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ISOSPECTRALITY FOR QUANTUM TORIC
INTEGRABLE SYSTEMS

ʙʏ L��ʀ�ɴ� CHARLES, Áʟ��ʀ� PELAYO �ɴ� S�ɴ VŨ NGO. C

To Peter Sarnak on his sixtieth birthday, with admiration

Aʙ��ʀ���. – We give a full description of the semiclassical spectral theory of quantum toric inte-
grable systems using microlocal analysis for Toeplitz operators. This allows us to settle affirmatively the
isospectral problem for quantum toric integrable systems: the semiclassical joint spectrum of the sys-
tem, given by a sequence of commuting Toeplitz operators on a sequence of Hilbert spaces, determines
the classical integrable system given by the symplectic manifold and commuting Hamiltonians. This
type of problem belongs to the realm of classical questions in spectral theory going back to pioneer
works of Colin de Verdière, Guillemin, Sternberg and others in the 1970s and 1980s.

R�����. – Nous donnons une description complète du spectre de tout système intégrable torique
quantique, au moyen de l’analyse microlocale des opérateurs de Toeplitz. Ceci résout la question de
l’isospectralité pour cette classe de systèmes intégrables : le spectre semi-classique d’un système inté-
grable quantique torique détermine le système intégrable classique sous-jacent à symplectomorphisme
près. Nous donnons aussi une description complète de la théorie spectrale semi-classique des systèmes
intégrables toriques quantiques. Ces questions sont classiques en théorie spectrale et remontent aux tra-
vaux fondateurs de Colin de Verdière, Guillemin et Sternberg parmi d’autres dans les années 70 et 80.

1. Introduction

This paper gives a full description of the semiclassical spectral theory of quantum toric

integrable systems in any finite dimension. The classical limits corresponding to quantum
toric integrable systems are the so called symplectic toric manifolds or toric systems. Such a
system consists of a compact symplectic 2n-manifold equipped with n commuting Hamilto-
nians f1, . . . , fn with periodic flows. The paper combines geometric techniques from the the-
ory of toric manifolds, in the complex-algebraic and symplectic settings, with recently devel-
oped microlocal analytic methods for Toeplitz operators.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
0012-9593/05/© 2013 Société Mathématique de France. Tous droits réservés



816 L. CHARLES, Á. PELAYO AND S. VŨ NGO. C

As a consequence of the spectral theory we develop, we answer the isospectrality question
for quantum toric integrable systems, in any finite dimension: the semiclassical joint spec-
trum of a quantum toric integrable system, given by a sequence of commuting Toeplitz opera-
tors acting on quantum Hilbert spaces, determines the classical system given by the symplec-
tic manifold and Poisson commuting functions, up to symplectic isomorphisms. This type of
symplectic isospectral problem belongs to the realm of classical questions in inverse spectral
theory and microlocal analysis, going back to pioneer works of Colin de Verdière [14, 13] and
Guillemin-Sternberg [37] in the 1970s and 1980s. Colin de Verdière’s works are an important
inspiration for the present paper.

The question of isospectrality in Riemannian geometry may be traced back to Weyl [72,
73] and is most well known thanks to Kac’s article [41], who himself attributes the question
to Bochner. Kac popularized the sentence: “can one hear the shape of a drum?,” to refer to
this type of isospectral problem. The spectral theory developed in this paper exemplifies a
striking difference with Riemannian geometry, where this type of isospectrality rarely holds
true, and suggests that symplectic invariants are much better encoded in spectral theory
than Riemannian invariants. An approach to this problem for general integrable systems is
suggested in the last two authors’ article [60]. We refer to Section 8 for further remarks, and
references, in these directions.

Joint spectrum

In order to state our results, let us introduce the required terminology. If (M,ω) is a
symplectic manifold, a smooth map µ = (µ1, . . . , µn) : M → Rn is called a momentum

map for a Hamiltonian n-torus action on M if the Hamiltonian flows tj �→ ϕ
tj
µj are periodic

of period 1, and pairwise commute :

ϕ
tj
µj
◦ ϕ

ti
µi

= ϕ
ti
µi
◦ ϕ

tj
µj

,

so that they define an action of Rn/Zn. If this action is effective and M is compact, 2n-dimen-
sional and connected, we call (M, ω, µ) a symplectic toric manifold.

By the Atiyah and Guillemin-Sternberg theorem, for any torus Hamiltonian action on a
connected compact manifold, the image of the momentum map is a rational convex poly-
tope [1, 36]. For a symplectic toric manifold, the momentum polytope ∆ ⊂ Rn has the addi-
tional property that for each vertex v of ∆, the primitive normal vectors to the facets meeting
at v form a basis of the integral lattice Zn. We call such a polytope a Delzant polytope.

A now standard procedure introduced by B. Kostant [43, 44, 45, 46] and J.-M. Souriau
[62, 63] to quantize a symplectic compact manifold (M, ω) is to introduce a prequantum
bundle L → M , that is a Hermitian line bundle with curvature 1

i ω and a complex structure j

compatible with ω. One then defines the quantum space as the space

H k := H
0
(M, Lk

)

of holomorphic sections of Lk. The parameter k is a positive integer, the semiclassical limit
corresponds to the large k limit. A description of this procedure, which is called geometric

quantization, is given by Kostant and Pelayo in [47] from the angle of Lie theory and repre-
sentation theory.
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ISOSPECTRALITY FOR QUANTUM TORIC INTEGRABLE SYSTEMS 817

Not all symplectic manifolds have a complex structure or a prequantum bundle. However
a symplectic toric manifold always admits a compatible complex structure, which is not
unique. Furthermore a symplectic toric manifold M with momentum map µ : M → Rn

is prequantizable if and only if there exists c ∈ Rn such that the vertices of the polytope
µ(M) + c belong to 2πZn (see Section 3). If it is the case, the prequantum bundle is unique
up to isomorphisms.

In many papers, a prequantum bundle is defined as a line bundle with curvature 1
2πiω.

With this normalization, the cohomology class of ω is integral and the prequantization con-
dition for toric manifolds is that, up to translation, the momentum polytope has integral ver-
tices. This normalization may look simpler than ours, which includes a 2π-factor. Neverthe-
less, our choice is justified by the Weyl law. Indeed, with our normalization, the dimension
of the quantum space H k is

�
k

2π

�n

vol(M,ω) + O(k
n−1

).

Associated to such a quantization there is an algebra T (M, L, j) of operators

T = (Tk : H k → H k)k∈N∗

called Toeplitz operators. This algebra plays the same role as the algebra of semiclassical
pseudodifferential operators for a cotangent phase space. Here the semiclassical parameter is
� = 1/k. A Toeplitz operator has a principal symbol, which is a smooth function on the phase
space M . If T and S are Toeplitz operators, then (Tk + k−1Sk)k∈N∗ is a Toeplitz operator
with the same principal symbol as T . If Tk is Hermitian (i.e., self-adjoint) for k sufficiently
large, then the principal symbol of T is real-valued. Two Toeplitz operators (Tk)k∈N∗ and
(Sk)k∈N∗ commute if Tk and Sk commute for every k.

Fɪɢ�ʀ� 1. “Model image” of the spectrum of a normalized quantum toric inte-
grable system.

We shall also need the following definitions. If P1, . . . , Pn are mutually commuting endo-
morphisms of a finite dimensional vector space, then the joint spectrum of P1, . . . , Pn is the
set of (λ1, . . . , λn) ∈ Cn such that there exists a non-zero vector v for which

Pjv = λjv,

for all j = 1, . . . , n. It is denoted byJointSpec(P1, . . . , Pn). The Hausdorff distance between
two subsets A and B of Rn is

dH(A, B) := inf{� > 0 | A ⊆ B� and B ⊆ A�},

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



818 L. CHARLES, Á. PELAYO AND S. VŨ NGO. C

where for any subset X of Rn, the set X� is X� :=
�

x∈X
{m ∈ Rn | �x−m� � �}. If (Ak)k∈N∗

and (Bk)k∈N∗ are sequences of subsets of Rn, we say that

Ak = Bk + O(k
−∞

)

if dH(Ak, Bk) = O(k−N
) for all N ∈ N∗.

Our main result describes in full the joint spectrum of a quantum toric integrable system.

Tʜ��ʀ�� 1.1 (Joint Spectral Theorem). – Let (M, ω, µ : M → Rn
) be a symplectic

toric manifold equipped with a prequantum bundle L and a compatible complex structure j.

Let T1, . . . , Tn be commuting Toeplitz operators of T (M, L, j) whose principal symbols are

the components of µ. Then the joint spectrum of T1, . . . , Tn satisfies

JointSpec(T1, . . . , Tn) = g
�
∆ ∩

�
v +

2π

k
Zn

�
; k

�
+ O(k

−∞
)

where ∆ = µ(M), v is any vertex of ∆ and g(·; k) : Rn → Rn
admits a C

∞
-asymptotic

expansion of the form

g(·; k) = Id + k
−1

g1 + k
−2

g2 + · · ·
where each gj : Rn → Rn

is smooth. Moreover, for all sufficiently large k, the multiplicity of

the eigenvalues of JointSpec(T1, . . . , Tn) is 1, and there exists a small constant δ > 0 such that

each ball of radius
δ

k
centered at an eigenvalue contains precisely only that eigenvalue.

Thus the joint spectrum of a quantum toric integrable system can be obtained by taking
the k−1Zn lattice points in a polytope ∆ (as in Figure 1), and applying a small smooth
deformation g (as in Figure 2).

Isospectrality

We present next the isospectral theorem for toric systems. An easy consequence of the
previous theorem is that the momentum polytope ∆ is the Hausdorff limit of the joint
spectrum of the quantum system, that is ∆, consists of the λ ∈ Rn such that for any
neighborhood U of λ, U ∩ JointSpec(T1,k, . . . , Tn,k) �= ∅ when k is sufficiently large.

Recall that two symplectic toric manifolds (M,ω, µ) and (M �, ω�, µ�) are isomorphic if
there exists a symplectomorphism ϕ : M → M � such that

ϕ
∗
µ
�
= µ.

