, z_2) - G(z_3, z_2),$$

où l'homologue Z3 de z3 est déterminé par les conditions

$$\varphi(\mathbf{Z}_3) = -\varphi(\mathbf{Z}_1) \pmod{2\pi}, \qquad \left| \frac{\mathbf{Z}_3 - \alpha}{\mathbf{Z}_3 - \beta} \right| : \left| \frac{\mathbf{Z}_2 - \alpha}{\mathbf{Z}_2 - \beta} \right| = \lambda^{m + \frac{1}{2}}.$$

Si D est la couronne circulaire $R_2 < |z| < R_1$, ces conditions se traduisent pour le point z_3 par

(23)
$$|z_1 z_3| = R_1 R_2, \quad \frac{z_3}{z_2} \text{ réel } < 0.$$

2º Amélioration du théorème des trois cercles. — Si \mathcal{F} désigne, comme au nº 5, la classe des fonctions f(z) holomorphes (uniformes) sur la couronne circulaire $R_2 < |z| < R_1$ et telles que

$$\overline{\lim_{z=R_1e^{i\omega}}}|f(z)|\! \leq \! \mathbf{1}, \qquad \overline{\lim_{z=R_1e^{i\omega}}}|f(z)|\! \leq \! e^{\mathbf{M}},$$

en reprenant la formule (14), le théorème ci-dessus donne

(24)
$$\sup_{f \in \mathcal{F}} \log |f(z)| = M \frac{\log |z| - \log R_2}{\log R_1 - \log R_2} - G(z, \zeta),$$

où ζ est défini par les conditions

$$\label{eq:continuous_section} \log |\zeta| \equiv \log R_1 - M \quad \left(mod \log \frac{R_1}{R_2} \right), \qquad \frac{z}{\zeta} \, r\acute{e}el < o.$$

C'est le résultat de Teichmüller (1).

 3° La méthode s'applique aussi au problème suivant traité par M. Robinson (2): étant donné, sur la couronne $R_2 < |z| < R_1$, les points a_1, \ldots, a_k , b_1, \ldots, b_l (3), on considère les fonctions f(z) méromorphes sur la couronne, dont les zéros comprennent les points a_1, \ldots, a_k et dont les pôles sont compris parmi les points b_1, \ldots, b_l , et qui enfin vérifient

$$\overline{\lim_{z=\mathbf{R}_1 e^{i\omega}}} |f(z)| \leq \mathbf{I}, \qquad \overline{\lim_{z=\mathbf{R}_1 e^{i\omega}}} |f(z)| \leq e^{\mathbf{M}};$$

trouver pour ces fonctions sup |f(z)| en un point z donné. Il suffit de reprendre le raisonnement du n° 5 en écrivant cette fois

$$F(Z) \equiv e^{-\frac{\gamma_1 M}{\pi}} \left(\frac{Z-\alpha}{Z-\beta}\right)^{\frac{iM}{\pi}} \frac{B(A_1, Z) \dots, B(A_k, Z)}{B(B_1, Z) \dots, B(B_l, Z)} H(Z),$$

avec

$$\mathbf{H} \in \mathcal{H} \left[\frac{\mathbf{M}}{\pi} \log \lambda + \varphi(a_1) + \ldots + \varphi(a_k) - \varphi(b_1) - \ldots - \varphi(b_l) \right]$$

 $A_1, \ldots, A_k, B_1, \ldots, B_l$ étant des homologues dans |Z| < i de $a_1, \ldots, a_k, b_1, \ldots, b_l$; une extrémale de la classe considérée a donc en général un zéro de plus que

⁽¹⁾ O. TEICHMÜLLER, Deutsche Math., t. 4, 1939, p. 16.

⁽²⁾ R. Robinson, Duke Math. J., t. 10, 1943, p. 341.

⁽³⁾ Les a_i pouvant n'être pas distincts, et de même les b_j , mais aucun des a_i ne figurant parmi les b_j .

 a_1, \ldots, a_k (ou éventuellement un pôle de moins que b_1, \ldots, b_l); pour qu'il n'en soit pas ainsi, il faut et il suffit que

$$(26) \quad \frac{2\pi M}{\log R_1 - \log R_2} + \varphi(a_1) + \ldots + \varphi(a_k) - \varphi(b_1) - \ldots - \varphi(b_l) \equiv 0 \qquad (\text{mod } 2\pi).$$

4° Le problème suivant, apparemment plus compliqué que celui de M. Robinson, se traite encore de la même manière :

On considère encore les f(z) méromorphes sur la couronne $D: R_2 < |z| < R_1$, dont les zéros comprennent les points donnés a_1, \ldots, a_k et dont les pôles sont compris parmi les points donnés b_1, \ldots, b_l , mais vérifiant cette fois à la frontière les conditions

$$\overline{\lim}_{z=\mathtt{R_1}e^{i\omega}}\log|f(z)| \leq l_2(\omega), \qquad \overline{\lim}_{z=\mathtt{R_1}e^{i\omega}}\log|f(z)| \leq l_1(\omega),$$

 l_1 et l_2 étant deux fonctions données continues, de période 2π , et l'on cherche encore sup |f(z)| en un point donné z de D.

Si u(z) est la fonction harmonique sur D qui résout le problème de Dirichlet

$$u(R_2e^{i\omega}) = l_2(\omega), \qquad u(R_1e^{i\omega}) = l_1(\omega),$$

la fonction $e^{u(z)}$ n'est pas en général uniforme, mais multipliée par e^{i0} quand arg z croît de 2π . On écrira donc

$$\mathrm{F}(\mathrm{Z}) \equiv e^{u[\Phi(\mathrm{Z})]} \, \frac{\mathrm{B}(\mathrm{A}_1, \, \mathrm{Z}) \, \ldots \, \mathrm{B}(\mathrm{A}_k, \, \mathrm{Z})}{\mathrm{B}(\mathrm{B}_1, \, \mathrm{Z}) \, \ldots \, \mathrm{B}(\mathrm{B}_l, \, \mathrm{Z})} \, \mathrm{H}(\mathrm{Z}),$$

avec

$$H \in \mathcal{B}[\theta + \varphi(a_1) + \ldots + \varphi(a_k) - \varphi(b_1) - \ldots - \varphi(b_l)].$$

5° La méthode s'applique enfin à des problèmes sur les transformations intérieures du domaine D qui font l'objet du prochain Chapitre.

CHAPITRE II.

Application des résultats précédents aux transformations intérieures d'un domaine doublement connexe : Calcul de la « constante de point fixe ».

11. D'étant toujours le domaine considéré au Chapitre précédent, soit maintenant $\mathcal J$ la famille formée des fonctions holomorphes (uniformes) sur D qui appliquent D sur tout ou partie de lui-même mais ne l'appliquent pas sur lui-même de manière biunivoque, et en outre des constantes appartenant à la frontière de D. A l'aide de la correspondance $z = \Phi(Z)$, utilisée au Chapitre précédent, entre D et le disque |Z| < 1, on associe à chaque f(z) de la famille $\mathcal J$ l'une des fonctions

$$F(Z) \equiv \Phi^{-1} \{ f[\Phi(Z)] \},$$

toutes holomorphes et de module au plus égal à 1 pour |Z| < 1: si $F_0(Z)$ est l'une d'elles, les autres sont (1) les $S^nF_0(Z)$ (n entier positif ou négatif). Comme f(z) est uniforme, on a

$$F(SZ) \equiv S^p F(Z)$$
 (p entier).

L'entier p a, relativement à D, la signification géométrique suivante : en convenant que C_1 est celui des deux continus-frontières de D qui sépare D de l'infini et marquant sur C_2 un point quelconque a, si le point z décrit dans D un chemin fermé le long duquel $\arg(z-a)$ varie de $2k\pi$, le point f(z) décrit un chemin fermé le long duquel $\arg[f(z)-a]$ varie de $2kp\pi$. Si p n'était pas nul, toute courbe fermée tracée dans D et non réductible à zéro dans D $(k \neq 0)$ aurait pour image par f(z) une courbe fermée non réductible à zéro dans D; mais alors f(z) mettrait D en correspondance biunivoque avec lui-même $\binom{2}{r}$, contrairement à l'hypothèse. Ainsi, toute F(Z) associée à une f(z) de la famille $\mathcal S$ vérifie

$$(1) F(SZ) \equiv F(Z).$$

12. Réciproquement, toute F(Z) holomorphe et de module au plus égal à 1 pour |Z| < 1 et qui vérifie (1) définit une fonction et une seule (3)

$$f(z) \equiv \Phi \left\{ F[\Phi^{-1}(z)] \right\}$$

de la famille \mathcal{J} : si en effet f(z) mettait D en correspondance biunivoque avec lui-même, F(Z) ferait de même pour le cercle $|Z| < \tau$, donc ne prendrait pas la même valeur aux points Z et SZ.

Dans la topologie de la convergence uniforme sur tout sous-ensemble compact du cercle |Z| < 1, la famille des F(Z) holomorphes, de module au plus égal à 1 et vérifiant (1) est fermée et connexe, c'est-à-dire ne peut être partagée en deux sous-familles fermées disjointes : si en effet $F_4(Z)$ et $F_2(Z)$ appartenaient à deux telles sous-familles, suivant les valeurs du paramètre réel t ($0 \le t \le 1$), la fonction $t F_4(Z) + (1-t) F_2(Z)$ appartiendrait à l'une ou à l'autre, le segment $0 \le t \le 1$ pourrait lui-même être partagé en deux ensembles fermés disjoints non vides. Par suite, dans la topologie de la convergence uniforme sur tout sous-ensemble compact de D, la famille $\mathcal I$ est elle-même fermée et connexe.

13. Considérons, dans la famille \mathcal{I} , la sous-famille $\mathcal{I}(z_{\scriptscriptstyle 0})$ qui laisse fixe un

⁽¹⁾ En laissant de côté le cas où $f(z) \equiv x$, x point-frontière de D à image multiple dans la représentation conforme.

⁽²⁾ H. CARTAN, Math. Z., t. 35, 1932, p. 760.

⁽³⁾ A part les cas d'exception $F(Z) \equiv \alpha$, β ou X, point de la circonférence |Z| = 1 représentant un bout premier de la frontière de D.

point donné z_0 de D : $f(z_0) = z_0$ pour $f \in \mathcal{I}(z_0)$. On sait (1) que, pour $f \in \mathcal{I}(z_0)$, $|f'(z_0)|$ a une borne supérieure précise inférieure à 1, soit $\Omega(z_0, D)$, que l'on peut appeler constante de point fixe (Starrheitskonstante) relative à D et au point z_0 ; le deuxième Mémoire cité (1) utilise la représentation de D sur |Z| < 1, choisie de manière que z_0 ait pour image l'origine, et donne la borne supérieure

(2)
$$\Omega(z_0, D) \leq \prod_{n=1}^{+\infty} |S^n O|^2.$$

Reprenons le calcul en choisissant pour image de z_0 un point quelconque Z_0 ; on fixe la fonction F(Z) associée à une f(z) de la classe $\mathcal{J}(z_0)$ en posant $F(Z_0) = Z_0$; d'après (1), la fonction $\frac{F(Z) - Z_0}{1 - \overline{Z_0} F(Z)}$ est invariante par la substitution S, donc, avec les notations du Chapitre I,

$$\frac{F(Z)-Z_0}{I-\overline{Z_0}\,F(Z)} \equiv B(Z_0,\,Z)\,H(Z), \qquad \text{où} \quad H \in \mathcal{H}[\,\phi(Z_0)].$$

D'autre part

$$f'(z_0) = F'(Z_0) = \lim_{z=z_0} \frac{F(Z) - Z_0}{Z - Z_0} = H(Z_0) (1 - |Z_0|^2) \lim_{z=z_0} \frac{B(Z_0, Z)}{Z - Z_0}.$$

donc

$$\Omega(z_0, D) = \prod_{\substack{n = +\infty \\ n \neq 0}}^{n = -\infty} \left| \frac{S^n Z_0 - Z_0}{I - Z_0 S^n Z_0} \right| A[\varphi(Z_0), \varphi(Z_0)].$$

Le théorème du n° 9 (Chap. I) permet d'énoncer :

Théorème. — La constante de point fixe est donnée par la formule

(3)
$$\log \Omega(z_0, D) = \log \prod_{\substack{n=-\infty \\ n\neq 0}}^{n=+\infty} \left| \frac{S^n Z_0 - Z_0}{1 - \overline{Z_0} S^n Z_0} \right| - G(z_0, z_0^*),$$

où z * est l'image dans D de l'un des points Z * définis par

$$\varphi(\mathbf{Z}_0^{\star}) = -\varphi(\mathbf{Z}_0) \pmod{2\pi}, \qquad \left| \frac{\mathbf{Z}_0^{\star} - \alpha}{\mathbf{Z}_0^{\star} - \beta} \right| : \left| \frac{\mathbf{Z}_0 - \alpha}{\mathbf{Z}_0 - \beta} \right| = \lambda^{m + \frac{1}{2}},$$

ce qui, lorsque D est la couronne circulaire $R_2 < |z| < R_4$, s'exprime simplement par

$$z_0^{\star} = -\frac{R_1 R_2}{\overline{z}_0}.$$

⁽¹⁾ CARATHEODORY, Math. Z., t. 34, 1932, p. 758, et Aumann-Caratheodory, Math. Ann., t. 109, 1934, p. 756.