By the Delzant classification theorem [21], a symplectic toric manifold is determined up to
isomorphism by its momentum polytope. Furthermore, for any Delzant polytope ∆, Delzant
constructed in [21] a symplectic toric manifold (M∆, ω∆, µ∆) with momentum polytope ∆.
Now we are ready to state our isospectral theorem (see Figure 2 for an illustration of the
semiclassical joint spectrum).

C�ʀ�ʟʟ�ʀʏ 1.2 (Isospectral Theorem). – Let (M, ω, µ : M → Rn
) be a symplectic

toric manifold equipped with a prequantum bundle L and a compatible complex structure j.

Let T1, . . . , Tn be commuting Toeplitz operators of T (M, L, j) whose principal symbols are

the components of µ. Then

∆ := lim
k→∞

JointSpec(T1, . . . , Tn)
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Fɪɢ�ʀ� 2. Sequence of images of the spectra of a quantum toric integrable systems
as the semiclassical parameter � goes to 0. The spectra lie on a plane, so they
correspond to a four-dimensional integrable system with two degrees of freedom.
In the Hausdorff limit corresponding to � = 0, the spectra converge to a polytope;
this is proved for a general quantum toric system in any dimension by Corollary 1.2.
Therefore, one can recover the classical system from the semiclassical spectrum (i.e.,
the spectrum of the family of Toeplitz operators as � approaches 0).

is a Delzant polytope and (M, ω, µ) is isomorphic with (M∆, ω∆, µ∆). In other words, one can

recover the classical system from the limit of the joint spectrum.

This type of inverse result is classical and belongs to the realm of questions in inverse
spectral theory, going back to similar questions raised (and in many cases answered) by
pioneer works of Colin Verdière and Guillemin-Sternberg in the 1970s and 1980s. Many
other contributions followed their works, for instance Datchev-Hezari-Ventura [20] and
Iantchenko-Sjöstrand-Zworski [40]. A few global spectral results have also been obtained
recently, for instance by Vũ Ngo. c [71] for one degree of freedom pseudodifferential operators,
or in the article by Dryden, Guillemin, and Sena-Dias [22] in which an equivariant spectrum
of the Laplace operator is considered, and the references therein. See Section 8 for further
references.

Metaplectic correction

Introducing a metaplectic correction refers to twisting the prequantum bundle (or its
powers) by a half-form bundle. The metaplectic correction allows to obtain an easier control
of the subprincipal terms in the semiclassical limit. In the following theorem we improve
the previous Joint spectral Theorem by giving the explicit description of the spectrum up
to O(k−2

).

Recall that a half-form bundle of a complex manifold is a square root of its canonical bun-
dle. Given a symplectic manifold (M,ω) with a compatible complex structure, a prequantum
bundle L and a half-form bundle δ, the associated quantum space is H m,k = H

0
(M, Lk⊗δ).
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820 L. CHARLES, Á. PELAYO AND S. VŨ NGO. C

We can define Toeplitz operators in this setting together with their principal symbols. To
state our result, we also need the notion of subprincipal symbol of a Toeplitz operator whose
definition is recalled in Section 5. Two Toeplitz operators with the same principal symbol are
equal up to O(k−2

) if and only if they have the same subprincipal symbols.

As we will see in Section 7, a symplectic toric manifold with moment polytope ∆ ⊂ Rn

has a half-form bundle if and only if there exists a vector u ∈ Zn such that for any one-
codimensional face f of ∆, the scalar product of a primitive normal of f with u is odd. Such
a vector, if it exists, is uniquely determined modulo (2Z)

n. We denote it by u∆.

Tʜ��ʀ�� 1.3 (Joint Spectral Theorem with metaplectic correction)

Let (M, ω, µ : M → Rn
) be a symplectic toric manifold equipped with a prequantum

bundle L, a compatible complex structure j and a half-form bundle δ. Let T1, . . . , Tn be

commuting Toeplitz operators of H m,k whose principal symbols are the components of µ. Then

the joint spectrum of T1, . . . , Tn satisfies

JointSpec(T1, . . . , Tn) = g
�
∆ ∩

�
v +

2π

k

�
Zn

+ u∆/2
��

; k
�

+ O(k
−∞

)

where ∆ = µ(M), v is any vertex of ∆ and g(·; k) : Rn → Rn
admits a C

∞
-asymptotic

expansion of the form

g(·; k) = Id + k
−1

g1 + k
−2

g2 + · · ·
where each gj : Rn → Rn

is smooth. Furthermore g1 is determined by

g
i

1(E) =

� 1

0
f

i

1(ϕ
t

µi(x)) dt, for all E ∈ ∆, x ∈ µ
−1

(E)

where i = 1, . . . , n, f i

1 is the subprincipal symbol of T i
and ϕt

µi is the Hamiltonian flow of µi
.

Moreover, for all sufficiently large k, the multiplicity of the eigenvalues of JointSpec(T1, . . . , Tn)

is 1, and there exists a small constant δ > 0 such that each ball of radius
δ

k
centered at an

eigenvalue contains precisely only that eigenvalue.

Besides the average of the subprincipal symbols, it is interesting to note the shift by u∆/2

so that no eigenvalue lies on the boundary of g(∆) when k is sufficiently large, cf. Figure 5
for the spectrum of a model toric system with metaplectic correction.

Toeplitz quantization

A natural question is how to decide whether a given integrable system can be quantized.
A discussion of this problem may be found in Garay-Van Straten [31] and the references
therein (they work with pseudodifferential operators, instead of Toeplitz operators). Con-
cretely, given a prequantizable symplectic manifold endowed with an integrable system
(f1, . . . , fn), it may not be possible to find a set of commuting Toeplitz operators whose
principal symbols are f1, . . . , fn, respectively. However, in the case of toric integrable sys-
tems, we will obtain, as a byproduct of the proof of Theorem 1.1, the following existence
result.

Tʜ��ʀ�� 1.4 (Existence of Toeplitz quantization). – Let (M, ω, µ : M → Rn
) be a

symplectic toric manifold equipped with a prequantum bundle L and a compatible complex
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ISOSPECTRALITY FOR QUANTUM TORIC INTEGRABLE SYSTEMS 821

structure j. Then there exist mutually commuting Toeplitz operators T1, . . . , Tn in T (M, L, j)

whose principal symbols are the components of µ.

The proofs in the paper combine geometric ideas from the theory of toric manifolds in
the complex and symplectic settings with microlocal analytic methods dealing with semi-
classical Toeplitz operators that were developed by the first author [8, 7, 9, 11].

2. Model for a symplectic toric manifold

We review the ingredients from the theory of symplectic toric manifolds which we need
for this paper, namely the Delzant construction.

This section gives a fast review of the necessary background to read this paper.

Terminology from group actions

Let (M,ω) be a symplectic manifold, i.e., the pair consisting of a smooth manifold M and
a symplectic form ω on M , that is, a non-degenerate differential closed 2-form on M .

Suppose that a Lie group G acts on a symplectic manifold (M, ω) symplectically, i.e., by
diffeomorphisms which preserve the symplectic form. We denote by (t, p) �→ t · p the action
G × M → M of G on M . Let g be the Lie algebra of G. Any element X ∈ g generates a
vector field XM on M , called the infinitesimal generator, given by

XM (p) :=
d

dt

����
t=0

exp(tX) · p,

where exp: g → G is the exponential map of Lie theory. As usual, we write ιXM ω :=

ω(XM , ·) ∈ Ω
1
(M) for the contraction 1-form. The G-action on (M,ω) is said to be

Hamiltonian if there exists a smooth invariant map µ : M → g∗, called the momentum map,
such that for all X ∈ g we have that

ιXM ω = −d�µ, X�,

where �·, ·� : g∗ × g → R is the duality pairing. If the first de Rham cohomology group
H

1
dR(M) is trivial, then any symplectic T -action on M is Hamiltonian.

The G-action is effective if the intersection of all stabilizer subgroups

Gp := {g ∈ G | g · p = p}, p ∈ M,

is the trivial group. The G-action is free if Gp is the trivial group for all points p ∈ M .

E����ʟ� 2.1. – The simplest example of a Hamiltonian group action is given by the
standard symplectic sphere S2 with the rotational S1-action. It is easy to check that the
momentum map for this action is the height function µ(θ, h) = h. See Figure 3.

We will need the following classical result. Recall that a torus T is a compact, connected,
commutative Lie group. As a Lie group, T is isomorphic to a finite product of circles S1.
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822 L. CHARLES, Á. PELAYO AND S. VŨ NGO. C

Tʜ��ʀ�� 2.2 (Atiyah [1], Guillemin and Sternberg [36]). – If a torus T with Lie algebra t

acts on a compact, connected 2n-dimensional symplectic manifold (M, ω) in a Hamiltonian

fashion, then the image µ(M) under the momentum map µ : M → t∗ of the action is a convex

polytope ∆ ⊂ t∗.

Fɪɢ�ʀ� 3. The momentum map for the 2-sphere S2 is the height function
µ(θ, h) = h. The image of S2 under the momentum map µ is the closed interval
∆ := [−1, 1]. Note that as predicted by the Atiyah-Guillemin-Sternberg Theorem,
the interval [−1, 1] is equal to the image under µ of the set {(0, 0, −1), (0, 0, 1)}
of fixed points of the Hamiltonian S1-action on S2 by rotations about the vertical
axis.

Delzant construction of toric systems

Let T be an n-dimensional torus. Denote by t the Lie algebra of T and by tZ the kernel
of the exponential map exp : t → T . We denote the isomorphism t/tZ → T also by exp. A
symplectic toric manifold (M,ω, T, µ : M → t∗) is a symplectic compact connected manifold
(M,ω) of dimension 2n with an effective Hamiltonian action of T with momentum map µ.

When T = Rn/Zn so that t � Rn, we recover the definition given in the introduction. Two
symplectic toric manifolds (M, ω, T, µ) and (M �, ω�, T, µ�) are isomorphic if there exists a
symplectomorphism ϕ : M → M � such that µ� ◦ ϕ = µ. If it is the case, ϕ intertwines the
torus actions.

We present the construction of Delzant [21] of symplectic toric manifolds as reduced phase
spaces.

Step 1 (Starting from a Delzant polytope ∆ ⊂ t∗). – Let ∆ be an n-dimensional convex
polytope in the dual Lie algebra t∗. We denote by F and V the set of all codimension one
faces and vertices of ∆, respectively. Every face of ∆ is compact. For every v ∈ V , we write
Fv = {f ∈ F | v ∈ f}. The polytope ∆ is called a Delzant polytope if it has the following
properties, see Guillemin [34, p. 8].

i) For each f ∈ F there exist Xf ∈ tZ and λf ∈ R such that the hyperplane which
contains f is equal to the set of all ξ ∈ t∗ such that �Xf , ξ�+λf = 0, and ∆ is contained
in the set of all ξ ∈ t∗ such that �Xf , ξ�+ λf � 0.
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Note: The vector Xf and constant λf are made unique by requiring that they are
not an integral multiple of another such vector and constant, respectively.

ii) For every vertex v ∈ V , the vectors Xf with f ∈ Fv form a Z-basis of the integral
lattice tZ in t.

It follows that

∆ = {ξ ∈ t∗ | �Xf , ξ�+ λf � 0 for every f ∈ F}.

Also, #(Fv) = n for every v ∈ V .

Step 2 (The epimorphism RF /ZF → T and the subtorus N). – Let π : RF → t be defined by

π(t) :=

�

f∈F

tf Xf , t ∈ RF
.

Because, for any vertex v, the Xf with f ∈ Fv form a Z-basis of tZ, we have π(ZF
) = tZ and

π(RF
) = t. It follows that π induces an epimorphism

π
�
: RF

/ZF
= (R/Z)

F → t/tZ,

and we have the corresponding epimorphism exp ◦π� : RF /ZF → T .

Write n := kerπ, a linear subspace of RF , and

N := ker(exp ◦π�) ⊆ RF
/ZF

,

a compact commutative subgroup of the torus RF /ZF . One can check that N is connected,
and therefore isomorphic to n/nZ, where nZ := n ∩ ZF is the integral lattice in n of the
torus N .

Step 3 (Action of N on CF
). – On the complex vector space CF , we have the action of the

torus RF /ZF , where t ∈ RF /ZF maps z ∈ CF to the element t · z ∈ CF defined by

(t · z)f = e
2π i tf zf , f ∈ F.

This action is Hamiltonian with momentum µ : CF → (RF
)
∗ � RF given by

(1) µ(z)f = |zf |2/2− λf = (xf
2

+ yf
2
)/2− λf , f ∈ F.

Here zf = xf +i yf , with xf , yf ∈ R. Furthermore we work with the symplectic form

ω := (i/4π)

�

f∈F

dzf ∧dzf = (1/2π)

�

f∈F

dxf ∧dyf .(2)

The factor 1/2π is introduced in order to avoid an integral lattice (2π Z)
F instead of our ZF .

Hence N acts on CF Hamiltonianly and the corresponding momentum mapping is
µN := ι∗n ◦µ : CF → n∗, where ιn : n→ RF denotes the identity viewed as a linear mapping
from n ⊂ RF to RF , and its transposed ι∗n : (RF

)
∗ → n∗ is the map which assigns to each

linear form on RF its restriction to n.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



824 L. CHARLES, Á. PELAYO AND S. VŨ NGO. C

Step 4 (The symplectic toric manifold (M∆, ω∆, T, µ∆)). – It follows from Guillemin [34,
Theorems 1.6 and 1.4] that 0 is a regular value of µN , hence the zero level set Z of µN

is a smooth submanifold of CF , and that the action of N on Z is proper and free. The
N -orbit space M∆ := Z/N is a smooth 2n-dimensional manifold such that the projection
p : Z → M∆ exhibits Z as a principal N -bundle over M∆. Moreover, there is a unique
symplectic form ω∆ on M∆ such that p∗ω∆ = ιZ

∗ω, where ιZ is the identity viewed as a
smooth mapping from Z to CF .

On (M∆, ω∆), the torus (RF /ZF
)/N � T acts effectively and Hamiltonianly, with

momentum mapping µ∆ : M∆ → t∗ determined by π∗ ◦µ∆ ◦p = µ|Z , and(1) µ∆(M∆) = ∆.
In other words, (M∆, ω∆, T, µ∆) is a symplectic toric manifold with momentum map image
equal to ∆.

Tʜ��ʀ�� 2.3 (Delzant’s Theorem). – Any abstract symplectic toric manifold (M, ω, T, µ)

with momentum polytope ∆ ⊂ t∗ is isomorphic to (M∆, ω∆, T, µ∆). Moreover, two symplec-

tic toric manifolds (M∆, ω∆, T, µ∆) and (M∆� , ω∆� , T, µ∆�) are isomorphic if and only if

∆ = ∆
�
.

Since the action of RF /ZF preserves the complex structure of CF , M∆ inherits by
reduction a complex structure compatible with ω∆ and invariant by the action of T (cf. [37,
Theorem 3.5]). So M∆ is a Kähler manifold.

3. Prequantization

Let us recall the basic facts we need on connections of Hermitian line bundles. A good
reference for this material are Duistermaat’s notes [25]. See also [47, Sections 8-14] and [49].

Let M be a manifold. Consider a Hermitian line bundle L → M , that is a complex line
bundle endowed with a Hermitian metric. Let C

∞
(M, L) be the space of smooth sections

of L and Ω
1
(M, L) be the space of L-valued 1-forms. A connection of L is a linear operator

∇ : C
∞

(M, L) → Ω
1
(M, L)

satisfying the Leibniz rule

∇(fs) = df ⊗ s + f∇s, ∀f ∈C
∞

(M), s ∈C
∞

(M, L).

For any vector field X of M , the covariant derivative of a section s of L with respect to X is
∇Xs = ∇s(X). The curvature of the connection is the unique 2-form R on M satisfying for
any vector fields X, Y of M

[∇X ,∇Y ]−∇[X,Y ] = R(X,Y ).

The connection is compatible with the Hermitian structure if for any sections s, t of L,

d(s, t) = (∇s, t) + (s,∇t),

where (·, ·) denotes the Hermitian scalar product. In that case, R =
1
i ω where ω is real valued.

In this paper, we always assume the connections are compatible with the metric.

(1) See Guillemin [34, Theorem 1.7].

4 e SÉRIE – TOME 46 – 2013 – No 5



ISOSPECTRALITY FOR QUANTUM TORIC INTEGRABLE SYSTEMS 825

Assume that 1
i ω is the curvature of a Hermitian line bundle connection. Then the coho-

mology class of ω/2π is integral, in the sense that it belongs to the image of the natural homo-
morphism H

2
(M, Z) → H

2
(M, R). Conversely, given any ω ∈ Ω

2
(M, R) such that [ω]/2π is

integral, there exists a Hermitian line bundle L over M with a connection∇ of curvature 1
i ω.

Furthermore, L and ∇ are unique up to isomorphism. For a proof of these results, we refer
the reader to [25, Theorem 10.1] or [26, Section 15.3].

Let (M, ω) be a symplectic manifold endowed with a prequantum bundle, that is a Hermi-
tian line bundle L → M with a connection of curvature 1

i ω; such a symplectic manifold is
called prequantizable. A prequantum bundle automorphism is a vector bundle automorphism
of L preserving the metric and the connection. Let G be a Lie group acting on L by prequan-
tum bundle automorphisms. This action lifts an action of G on M . One proves that the latter
action is Hamiltonian and has a natural momentum map µ determined by the following con-
dition: the induced action of the Lie algebra g on C

∞
(M, L) is given by the Kostant-Souriau

operators

f → ∇X�f + i�µ, X�f, X ∈ g,(3)

where we denote by X� the infinitesimal action of X on M and by∇ the covariant derivative
of the prequantum bundle, cf. [26, Proposition 15.2]. If G and M are connected, the action
on L is conversely determined by the action on M and the momentum map µ. However, not
all momentum maps generating a given action can be obtained in this way. Actually these
momentum maps correspond to the Lie algebra representations on the prequantum bundle,
through Equation (3).

Assume now that M is connected and T is a torus acting on M in a Hamiltonian way.
The momentum map of this action is unique up to a translation by a vector of t∗. By [26,
Proposition 15.4], this action can be lifted to L in such a way that each element acts as a
prequantum bundle automorphism. This lift is not unique, actually the momentum map
corresponding to a lift is unique up to a translation by a vector of 2πt∗Z. For a symplectic
toric manifold, we can explicit everything in terms of the momentum polytope as follows.

(0,0) (2,0,0)

(0,0,2)

(0,2,0)

(3,0)

(0,3)

Fɪɢ�ʀ� 4. Delzant polytopes corresponding to the complex projective spaces CP2

and CP3 equipped with scalar multiples of the Fubini-Study symplectic form.

Pʀ����ɪ�ɪ�ɴ 3.1. – (a) A symplectic toric manifold (M,ω, T, µ) with momentum poly-

tope ∆ ⊂ t∗ admits a prequantum bundle L if and only if the edges of ∆ belong to 2πt∗Z.

(b) When it exists, the prequantum bundle is unique up to isomorphism.
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(c) The momentum maps corresponding to the possible lifts (via (3)) are the ones such that the

vertices of the associated polytope belong to 2πt∗Z.

Proof. – Let (M,ω) be a symplectic toric manifold with momentum map µ. Let e be a
closed edge of ∆ = µ(M). Then µ−1

(e) is a symplectic 2-sphere embedded in M with volume
the length of e. Here the length of e is the largest positive real � such that e/� ∈ t∗Z. A proof
of this fact may be found in [42, Lemma 2.10].

Now if (M,ω) is prequantizable, then [ω]/2π is integral. So necessarily the length of any
edge is an integral multiple of 2π. Since H2(M) is generated by the homology classes of
the spheres corresponding to the various edges ([19, Proposition 10.6]), the condition is
also sufficient. The uniqueness of the prequantum bundle follows from the fact that any
symplectic toric manifold is simply connected (see [19, Th. 9.1]).

Assume now that (M,ω) has a prequantum bundle L. We know that we can lift the
action to L. Then for any fixed point p ∈ M , the action preserves the fiber Lp. Because
of Formula (3), for any ξ ∈ t, exp(ξ) acts in Lp by multiplication by exp(i�µ(p), ξ�). This
implies that µ(p) ∈ 2πt∗Z. Since the fixed points of a toric manifold are the preimages of the
vertices of the polytope, this shows that the vertices belong to 2πt∗Z.