140 M. HERVÉ.

De plus, les fonctions extrémales $\hat{f}(z)$, pour lesquelles

$$|\hat{f}'(z_0)| = \Omega(z_0, D),$$

sont données par la formule

(5)
$$\frac{\hat{\mathbf{f}}(\mathbf{Z}) - \mathbf{Z}_0}{\mathbf{I} - \overline{\mathbf{Z}}_0 \, \hat{\mathbf{f}}(\mathbf{Z})} \equiv e^{i\omega} \, \mathbf{B}(\mathbf{Z}_0, \, \mathbf{Z}) \, \mathbf{B}(\mathbf{Z}_0^{\star}, \, \mathbf{Z}),$$

donc à chaque nombre $e^{i\psi}$ de module 1 correspond une extrémale \hat{f} et une seule telle que

$$\hat{f}'(z_0) = e^{i\psi} \Omega(z_0, D).$$

On remarque que le produit infini qui figure au deuxième membre de (3) n'est autre que celui de la formule (2) (obtenue en posant $Z_0 = 0$).

14. Principales propriétés des extrémales \hat{f} . — Pour les étudier, on peut, ce qui simplifie l'exposé, se borner au cas où D est la couronne circulaire $R_2 < |z| < R_1$: si en effet il existe, entre D et un autre domaine doublement connexe D', une correspondance conforme biunivoque dans laquelle z_0 a pour image z_0 , les extrémales relatives à D et au point z_0 sont transmuées par cette correspondance en celles relatives à D' et au point z_0 , et réciproquement.

Cela étant, pour que $\hat{f}(z)$ prenne une valeur z_1 de D dont Z_1 est une image dans le cercle |Z| < 1, il faut et il suffit que

(6)
$$g(z) = \frac{\hat{\mathbf{F}}[\Phi^{-1}(z)] - \mathbf{Z}_0}{1 - \bar{\mathbf{Z}}_0 \hat{\mathbf{F}}[\Phi^{-1}(z)]}$$

prenne l'une des valeurs $\frac{S^nZ_1-Z_0}{1-\overline{Z_0}S^nZ_1}$; or, d'après (5), la fonction

(7)
$$g(z) \equiv e^{i\omega} \mathbf{B}[\mathbf{Z}_0, \Phi^{-1}(z)] \mathbf{B}[\mathbf{Z}_0^{\star}, \Phi^{-1}(z)]$$

est holomorphe et de module inférieur à 1 sur D; elle est même holomorphe sur \overline{D} , car $Z = \Phi^{-1}(z)$ est prolongeable analytiquement à travers toute portion des cercles C_1 et C_2 et chaque produit de Blaschke à travers toute portion du cercle |Z| = 1 qui ne contient aucun point d'accumulation de ses zéros (donc ne contient ni α ni β). Sur C_1 ou C_2 , |g(z)| = 1, donc g(z) prend autant de fois dans D chaque valeur de module inférieur à 1 : ce nombre fixe est 2 puisque, d'après (7), g(z) = 0 pour $z = z_0$ et $z = z_0^*$. Ainsi, quel que soit D:

Propriété 1. — Chaque point z_1 de D a, dans la transformation $z' = \hat{f}(z)$, une infinité d'antécédents : à chaque valeur de l'entier n (de $-\infty$ à $+\infty$) peuvent être associés deux de ces antécédents, soient $a_n(z_1)$, $a'_n(z_1)$, tels que

(8)
$$g[a_n(z_1)] = g[a'_n(z_1)] = \frac{S^n Z_1 - Z_0}{I - \overline{Z_0} S^n Z_1}.$$

En particulier

$$a_0(z_0) = z_0, \quad a'_0(z_0) = z_0^*$$

quelle que soit l'extrémale \hat{f} considérée; mais les autres antécédents dépendent de l'angle ω (ou ψ) qui définit \hat{f} .

45. Quand le point z décrit C_1 ou C_2 en laissant D à sa gauche, le point g(z) décrit la circonférence du cercle-unité en laissant ce cercle à sa gauche, donc $\arg g(z)$ croît, d'un multiple de 2π sur chacune des circonférences C_1 et C_2 ; comme g(z) a deux zéros dans D, la variation totale de $\arg g(z)$ est 4π , donc elle est de 2π sur C_1 et de 2π sur C_2 ; ainsi g(z) prend chaque valeur de module 1 une fois sur C_1 et une fois sur C_2 . Or

$$\lim_{\substack{n=+\infty\\1-\overline{Z}_0\mathrm{S}^n\mathrm{Z}_1}}\frac{\mathrm{S}^n\mathrm{Z}_1-\mathrm{Z}_0}{\mathrm{I}-\overline{Z}_0\mathrm{S}^n\mathrm{Z}_1}=\frac{\beta-\mathrm{Z}_0}{\mathrm{I}-\overline{Z}_0\beta},\qquad \lim_{\substack{n=-\infty\\1-\overline{Z}_0\mathrm{S}^n\mathrm{Z}_1}}\frac{\mathrm{S}^n\mathrm{Z}_1-\mathrm{Z}_0}{\mathrm{I}-\overline{Z}_0\mathrm{S}^n\mathrm{Z}_1}=\frac{\alpha-\mathrm{Z}_0}{\mathrm{I}-\overline{Z}_0\alpha};$$

soient donc a, b les points de C_1 , a', b' les points de C_2 définis par

(9)
$$g(a) = g(a') = \frac{\alpha - \overline{Z_0}}{1 - \overline{Z_0}\alpha}, \qquad g(b) = g(b') = \frac{\beta - \overline{Z_0}}{1 - \overline{Z_0}\beta}.$$

On a alors, en plaçant convenablement les lettres a_n , a'_n :

$$\begin{cases}
\lim_{n=+\infty} a_n(z_1) = b, & \lim_{n=+\infty} a'_n(z_1) = b'; \\
\lim_{n=-\infty} a_n(z_1) = a, & \lim_{n=-\infty} a'_n(z_1) = a'.
\end{cases}$$

D'après la formule (7), et en utilisant le raisonnement du n° 2 (Chap. I), la fonction multiforme $\arg g(z)$ est telle que $\arg g(z)+i\operatorname{G}(z_0,z)+i\operatorname{G}(z_0^*,z)$ soit analytique; l'accroissement de $\arg g(z)$, quand z décrit un arc de C_1 ou C_2 en laissant D à sa gauche, est donc le produit par 2π de la somme des mesures harmoniques de cet arc par rapport à D aux points z_0 et z_0^* . Pour mettre en place les points a, b, a', b', il suffit de connaître la différence des arguments de $\frac{\alpha-Z_0}{1-\overline{Z}_0\alpha}$ et $\frac{\beta-Z_0}{1-\overline{Z}_0\beta}$, autrement dit les mesures harmoniques au point O, par rapport au cercle |Z| < 1, des arcs de la circonférence |Z| = 1 limités par ces deux points; comme $\frac{\alpha-Z_0}{1-\overline{Z}_0\alpha}$, $\frac{\beta-Z_0}{1-\overline{Z}_0\beta}$, O sont images de α , β , Z_0 par la transformation $Z' = \frac{Z-Z_0}{1-\overline{Z}_0Z}$ qui conserve le cercle, ces mesures harmoniques sont aussi celles de Γ_1 et Γ_2 au point Z_0 par rapport au cercle, ou de C_1 et C_2 au point z_0 par rapport à D.

Le même raisonnement permet de préciser comment varient les points a, b, a', b' avec l'extrémale \hat{f} : si l'on considère deux valeurs ω_1 , ω_2 de l'angle ω qui définit \hat{f} , on a, d'après (7),

$$g_2(z) \equiv e^{l(\omega_2-\omega_1)} g_1(z),$$

donc les conditions (9) pour g_2 :

$$g_2(a_2) = g_2(a'_2) = \frac{\alpha - Z_0}{I - \overline{Z}_0 \alpha}, \qquad g_2(b_2) = g_2(b'_2) = \frac{\beta - Z_0}{I - \overline{Z}_0 \beta},$$

peuvent être remplacées par

$$g_1(a_2) = g_1(a_2') = e^{i(\omega_1 - \omega_2)} \frac{\alpha - Z_0}{1 - \overline{Z_0} \alpha}, \qquad g_1(b_2) = g_1(b_2') = e^{i(\omega_1 - \omega_2)} \frac{\beta - \overline{Z_0}}{1 - \overline{Z_0} \beta}.$$

Ainsi:

16. Propriété 2. — Si C_1 et C_2 sont des courbes de Jordan, les antécédents d'un point z_1 de D dans la transformation $z'=\hat{f}(z)$ se répartissent en quatre suites convergeant respectivement vers deux points a, b de C_1 et deux points a', b' de C_2 tels que les mesures harmoniques $u(z, \widehat{ab}), u(z, \widehat{a'b'})$, par rapport à D, des arcs de C_1 et C_2 qu'ils limitent, vérifient

$$\begin{cases} u(z_0, \widehat{ab}) + u(z_0^*, \widehat{ab}) = u(z_0, C_1) & \text{ou } u(z_0, C_2) \\ \text{suivant que l'on considère l'un ou l'autre } \widehat{ab} \ (^1), \\ u(z_0, \widehat{a'b'}) + u(z_0^*, \widehat{a'b'}) = u(z_0, C_1) & \text{ou } u(z_0, C_2) \\ \text{suivant que l'on considère l'un ou l'autre } \widehat{a'b'} \ (^1). \end{cases}$$

Lorsque l'angle ω qui définit \hat{f} croît de $\Delta\omega$, chacun de ces points décrit, dans le sens négatif par rapport à D, un arc de C_1 ou C_2 dont la somme des mesures harmoniques par rapport à D aux points z_0 et z_0^{\star} est $\frac{\Delta\omega}{2\pi}$.

Remarque. — Si l'on passe, par représentation conforme, d'un domaine D limité par deux courbes de Jordan à un domaine D' quelconque, il peut arriver que l'un des points a, b, a', b' relatifs à D ait pour image un bout premier de D', auquel cas la suite correspondante d'antécédents dans D' peut ne pas converger. On peut néanmoins, si le bout premier présente un point accessible, affirmer qu'elle converge vers ce point : en effet, les points $\frac{S^nZ_1-Z_0}{1-\overline{Z_0}S^nZ_1}$ tendent vers $\frac{\alpha-Z_0}{1-\overline{Z_0}\alpha}$ ou $\frac{\beta-Z_0}{1-\overline{Z_0}\beta}$ en restant sur un même arc de cercle joignant ces deux points ; donc, lorsque D est une couronne circulaire, la suite d'antécédents qui converge vers a (par exemple) reste sur un arc qui admet au point a une tangente distincte de la tangente à C_1 .

⁽¹⁾ Ces conditions sont compatibles en vertu de $\varphi(Z_0^{\star}) = -\varphi(Z_0) \pmod{2\pi}$, d'où $u(z_0^{\star}, C_1) = u(z_0, C_2)$, $u(z_0^{\star}, C_2) = u(z_0, C_1)$.

17. On peut écrire, d'après (6),

(12)
$$\hat{f}(z) \equiv \Phi \left\{ \hat{\mathbf{F}} \left[\Phi^{-1}(z) \right] \right\} \equiv \Phi \left[\frac{g(z) + \mathbf{Z}_0}{1 + \overline{\mathbf{Z}}_0 g(z)} \right].$$

Si C_1 et C_2 sont des courbes simples analytiques, $\Phi(Z)$ est prolongeable analytiquement à travers toute portion du cercle |Z|=1 qui ne contient ni α ni β , donc $\hat{f}(z)$ est prolongeable à travers toute portion de C_1 ou C_2 qui ne contient aucun des points a, a', b, b' définis par (9); ces points sont au contraire singuliers pour $\hat{f}(z)$ d'après la propriété 2. Lorsque z décrit, dans le sens positif par rapport à D, l'un des arcs \widehat{ab} de C_1 ou l'un des arcs $\widehat{a'b'}$ de C_2 , $\hat{f}(z)$ décrit C_1 ou C_2 selon que $u(z_0, C_1)$ ou $u(z_0, C_2)$ figure au deuxième membre de (11), et cela une infinité de fois : c'est encore une conséquence de (12). Il en résulte que les antécédents d'ordre 2 d'un point z_1 ont une infinité dénombrable de points d'accumulation sur chacun des arcs \widehat{ab} , $\widehat{a'b'}$. On reconnaît aisément la nature des points singuliers a, a', b, b' à l'aide du principe de symétrie lorsque C_1 , C_2 sont des cercles.

De façon plus précise, lorsque z décrit un arc γ de C_1 ou C_2 , le point $\frac{g(z) + Z_0}{1 + \overline{Z_0} g(z)}$ décrit un arc de la circonférence |Z| = 1 dont la mesure harmonique au point Z_0 est $u(z_0, \gamma) + u(z_0^*, \gamma)$, donc les valeurs prises par $\hat{f}(z)$ couvrent un arc γ' (qui peut être décrit plusieurs fois) tel que

(13)
$$u(z_0, \gamma') \geq u(z_0, \gamma) + u(z_0^{\star}, \gamma),$$

l'égalité ayant lieu si et seulement si γ est l'un des arcs \widehat{ab} , $\widehat{a'b'}$ [cf. (11)]; cette inégalité renforce celle de Löwner.

Il en résulte par exemple que les antécédents d'ordre quelconque de z_1 sont partout denses sur C_1 et C_2 : on suppose qu'il n'en soit pas ainsi et applique (13) aux arcs γ (ouverts) qui forment le complémentaire de l'ensemble d'accumulation des antécédents, d'où résulte que les $u(z_0, \gamma)$ ne sont pas bornés.

18. Une conséquence du calcul fait au n° 13 est que le lieu des valeurs de $f'(z_0)$ pour les $f \in \mathcal{J}(z_0)$ est le cercle $|f'(z_0)| \leq \Omega(z_0, D)$; pour généraliser cette propriété, on peut considérer le problème suivant :

Étant donné dans D les points z_1 , z_2 , z_1' , lieu des images $z_2' = f(z_2)$ du point z_2 par les transformations z' = f(z) de la classe \mathcal{I} qui changent z_1 en z_1' .