In the sequel, we will use the following explicit construction of the prequantum bundle
for the Delzant model. We use the same notations as in Section 2. Assume that the vertices
of ∆ belong to 2πt∗Z. Consider the prequantum bundle of CF given by LF := CF × C with
connection

∇ = d +
1

4πi

�

f∈F

(xfdyf − yfdxf ) = d +
1

8π

�

f∈F

(zfdz̄f − z̄fdzf ).

Since the vertices of ∆ belong to 2πt∗
Z

, the λf ’s defining the faces of ∆ are integral multiple
of 2π. So we can lift the action of RF /ZF on CF to LF by

t · (z, u) = (t · z, ue
i
�

f∈F tf λf ).

With a straightforward computation, one checks that this action preserves the prequantum
bundle structure and that its associated momentum map is µ defined in (1).

Recall that the Delzant manifold (M∆, ω∆) is the quotient of Z = µ
−1
N

(0) by the
action of subtorus N of RF /ZF . Then quotienting by N the restriction of LF to Z, we
obtain a prequantum bundle L∆ over M∆ (cf. [37, Theorem 3.2]). Furthermore the group
T = (RF /ZF

)/N acts on L∆. This action preserves the prequantum bundle structure, its
associated momentum is the application µ∆ defined in Theorem 2.3.

R���ʀ� 3.2. – The construction of the prequantum bundle in the Delzant model gives
an alternative proof of the fact that if the vertices of its momentum polytope ∆ belong
to 2πt∗Z, a symplectic toric manifold is prequantizable. Moreover, the converse statement
can be deduced directly from the last paragraph of the proof of Proposition 3.1: indeed, the
polytope (2π)

−1
∆ can be translated to a polytope with integral vertices if and only if its edges

have integral lengths.
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4. Quantum model

In this section we introduce a quantum model for quantum toric system and compute its
spectrum.

Consider a Delzant polytope ∆ ⊂ t∗ with vertices in 2πt∗Z. Then as explained in Section 3,
the Delzant manifold (M∆, ω∆, T, µ∆) admits a prequantum bundle L∆ unique up to iso-
morphisms. This line bundle has a unique holomorphic structure compatible with the com-
plex structure of M∆ provided by reduction and with the connection. So for any positive
integer k, we can define the quantum space

H ∆
k

:= H
0
(M∆, Lk

∆)

which consists of the holomorphic sections of Lk

∆.

For any X ∈ t, consider the rescaled Kostant-Souriau operator

TX,k := �µ∆, X�+
1

ik
∇X� : H ∆

k
→ H ∆

k
.(4)

This operator is well-defined because the complex structure is invariant by the action of T

on M∆. The rescaling has the effect that the TX,k’s are self-adjoint and that their joint
spectrum is the intersection of the polytope ∆ and a rescaled lattice. The precise result is the
following.

Tʜ��ʀ�� 4.1. – There is an orthogonal decomposition of the quantum space H ∆
k

into a

direct sum of lines:

H ∆
k

=

�

�∈( 2π
k t

∗
Z)∩∆

D
k

�

such that, for any X ∈ t,

TX,kΨ = �(X)Ψ, for all Ψ ∈ D
k

�
.

Proof. – The proof uses the Delzant construction recalled in Section 2 at the quantum
level. Consider the same prequantum bundle LF → CF as in the proof of Proposition 3.1.
The associated quantum space Bk is the space of holomorphic sections ψ of Lk

F
such that

�

CF

|ψ|2 (z)ν(z) < ∞,

where ν is the Liouville measure. Here holomorphic means that the covariant derivative with
respect to antiholomorphic vectors vanishes. Such a holomorphic section can be written

ψ = e
−k|z|2/8π

f,

where f is a plain holomorphic function on CF . Here |z|2 =
�

f
|zf |2. So Bk can be

identified with the usual Bargmann space, that is the space of holomorphic functions on a
Cp whose square is integrable with respect to a given gaussian weight. An orthogonal basis
of Bk is given by the family

ψα = e
− k

8π |z|2
z

α
, α ∈ NF

.

Consider the Kostant-Souriau operator associated to momentum µ given in (1)

SX,k = �µ, X�+
1

ik
∇X� .
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If X = ef a straightforward computation shows that

SX,k

�
e
− k

8π |z|2
g(z)

�
= e

− k
8π |z|2

�
2π

k
zf∂zf g − λfg

�
.

We deduce that for any X ∈ RF and α ∈ NF ,

SX,k(ψα) =

�
X,

2π

k
α− λ

�
ψα.(5)

Recall that the Delzant space was defined as the symplectic quotient of CF by the subtorus
N of RF /ZF . The corresponding space at the quantum level is

Bn
k

:= {ψ ∈ Bk | SX,kψ = 0 for all X ∈ n}.

We call it the reduced quantum space. We deduce from Equation (5) that a basis of Bn
k

consists
of the Ψα’s such that α ∈ NF satisfies

�X,
2π

k
α− λ� = 0

for all X ∈ n. Equivalently, 2π

k
α runs over (

2π

k
NF

) ∩ (λ + ker(ι∗n)). This set is in bijection
with (

2π

k
t∗Z) ∩∆.

L���� 4.2. – The map π∗ + λ from t∗ to (RF
)
∗

restricts to a bijection

(
2π

k
t∗Z) ∩∆ −→ (

2π

k
NF

) ∩ (λ + ker(ι
∗
n)).

Furthermore, for any X ∈ RF
and � ∈ 2π

k
t∗Z ∩∆ we have that

SX,k

�
ψα

�
= ��, π(X)�ψα, if

2π

k
α = π

∗
(�) + λ.

Proof of Lemma 4.2. – We know that π∗ is injective with image ker(ι∗n). Using the
Delzant condition on a vertex (Step 1 in Section 2), one sees that π∗ restricts to a bijection
from t∗Z to (ZF

)
∗ ∩ ker(ι∗n). By the prequantization condition, λ ∈ 2π(ZF

)
∗ ⊂ 2π

k
(ZF

)
∗. So

π∗ + λ restricts to a bijection from 2π

k
t∗Z to (

2π

k
ZF

) ∩ (λ + ker(ι∗n)). Furthermore, the proof
to show that µ∆(M∆) = ∆ implies that

π
∗
(∆) + λ = RF

≥0 ∩ (λ + ker(ι
∗
n)).(6)

This implies the first part of the lemma. The second assertion follows from (5).

The end of the proof of Theorem 4.1 is an application of the “quantization commutes with
reduction” theorem of Guillemin-Sternberg. Lifting the action of TF

= RF /ZF to LF as in
the proof of Proposition 3.1, we get an action of TF on Bk. The reduced quantum space is
the subspace of Bk of N -invariant vectors, in other words Bn

k
= (Bk)

N . Now by Guillemin-
Sternberg theorem ([37]), we have an isomorphism

Φk : Bn
k
→ H ∆

k
.

The proof in [37] given in the compact case extends to our setting by [10] and [34]. Further-
more, under the isomorphism Φk, the action of the torus T on H ∆

k
corresponds to the action
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of TF /N on Bn
k
. Then, passing to the level of Lie algebras, we get the following relation

between the Kostant-Souriau operators:

Φk

�
SX,kΨ

�
= Tπ(X),kΦk(Ψ), for all Ψ ∈ Bn

k
.

This concludes the proof of Theorem 4.1.

From the previous theorem, we deduce the following quantum normal form. Consider a
Delzant polytope ∆ in the Lie algebra Rn of Rn/Zn. Assume (M∆, ω∆) has a prequantum
bundle L∆ and define the associated quantum spaces

H ∆
k

= H
0
(M∆, Lk

∆).

Starting from the canonical basis (ei) of Rn, we get n operators

T
∆
i,k

:= Tei,k : H ∆
k
→ H ∆

k
, k ∈ Z>0, 1 � i � n,

defined by Kostant-Souriau Formula (4).

C�ʀ�ʟʟ�ʀʏ 4.3. – For any k, T∆
1,k

, . . . , T∆
n,k

are mutually commuting operators with

simple joint eigenspaces. Their joint spectrum is (v +
2π

k
Zn

) ∩∆ where v is any vertex of ∆.

Proof. – Apply Theorem 4.1 to the polytope ∆− v, whose vertices are integral.

5. Global quantum normal form

Toeplitz operators

We briefly review Toeplitz operators. Let (M, ω) be a compact connected symplectic
manifold with a prequantum line bundle L. Assume that M is endowed with a complex
structure j compatible with ω, so that M is Kähler and L is holomorphic. Here the holomor-
phic structure of the prequantum bundle is the unique one compatible with the connection.
Recall that for a positive integer k, H k := H

0
(M, Lk

) is the space of holomorphic sections
of Lk.

Since M is compact, H k is a closed finite dimensional subspace of the Hilbert space
L

2
(M, Lk

). Here the scalar product is defined by integrating the Hermitian pointwise scalar
product of sections against the Liouville measure of M . Denote by Πk the orthogonal
projector of L

2
(M, Lk

) onto H k.

A Toeplitz operator is any sequence (Tk : H k → H k)k∈N∗ of operators of the form
�
Tk = Πkf(·, k) + Rk

�

k∈N∗
(7)

where f(·, k), viewed as a multiplication operator, is a sequence in C
∞

(M) with an asymp-
totic expansion f0 + k−1f1 + · · · for the C

∞ topology, and the norm of Rk is O(k−∞).

We denote by T (M, L, j) the set of Toeplitz operators. The following result corresponds
to [10, Theorem 1.2].
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Tʜ��ʀ�� 5.1. – The set T = T (M, L, j) is a semiclassical algebra associated to (M,ω)

in the following sense. The set T is closed under the formation of product. So it is a star algebra,

the identity is (Πk)k∈N∗ . The symbol map σcont : T → C
∞

(M)[[�]], sending Tk into the formal

series f0 + �f1 + · · · where the functions fi are the coefficients of the asymptotic expansion of

the multiplier f(·, k), is well defined. It is onto and its kernel is the ideal consisting of O(k−∞)

Toeplitz operators. More precisely for any integer �,

�Tk� = O(k
−�

) if and only if σcont(Tk) = O(��
).

Furthermore, the induced product ∗cont on C
∞

(M)[[�]] is a star-product.

We call the formal series

σcont(Tk) = f0 + �f1 + · · ·

the contravariant symbol of (Tk)k∈N∗ . The first coefficient f0 is the principal symbol

of (Tk)k∈N∗ . The subprincipal symbol of (Tk)∈N∗ is the function

g1 = f1 +
1

2
∆f0,

where ∆ is the holomorphic Laplacian of M .

Consider two Toeplitz operators with principal and subprincipal symbols g0, g1 and
g�0, g�1 respectively. Then the principal and subprincipal symbol of their composition is

g
��
0 + �g

��
1 = (g0 + �g1)(g

�
0 + �g

�
1) +

�
2i

{g0, g
�
0} + O(�2

),

where {·, ·} is the Poisson bracket of (M,ω) (cf. Theorem 1.4 of [9]).

The Kostant-Souriau operators considered in Section 4 are Toeplitz operators. More
generally, let f be a function of M with Hamiltonian vector field X. Applying the Tuynman’s
trick ([68]), one proves that the sequence

Tk := Πk

�
f +

1

ik
∇X

�
, k ∈ N∗,

is a Toeplitz operator with principal symbol f and subprincipal symbol − 1
2∆f .

Normal Form

Recall that for each Delzant polytope ∆ ⊂ Rn, we introduced in Section 2 a symplectic
toric manifold (M∆, ω∆, Rn/Zn, µ∆), a complex structure j∆ on M∆ compatible with ω∆.
Assume that ∆+c has integral vertices for some c ∈ Rn, so that (M∆, ω∆) has a prequantum
bundle L∆ (unique up to isomorphism). We defined in Section 4 for any positive k, commut-
ing operators T∆

1,k
, . . . , T∆

n,k
acting on the Hilbert spaces H ∆

k
= H

0
(M∆, Lk

∆), k ∈ Z>0, and
described explicitly their spectrum in Corollary 4.3.

Tʜ��ʀ�� 5.2 (Global normal form for a quantum toric system)

Let (M, ω, Rn/Zn, µ) be a symplectic toric manifold equipped with a prequantum bundle

L and a compatible complex structure j. Denote by ∆ the momentum polytope µ(M) ⊂ Rn
.

Let T1, . . . , Tn be commuting Toeplitz operators of T (M, L, j) whose principal symbols are

the components of µ.
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Then there exists k0 > 0, there exists a sequence (g(·; k))k�k0 of smooth maps Rn → Rn
,

and there exists an operator U = (Uk : H k → H ∆
k

)k�k0 with Uk invertible for any k, such that

Uk(T1,k, . . . , Tn,k)U
−1
k

= g(T
∆
1,k

, . . . , T
∆
n,k

; k) + O(k
−∞

).

Moreover, g admits an asymptotic expansion in the C
∞

topology of the form

g(·; k) = Id + k
−1

g1 + k
−2

g2 + · · · .

If the operators Tj are self-adjoint (i.e., for any k, Tj,k is a self-adjoint operator), then Uk may

be chosen such that Uk U∗
k

= Id H ∆
k

.

R���ʀ� 5.3. – For small k, the dimensions of H k and H ∆
k

might be different.
Theorem 5.2 does not give information about small values of k.

The proof of Theorem 5.2 will require the following technical lemma, which is a global
version of a result of Eliasson [30, Corollary page 14]. Recall that in the case where E is
a closed half-space, h ∈ C

∞
(Rn

x
× E) if and only if all the partial derivatives ∂k

x
∂�

e
h(x, e)

for (x, e) ∈ Rn × E̊ have a limit at every point in Rn × E. (This is equivalent to saying that
g has a smooth extension in a neighborhood of any point.)

L���� 5.4. – Let E be a vector space or a closed half-space. Let f ∈ C
∞

(R2
(x,ξ) × E),

and let

q(x, ξ, e) = x
2

+ ξ
2
.

Assume that {q, f} = 0 (here the Poisson bracket refers to the symplectic variables (x, ξ)).

Then there exists g ∈ C
∞

(R�0 × E) such that

f(x, ξ, e) = g(q(x, ξ, e), e).

Proof. – Set-theoretically, there is a unique such function g. We need to prove that g is
smooth. The Taylor expansion of f in the (x, ξ) variables has to commute with q. This implies
that it has the form

�

k�0

q
k
ak(e),

where ak ∈ C
∞

(E). Hence by the Taylor formula, for any integer r � 0, there is a polynomial
Pr in q with coefficients in C

∞
(E), and a smooth function ϕ ∈ C

∞
(R2 × E) such that

f = Pr(q, e) + q
r
ϕ(x, ξ, e).

Thus we get

g(t, e) = Pr(t, e) + t
r
ϕ(

√
t, 0, e).

When t > 0, we simply compute the partial derivatives ∂k

t
∂�

e
g(t, e). They have a limit as

(t, e) → (0, e) as long as k � r. Thus g ∈C
r
(R�0 × E), which proves the lemma.

Proof of Theorem 5.2. – We divide the proof into several steps.
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Step 1. – By Theorem 2.3, there exists a symplectomorphism ϕ : M → M∆ such that
µ = ϕ∗µ∆. Since M∆ is simply connected, the prequantum bundle L∆ is unique up to
isomorphism. Hence ϕ can be lifted to a prequantum bundle isomorphism L → L∆. So
ϕ can be quantized as an operator Uk : H k → H ∆

k
such that UkU∗

k
= Ik for large k and

such that for any Toeplitz operator S = Sk with principal symbol s, UkSU∗
k

is a Toeplitz
operator whose principal symbol is s ◦ ϕ−1.

The operators Uk that we use here have been introduced in [8, Chapter 4] and similar ones
have been considered by [74]. They are analogues of Fourier integral operators [39, 27].

Replacing Tj by UTjU
∗ we see that the problem is reduced to the case where T1, . . . , Tn

are commuting Toeplitz operators on (M∆, L∆), with joint principal symbol equal to µ∆.

Step 2. – We now prove the theorem by induction. Assume that, for some N ∈ N, we have

(8) (T1, . . . , Tn) = g
(N)

(T
∆
1 , . . . , T

∆
n

; k) + k
−(N+1)

RN+1,

where RN+1 is a vector of n Toeplitz operators and g(N) is polynomial in k:

g
(N)

= Id + k
−1

g1 + · · · + k
−N

gN ,

and each gj : Rn → Rn is a smooth map. For simplicity we write

GN := g
(N)

(T
∆
1 , . . . , T

∆
n

; k).

Notice that, for N = 0, this is precisely the result of Step 1. We wish to prove that there
exists an invertible Toeplitz operator U = (Uk)k∈N such that

(9) U(T1, . . . , Tn)U
−1

= g
(N)

(T
∆

; k) + k
−(N+1)

hN+1(T
∆

) + k
−(N+2)

RN+2.

The procedure is standard and we only indicate the key points. It turns out that the case
N = 0 is slightly different from the other cases N > 0. When N = 0, we plug (8) in the
left-hand side of (9) and multiply on the right by U , and obtain

[U, T
∆

] + k
−1

UR1 = k
−1

G1U mod k
−2T .

Since both sides of the equation are Toeplitz operators of order 1, the equation is equivalent
to the equality of the principal symbols :

1

i
{u, µ∆} + ur1 = g1(µ∆)u.

Writing u of the form u = e
ia we get the equation

{µ∆, a} = r1 − g1(µ∆).

For N � 1 we look for U in the form Uk = Id + ik−NAN mod k−(N+1)T , where AN is
a Toeplitz operator. The same calculation as before gives the equation

ik
−N

[AN , GN ] + k
−(N+1)

(RN+1 −KN+1) = 0 mod k
−(N+2)T .

(We use here 2N + 1 � N + 2 in order to eliminate higher order terms.) Since

GN = (T
∆
1 , . . . T

∆
n

) + O(1),

the equation is equivalent to the following equation on the principal symbols :

{µ∆, aN} = rN+1 − hN+1(µ∆).
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Step 3. – In order to complete the induction, we need to solve the following cohomological
equation, where the unknown functions are a and gj , 1 � j � n :

(10) {µ∆
j

, a} = rj − gj ◦ µ∆, 1 � j � n.

The proof follows Eliasson’s local argument in [30, Lemma 8], where he uses a formula due
to Moser. Here we show that this local argument also works globally.

For any smooth function r on M∆, we define

Mjr =

� 1

0
r ◦ ϕ

t

j
dt, Pjr :=

� 1

0
tr ◦ ϕ

t

j
dt.

Mj and Pj are clearly linear operators sending C
∞

(M∆) into itself. Notice that, since the
flows ϕj pairwise commute, the Fubini formula ensures that Mj and Pk commute for any j, k.
The following Poisson bracket is easy to compute :

{µ∆
j

, Pjr} =

� 1

0
t{µ∆

j
, r ◦ ϕ

t

j
}dt =

� 1

0
t{µ∆

j
◦ ϕ

t

j
, r ◦ ϕ

t

j
}dt =

� 1

0
t{µ∆

j
, r} ◦ ϕ

t

j
dt

=

� 1

0
t
d

dt
(r ◦ ϕ

t

j
) dt = r −

� 1

0
r ◦ ϕ

t

j
= r −Mjr.

We shall need the following lemmas .

L���� 5.5. – Let r1, . . . , rn be smooth functions on M∆ such that for all i, j,

{µ∆
i

, rj} = {µ∆
j

, ri},

then for all 1 � i, j � n, we have that {Mjrj , µ
∆
i
} = 0.

L���� 5.6. – Let f ∈ C
∞

(M) such that for all 1 � i � n we have that {µ∆
i

, f} = 0.

Then there exists g ∈ C
∞

(Rn
) such that f = g ◦ µ∆.

Proof of Lemma 5.5. – We have that

{µ∆
i

, Mjrj} =

� 1

0
{µ∆

i
, rj ◦ ϕ

t

j
}dt =

� 1

0
{µ∆

i
, rj} ◦ ϕ

t

j
dt =

� 1

0
{µ∆

j
, ri}ϕt

j
dt

=

� 1

0

d

dt
(ri ◦ ϕ

t

j
) dt = 0,

as desired.

Proof of Lemma 5.6. – Since f is invariant by the action, set-theoretically, there exists a
unique function g such that f = g ◦ µ∆. We want to prove that g is smooth.