On se donne les images Z_1, Z_2, Z_1 de z_1, z_2, z_1 et fixe la fonction F(Z) associée à une f(z) répondant à la question en posant $F(Z_1) = Z_1$; on a alors

$$\frac{\mathrm{F}(\mathrm{Z})-\mathrm{Z}_{\scriptscriptstyle 1}'}{\mathrm{I}-\bar{\mathrm{Z}}_{\scriptscriptstyle 1}'\mathrm{F}(\mathrm{Z})} \equiv \mathrm{B}(\mathrm{Z}_{\scriptscriptstyle 1},\,\mathrm{Z})\,\mathrm{H}(\mathrm{Z}), \qquad \text{où} \quad \mathrm{H} \in \mathcal{H}[\,\phi(\mathrm{Z}_{\scriptscriptstyle 1})],$$

de sorte que le lieu des valeurs de F(Z2) est défini par

$$\left| \frac{F(Z_2) - Z_1'}{1 - \overline{Z}_1' F(Z_2)} \right| \leq |B(Z_1, Z_2)| |B(Z_3, Z_2)|,$$

 Z_3 étant déterminé par les mêmes conditions que dans l'équation (22) du Chapitre I; compte tenu de cette équation, la condition trouvée pour $F(Z_2)$ s'écrit

$$\left|\frac{\mathrm{F}(\mathrm{Z}_2)-\mathrm{Z}_1'}{\mathrm{I}-\mathrm{Z}_1'\,\mathrm{F}(\mathrm{Z}_2)}\right| \leq \mathrm{th}\,\mathrm{C}(z_1,\,z_2),$$

 $C(z_1, z_2)$ étant la distance de Caratheodory de z_1 et z_2 (1). Le lieu cherché de z_2' est celui des points de D dont une image au moins dans le cercle |Z| < 1 vérifie (14), c'est-à-dire est à une distance non euclidienne de Z_1' au plus égale à $C(z_1, z_2)$.

Il peut d'ailleurs arriver qu'un point z_2 ait plusieurs images dans ce cas : cela veut dire, non seulement qu'il existe des transformations z'=f(z) de la classe $\mathcal J$ qui changent z_1 et z_2 en z_1' et z_2' , mais que les arcs $z_1'z_2'$ images par ces transformations d'un même arc z_1z_2 tracé dans D (choisi une fois pour toutes) ne sont pas réductibles les uns aux autres par déformation continue dans D. Pour qu'il existe de tels couples z_1' , z_2' , il faut et il suffit qu'il existe deux points Z, SZ du cercle |Z| < I dont la distance non euclidienne soit au plus égale à $2C(z_1, z_2)$; comme le minimum de la distance non euclidienne des points Z et SZ est $\frac{1}{2} \log \lambda$, la condition imposée à z_1 et z_2 est

(15)
$$C(z_1, z_2) \ge \frac{1}{4} \log \lambda = \frac{\pi^2}{2 \log \frac{R_1}{R_2}}$$

pour une couronne circulaire.

CHAPITRE III.

Recherches sur des problèmes analogues relatifs a un domaine d'ordre de connexion $p \! \geq \! 3$.

19. Soit maintenant D un domaine borné, univalent, dont la frontière se compose de p continus non ponctuels disjoints C_4 (qui sera dans la suite celui qui sépare D de l'infini), C_2, \ldots, C_p ; il est mis en correspondance conforme avec le disque |Z| < 1 au moyen de la fonction $z = \Phi(Z)$, invariante par toutes les substitutions (dont aucune n'est elliptique) S d'un groupe G proprement discontinu sur |Z| < 1 et sur les arcs de |Z| = 1 images de C_4, \ldots, C_p .

⁽¹⁾ D'après les formules (6) et (22) du Chapitre I, cette condition implique $G(z_1', z_2') > G(z_1, z_2)$ (principe de Lindelöf).

Dans le cas p = 2, lorsque le point z décrit dans D un chemin fermé le long duquel $\arg(z-a)$ croît de 2π (a étant un point de C_2), tous les points $Z = \Phi^{-1}(z)$ subissent la même substitution S. Dans le cas $p \geq 3$, marquons sur C_2, \ldots, C_p les points a_2, \ldots, a_p et dans le domaine D les chemins simples fermés s_2, \ldots, s_p tels que, quand z décrit s_k ($2 \leq k \leq p$),

(1)
$$\Delta \arg(z-a_k) = 2\pi$$
, $\Delta \arg(z-a_j) = 0$ pour $2 \leq j \leq p$ $(j \neq k)$;

alors, quand z décrit s_k , les points $Z = \Phi^{-1}(z)$ subissent diverses substitutions hyperboliques, transmuées les unes des autres par toutes les substitutions de \mathcal{G} , parmi lesquelles nous en choisirons une, soit S_k .

20. Nous considérons maintenant le produit de Blaschke

$$B(Z_0, Z) \equiv \prod_{S \in \mathcal{G}} \frac{\overline{SZ}_0}{|SZ_0|} \frac{SZ_0 - Z}{1 - \overline{SZ}_0 Z},$$

qui, comme au n° 2 (Chap. I), est lié à la fonction de Green de D par

(3)
$$G(z_0, z) \equiv -\log |B(Z_0, Z)|,$$

avec

$$z = \Phi(\mathbf{Z}), \quad z_0 = \Phi(\mathbf{Z}_0),$$

et vérifie les identités ($2 \leq k \leq p$)

(4)
$$B(\mathbf{Z}_0, \mathbf{S}_k \mathbf{Z}) \equiv e^{i\varphi_k(z_0)} B(\mathbf{Z}_0, \mathbf{Z}),$$

où $-\frac{\varphi_k(z_0)}{2\pi}$ est la mesure harmonique de C_k au point z_0 . $\mathcal{E}[\theta_2, \ldots, \theta_p]$ sera la classe des fonctions H(Z) holomorphes pour $|Z| \leqslant 1$ qui vérifient $|H(Z)| \leq 1$ et $(2 \leq k \leq p)$

$$H(S_kZ) \equiv e^{-i\theta_k}H(Z)$$
;

cette définition est indépendante du choix des S_k : en effet S_k ne peut être remplacée que par une $S_k' = T^{-1}S_kT$ où $T \in \mathcal{G}$; mais S_2, \ldots, S_p engendrent le groupe \mathcal{G} , donc $T = S_{\alpha_1}^{q_1} \ldots S_{\alpha_r}^{q_r}$ $(q_1, \ldots, q_r \text{ entiers positifs ou négatifs, } \alpha_1, \ldots, \alpha_r = 2, 3, \ldots, p)$,

$$S_k' = S_{\alpha_r}^{-q_r} \dots S_{\alpha_1}^{-q_1} S_k S_{\alpha_1}^{q_1} \dots S_{\alpha_r}^{q_r},$$

et les identités

$$H(S_kZ) \equiv e^{-i\theta_k}H(Z)$$
 entraînent $H(S_k'Z) \equiv e^{-i\theta_k}H(Z)$.

21. La question se pose ensuite $(cf. n^o 3, Chap. I)$ de savoir si $\sup_{\Pi \in \mathcal{X}[\theta_1, \dots, \theta_p]} |H(Z)|$ pour un point Z donné ne dépend que de $\varphi_2(z), \dots, \varphi_p(z)$; pour le montrer, nous établirons le théorème suivant :

Théorème. — Étant donné deux points z_0 , z_0' de D, pour que chacun des continus-frontières C_1, \ldots, C_p ait même mesure harmonique en z_0 et z_0' , ile faut et il suffit que z_0 et z_0' soient homologues dans une transformation biunivoque anticonforme et symétrique (1) de D en lui-même qui conserve dans son ensemble chacun des continus C_1, \ldots, C_p .

La condition est évidemment suffisante; montrons qu'elle est nécessaire en supposant que C_1, \ldots, C_p soient des courbes simples analytiques (d'où l'on passe ensuite au cas général par une représentation conforme biunivoque convenable): d'après l'hypothèse et les identités (4), la fonction

(5)
$$g(z) \equiv \frac{\mathrm{B}[\mathrm{Z}_0, \Phi^{-1}(z)]}{\mathrm{B}[\mathrm{Z}_0', \Phi^{-1}(z)]}$$

est uniforme sur D; elle est d'autre part méromorphe sur D, et même sur \overline{D} , de module 1 sur la frontière de D, présente dans D un zéro unique z_0 et un pôle unique z_0' ; elle prend donc une fois et une seule dans D toute valeur de module différent de 1 (théorème de Rouché appliqué à g ou $\frac{1}{g}$) et par suite au plus une fois dans D toute valeur de module 1.

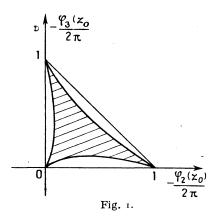
Dans ces conditions, la formule $g(z') = \frac{1}{\overline{g(z)}}$ définit une transformation biunivoque, anticonforme, symétrique de D en lui-même; soit a un point de C₄, choisi en dehors des points, en nombre fini, où g'(z) = 0: quand le point z franchit a en cheminant sur C_1 , arg g(z) varie dans un certain sens σ ; d'autre part, d'après un raisonnement déjà utilisé, la variation de $\arg g(z)$ quand z décrit C₄) est la différence des mesures harmoniques de C₄ en z₀ et z'₀ (multipliée par 2π), donc nulle par hypothèse; il existe donc un point b de C1 tel que, quand z franchit b en cheminant sur C_1 , arg g(z) franchisse la valeur arg g(a)dans le sens $-\sigma$, autrement dit g(a) = g(b) et la valeur commune $\arg g(a) = \arg g(b)$ est franchie dans les sens opposés σ et — σ quand z franchit a et b en parcourant C_1 . Au voisinage de a dans D, g(z) prend toutes les valeurs voisines de g(a) de module inférieur à 1 si σ est positif, supérieur à 1 si σ est négatif; de même, en permutant les conclusions, au voisinage de b dans D; dans tous les cas, en réunissant des voisinages convenables de a et b dans D, on obtient un ensemble où g(z) prend toutes les valeurs voisines de g(a); comme elle ne peut les prendre ailleurs à nouveau, on a montré que b est homologue de a dans la transformation considérée.

22. Remarques. — 1° Pour $p \ge 4$, une telle transformation n'existe que pour des domaines D particuliers. Au contraire, pour p = 3, il en existe toujours

⁽¹⁾ C'est-à-dire une transformation $z' = \psi(z)$ telle que $\overline{\psi}(z)$ soit holomorphe et $\psi[\psi(z)] \equiv z$.

une et une seule, qui laisse invariant chaque point de trois arcs analytiques simples i_1 , i_2 , i_3 joignant respectivement C_2 à C_3 , C_3 à C_4 , C_4 à C_2 .

2º Pour p=2, $\frac{\varphi(z_0)}{2\pi}$, mesure harmonique de C_1 en z_0 , prenait toutes les valeurs comprises entre o et 1. Ici au contraire, le système des $-\frac{\varphi_k(z_0)}{2\pi}$, mesures harmoniques des C_k en z_0 , n'est pas susceptible de prendre tout système de p-1 valeurs comprises entre o et 1: c'est évident pour $p \ge 4$ puisque z_0 ne dépend que de deux paramètres réels et, pour p=3, l'ensemble des points du plan dont les coordonnées sont les mesures harmoniques de C_2 et C_3 en un point z de D est une aire intérieure au triangle ayant pour sommets



les points (0, 0), (0, 1), (1, 0), limitée par trois arcs qui joignent ces points deux à deux et correspondent à des points z respectivement situés sur i_1 , i_2 , i_3 (fig. 1).

23. Soient alors Z_0 , Z_0' deux points du cercle |Z| < 1 dont les images z_0 , z_0' dans D vérifient

$$\varphi_k(z_0) = \varphi_k(z'_0)$$
 pour $2 \leq k \leq p$;

la correspondance $z' = \psi(z)$, biunivoque, anticonforme, symétrique dans D a pour image dans le cercle une correspondance

$$Z' = \Psi(Z) \equiv \Phi^{-1} \{ \psi[\Phi(Z)] \},$$

choisie de telle sorte que $Z_0 = \Psi(Z_0)$, qui est aussi biunivoque et anticonforme. Soient α_k , β_k les points doubles de S_k ; lorsque le point Z subit, sur l'arc $\widehat{\alpha_k}\widehat{\beta_k}$ qui est l'une des images de C_k , la substitution S_k , d'après les propriétés de $\psi(z)$, le point $\Psi(Z)$ subit, sur l'un des autres arcs images de C_k , c'est-à-dire sur un arc déduit de $\widehat{\alpha_k}\widehat{\beta_k}$ par une substitution $T_k \in \mathcal{G}$, la substitution transmuée de S_k^{-1} par T_k :

$$\Psi(\mathbf{S}_k\mathbf{Z}) \equiv \mathbf{T}_k\mathbf{S}_k^{-1}\mathbf{T}_k^{-1}\Psi(\mathbf{Z}).$$

Par suite la fonction $H'(Z) \equiv \overline{H}[\Psi(Z)]$ appartient à $\mathcal{H}[\theta_2, \ldots, \theta_p]$ en même temps que H(Z), l'ensemble des valeurs que prennent les fonctions de $\mathcal{H}[\theta_2, \ldots, \theta_p]$ au point Z_0 coı̈ncide avec celui des valeurs qu'elles prennent au point $Z_0 = \Psi(Z_0)$.