At a regular value of µ∆, this follows directly from the action-angle theorem. Let c be a
critical value of µ∆, and let C be a small ball around c. Let (z1, . . . , zk, I1, θ1, . . . , I�, θ�) ∈
Ck × (T

∗S1
)
�, with k + � = n be Delzant coordinates on (µ∆)

−1
(C). Up to an affine

transformation, we can assume

µ∆ = (|z1|2 /2, . . . , |zk|2 /2, I1, . . . , I�).

By assumption, f does not depend on the θj coordinates, so there is a smooth function g0

such that f = g0(z1, . . . , zk, I1, . . . , I�).
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We apply Lemma 5.4 to the function g0 with (x, ξ) = z1 and E = Ck−1 ×R�. Thus there
is a smooth function g1 such that

f = g1(|z1|2 , z2, . . . , zk, I1, . . . , I�).

We may now apply the same lemma to

f1(z, e) = g(e1, z, e2, . . . , ek, ek+1, . . . , en)

with E = R�0 × Ck−1 × R� and get a smooth function g2 such that

f = g2(|z1|2 , |z2|2 , z3, . . . , zk, I1, . . . , I�).

We may repeat the argument and finally obtain a smooth function gk such that

f = gk(|z1|2 , . . . , |zk|2 , I1, . . . , I�).

This proves that g is smooth in C. Thus g is smooth on µ∆(M∆) (which means that there
is a smooth extension of g in Rn).

We return now to the cohomological Equation (10). By Lemmas 5.5 and 5.6, there exist
smooth functions gj on Rn such that Mjrj = gj ◦ µ∆. Let

a = P1r1 + P2M1r2 + P3M2M1r3 + · · · + PnMn−1 · · ·M1rn.

Notice that for any function h, {µ∆
j

, Mjh} = 0. Hence, since the operators Mj and Pk

commute, we get

{µ∆
1 , a} = {µ∆

1 , P1r1} = r1 −M1r1 = r1 − g1 ◦ µ∆,

so a solves the first equation of (10). Let

ã = a− P1r1.

We have {µ∆
1 , ã} = 0, and our system becomes

(11) {µ∆
j

, ã} = r̃j − gj ◦ µ∆, j = 1, . . . , n.

with

r̃j := rj − {µ∆
j

, P1r1} = rj −
� 1

0
t{µ∆

j
, r1 ◦ ϕ

t

1}dt = rj −
� 1

0
t{µ∆

1 , rj} ◦ ϕ
t

1 dt

= rj −
� 1

0
t
d

dt
(rj ◦ ϕ

t

1) dt = M1rj .

We notice that

ã = P2r̃2 + P3M2r̃3 + · · · + PnMn−1 · · ·M2r̃n,

so by induction ã solves the complete system (11). Thus a solves (10).

The construction we have used to solve (10) does not require the functions rj to be real-
valued. In case they are real-valued, then a and gj will be real-valued as well, and in Step 2
we may choose Uk = exp(ik−NAN ), which is unitary.
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Step 4. – From steps 2 and 3 we obtain, for any positive integer N , an invertible operator
UN = (UN,k)�0 (which is unitary in the case of self-adjoint operators Tj) and a smooth map

g
(N)

= Id + k
−1

g1 + · · · + k
−N

gN

such that

(12) UN (T1, . . . , Tn)U
−1
N

= g
(N)

(T
∆
1 , . . . , T

∆
n

; k) + k
−(N+1)

RN+1,

where RN+1 is a Toeplitz operator, and UN is of the form

UN = U
(N)

U
(N−1) · · ·U (0)

.

From step 3, we have

U
(j)

= Id + ik
−j

Aj mod k
−jT ,

for j � 1. Therefore, one can construct by induction a sequence of symbols ãN such
that for all N � 1, the operator U (N)U (N−1) · · ·U (1) is, modulo k−(N+1)T , the Toeplitz
quantization of the symbol

1 + ik
−1

ã1 + · · · + ik
−N

ãN .

By the Borel summation procedure, one can find a Toeplitz operator Ã whose total symbol
has the asymptotic expansion

ã1 + k
−1

ã2 + · · · + k
−N+1

ãN + · · · .

Moreover, one can find a smooth map g̃ that admits the asymptotic expansion

g
(N)

= Id + k
−1

g1 + · · · + k
−N

gN + · · · .

Now we let Ũ = (I + ik−1Ã)U (0), so that for any N ,

Ũ = UN mod k
−(N+1)T .

Thus from (14) we get, as required :

Ũ(T1, . . . , Tn)Ũ
−1

= g̃(T
∆
1 , . . . , T

∆
n

) + O(k
−∞

).

In the case where the operators Tj are self-adjoint, one can change the construction of the
sequence ãj in such a way that U (N)U (N−1) · · ·U (1) is, modulo k−(N+1)T , the exponential

of the Toeplitz quantization of the symbol ik−1ã1 + · · · + ik−N ãN . Then we define

Ũ := exp(ik
−1

Ã)U
(0)

,

which is unitary.

6. Isospectrality

In this section we prove Theorem 1.1 and Corollary 1.2.

Recall that the joint spectrum of n commuting matrices A1, . . . , An is the set of

(λ1, . . . , λn) ∈ Cn

such that there exists a non-zero vector v for which

Ajv = λjv
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for all j = 1, . . . , n. Such an n-uple (λ1, . . . , λn) will be called a joint eigenvalue. We begin
with the following elementary observations.

L���� 6.1 ([14], Lemme 5.3). – Let B1, . . . , Bn be commuting self-adjoint k× k matri-

ces. Let � > 0, and let u ∈ Ck \ {0} be such that �Bi u� � ��u� for all 1 � i � n. Then there

exists λ ∈ Rn
such that

λ ∈ JointSpec(B1, . . . , Bn) ∩ [−
√

n�,
√

n�]
n
.

Proof. – Consider the matrix

C :=

�
B2

1 + · · · + B2
n
.

Since C � 0, the minimum of the spectrum of C is equal to inf�v�=1 �Cv�. Since

(13) ∀v ∈ Ck
, �Cv�2 = �C2

v, v� = �B1v�2 + · · · + �Bnv�2,

we have �Cu� � √
n��u�, thus C admits an eigenvalue in [0,

√
n�]. The corresponding

eigenspace being stable under the action of all Bj ’s, it contains a common eigenvector, and
by (13), the corresponding joint eigenvalue (λ1, . . . , λn) satisfies |λj | � √

n�.

R���ʀ� 6.2. – The constant factor
√

n in Lemma 6.1 is optimal. Indeed, let n and k be
integers with 1 � n � k. For each i with 1 � i � n consider the k × k diagonal matrix Bi

whose jth column is equal to the zero vector for all j ∈ {1, . . . , n} \ {i}, and equal to the
canonical basis vector ej otherwise. Let u =

�n
i=1 ei√

n
. Then �u�2 = 1 and Biu =

1√
n

ei, and
hence �Biu� =

1√
n

for all i = 1, . . . , n. From Lemma 6.1, the joint spectrum of B1, . . . , Bn

must contain a vector in [−1, 1]
n. This bound is sharp: indeed, the joint spectrum is equal

to the set {f1, . . . , fn,
�

n

i=1 fj , . . . ,
�

n

i=1 fj}, where (f1, . . . , fn) is the canonical basis of Rn :
thus its intersection with [−t, t]n is empty for any 0 < t < 1.

L���� 6.3. – The following statements hold.

(i) If B1, . . . , Bn are commuting self-adjoint matrices, and α = (α1, . . . , αn) ∈ Cn
is such

that

�(Bi − αi) u� � ��u�
for all 1 � i � n, then there exists a joint eigenvalue λ ∈ JointSpec(B1, . . . , Bn) such

that |λi − αi| � √
n� for all 1 � i � n.

(ii) Suppose that A1, . . . , An is another collection of commuting self-adjoint matrices, and

assume

�Bi −Ai� � � for all 1 � i � n.

Then the Hausdorff distance between JointSpec(A1, . . . , An) and JointSpec(B1, . . . , Bn)

is at most
√

n�, i.e.,

dH

�
JointSpec(A1, . . . , An), JointSpec(B1, . . . , Bn)

�
�
√

n�.

Proof. – The first statement is obtained from Lemma 6.1 applied to Bj −αjI. It implies
that if α = (α1, . . . , αn) is a joint eigenvalue of (A1, . . . , An) and �Bi − Ai� � � for
all 1 � i � n, then there exists a joint eigenvalue λ ∈ JointSpec(B1, . . . , Bn) with
|λi − αi| � √

n� for all 1 � i � n (and vice-versa), which gives the last statement.
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If T1, . . . , Tn are pairwise commuting Toeplitz operators, we call joint spectrum of T1, . . . , Tn

the sequence of joint spectra of the set of commuting matrices (T1,k, . . . , Tn,k) acting on the
Hilbert space H k.

Proof of Theorem 1.1. – By Theorem 5.2 applied to (T1, . . . , Tn), we get an integer k0 > 0,
a sequence (g(·; k))k�k0 of smooth maps Rn → Rn, and an operator U = (Uk : H k → H ∆

k
)k�k0

with Uk unitary, such that

(14) Uk(T1,k, . . . , Tn,k)U
−1
k

= g(T
∆
1,k

, . . . , T
∆
n,k

; k) + O(k
−∞

).

Let Sk := JointSpec(T1, . . . , Tn). If we introduce the components of g,

g =: (g1, . . . , gn),

then by Corollary 4.3, the joint spectrum of the commuting Toeplitz operators
�
g1(T

∆
1,k

, . . . , T
∆
n,k

; k), . . . , gn(T
∆
1,k

, . . . , T
∆
n,k

; k)
�

is Σk := g((v +
2π

k
Zn

) ∩∆, k).

Equation (14) means that there exists a sequence (CN )N∈N of real numbers such that

(15) for all N, for all k �Uk(T1,k, . . . , Tn,k)U
−1
k

− g(T
∆
1,k

, . . . , T
∆
n,k

; k)� � CNk
−N

.

Then, by virtue of Lemma 6.3, we have

(16) for all N, for all k, dH(Sk,Σk) �
√

nCNk
−N

which means by definition Sk = Σk + O(k−∞) as we wanted to show.

Now we prove that for all sufficiently large k, the multiplicity of the eigenvalues
of JointSpec(T1, . . . , Tn) is 1, and there exists a small constant δ > 0 such that each
ball of radius δ

k
centered at an eigenvalue contains precisely only that eigenvalue. First we

observe that this statement holds when instead of JointSpec(T1, . . . , Tn) we consider Σk.
The multiplicity one statement is a direct consequence of Theorem 4.1, and the separation
property follows from the fact that the principal term of g is the identity map.

Consider λ = λ(k) ∈ Sk ⊆ Rn and the self-adjoint operators

Ck :=

�
(T1,k − λ1 Idk)2 + · · · + (Tn,k − λn Idk)2

and
C

∆
k

:=

�
(T∆

1,k
− λ1 Idk)2 + · · · + (T∆

n,k
− λn Idk)2.

Let
0 = λ1(Ck) � λ2(Ck) � · · · � λdk(Ck)

be the eigenvalues of Ck repeated with multiplicity, where dk is the dimension of H k. Let

λ1(C
∆
k

) � λ2(C
∆
k

) � · · · � λdk(C
∆
k

)

be the eigenvalues of C∆
k

repeated with multiplicity. By the min-max formula we have that
for any j = 1, . . . , dk,

|λj(Ck)− λj(C
∆
k

)| = |λj(UkCkU
−1
k

)− λj(C
∆
k

)| � �UkCkU
−1
k

− C
∆
k
� � M

k2
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for some constant M > 0. Therefore for any j > 1 the inequality
��λj(C

∆
k

)− λ1(C
∆
k

)
�� � δ

k

implies

|λj(Ck)| = |λj(Ck)− λ1(Ck)| � δ

k
− 2M

k2
� δ�

k

for some δ� > 0. Thus 0 as an eigenvalue of Ck has multiplicity one, and is the only eigenvalue
of Ck in the interval [− δ

�

k
,

δ
�

k
]. Going back to the commuting operators T1, . . . , Tn, we see that

the joint eigenvalue λ ∈ Sk has multiplicity one, and all other joint eigenvalues lie outside of
the Euclidean ball centered at λ of radius δ

�

k
.

Proof of Corollary 1.2. – Recall that we defined the limit of a sequence (Ak)k∈N of
subsets of Rn by

lim Ak :=

�
c ∈ Rn | ∀U neighborhood of c,∃k0 such that∀k ≥ k0, U ∩ Ak �= ∅

�
.

We denote by B(c, r) the open ball in Rn centered at c and of radius r. Notice that if
Ak ⊂ Bk + B(0, Ck−1

), for some constant C, then

lim Ak ⊂ lim Bk.

We use the same notation as in the proof of Theorem 1.1: Sk = JointSpec(T1, . . . , Tn)

and
Σk = g((v +

2π

k
Zn

) ∩∆, k).

Step 1. – The estimate (15) for N = 1 gives

Sk ⊂ Σk + B(0, Ck
−1

) and Σk ⊂ Sk + B(0, Ck
−1

).

Therefore, lim Sk = lim Σk.

Step 2. – Now let us show that lim Σk = ∆. From Theorem 5.2, we know that g admits an
asymptotic expansion in the C

∞ topology of the form

g(·; k) = Id + k
−1

g1 + k
−2

g2 + · · · .

Therefore, for any compact K ⊂ Rn, there exists a constant C such that

max
c∈K

�g(c; k)− c�Rn � Ck
−1

.

We may choose K large enough so that it contains ∆, and we get the following inclusions :

(17) Σk ⊂ ∆ ∩
�
v +

2π

k
Zn

�
+ B(0, Ck

−1
) and ∆ ∩

�
v +

2π

k
Zn

�
⊂ Σk + B(0, Ck

−1
).

Hence
lim Σk = lim ∆ ∩ (v +

2π

k
Zn

) = ∆.

From steps 1 and 2 we conclude that

lim Sk = ∆

which finishes the proof.

C�ʀ�ʟʟ�ʀʏ 6.4 (Isospectrality). – Two symplectic toric systems are isomorphic if and

only if the limit of their joint spectra coincide. In particular, if two symplectic toric systems

have the same joint spectra, then they are isomorphic.
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7. Metaplectic correction

Theorem 1.1 and Theorem 1.2 can be proven analogously to our proofs in the presence of
a half form bundle. Below we explain the corresponding modifications needed.

Toeplitz quantization is often considered more natural in the presence of a half-form
bundle. Let (M,ω, j) be a compact Kähler manifold. A half-form bundle of (M, j) is a square
root of the canonical bundle of M . More precisely we consider a pair (δ, ϕ) consisting of a
complex line bundle δ → M and an isomorphism

ϕ : δ
⊗2 → ∧n,0

T
∗
M.

Here n is the complex dimension of M . Such a square root does not necessarily exist, and if
it exists, the space of half-form bundles up to isomorphism is a principal homogeneous space
for the group H

1
(M, Z/2Z).

Let L → M be a prequantum bundle and (δ, ϕ) be a half-form bundle. Observe that δ has
a metric and a holomorphic structure determined by the condition that ϕ is an isomorphism
of Hermitian holomorphic bundles. Define the quantum space H m,k as the vector space of
holomorphic sections of Lk ⊗ δ. The space H m,k has a natural scalar product obtained by
integrating the pointwise scalar product of sections of Lk ⊗ δ against the Liouville measure.
This scalar product is actually defined on the space of L

2 sections, and we have an orthogonal
projector Πk from the space of L

2 sections onto H m,k. The definition of Toeplitz operator is
the same as before except that we use this new projector. So a Toeplitz operator is any family
(Tk : H m,k → H m,k)k∈N∗ of endomorphisms of the form

Tk = Πkf(·, k) + Rk, k ∈ N∗

where f(·, k), viewed as a multiplication operator, is a sequence in C
∞

(M) with an asymp-
totic expansion

f0 + k
−1

f1 + · · ·

for the C
∞ topology, and the norm of Rk is O(k−∞). Theorem 5.1 still holds and we define

the principal and subprincipal symbols of a Toeplitz operator with the same formula as
before. The rule of composition of these symbols is still given by (18). We can also define
Toeplitz operators by using the Kostant-Souriau formula. Consider a smooth function f

on M whose Hamiltonian vector field X preserves the complex structure. Then the following
operators are well defined

Tk = f +
1

ik
(∇ Lk

X
⊗ Id + Id⊗L

δ

X
) : H m,k → H m,k, k ∈ N∗.(18)

HereL
δ is the Lie derivative of the half-form, that is the first order differential operator such

that for any local section s of the half-form bundle one has

LX(ϕ(s
⊗2

)) = 2ϕ(s⊗L
δ

X
s).

One also shows that the family (Tk) is a Toeplitz operator with principal symbol f and
vanishing subprincipal symbol.

Consider now the Delzant space M∆ defined as in Section 2. Since M∆ is simply
connected, there exists at most one half-form bundle.
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Recall that we denote by F the set of faces of ∆ of codimension 1 and for each f ∈ F ,
Xf ∈ t is the primitive normal vector to the face.

Pʀ����ɪ�ɪ�ɴ 7.1. – The Delzant space M∆ admits an equivariant half-form bundle if and

only if there exists γ ∈ t∗Z such that γ(Xf ) is odd for any f ∈ F .

Proof. – This criterion may be established using the divisor of the toric variety, cf. [17]. To
each face f ∈ F corresponds an irreducible divisor Df of M∆. It is known that a divisor of
the canonical bundle is −

�
f∈F

Df . Recall also that the divisors Df ’s generate the Picard
group, and that

�
nfXf is principal if and only if nf = γ(Xf ) for some γ ∈ t∗Z. So

M∆ admits a half-form bundle if and only if there exists a divisor

D =

�
n

δ

f
Df

such that 2D +
�

f∈F
Df is principal, that is

2n
δ

f
+ 1 = �Xf , γ�

for some γ ∈ t∗Z.

Assume now that the vertices of ∆ belongs to 2πt∗Z so that (M∆, ωM∆) admits a prequan-
tum bundle L∆ unique up to isomorphism. Assume also that M∆ is equipped with a half-
form bundle δ∆. For any positive integer k, define the quantum space

H ∆
m,k

= H
0
(M∆, Lk

∆ ⊗ δ∆).

For any X ∈ t, consider the rescaled Kostant-Souriau operators

TX,k := �µ∆, X�+
1

ik

�
∇X� ⊗ Id + Id⊗L

δ

X

�
: H ∆

m,k
→ H ∆

m,k
.(19)

We can now state the analogue of Theorem 4.1. Introduce γ ∈ t∗Z such that γ(Xf ) is odd for
any f ∈ F .

Tʜ��ʀ�� 7.2. – There is an orthogonal decomposition of the quantum space H ∆
m,k

into a

direct sum of lines:

H ∆
m,k

=

�

�∈( 2π
k (t∗Z+ 1

2 γ))∩∆

D
k

�

such that, for any X ∈ t,

TX,kΨ = �(X)Ψ, for all Ψ ∈ D
k

�
.

Observe that the points of (
2π

k
(t∗Z +

1
2γ))∩∆ are all in the interior of ∆. Furthermore on

a neighborhood of each vertex we recover the usual joint spectrum of n harmonic oscillators
as follows. For any vertex v denote by Fv the set of one-codimensional faces adjacent to v so
that (fv, v ∈ Fv) is a basis of t∗Z. Then there exists a neighborhood U of v such that

∆ ∩ U = {v + x/�f, x� � 0,∀f ∈ Fv} ∩ U

and
(
2π

k
(t∗Z +

1
2γ)) ∩∆ ∩ U = {v + x/�f, x� ∈ 2π

k
(N +

1
2 ),∀f ∈ Fv} ∩ U.
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Proof. – Let us adapt the proof of Theorem 4.1. First we introduce the quantization
of CF with metaplectic correction. Choose an ordering of F and define v ∈ Ω(CF

) as the
wedge product of the dzf ’s. v is a non vanishing section of the canonical bundle of CF . The
action of t ∈ RF /ZF on the canonical bundle sends v into exp(−2iπ

�
tf )v.