Cela permet de poser

(6)
$$\sup_{\mathbf{H}\in\mathscr{H}\left[\theta_{2},\ldots,\theta_{p}\right]}|\mathbf{H}(\mathbf{Z})|=\mathbf{A}\left[\theta_{2},\ldots,\theta_{p};\varphi_{2}(z),\ldots,\varphi_{p}(z)\right].$$

On établit comme au nº 3 (Chap. I) la propriété de symétrie

(7)
$$\mathbf{A}(\theta_2, \ldots, \theta_p; \theta'_2, \ldots, \theta'_p) \equiv \mathbf{A}(\theta'_2, \ldots, \theta'_p; \theta_2, \ldots, \theta_p),$$

mais elle n'a de sens que si les $-\frac{\theta_k}{2\pi}$ d'une part, les $-\frac{\theta'_k}{2\pi}$ d'autre part, sont (mod 1) les mesures harmoniques des C_k en un même point de D.

La semi-continuité supérieure de la fonction A s'établit comme au n° 4; la semi-continuité inférieure résulte de l'existence d'une fonction de la classe $\mathcal{BC}[\theta_2, \ldots, \theta_p]$ dont le module tend vers 1 uniformément quand $\theta_2 \to 0, \ldots, \theta_p \to 0$; pour s'en assurer, on peut se borner au cas où C_2, \ldots, C_p sont des courbes simples de Jordan, marquer les points a_2, \ldots, a_p respectivement intérieurs à C_2, \ldots, C_p et considérer l'une des déterminations de

$$\frac{\left[\Phi(\mathbf{Z})-a_2\right]^{-\frac{\theta_2}{2\pi}}\ldots\left[\Phi(\mathbf{Z})-a_p\right]^{-\frac{\theta_p}{2\pi}}}{\sup_{z\in\mathbb{N}}|z-a_2|^{-\frac{\theta_2}{2\pi}}\ldots|z-a_p|^{-\frac{\theta_p}{2\pi}}},$$

qui répond à la question.

24. Soit \mathcal{F} la classe des fonctions f(z) holomorphes (uniformes) sur D et telles que

$$\overline{\lim}_{z=x_1\in C_1}|f(z)| \leq 1, \qquad \overline{\lim}_{z=x_k\in C_k}|f(z)| \leq e^{\mathbf{M}_k} \qquad (2 \leq k \leq p),$$

et soit à chercher $\sup_{f\in\mathcal{F}}|f(z)|$ pour un point z donné de D; pour cela on forme

d'abord la fonction harmonique u(z), solution du problème de Dirichlet pour les valeurs aux limites o, M_2, \ldots, M_p , qui se déduit des mesures harmoniques de C_2, \ldots, C_p :

$$u(z) = \sum_{k=2}^{\rho} M_k u(z, C_k),$$

puis la fonction harmonique v(z) telle que u + iv soit analytique, qui s'accroît de θ_k quand z décrit le chemin s_k défini au n° 19; les θ_k sont des formes linéaires par rapport aux M_j , dont les coefficients ont un déterminant non nul ('), donc peuvent prendre tout système de p-1 valeurs données; ainsi

(8)
$$F(Z) \equiv f[\Phi(Z)] \equiv e^{(u+iv)[\Phi(Z)]} H(Z), \qquad H \in \mathcal{H}[\theta_2, \ldots, \theta_p],$$

⁽¹⁾ G. Julia, Leçons sur la représentation conforme des aires multiplement connexes.

ce qui ramène la recherche des extrémales H de la classe $\mathcal{E}[\theta_2, \ldots, \theta_p]$ au point Z_0 à celle des extrémales f de la classe \mathcal{F} au point z_0 . Or ces dernières (4) jouissent des deux propriétés suivantes : elles ont au plus p-1 zéros dans D et

$$\lim_{z=x_1\in C_1}|f(z)|=\mathbf{1},\quad \lim_{z=x_k\in C_k}|f(z)|=e^{\mathbf{M}_k},$$

cette dernière propriété entraînant l'unicité de l'extrémale à un facteur de module 1 près, puisque la classe \mathcal{F} est convexe, c'est-à-dire, avec $f_1(z)$ et $f_2(z)$, contient $tf_1(z)+(1-t)f_2(z)$ pour $0 \underline{\hspace{0.2cm}} t \underline{\hspace{0.2cm}} t_1$; autre conséquence de la deuxième propriété des extrémales : si une extrémale f(z) ne s'annule pas dans D, on a

$$\log |f(z)| = u(z),$$
 donc $\theta_k \equiv 0 \pmod{2\pi}$ pour $2 \leq k \leq p$.

25. Par suite, si les θ_k ne sont pas tous multiples de 2π , l'extrémale de la classe $\mathcal{B}(\theta_2, \ldots, \theta_\rho)$ au point Z_0 , définie à un facteur de module 1 près, est de la forme

$$H(Z) \equiv B(Z_1, Z) \dots B(Z_q, Z) K(Z),$$

οù

$$\mathbf{I} \underline{\ensuremath{\angle} q} \underline{\ensuremath{\angle} p} - \mathbf{I} \qquad \text{et} \qquad \mathbf{K} \in \mathcal{H} \big[\, \theta_2 + \phi_2(z_1) + \ldots + \phi_2(z_q), \, \ldots \big];$$

en outre K(Z) doit être une extrémale non nulle de cette dernière classe, donc les extrémales de $\mathcal{H}[\theta_2, \ldots, \theta_p]$ sont données par

(9)
$$\begin{cases} H(Z) \equiv e^{i\omega} B(Z_1, Z) \dots B(Z_q, Z) & (1 \leq q \leq p-1), \\ \varphi_k(z_1) + \dots + \varphi_k(z_q) = -\theta_k \pmod{2\pi} & \text{pour } 2 \leq k \leq p. \end{cases}$$

Un problème connexe consiste à chercher $\sup |f(z)|$ pour les f(z) holomorphes et de module inférieur à 1 sur D et qui s'annulent en un point donné z_0 de D : en posant

$$F(Z) \equiv f[\Phi(Z)] \equiv B(Z_0, Z) H(Z),$$

on doit prendre pour H(Z) une extrémale de $\mathcal{B}(\varphi_2(z_0), \ldots, \varphi_p(z_0))$. En supposant que C_1, \ldots, C_p soient des courbes simples analytiques, la fonction f(z) correspondante est holomorphe sur \overline{D} et $\arg f(z)$ croît quand z décrit C_1 , C_2 , ..., C_p , donc sa variation totale est au moins $2p\pi$, et f(z) s'annule au moins p-1 fois en dehors de z_0 . Ainsi, pour les extrémales de la classe $\mathcal{B}(\varphi_2(z_0), \ldots, \varphi_p(z_0))$ on a certainement q=p-1 dans les formules (9).

On peut relier, d'une manière analogue, le problème étudié ici et ceux qui font l'objet des Mémoires de MM. Ahlfors, Garabedian et Nehari, cités dans l'Introduction; le Mémoire cité en dernier traite un problème que l'on peut aborder comme dans la quatrième application au n° 10.

⁽¹⁾ H. Grunsky, Jahresbericht der D. M. V., t. 52, 1942, p. 118. Dans ce Mémoire, C_1, \ldots, C_p sont des courbes de Jordan, ce que nous pouvons supposer ici.

26. Soit maintenant \mathcal{J} la famille définie comme au n° 11 (Chap. II); elle est fermée dans la topologie de la convergence uniforme sur tout sous-ensemble compact de D, car la limite d'une suite de fonctions de \mathcal{J} ne peut mettre D en correspondance biunivoque avec lui-même (1).

Si l'on associe à une $f \in \mathcal{J}$ l'une des fonctions $F(Z) \equiv \Phi^{-1}\{f[\Phi(Z)]\}$, de ce que f(z) est uniforme résulte que, si $S \in \mathcal{G}$, F(SZ) se déduit de F(Z) par une substitution de \mathcal{G} indépendante de Z, soit U(S):

(10)
$$F(SZ) \equiv U(S) F(Z).$$

L'opérateur U(S), qui vérifie

$$U(S_1S_2) = U(S_1) U(S_2),$$

est un endomorphisme de \mathcal{G} associé à la fonction F(Z), et non pas à f(z) car, si c'est f(z) qui est donnée, on peut remplacer F(Z) par TF(Z) où $T \in \mathcal{G}$, et U(S) est alors remplacé par $TU(S)T^{-1}$. Cependant, si $f(z) \equiv \text{const.}$, quel que soit le choix de la constante F(Z), on a $U(S) \equiv E$, élément-unité de \mathcal{G} .

27. Si f(z) est limite (uniforme sur tout sous-ensemble compact de D) d'une suite $f_n(z)$ de fonctions de \mathcal{I} , si à f(z) sont associés F(Z) et l'endomorphisme U(S), et de même $F_n(Z)$ et $U_n(S)$ à $f_n(z)$, il existe un entier N tel que, pour n > N, U(S) et $U_n(S)$ soient transmués l'un de l'autre : on peut en effet, F(Z) étant choisie à l'avance, choisir ensuite les $F_n(Z)$ de manière que

$$F(Z) = \lim_{n \to \infty} F_n(Z)$$
 (uniformément sur tout compact);

alors

$$U(S) F(Z) = \lim_{n \to \infty} U_n(S) F_n(Z),$$

ce qui entraîne

$$U_n(S) = U(S)$$
 pour $n > N(S)$,

puisque $\mathcal G$ est proprement discontinu au point F(Z) et que ce point n'est point double d'aucune substitution de $\mathcal G$; comme d'autre part $\mathcal G$ a un nombre fini de substitutions génératrices, on a bien

$$U_n(S) \equiv U(S)$$
 pour $n > N$.

Si donc on met dans une même classe toutes les fonctions de \mathcal{J} auxquelles correspondent des endomorphismes U(S) non pas identiques les uns aux autres (cela n'aurait pas de sens), mais transmués les uns des autres, chacune de ces classes est à la fois fermée et ouverte dans \mathcal{J} (toujours dans la même topologie); ainsi, dès qu'il y a au moins deux classes, la famille \mathcal{J} n'est plus connexe, contrairement à ce qui a lieu pour p=2 (n° 12, Chap. II).

⁽¹⁾ H. CARTAN, Math. Z., t. 35, 1932, p. 760, et M. Heins, Duke Math. J., t. 8, 1941, p. 312.

Un exemple simple montre que, dès que $p \ge 3$, il peut y avoir deux classes : tout d'abord la classe \mathcal{J}_0 à laquelle correspond $U(S) \equiv E$ existe toujours, puisqu'elle contient au moins les constantes appartenant à \overline{D} ; soit alors le domaine

(D)
$$|z| < 3, \qquad |z - \frac{8}{5}| > \frac{1}{5},$$

pour lequel p=3; si C_2 et C_3 sont respectivement les circonférences |z|=1 et $\left|z-\frac{8}{5}\right|=\frac{1}{5}$, la fonction $f(z)\equiv\frac{z+8}{5}$ peut être associée à l'endomorphisme U(S) défini par

$$U(S_2) = S_3, \quad U(S_3) = E.$$

D'autre part, la famille $\mathcal J$ étant normale et fermée, le nombre des classes est fini. Voici une conséquence de ce fait : si $F_n(Z)$ est la $n^{\text{ième}}$ itérée d'une fonction F(Z) associée à une f(z) de la famille $\mathcal J$, on a (¹), pour $n>n_0$ $(n_0$ a priori dépendant de F):

(11)
$$F_n(SZ) \equiv F_n(Z)$$
 quelle que soit $S \in \mathcal{G}$.

Or il résulte de (10) que $F_n(SZ) \equiv U_n(S) F_n(Z)$, l'opérateur $U_n(S)$ étant le $n^{\text{ième}}$ itéré de l'opérateur U(S); l'identité (11) se traduit donc par $U_n(S) \equiv E$. D'autre part, si U'(S) est transmué de U(S), $U'_n(S)$ est aussi transmué de $U_n(S)$ (par une autre transformation de G). L'identité (11) a donc lieu pour n supérieur à un entier ne dépendant que de la classe considérée, et par suite pour n supérieur à un nombre fixe ne dépendant que de D.

De ce que, pour n convenable, $U_n(S) \equiv E$, résulte que U(S) = E pour des S du groupe G autres que E; ainsi, une fonction F(Z) holomorphe et de module L pour |Z| < 1 et qui vérifie (10) définit (cf. n° 12) une fonction f(z) et une seule de J.

28. L'étude faite au Chapitre II ne s'applique pas à la famille \mathcal{I} , mais seulement à la classe \mathcal{I}_0 définie par $U(S) \equiv E$ [quelle que soit la fonction F(Z) associée à une f(z) de la classe \mathcal{I}_0]: ainsi le raisonnement du n° 12 montre que \mathcal{I}_0 est connexe, ainsi que la sous-classe $\mathcal{I}_0(z_0)$ qui laisse fixe un point donné z_0 de D; le calcul du n° 13 s'applique seulement à

$$\Omega_{\scriptscriptstyle 0}(z_{\scriptscriptstyle 0},\,\mathrm{D})\!=\!\!\sup_{f\in\mathscr{S}_{\scriptscriptstyle 0}(z_{\scriptscriptstyle 0})}\!|f'(z_{\scriptscriptstyle 0})|,$$

avec l'aide des résultats énoncés au nº 25. Ainsi :

Théorème. — La constante de point fixe relative aux fonctions de la classe \mathcal{I}_0 , c'est-à-dire aux seules transformations intérieures de D dans lesquelles l'image de

⁽¹⁾ M. Heins, Amer. J. Math., t. 63, 1941, p. 461.

152 M. HERVÉ.

toute courbe fermée tracée dans D est réductible à zéro dans D, est donnée par la formule

(12)
$$\log \Omega_0(z_0, D) = \log \prod_{\substack{S \in \mathcal{G} \\ S \neq E}} \left| \frac{SZ_0 - Z_0}{I - \overline{Z_0}SZ_0} \right| - G(z_0, z_1) - \ldots - G(z_0, z_{p-1}),$$

où les points $z_1, ..., z_{p-1}$ de D ne dépendent que de z_0 , et cela de façon continue (1), et sont tels que

$$(13) \qquad \varphi_k(z_0) + \varphi_k(z_1) + \ldots + \varphi_k(z_{p-1}) = 0 \pmod{2\pi} \qquad pour \quad 2 \leq k \leq p.$$

Les fonctions extrémales $\hat{f}(z)$ (toujours de la classe \mathcal{J}_0) sont données par

(14)
$$\frac{\widehat{\mathbf{F}}(\mathbf{Z}) - \mathbf{Z}_0}{\mathbf{I} - \overline{\mathbf{Z}}_0 \, \widehat{\mathbf{F}}(\mathbf{Z})} \equiv e^{i\omega} \, \mathbf{B}(\mathbf{Z}_0, \, \mathbf{Z}) \, \mathbf{B}(\mathbf{Z}_1, \, \mathbf{Z}) \, \dots \, \mathbf{B}(\mathbf{Z}_{p-1}, \, \mathbf{Z}),$$

donc à chaque nombre $e^{i\psi}$ de module 1 correspond une \hat{f} et une seule telle que

$$\hat{f}'(z_0) = e^{i\psi} \Omega_0(z_0, D).$$

L'étude de ces extrémales se fait comme aux nos 14 à 17 (Chap. II), mais avec des résultats plus compliqués : par exemple, en ce qui concerne la propriété 2 (no 16), en supposant que C_1, \ldots, C_p soient des courbes simples de Jordan, l'ensemble d'accumulation des antécédents d'un point z de D se compose de p ensembles parfaits totalement discontinus portés respectivement par C_1, \ldots, C_p : cela tient à ce que l'ensemble d'accumulation des $\frac{SZ - Z_0}{I - \overline{Z_0}SZ}$ pour Z donné, S variable dans G, est lui-même un ensemble parfait totalement discontinu porté par la circonférence |Z| = I.

29. Considérons maintenant une classe \mathcal{J}_4 autre que \mathcal{J}_0 et l'un des endomorphismes U(S) correspondants; l'ensemble des valeurs de U(S) quand S décrit \mathcal{G} est un sous-groupe \mathcal{U} de \mathcal{G} [un vrai sous-groupe puisque U(S) a des itérés réduits à la transformation identique (n° 27)]. A une classe donnée \mathcal{J}_4 sont associés, non pas un seul sous-groupe \mathcal{U} , mais tous les sous-groupes conjugués $T\mathcal{U}T^{-1}$ où $T \in \mathcal{G}$. Si l'un de ces sous-groupes est cyclique, il en est de même de tous les autres : ce fait est donc une propriété de la classe \mathcal{J}_4 .

Supposons d'abord que les sous-groupes associés à la classe \mathcal{J}_4 soient cycliques; choisissons une fois pour toutes l'un des endomorphismes U(S) associés à \mathcal{J}_4 , et représentons chaque f(z) de \mathcal{J}_4 par une F(Z) vérifiant l'identité (10) avec cet endomorphisme U(S); par hypothèse les valeurs prises par U(S) sont de la forme $\Sigma^{n(S)}$, où Σ est une certaine substitution de \mathcal{G} . Il est alors commode de supposer faite sur Z une substitution homographique qui

⁽¹⁾ Cette continuité résulte de la continuité de la fonction A (nº 23) et de l'unicité, à un facteur de module 1 près, des extrémales de $\partial \mathcal{C}[\theta_2, \ldots, \theta_p]$.

change le disque |Z| < 1 en le demi-plan $\Im Z > 0$ et transmue Σ en l'homothétie $(0,\lambda)$; l'identité (10) prend alors la forme

(15)
$$F(SZ) \equiv \lambda^{n(S)} F(Z).$$

. Si $F_1(Z)$ et $F_2(Z)$ sont deux fonctions holomorphes pour $\Im Z > 0$ et vérifiant $\Im F_1(Z) > 0$, $\Im F_2(Z) > 0$ et l'identité (15), il en est de même de $t_1 F_1(Z) + t_2 F_2(Z)$ si $t_1 > 0$, $t_2 > 0$; le raisonnement du n° 12 s'applique encore et montre que la classe \Im_1 est connexe. En outre, le point Z_0 étant donné, le lieu du point $F(Z_0)$, pour toutes les F(Z) holomorphes sur $\Im Z > 0$ vérifiant $\Im F(Z) > 0$ et l'identité (15), comprend, avec deux points A et B, tous les points de l'angle \widehat{AOB} ; d'autre part, ce lieu ne peut avoir, sur l'axe réel, d'autre point d'accumulation que zéro et l'infini, sinon il existerait une constante finic et non nulle vérifiant (15), ce qui est impossible; le lieu du point $F(Z_0)$ est donc un angle fermé (côtés compris) de sommet O, entièrement situé (sauf son sommet) dans le demi-plan $\Im Z > 0$.

30. Revenant au domaine D, cela veut dire que, le point z_0 étant donné dans D, le lieu du point $f(z_0)$ pour $f \in \mathcal{J}_1$ est un ensemble fermé connexe K_1 contenu dans D, et qu'en outre il existe un chemin fermé σ tracé dans K_1 , non réductible à zéro dans D, et une fonction $f_t(z)$ de la classe \mathcal{J}_1 , dépendant continûment (1) du paramètre réel t, tels que le point $f_t(z_0)$ décrive indéfiniment dans le même sens le chemin σ lorsque t croît.

Cette dernière propriété distingue une classe \mathcal{J}_1 associée à des sous-groupes \mathfrak{U} cycliques d'une classe \mathcal{J}_2 associée à des sous-groupes non cycliques; pour le voir, il suffit de montrer que si U(S) est l'un des endomorphismes associés à \mathcal{J}_2 , le lieu du point $F(Z_0)$, pour Z_0 donné et pour toutes les fonctions F(Z) holomorphes et de module inférieur à 1 sur |Z| < 1 et vérifiant (10), est un ensemble fermé porté par |Z| < 1: comme \mathcal{G} est proprement discontinu, ce lieu ne pourra alors contenir une infinité de points équivalents entre eux par \mathcal{G} ; en effet, si ce lieu a un point d'accumulation a sur la circonférence |Z| = 1, la constante a vérifie (10), soit a = U(S)a quelle que soit $S \in \mathcal{G}$, c'est-à-dire que a est point double de toutes les substitutions de \mathfrak{U} ; alors, ou bien ces substitutions ont en commun leur point double autre que a, et \mathfrak{U} est cyclique contrairement à l'hypothèse; ou bien il y a dans \mathfrak{U} deux substitutions dont a est le seul point double commun, et \mathfrak{U} admet une substitution infinité-simale (2), ce qui est absurde.

Le lieu du point $f(z_0)$ pour z_0 donné, $f \in \mathcal{J}_2$, est donc encore un ensemble fermé K_2 contenu dans D; comme le nombre des classes est fini, il en est de

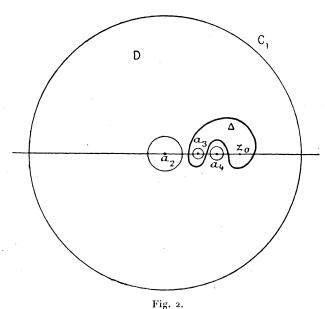
⁽¹⁾ Toujours dans la topologie de la convergence uniforme sur tout ensemble compact de D.

⁽²⁾ FATOU, fonctions automorphes, dans APPELL et Goursat, Théorie des fonctions algébriques et de leurs intégrales, t. 2.

154 M. HERVÉ.

même du lieu de $f(z_0)$ pour $f \in \mathcal{J} - \mathcal{J}_0$; ainsi z_0 et z'_0 peuvent être choisis tels que $f \in \mathcal{J}$ et $z'_0 = f(z_0)$ entraînent $f \in \mathcal{J}_0$.

31. La sous-classe $\mathcal{J}_0(z_0)$ qui laisse fixe le point z_0 est connexe comme la classe \mathcal{J}_0 (n° 28); si l'on considère une classe \mathcal{J}_1 autre que \mathcal{J}_0 et la sous-classe $\mathcal{J}_1(z_0)$ qui laisse fixe z_0 , il peut au contraire arriver que $\mathcal{J}_1(z_0)$ ne soit pas connexe, même si la classe \mathcal{J}_1 est associée à des sous-groupes \mathfrak{U} cycliques, donc elle-même connexe. En effet, le point Z_0 image de z_0 dans le cercle |Z| < 1 une fois choisi, on peut fixer la fonction F(Z) associée à une f(z) de la sous-classe $\mathcal{J}_1(z_0)$ en posant $F(Z_0) = Z_0$; avec cette convention, si f_n est une suite



extraite de $\mathcal{J}_1(z_0)$ et $f(z) = \lim_{n = \infty} f_n(z)$, on a aussi $F(Z) = \lim_{n = \infty} F_n(Z)$, donc (n° 27) $U_n(S) \equiv U(S)$ pour n > N, si U et U_n sont les endomorphismes associés à F et F_n . Ainsi, $\mathcal{J}_1(z_0)$ ne peut être connexe que si U(S) est le même pour toutes les fonctions F(Z) associées aux f(z) de $\mathcal{J}_1(z_0)$ avec la convention $F(Z_0) = Z_0$. Reste à montrer sur un exemple que le contraire peut se produire.

Pour cela, partons d'un domaine Δ simplement connexe et borné où l'on puisse trouver deux points a_3 et z_0 tels qu'il y ait, sur le segment qui les joint, un point a_4 n'appartenant pas à $\overline{\Delta}$ (fig. 2); si l'on représente conformément Δ sur le cercle $|z-a_2| < R_1$ de manière que a_3 ait pour image le point a_2 , z_0 a pour image un point situé à la distance αR_4 de a_2 ; comme α ne dépend pas de R_4 , on peut choisir R_4 de manière que le maximum de la distance de z_0 à un point de $\overline{\Delta}$ soit inférieur à la fois à αR_1 et à $(1-\alpha)R_4$; si l'on place ensuite le point a_2 sur le prolongement du segment $z_0 a_3$ à la distance αR_4 de z_0 , Δ est

intérieur à la circonférence C_1 de centre a_2 , rayon R_1 , $a_2 \notin \overline{\Delta}$, et l'on a une fonction z' = f(z) qui représente conformément le cercle $|z - a_2| < R_1 \operatorname{sur} \Delta$ de manière que

$$a_3 = f(a_2)$$
 et $z_0 = f(z_0)$.

Si l'on prend pour axe réel la droite $a_2 a_3 a_4 z_0$, la fonction $g(z) = \overline{f}(\overline{z})$ représente conformément le cercle $|z - a_2| < R_1$ sur le domaine symétrique de Δ par rapport à l'axe réel, et l'on a encore

$$a_3 = g(a_2)$$
 et $z_0 = g(z_0)$.

On peut enfin choisir les nombres R_2 , R_4 au plus égaux respectivement aux distances de a_2 , a_4 à $\overline{\Delta}$ et le nombre R_3 tel que $|z-a_2| > R_2$ entraîne $|f(z)-a_3| > R_3$, et par suite aussi $|g(z)-a_3| > R_3$. Si D est le domaine défini par les inégalités

$$R_2 < |z - a_2| < R_1, |z - a_3| > R_3, |z - a_4| > R_4,$$

f(z) et g(z) sont deux transformations intérieures de D qui laissent fixe z_0 . Avec les notations utilisées dans ce Chapitre, on peut choisir les fonctions associées F(Z) et G(Z) de manière qu'elles vérifient (10) avec le même endomorphisme U(S) défini par

$$U(S_2) = S_3, \quad U(S_3) = U(S_4) = E,$$

mais alors $F(Z_0)$ et $G(Z_0)$ sont homologues dans S_4 (pour un choix convenable de S_4 , que l'on peut supposer fait); si au contraire on adopte la convention $F(Z_0) = G(Z_0)$, on a deux fonctions F(Z) et G(Z) associées aux endomorphismes distincts U(S) et S_4 $U(S)S_4^{-1}$. Et cependant f(z) et g(z) appartiennent à une même classe \mathcal{J}_4 associée à un sous-groupe \mathcal{U} cyclique (celui des puissances de S_3).