Let δF be the trivial complex line bundle with base CF and ϕF be the isomorphism
from δ2

F
to the canonical bundle of CF given by ϕ(z, 1) = v(z). By Proposition 7.1, there

exist d ∈ ZF and γ ∈ t∗Z such that
π
∗
γ = I + 2d

where I is the vector in (RF
)
∗ with all components equal to 1. Consider the action of RF /ZF

on δF given by
t · (z, u) = (t · z, e

2iπ
�

tf df u)

Then the isomorphism ϕ intertwines the action of the subtorus N of RF /ZF on δF with the
action of N on the canonical bundle. This condition has the consequence that the quotient
of δ2

F
by N defines a half-form bundle δ∆ on the Delzant space M∆, cf. Section 8.3 of [12].

Furthermore one has an isomorphism

Φk : (Bm,k)
N → H ∆

m,k

from the N -invariant part of the space Bm,k of holomorphic sections of Lk

F
⊗ δF to the

quantum space H ∆
m,k

.

Introduce the rescaled Kostant-Souriau operators

SX,k := �µ̃, X�+
1

ik
(∇ Lk

X� ⊗ Id +Id⊗L
δ

X�).

Then (Bm,k)
N consists of the sections Ψ ∈ Bm,k such that SX,kΨ = 0 for any X ∈ n.

Furthermore

Φk

�
SX,kΨ

�
= Tπ(X),kΦk(Ψ), for all Ψ ∈ (Bm,k)

N
.

To conclude the proof let us compute the action of the rescaled Kostant-Souriau operators.
We have for X = ef

SX,k

�
e
− k

8π |z|2
g(z)

�
= e

− k
8π |z|2

�
2π

k

�
zf∂zf g +

1
2g

�
− λfg

�
.

For any α ∈ NF set ψα = e
− k

2 |z|2zα so that

SX,k(ψα) = �X,
2π

k
(α +

1
2 I)− λ�ψα.(20)

Hence the space (Bm,k)
N admits as a basis the family (Ψα) where α runs over (ZF

+
1
2 I) ∩ ker ι∗n.

To conclude we prove as in Lemma 4.2 that π∗ + λ restricts to a bijection
2π

k
(t∗Z +

1

2
γ) −→ 2π

k
(ZF

+
1

2
I) ∩ ker ι

∗
n.

Let us consider now the generalization of Theorem 5.2. Let (M, ω, Rn/Zn, µ) be a
symplectic toric manifold equipped with a prequantum bundle L, a compatible complex
structure j and a half-form bundle δ. Denote by ∆ the momentum polytope µ(M) ⊂ Rn.
Let T1, . . . , Tn be commuting self-adjoint Toeplitz operators of H m,k whose principal sym-
bols are the components of µ. Denote by f i

1 the subprincipal symbol of Ti.
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Fɪɢ�ʀ� 5. Spectrum in Figure 2 with metaplectic correction.

Tʜ��ʀ�� 7.3. – There exists k0 > 0, there exists a sequence (g(·; k))k�k0 of smooth maps

Rn → Rn
, and there exists an operator U = (Uk : H k → H ∆

k
)k�k0 with Uk unitary for any k,

such that

Uk(T1,k, . . . , Tn,k)U
−1
k

= g(T
∆
1,k

, . . . , T
∆
n,k

; k) + O(k
−∞

).

Moreover, g admits an asymptotic expansion in the C
∞

topology of the form Id + k−1g1 +

k−2g2 + · · · where the subprincipal term g1 is given by

g
i

1(E) =

� 0

1
f

i

1(ϕ
t

µi
(x)) dt, for all E ∈ ∆, x ∈ µ

−1
(E).

Here ϕt

µi
is the Hamiltonian flow of µi.

Proof. – The proof is the same as the one of Theorem 5.2. Because of the metaplectic
correction, we can choose in the first step the operator Uk quantizing ϕ in such a way that
for any Toeplitz operator (Sk), (Sk) and (UkSkU∗

k
) have the same principal and subprincipal

symbols. This follows from Theorem 5.1 in [11]. From this we can extract g1 from the
cohomological equation

{µi, a} = f
i

1 − g
i

1(µ∆).

Given the statement of Theorem 7.3 above, the proof of Theorem 1.3 is identical to the
proof of Theorem 1.1 given in Section 6.

8. Final Remarks

Isospectrality in geometry

In the present paper we have dealt with isospectrality in the context of integrable systems
and symplectic geometry. The paper settles the Spectral Goal for Quantum Systems for the
case of toric systems outlined in the last two authors’ article [60]: to prove that large classes
of integrable systems are determined by their semiclassical joint spectrum.

Corollary 1.2 says that the joint spectrum does indeed determine the system. This type of
conclusion often has a negative answer, at least if one considers it in Riemannian geometry.
In Riemannian geometry the operator whose spectrum is considered is the Laplace operator.
Two compact Riemannian manifolds are said to be isospectral if the associated Laplace
operators have the same spectrum.

Bochner and Kac’s question has a negative answer in this case, even for planar domains
with Dirichlet boundary conditions (which is the original version posed in [41]). As P. Sarnak
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mentioned to us, a much better question to ask is whether the set of isospectral domains
is finite. There are many related works, see for instance Milnor [52], Sunada [64], Osgood-
Phillips-Sarnak [54, 55, 56], Bérard [2], Buser [4] and Gordon-Webb-Wolpert [32].

As we have mentioned, in symplectic geometry a few positive results are known. These
results, and the present paper, give evidence that symplectic invariants seem to be more
encodable in the spectrum of a quantum integrable system than Riemannian invariants in
the spectrum of the Lapace operator.

Inverse type results in the realm of spectral geometry have been obtained by many
other authors, see for instance Brüning-Heintze [3], Colin de Verdière [14, 13, 15], Colin
de Verdière-Guillemin [16], Croke-Sharafutdinov [18], Guillemin-Kazhdan [35], McKean-
Singer [50], Osgood-Phillips-Sarnak [54, 55, 56], and Zelditch [75], and the references
therein. An interesting general problem (for instance in the context of toric geometry)
is to what extent information about measures may be recovered from the spectrum, see
Guillemin-Sternberg [38, p. 268-271] for a result in this direction.

Isospectral conjecture for semitoric systems

In [61, 59] the last two authors formulated an inverse spectral conjecture for semitoric
completely integrable systems (see [57, 58] for a classification of semitoric systems in terms of
five symplectic invariants): the semiclassical joint spectrum of a quantum semitoric system
determines the corresponding classical system.

32

0,5

1,0

0,0

−1 1

−0,5

1,5

−1,0

4 5

−1,5

0

Fɪɢ�ʀ� 6. The quantum coupled spin-oscillator is a fundamental example of
quantum semitoric integrable system. Its joint spectrum is depicted in the figure for
a fixed value of the spectral parameter.

Semitoric systems are four-dimensional integrable systems with two degrees of freedom
for which one component of the system generates a 2π-periodic flow. Semitoric systems lie
somewhere in between toric systems and general integrable systems. If both components of
the semitoric system are 2π-periodic, i.e., the system is generated by a Hamiltonian 2-torus
action, then the system is a toric system (strictly speaking after a harmless rescaling of the
periods).

Theorem 1.2 above solves the conjecture for the class of toric systems. In this class the
result is even stronger, since there is no restriction on the dimension, and moreover only the
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spectrum modulo O(�) is needed, whereas in general one expects that an accuracy of order
O(�2

) is necessary.

Microlocal analysis of integrable systems

The notion of a quantum integrable system, as a maximal set of commuting quantum
observables, dates back to the early quantum mechanics, to the works of Bohr, Sommerfeld
and Einstein [29]. However, the most basic results in the symplectic theory of classical
integrable systems like Darboux’s theorem or action-angle variables could not be used
in Schrödinger’s quantum setting at that time because they make use of the analysis of
differential (or pseudodifferential) operators in phase space, known now as microlocal
analysis, which was developed only in the 1960s. The microlocal analysis of action-angle
variables starts with the works of Duistermaat [23] and Colin de Verdière [14, 13], followed
by the semiclassical theory by Charbonnel [5], and more recently by Vũ Ngo. c [69], Zelditch
and Toth [65, 66, 67], Charbonnel and Popov [6], Melin-Sjöstrand [51], and many others.

Effective models in quantum mechanics often require a compact phase space, and thus
cannot be treated using pseudodifferential calculus. For instance the natural classical limit
of a quantum spin is a symplectic sphere. The study of quantum action-angle variables in the
case of compact symplectic manifolds treated in this paper was started by Charles [8], using
the theory of Toeplitz operators. In the present paper, we present global spectral results for
toric integrable systems; we use in a fundamental way Delzant’s theorem on symplectic toric
manifolds [21].

Toric integrable systems (2) have played an influential role in symplectic and complex alge-
braic geometry, representation theory, and spectral theory since T. Delzant classified them
in terms of combinatorial information (actually, in terms of a convex polytope, see Theo-
rem 2.3). A comparative study of symplectic toric manifolds from the symplectic and com-
plex algebraic viewpoints was given by Duistermaat and Pelayo [28]. A beautiful treatment
of the classical theory of toric systems is given in Guillemin’s book [34].

Toeplitz operators are a natural generalization of Toeplitz matrices (which correspond
to Toeplitz operators on the unit disk). On Rn, Toeplitz operators correspond to pseudo-
differential operators via the Bargmann transform. Of course, such a correspondence cannot
hold in the case of a compact phase space, but it turns out that Toeplitz operators always give
rise to a semiclassical algebra of operators with a symbolic calculus and microlocalization
properties, which is microlocally isomorphic to the algebra of pseudodifferential operators.
See the book by Boutet de Monvel and Guillemin for an introduction to the spectral theory
of Toeplitz operators [53].

(2) Toric integrable systems always have singularities of elliptic and transversally elliptic type, but do not have
singularities of hyperbolic or focus-focus type. The local and semiglobal theory for regular points, elliptic and
transversally elliptic singularities is now well understood both at the symplectic level (action-angle theorem of
Liouville-Arnold-Mineur, Eliasson’s linearization theorems), as well as the quantum level, see Charles [8] and Vũ
Ngo. c [70]. This gives the foundation of the modern theory of integrable systems, in the spirit of Duistermaat’s article
[24], but also of KAM-type perturbation theorems (see de la Llave’s survey article [48]).
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