32. Soient z_0 un point de D, Z_0 une de ses images dans le cercle |Z| < 1, choisie une fois pour toutes; à chaque f(z) appartenant à \mathcal{I} , mais non à \mathcal{I}_0 , et pour laquelle $z_0 = f(z_0)$, nous associerons la fonction F(Z) définie par la convention $Z_0 = F(Z_0)$, et par suite un sous-groupe \mathcal{U} bien déterminé. Ce qui précède conduit à rechercher une constante de point fixe relative, non pas à l'ensemble de ces fonctions f(z), mais seulement à celles qui correspondent à un \mathcal{U} donné : soit $\Omega_{\mathcal{U}}(z_0, D)$ cette constante. Nous poserons

(16)
$$B_{\mathfrak{U}}(Z_0, Z) \equiv \prod_{S \in \mathfrak{U}} \frac{\overline{SZ}_0}{|SZ_0|} \frac{SZ_0 - Z}{1 - \overline{SZ}_0 Z};$$

lorsque Z subit une substitution du groupe $\mathfrak U$, $B_{\mathfrak U}(Z_{\scriptscriptstyle 0},Z)$ est multiplié par une

constante de module 1; comme les $U(S_k)$ sont des substitutions génératrices de \mathfrak{U} , nous poserons

(17)
$$B_{\mathfrak{U}}[Z_0, U(S_k)Z] \equiv e^{i\theta_k} B_{\mathfrak{U}}(Z_0, Z) \qquad (2 \leq k \leq p).$$

Pour toute $S \in \mathcal{G}$, $F(SZ_0) = U(S)Z_0$ d'après (10) et notre convention $Z_0 = F(Z_0)$; d'autre part $U(S) \in \mathcal{U}$, donc $B_{\mathfrak{U}}[Z_0, F(SZ_0)] = 0$; la fonction $B_{\mathfrak{U}}[Z_0, F(Z)]$, holomorphe et de module inférieur à 1 pour |Z| < 1, admet donc tous les points SZ_0 comme zéros et l'on a

(18)
$$B_{\mathfrak{U}}[Z_0, F(Z)] \equiv B(Z_0, Z) H(Z),$$

οù

$$H \in \mathcal{H}[\varphi_2(z_0) - \theta_2, \ldots, \varphi_p(z_0) - \theta_p];$$

par suite

$$|f'(z_0)| \prod_{\substack{S \in \mathfrak{A} \\ S \neq E}} \left| \frac{SZ_0 - Z_0}{I - \overline{Z}_0 SZ_0} \right| = |H(Z_0)| \prod_{\substack{S \in \mathfrak{G} \\ S \neq E}} \left| \frac{SZ_0 - Z_0}{I - \overline{Z}_0 SZ_0} \right|;$$

si l'on introduit les points z_1, \ldots, z_q de D ($0 \leq q \leq p-1$) (') qui définissent (n° 25) les extrémales de $\mathcal{B}([\varphi_2(z_0)-\theta_2,\ldots,\varphi_p(z_0)-\theta_p],$ on a

(19)
$$\log \Omega_{\mathfrak{U}}(z_0, D) \leq \log \prod_{S \in \mathfrak{G} - \mathfrak{U}} \left| \frac{SZ_0 - Z_0}{1 - Z_0 SZ_0} \right| - G(z_0, z_1) - \ldots - G(z_0, z_q),$$

inégalité analogue à l'égalité (12) relative à la classe \mathcal{J}_0 . Mais ce n'est qu'une inégalité car si, inversement, l'on se donne une fonction H(Z) quelconque de $\mathcal{H}[\varphi_2(z_0) - \theta_2, \ldots, \varphi_\rho(z_0) - \theta_\rho]$, l'identité (18) ne définit pas en général une fonction F(Z) holomorphe.

On peut appliquer le même procédé au problème traité au n°18, relativement cette fois aux transformations f(z) correspondant (au sens ci-dessus) à un $\mathfrak U$ donné: au lieu de la condition nécessaire et suffisante (14) du Chapitre II, on obtient une condition nécessaire, qui améliore l'inégalité $G(z_1', z_2') > G(z_1, z_2)$ fournie par le principe de Lindelöf.

CHAPITRE IV.

SUR LES TRANSFORMATIONS INTÉRIEURES D'UN DOMAINE A DEUX DIMENSIONS COMPLEXES.

33. Soit D un domaine borné, univalent, de l'espace rapporté à deux variables complexes x, y; les lettres telles que z désigneront des points de D, c'est-à-dire des couples (x, y), la notation $z_1 = F(z)$ une transformation inté-

⁽¹⁾ q = 0 si $\theta_k = \varphi_k(z_0) \pmod{2\pi}$ quel que soit k; il n'y a pas alors de fonction de Green au deuxième membre de (19).

rieure de D définie par deux fonctions $x_1 = f_1(x, y)$, $y_1 = f_2(x, y)$ holomorphes sur D et telles que $(x, y) \in D$ entraîne $(x_1, y_1) \in D$. On supposera que $z_1 = F(z)$ n'est pas une correspondance biunivoque de D avec lui-même.

Si F(z) et G(z) sont deux transformations intérieures de D, leur produit G[F(z)] a un sens et est encore une transformation intérieure de D; ce produit sera noté $G \circ F(z)$; $F_n(z)$ désignera la $n^{\text{tême}}$ itérée de F(z).

Par transformation limite de l'itération de F(z) on entendra la limite (uniforme sur tout sous-ensemble compact de D) d'une suite d'itérées de F(z) dont les rangs croissent indéfiniment : $\Phi(z) = \lim_{n_k = \infty} F_{n_k}(z)$; ce n'est pas toujours une transformation intérieure de D : on peut seulement écrire $\Phi(D) \subset \overline{D}$. Il en est déjà ainsi des transformations limites $\varphi(z)$ de l'itération d'une transformation intérieure f(z) d'un domaine plan d, mais dans ce cas on a deux possibilités seulement : ou bien $\varphi(z)$ est une transformation intérieure de d, ou bien $\varphi(z) \equiv x$, x étant un point-frontière de d. Ici au contraire il peut arriver que le point $\Phi(z)$ appartienne à D pour certains z de D et à la frontière de D pour d'autres z de D, sauf toutefois pour les domaines les plus simples :

- 1° Prenons pour D un bicylindre $d_1 \times d_2$, d_1 et d_2 étant deux domaines plans : si, pour un z_0 de D, $\Phi(z_0) = (x_1, y_1)$ est point-frontière de D, c'est que par exemple x_1 est point-frontière de d_1 ; alors, si $\varphi_1(x, y)$ et $\varphi_2(x, y)$ sont les coordonnées de $\Phi(z)$, on a $\varphi_1(x, y) \equiv x_1$, donc $\Phi(D)$ est porté par la frontière de D.
- 2° Prenons maintenant pour D une boule, soit $|x|^2 + |y|^2 < 1$, et supposons encore que, pour un z_0 de D, $\Phi(z_0)$ soit un point-frontière de D; moyennant au besoin un changement de coordonnées, on peut supposer que ce point-frontière est x = 1, y = 0; alors

$$||\varphi_1(x,y)||^2 + ||\varphi_2(x,y)||^2 \leq 1$$

entraine

$$\varphi_1(x, y) \equiv 1, \qquad \varphi_2(x, y) \equiv 0.$$

Ainsi, dans ce deuxième cas, si l'ensemble $\Phi(D)$ a un point sur la frontière de D, il est réduit à ce point; on peut obtenir facilement (1) une extension de ce résultat.

Pour simplifier l'écriture, nous appellerons « domaine D_0 » un domaine D tel que, pour toute transformation limite $\Phi(z)$, l'ensemble $\Phi(D)$ soit tout entier porté, soit par D, soit par sa frontière.

Si

$$\Phi(z) = \lim_{\substack{n_k = \infty \\ p_k = \infty}} F_{n_k}(z)$$
 et $\Psi(z) = \lim_{\substack{p_k = \infty \\ p_k = \infty}} F_{p_k}(z)$

⁽¹⁾ On peut considérer un domaine D limité par une hypersurface régulière vérifiant l'inégalité (stricte) de E. Levi (Annali di Mat., 3° série, t. 17, 1909, p. 61 et 18, 1911, p. 69).

sont deux transformations limites intérieures, il en est de même de

$$\Psi \circ \Phi(z) \equiv \Phi \circ \Psi(z) \equiv \lim_{k=\infty} F_{n_k+p_k}(z);$$

plus généralement

$$\Psi \circ \Phi(z_0) = \Phi \circ \Psi(z_0)$$

pourvu que

$$\Phi(z_0) \in \mathcal{D}$$
 et $\Psi(z_0) \in \mathcal{D}$.

34. Un ensemble E de points de D sera une variété analytique dans D si tout point z_0 de D possède un voisinage V tel que E N V se compose des zéros communs à un nombre fini de fonctions $\not\equiv$ 0, holomorphes sur V (¹); dans le cas de deux variables qui nous occupe ici, l'ensemble E N V, ou bien est vide, ou bien est réduit au point z_0 , ou bien se compose d'un nombre fini de composantes irréductibles au point z_0 , définie chacune, soit par $x = x_0$, soit par $y - y_0 = \mathcal{E}\left[(x - x_0)^{\frac{1}{n}}\right]$ (S'étant une série entière sans terme constant), donc chacune homéomorphe à un voisinage de l'origine dans le plan de la variable

complexe $t = y - y_0$ dans le premier cas, $t = (x - x_0)^{\frac{1}{n}}$ dans le deuxième; t sera appelé paramètre local attaché au point z_0 et à la composante considérée.

Soient un domaine Ω , une variété E et une transformation analytique G(z) définie sur Ω , tels que $G(\Omega) \subset E$; si z_0 est un point de Ω , en écartant le cas $G(z) \equiv G(z_0)$, la relation $G(z) = G(z_0)$ définit une variété e et l'ensemble des points d'un voisinage V de z_0 qui n'appartiennent pas à e est connexe et partout dense sur V; comme les composantes irréductibles de E au point $G(z_0)$ n'ont que ce point en commun, l'ensemble G(V-e) est porté par l'une d'elles, donc aussi G(V); le paramètre local (attaché à cette composante) du point G(z) est une fonction de z holomorphe et bornée sur V-e, donc holomorphe sur V; comme cette fonction n'est pas une constante, l'ensemble G(V) couvre, au voisinage du point $G(z_0)$, la composante irréductible (de E en ce point) qui le porte.

Etant donné une transformation analytique G(z) définie sur Ω , une variété E_1 dans Ω et une autre variété E telles que $G(E_1) \subset E$, on vérifie de même que les images par G(z) des points voisins d'un point z_0 de E_1 sur une composante irréductible de E_1 en ce point, ou bien sont confondues au point $G(z_0)$, ou bien couvrent, au voisinage de ce point, une composante irréductible de E en ce point et que, dans ce cas, le paramètre local du point G(z) est fonction holomorphe de celui du point z. Ce résultat s'applique en particulier à une variété E dans D invariante par la transformation F(z), c'est-à-dire telle que $F(E) \subset E$.

⁽¹⁾ H. CARTAN, Ann. Ec. Norm. Sup., t. 61, 1944, p. 149, Appendice II.

35. Si & est l'espace topologique dans lequel un point ζ_0 se compose d'un point z_0 de E et d'une composante irréductible de E au point z_0 , et un voisinage de ζ_0 de tous les points ζ de & associés à des points z de cette composante assez voisins de z_0 , ce qui précède montre que la transformation G(z) définit une application continue, dans le premier cas de Ω dans &, dans le deuxième de &, dans &; comme les composantes connexes de & définissent les composantes irréductibles (¹) de E (cf. Mémoire cité au n° 34), on peut ajouter à ce qui précède :

Si $G(\Omega) \subset E$, $G(\Omega)$ est tout entier porté par une même composante irréductible de E. Si $G(E_1) \subset E$, l'image par G(z) de chaque composante irréductible de E_1 est tout entière portée par une même composante irréductible de E. Dans ce deuxième cas, si E_1 est irréductible et si $G(z) \equiv \text{const.}$ au voisinage d'un point z_0 de E_1 sur une composante irréductible de E_1 en ce point, $G(z) \equiv \text{const.}$ partout sur E_1 (Mémoire cité au n° 34, théorème γ).

Une variété irréductible E dans D peut se réduire à un point de D; sinon, et si, au voisinage d'un point $z_0 = (x_0, y_0)$ de D, elle est définie par $x = x_0$, E est la composante connexe du point y_0 dans la section $x = x_0$ de D; en dehors de ce cas, tous les paramètres locaux sur E sont de la forme $(x - x_0)^{\frac{1}{n}}$, la projection de E sur le plan des x est un domaine e_1 ; E a donc des points d'accumulation n'appartenant pas à E, donc situés sur la frontière de D puisque E est fermé dans D.

Dans le dernier cas, \mathcal{E} est isomorphe (²) à un domaine plan, multivalent et ramifié, contenu dans e_i , autrement dit une surface de Riemann qui, d'après ce qui précède, ne peut être fermée.

- 36. La théorie (3) de l'itération d'une transformation intérieure f(z) d'un domaine plan d repose principalement sur les deux énoncés suivants :
- 1° Si une transformation limite $\varphi(z) \equiv z_0 \in D$, z_0 est point double attractif pour la transformation f(z):

$$f(z_0) = z_0$$
 et $|f'(z_0)| < 1$.

2° Si une tranformation limite $\varphi(z) \not\equiv \text{const.}$, $z_1 = f(z) \text{ met D en correspondance biunivoque avec lui-même.}$

⁽¹⁾ Au sens global du mot, où nous l'entendrons désormais chaque fois qu'il ne sera pas suivi de la mention « au point... ».

⁽²⁾ Nous entendons par là qu'il y a entre & et la surface de Riemann, une correspondance biunivoque qui transforme le paramètre local sur & en uniformisante locale pour la surface.

⁽³⁾ G. Valiron, Bull. Sc. math., 2° série, t. 55, 1931, p. 105 ou M. Heins, Amer. J. Math., t. 63, 1941, p. 461.

Le premier énoncé s'étend au cas de plusieurs variables:

. Théorème 1. — Si une transformation limite $\Phi(z) \equiv z_0 \in D$, z_0 est point double attractif pour la transformation $F(z) : F(z_0) = z_0$ et les valeurs propres du déterminant fonctionnel de F(z) au point z_0 sont de modules inférieurs à 1.

On a

$$F(z_0) = F \circ \Phi(z_0) = \Phi \circ F(z_0) = z_0.$$

Si s est l'une des valeurs propres considérées, s^{n_k} est valeur propre du déterminant fonctionnel de $F_{n_k}(z)$ au point z_0 ; comme

$$\lim_{n_k=\infty} F_{n_k}(z) = \Phi(z) \equiv \text{const.}, \qquad \lim_{n_k=\infty} s^{n_k} = 0, \qquad |s| < 1.$$

Cet énoncé vaut aussi pour une variété invariante :

THEORÈME 2. — Si une variété E dans D est invariante par F(z) et si, pour une transformation limite $\Phi(z)$, l'ensemble $\Phi(E)$ se réduit à un point z_0 de D, alors $z_0 \in E$, z_0 est point double de la transformation $F(z): F(z_0) = z_0$, et ce point double est attractif pour $E: \lim_{n \to \infty} F_n(z) = z_0$ pour tout z de E, et cela uniformément sur $E \cap K$ pour tout compact $K \subset D$.

Le premier point résulte de ce que E est fermé dans D; le deuxième s'obtient comme au théorème 1; quant au troisième, ayant posé $\Phi(z) = \lim_{n_k = \infty} F_{n_k}(z)$, on peut extraire de toute autre suite convergente d'itérées de F(z) une suite partielle $F_{m_j}(z)$ et associer à chaque m_j le plus grand des n_k inférieurs à m_j , soit p_j , de manière que la suite $F_{m_j-p_j}(z)$ converge; comme $\lim_{p_j=\infty} F_{p_j}(z) = z_0$ uniformément sur $E \cap K$ et $F_{m_j-p_j}(z_0) = z_0$, on a aussi $\lim_{m_j=\infty} F_{m_j}(z) = z_0$ uniformément sur $E \cap K$.

37. Au contraire, le deuxième énoncé ne s'étend pas au cas de deux variables, car c'est seulement si $\Phi(z)$ a un déterminant fonctionnel non identiquement nul que $z_1 = F(z)$ met D en correspondance biunivoque avec lui-même; mais on peut l'étendre à une variété *irréductible* invariante dans D:

Théorème 3. — Si E est une variété irréductible, non ponctuelle, invariante par F(z) et si, pour une transformation limite $\Phi(z)$, l'ensemble $\Phi(E)$ couvre, au voisinage d'un point z_0 de E, une composante irréductible de E en ce point, alors :

1° la transformation $z_1 = F(z)$ met en correspondance biunivoque avec luimême l'ensemble E ou l'espace $\mathcal{E}(n^{\circ}35)$;

2° ou bien une itérée de F(z) conserve E point par point, ou bien \mathcal{E} est isomorphe à un domaine plan, univalent, à connexion simple ou double : |Z| < R ou R' < |Z| < R ($o \leq R' < R < + \infty$), l'image dans le plan Z de la transformation $z_1 = F(z)$ étant une rotation d'angle incommensurable avec $\pi : Z_1 = e^{i\alpha}Z$;

3° toute transformation limite $\Phi_1(z)$ met aussi l'ensemble E en correspondance biunivoque avec lui-même; si en outre $\Phi_1(z)$ est intérieure, $\Phi_1(D) = E$;

4° s'il existe au moins une transformation limite intérieure, toutes les transformations limites sont intérieures;

5° si D est un domaine D₀ (n° 33), toute transformation limite est intérieure.

Démonstration. — 1° Si $\Phi(z) = \lim_{n_k = \infty} F_{n_k}(z)$ et si $\Psi(z)$ est limite d'une suite $F_{m_j}(z)$ convergente extraite de la famille $F_{n_k-n_k}(z)$ (¹), $\Psi \circ \Phi(z) = \Phi(z)$ pourvu que $\Phi(z) \in D$; on a donc $\Psi(z) = z$ au voisinage de z_0 sur une composante irréductible de E en z_0 , et par suite partout sur E puisque E est irréductible.

Les transformations $z_1 = F_{m_j}(z)$ définissent des transformations intérieures de \mathcal{E} , soit $\zeta_1 = \varphi_j(\zeta)$, où le paramètre local de ζ_1 est fonction holomorphe de celui de ζ , qui convergent (uniformément sur tout compact) vers la transformation identique; dans ces conditions $z_1 = F(z)$ définit une transformation biunivoque de \mathcal{E} en lui-même (2), et aussi de E en lui-même.

2° Si aucune itérée de F(z), en particulier $F_{m_j-m_j}(z)(j'>j)$, ne conserve E point par point, les $\varphi_j(\zeta)$ sont des transformations biunivoques distinctes de $\mathcal E$ en lui-même qui convergent vers la transformation identique, autrement dit le groupe des représentations de la surface de Riemann $\mathcal E$ sur elle-même n'est pas discontinu; une telle surface (3), ou bien est une surface fermée de genre o ou 1 (ce qui est contraire à la remarque qui termine le n° 35), ou bien est isomorphe à l'un des domaines plans indiqués dans l'énoncé, c'est-à-dire est la surface de Riemann d'une fonction holomorphe sur ce domaine; $R < +\infty$ résulte de ce que $\mathcal E$ est contenu dans le domaine borné e_1 (n° 35).

La transformation $z_1 = F(z)$ a pour image dans le domaine |Z| < R ou R' < |Z| < R une transformation conforme biunivoque de ce domaine en lui-même dont, par hypothèse, aucune itérée n'est la transformation identique, mais dont une suite d'itérées converge vers celle-ci : $Z_1 = e^{i\alpha}Z$.

3° Si $F_n(z)$ conserve E point par point, toute transformation limite $\Phi_1(z)$ coincide, pour $z \in E$, avec l'une des transformations F(z), $F_2(z)$, ..., $F_n(z) = z$. Si aucune itérée de F(z) ne conserve E point par point, on se reporte au plan Z et remarque que les transformations limites de l'itération de $Z_1 = e^{i\alpha}Z$ sont les transformations $Z_1 = e^{i\beta}Z$.

Si $\Phi_{\bullet}(z)$ est une transformation limite intérieure, considérons l'ensemble ouvert Ω intérieur de l'ensemble des points z de D tels que $\Phi_{\bullet}(z) \in E$, et montrons que Ω n'est pas vide et est fermé dans D: la connexion de D entraînera alors $\Omega = D$.

⁽¹⁾ Où k' > k; on suppose (cf. nº 33) que les m_j et les n_k correspondants croissent indéfiniment

⁽²⁾ H. CARTAN, Math. Z., t. 35, 1932, p. 760.

⁽³⁾ H. WEYL, Die Idee der Riemannschen Fläche, § 21.

162 M. HERVÉ.

 Ω n'est pas vide: soit $\Psi_1(z)$ la transformation limite associée à $\Phi_1(z)$, comme $\Psi(z)$ ci-dessus à $\Phi(z)$, de sorte que $\Psi_1 \circ \Phi_1(z) = \Phi_1(z)$ pourvu que $\Phi_1(z) \in D$; si E_1 est la variété dans D définie par $\Psi_1(z) = z$ (1), comme on vient de voir que $\Phi_1(E) = E$, on a $E \subset E_1$; comme les points de E_1 où E_1 a plusieurs composantes irréductibles sont isolés, on peut trouver $z_1 \in E$ tel qu'au point $\Phi_1(z_1)$ il n'y ait qu'une composante irréductible de E_1 ; alors, $E \subset E_1$ entraîne que E et E_1 coincident au voisinage de $\Phi_1(z_1)$; l'image par $\Phi_1(z)$ d'un voisinage (dans E) du point E, portée par E, l'est aussi par E, et E est E.

 Ω est fermé dans D: soit z^* un point de D limite d'une suite de points z_n de Ω ; comme $\Phi_1(z^*) \in D$ (2), $\Phi_1(z_n) \in E$ et que E est fermé dans D, $\Phi_1(z^*) \in E$; il existe un voisinage V du point $\Phi_1(z^*)$, une fonction $f_v(z)$ holomorphe sur V telle que les points de $E \cap V$ soient les points de V qui annulent $f_v(z)$, et une boule ouverte B de centre z^* telle que $\Phi_1(B) \subset V$; pour n assez grand, $z_n \in B$, au voisinage de z_n on a

$$\Phi_{\mathbf{i}}(z) \in E \cap V$$
, donc $f_{\mathbf{v}}[\Phi_{\mathbf{i}}(z)] \equiv 0$;

cette identité a lieu partout sur B, $\Phi_1(B) \subset E$, $z^* \in \Omega$.

4º Soient

$$\Phi_1(z) = \lim_{p_k = \infty} F_{p_k}(z)$$

une transformation limite intérieure et

$$\Phi_2(z) = \lim_{q_k = \infty} \mathcal{F}_{q_k}(z)$$

une autre transformation limite; on peut supposer, en remplaçant au besoin les suites p_k et q_k par des suites partielles (3), $q_k > p_k$ et la suite $F_{q_k-p_k}(z)$ convergente: soit $\Phi_3(z)$ sa limite; comme $\Phi_1(z)$ est intérieure, on a

$$\Phi_2(z) \equiv \Phi_3 \circ \Phi_4(z),$$

d'après la troisième partie du théorème.

$$\Phi_1(D) = E$$
 et $\Phi_3(E) = E$, donc $\Phi_2(D) = E$,

 $\Phi_2(z)$ est intérieure.

5° On sait déjà que toute transformation limite transforme un point de E en un point de E, donc de D.

38. Remarques. — 1° Une conséquence de la troisième partie du théorème est que, s'il y a au moins une transformation limite intérieure, une seule variété

⁽¹⁾ $\Psi_1(z) \not\equiv z$ puisque le déterminant fonctionnel de $\Psi_1(z)$ est identiquement nul.

⁽²⁾ Ici seulement intervient l'hypothèse que $\Phi_1(z)$ est intérieure.

⁽³⁾ Comme dans la démonstration du théorème 2 (nº 36).

irréductible E peut jouir des propriétés énoncées, mais il n'en est plus ainsi s'il n'y a pas de transformation limite intérieure. Exemple : la transformation F(z) est définie par $x_1 = x$, $y_1 = ky$ (0 < k < 1), D est le bicercle |x| < 1, |y| < 1 à l'exception des points $x \in K$, y = 0, K étant un ensemble fermé du plan des x contenu dans $|x| \le 1$; chaque composante connexe E du complémentaire de K par rapport au cercle |x| < 1, y = 0 est une variété vérifiant les hypothèses de l'énoncé.

2° Si une itérée de F(z) conserve E point par point, $\mathcal E$ peut ne pas être isomorphe à un domaine plan, univalent, à connexion simple ou double. En effet, dans l'exemple ci-dessus, chaque E est un domaine d'ordre de connexion quelconque.

3° Si E vérifie les hypothèses du théorème, et si les transformations limites sont intérieures, le lieu des images d'un point z_0 de D par ces transformations [c'est-à-dire l'ensemble d'accumulation de la suite des $F_n(z_0)$] est un ensemble fermé $K(z_0) \subset D$; d'après le raisonnement fait pour la quatrième partie du théorème, ce lieu est aussi $K[\Phi_1(z_0)]$, $\Phi_1(z)$ étant l'une des transformations limites; comme $\Phi_1(z_0) \in E$, d'après la deuxième partie, le lieu $K(z_0)$, ou bien comprend un nombre fini de points, ou bien est une courbe fermée analytique tracée sur E, image d'une circonférence |Z| = r.

4° Dans les mêmes hypothèses (E vérifiant le théorème 3, transformations limites intérieures), le raisonnement de la quatrième partie du théorème montre encore qu'il y a autant de transformations limites distinctes opérant sur D qu'il y en a de distinctes opérant sur E; d'une façon précise, les deux ensembles ainsi définis ont même puissance, que la deuxième partie du théorème permet d'évaluer : si une itérée de F(z) conserve E point par point, il y a un nombre fini de transformations limites; sinon, leur ensemble a la puissance du continu. En particulier, pour qu'il y ait une seule transformation limite, c'est-à-dire pour que la suite $F_n(z)$ converge, il faut et il suffit que F(z) conserve E, non seulement globalement, mais point par point.

39. Reste à montrer l'existence d'une variété E dans D vérifiant les hypothèses du théorème. Commençons par le cas où la transformation F(z) présente dans D un point double que nous prenons pour origine; si s_1 et s_2 sont les valeurs propres du déterminant fonctionnel de F(z) en ce point, on a

$$|s_1| \leq 1$$
, $|s_2| \leq 1$, $|s_1s_2| < 1$;

le cas $|s_1| < 1$, $|s_2| < 1$ étant celui du point double attractif, reste à étudier le cas $s_1 = e^{iz}$, $|s_2| < 1$; comme alors $s_1 \neq s_2$, on peut, moyennant un changement de coordonnées, supposer la transformation F(z) définie au voisinage de l'origine par

$$(3) x_1 = e^{i\alpha}x + \ldots, y_1 = s_2y + \ldots,$$

164 M. HERVÉ.

en convenant de représenter par des points de suspension un développement de Taylor où ne figurent que des termes de degré au moins égal à 2.

Théorème 4. — Si l'origine est point double pour la transformation F(z) et si les valeurs propres du déterminant fonctionnel de F(z) en ce point sont $e^{\alpha i}$ et $s_2(|s_2| < 1)$, il passe par l'origine une variété E dans D vérifiant les hypothèses du théorème 3; si α est commensurable avec π , elle est conservée point par point par une itérée de F(z); sinon, E est isomorphe à un disque plan.

D'après (3), la $n^{\text{lème}}$ itérée de F(z) est définie au voisinage de l'origine par

$$x_n = e^{in\alpha}x + \dots$$
 $y_n = s_2^n y + \dots$

donc une transformation limite $\Phi(z)$ par

(4)
$$\varphi_1(x, y) = e^{i\beta}x + \dots, \qquad \varphi_2(x, y) = \dots$$

Si à $\Phi(z)$ on associe la transformation limite $\Psi(z)$ comme au n° 37, on a $\Psi \circ \Phi(z) = \Phi(z)$ pourvu que $\Phi(z) \in D$, en particulier au voisinage de l'origine; $\psi_4(x, y)$ et $\psi_2(x, y)$ ont la forme (4), mais, comme

$$\psi_1[\varphi_1(x, y), \varphi_2(x, y)] \equiv \varphi_1(x, y),$$

on a

(5)
$$\psi_1(x, y) = x + \dots, \qquad \psi_2(x, y) = \dots$$

Soit ε la variété dans D définie par $\Psi(z) = z$; elle est invariante par F(z), car, si $z \in \varepsilon$, $F(z) \in D$ et $\Psi(z) \in D$, donc, d'après (2),

$$\Psi \circ F(z) = F \circ \Psi(z) = F(z),$$

c'est-à-dire $F(z) \in \varepsilon$; d'après (5), elle est définie au voisinage de l'origine par deux équations de la forme

$$y = g_1(x, y), \quad g_2(x, y) = 0,$$

 g_1 et g_2 ne comprenant que des termes de degré au moins égal à 2; de la première résulte

$$(6) y = \mathcal{S}(x),$$

et la deuxième est alors vérifiée, sans quoi la variété ε serait, au voisinage de l'origine, réduite à ce point, on aurait $\Phi(z) \equiv$ o contrairement à (4); ainsi ε admet à l'origine une seule composante irréductible définie par (6); la composante irréductible (au sens global) de ε qui la contient, soit E, est invariante par F(z) (puisque l'origine est conservée, cf. n° 35) et, d'après (4), vérifie l'hypothèse du théorème 3.

Si α est incommensurable avec π , aucune itérée de F(z) ne conserve E point par point; réciproquement, s'il en est ainsi, la transformation image de

 $z_1 = F(z)$ dans le plan Z doit avoir un point double sans qu'aucune de ses itérées soit la transformation identique, ce qui exclut la couronne circulaire R' < |Z| < R (théorème 3, 2° partie); on peut rendre homologues les origines de D et du plan Z; comme, au voisinage de ces origines, x [paramètre local sur E à l'origine d'après (6)] et Z sont fonctions holomorphes l'un de l'autre, l'image de $z_1 = F(z)$ dans le plan Z est $Z_1 = e^{i\alpha}Z$ (avec le même α) et α est incommensurable avec π .

Remarque. — Lattès a montré (1) qu'il existe une série entière S(x) et une seule telle que la formule (6) définisse, au voisinage de l'origine, une variété invariante par la transformation F(z); sa méthode permet d'en calculer les coefficients de proche en proche.

40. Supposant désormais la transformation F(z) sans point double, soit à chercher un critère d'existence d'une variété E dans D vérifiant les hypothèses du théorème 3; ces hypothèses impliquent que, pour une transformation limite $\Phi(z)$ et un point z_4 de D, $\Phi(z_4) \in D$; mais cette condition nécessaire n'est pas suffisante : elle l'est seulement vis-à-vis d'une itérée de F(z):

Théorème 5. — Si la transformation F(z) est sans point double et si, pour une transformation limite $\Phi(z)$ et un point z_1 de D, $\Phi(z_1) \in D$, alors il existe un nombre fini de variétés irréductibles non ponctuelles E_1, E_2, \ldots, E_N telles que la transformation F(z) mette en correspondance biunivoque E_1 avec E_2 , E_2 avec E_3, \ldots, E_N avec E_4 , et dont chacune vérifie les hypothèses du théorème 3 vis-à-vis de la transformation $F_N(z)$.

Soit encore $(cf. \ n^{os} \ 37 \ et \ 39) \ \Psi(z)$ la transformation limite telle que $\Psi \circ \Phi(z) = \Phi(z)$ pourvu que $\Phi(z) \in D$, en particulier sur une boule B de centre z_4 ; la variété ε dans D définie par $\Psi(z) = z$ est invariante par F(z); l'ensemble $\Phi(B)$ est porté par une composante irréductible ε_0 de ε $(cf. \ n^o \ 35)$ sans être réduit à un point (théorème 1), $F(\varepsilon_0)$ par une composante irréductible ε_1 de ε $(n^o \ 35)$ sans être réduit à un point, sans quoi $F \circ \Phi(B)$ le serait a fortiori (théorème 1), $F(\varepsilon_1)$ par une composante irréductible ε_2 ,

Soit d'autre part

$$\Psi(z) = \lim_{m_k = \infty} F_{m_k}(z);$$

le point $F_{m_k} \circ \Phi(z_1)$ appartient à ε_{m_k} et a pour limite $\Phi(z_1)$; comme $\Phi(z_1) \in D$, au voisinage de ce point passent un nombre fini de composantes irréductibles de ε ; on peut donc trouver deux entiers m_k et N tels que $\varepsilon_{m_k} = E_1$ et ε_{m_k+N} coincident; chacune des variétés $\varepsilon_{m_k+n-1} = E_n$ ($1 \leq n \leq N$) est invariante par $F_N(z)$;

⁽¹⁾ S. Lattès, Thèse (Annali di Mat., 3e série, t. 13, 1907, p. 1).

166 M. HERVÉ.

comme elles font partie de z, chacune est conservée point par point par $\Psi(z)$, a fortiori par la N^{leme} itérée de celle-ci, soit $\Psi_N(z)$, qui est limite d'itérées de $F_N(z)$, donc vérifie les hypothèses du théorème 3 vis-à-vis de $F_N(z)$; par suite chacune est transformée biunivoquement en elle-même par $F_N(z)$ (première partie du théorème 3); comme

$$F(E_1) \subset E_2$$
, $F(E_2) \subset E_3$, ..., $F(E_N) \subset E_1$,

il en résulte que F(z) transforme biunivoquement E_1 en E_2 , E_2 en E_3 , ..., E_N en E_1 .

41. Remarques. — 1° Pour s'assurer que les variétés E_1, \ldots, E_N peuvent être distinctes, il suffit de reprendre l'exemple du n° 38 avec l'ensemble K formé de N rayons du cercle $|x| \leq 1$ faisant entre eux l'angle $\frac{2\pi}{N}$ et la transformation F(z) définie par

$$x_1 = e^{\frac{2i\pi}{N}}x, \quad y_1 = ky.$$

2° Si $\Phi(z)$ est limite d'une suite d'itérées de F(z) dont les indices sont tous multiples de N plus un même reste p (o $\leq p \leq N-1$), on a (troisième partie du théorème 3):

$$\Phi(\mathbf{E}_1) = \mathbf{E}_{p+1}, \ldots, \Phi(\mathbf{E}_{\mathbf{N}}) = \mathbf{E}_p;$$

si donc E_1, \ldots, E_N sont distinctes, une suite d'itérées de F(z) ne peut converger que si leurs indices sont tous, à partir d'un certain rang, multiples de N plus un même reste.

3° Les hypothèses du théorème 5 sont vérifiées en particulier si, la transformation F(z) étant dépourvue de point double, une de ses itérées en a un, soit $z_1 = F_M(z_1)$; z_1 ne peut être point double attractif pour $F_M(z)$ sans quoi il le serait aussi pour F(z) (théorème 1); le théorème 4 s'applique donc à $F_M(z)$ et au point double z_1 , d'où résulte $N \leq M$.

4° S'il existe une transformation limite intérieure $\Phi(z)$, il en existe aussi une qui soit limite d'itérées de $F_N(z)$, à savoir $\Phi_N(z)$; la première remarque du n° 38, appliquée à $F_N(z)$, montre alors que E_1, \ldots, E_N se confondent et, en réunissant les résultats des théorèmes 3 à 5, on peut énoncer :

Théorème 6. — Si l'itération de F(z) donne naissance à au moins une transformation limite intérieure non constante, il existe une variété E et une seule vérifiant les hypothèses du théorème 3, toutes les transformations limites sont intérieures et l'image de E par chacune d'elles est E.

Comme on ne peut avoir $\widetilde{E} \subset D$ (nº 35), en rapprochant les théorèmes 1 et 6,

on obtient le suivant, qui étend à deux variables le théorème de Ritt sur l'itération dans un domaine plan (1):

Corollaire 1. — Si, pour une valeur de n, on a $\overline{F_n(D)} \subset D$, la transformation $_{\bullet}F(z)$ admet un point double attractif.

42. Theorème 7. — Étant donné une transformation intérieure F(z) d'un domaine D, ou bien $\Phi(D)$ est porté par la frontière de D quelle que soit la transformation limite $\Phi(z)$, ou bien une itérée $F_M(z)$ est transformation intérieure d'un sous-domaine $D_A \subset D$ tel que $\Phi(D_A) \subset D_A$ pour toute $\Phi(z)$ limite d'itérées de $F_M(z)$.

Si la première conclusion n'a pas lieu, il existe une $\Phi(z)$ et un point z_4 de D tels que $\Phi(z_4) \in D$; je dis qu'alors l'ensemble Ω , des points de D dont l'image par n'importe quelle transformation limite appartient à D, n'est pas vide : en effet, si F(z) admet un point double, il fait partie de Ω ; sinon, on est dans les hypothèses du théorème 5 et, d'après la deuxième remarque du n° 41, l'image d'un point de E_4 par n'importe quelle transformation limite appartient à l'une des variétés E_4, \ldots, E_N , donc à D, de sorte que E_4, \ldots, E_N font partie de Ω .

 Ω est ouvert : soit z^* un point de Ω limite d'une suite de points z_k n'appartenant pas à Ω ; on peut trouver les entiers croissants n_k tels que la distance du point $F_{n_k}(z_k)$ à la frontière de D soit inférieure à $\frac{1}{k}$; si $\Phi(z)$ est limite d'une suite extraite de la suite $F_{n_k}(z)$, le point $\Phi(z^*)$, limite d'une suite extraite de $F_{n_k}(z_k)$, appartient à la frontière de D, contrairement à l'hypothèse $z^* \in \Omega$.

Si $z^* \in \Omega$, $F(z^*) \in \Omega$ et même l'image de z^* par n'importe quelle transformation limite appartient à Ω ; si Δ_0 est la composante connexe de Ω qui contient z^* , $F(\Delta_0)$ est contenu dans une autre composante connexe Δ_1 de Ω , $F(\Delta_1)$ dans une autre, Δ_2 , ...; si $\Phi(z) = \lim_{n_k = z} F_{n_k}(z)$, comme $\Phi(z^*) \in \Omega$, on peut trouver deux entiers n_k et M tels que $\Delta_{n_k} = D_1$ et Δ_{n_k+M} coincident; comme $F_M(z)$ est transformation intérieure de D_1 , pour toute $\Phi(z)$ limite d'itérées de $F_M(z)$, $z \in D_1$ entraîne $\Phi(z) \in \overline{D}_1$; mais $\Phi(z) \in \Omega$, donc $\Phi(z) \in D_1$.

Si $z^* = F(z^*)$, $z^* \in \Omega$; dans le raisonnement ci-dessus, on a simplement M = 1, $D_4 = \Delta_0$; ainsi:

COROLLAIRE 2. — Si z_1 est point double de F(z), il existe un sous-domaine D_1 tel que $z_1 \in D_1 \subset D$, $F(D_1) \subset D_1$ et $\Phi(D_1) \subset D_1$ pour toute transformation limite $\Phi(z)$.

43. Cherchons maintenant à quelle condition la suite $F_n(z)$ converge vers une transformation $\Phi(z)$ non constante telle que, pour un point z_1 de D,

⁽¹⁾ J. F. RITT, Ann. Math., 22, 1921, p. 157.

 $\Phi(z_1) \in D$: s'il en est ainsi, le théorème 5 s'applique avec N = 1 d'après la deuxième remarque du n° 41; une variété E vérifie les hypothèses du théorème 3 et est conservée point par point par F(z), car, par hypothèse, $F \circ \Phi(z) = \Phi(z)$ pourvu que $\Phi(z) \in D$, d'où $F(z_1) = z_1$ pour $z_1 \in E$ (troisième partie du théorème 3); ainsi la transformation F(z) a une infinité de points doubles non isolés, en chacun desquels la transformation $F(z) = z_1$ a un déterminant fonctionnel nul, donc celui de F(z) admet la valeur propre 1.

Réciproquement, si F(z) a un point double dans D (pris comme origine) où son déterminant fonctionnel a les valeurs propres 1 et s_2 ($|s_2| < 1$), d'après le théorème 4, il passe par l'origine une variété E dans D vérifiant les hypothèses du théorème 3 et conservée point par point par une itérée de F(z); je dis qu'elle l'est par F(z) elle-même : l'élimination de y entre (3) et (6) donne en effet une relation de la forme $x_1 = x + \ldots$ qui doit se réduire à $x_1 \equiv x$ puisque son $n^{\text{tême}}$ itérée est $x_n \equiv x$, car

 $x_1 \equiv x + ax^p + \dots$ entraı̂nerait $x_n \equiv x + nax^p + \dots$

D'autre part (corollaire 2, n° 42), il existe un sous-domaine D_4 tel que $o \in D_4 \subset D$, dans lequel on peut faire le même raisonnement; en outre, dans D_4 , toutes les transformations limites sont intérieures et (quatrième remarque du n° 38) la suite $F_n(z)$ converge pour $z \in D_4$, donc aussi pour $z \in D$. Ainsi:

Théorème 8. — Pour que la suite des itérées d'une transformation F(z) converge vers une transformation limite non constante $\Phi(z)$ telle que $\Phi(D)$ ne soit pas porté par la frontière de D, il faut et il suffit que F(z) ait, soit une infinité de points doubles dont un au moins non isolé, soit un point double où son déterminant fonctionnel ait la valeur propre 1.