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MULTIFRACTAL ANALYSIS
OF THE DIVERGENCE OF FOURIER SERIES

 F BAYART  Y HEURTEAUX

A. – A famous theorem of Carleson says that, given any function f ∈ Lp(T),
p ∈ (1,+∞), its Fourier series (Snf(x)) converges for almost every x ∈ T. Beside this property,
the series may diverge at some point, without exceeding O(n1/p). We define the divergence index at x
as the infimum of the positive real numbers β such that Snf(x) = O(nβ) and we are interested in the
size of the exceptional sets Eβ , namely the sets of x ∈ T with divergence index equal to β. We show
that quasi-all functions in Lp(T) have a multifractal behavior with respect to this definition. Precisely,
for quasi-all functions in Lp(T), for all β ∈ [0, 1/p], Eβ has Hausdorff dimension equal to 1− βp. We
also investigate the same problem in C(T), replacing polynomial divergence by logarithmic divergence.
In this context, the results that we get on the size of the exceptional sets are rather surprising.

R. – Un célèbre théorème de Carleson nous dit que si une fonction f est de puissance p-ième
intégrable (p > 1), sa série de Fourier converge presque partout. D’un autre côté, il peut y avoir des
points de divergence. Pour un tel point donné x, on peut introduire l’indice de divergence comme étant
le plus petit exposant β tel que Snf(x) = O(nβ). On sait que cet indice est au plus égal à 1/p et on
s’intéresse à la dimension des ensembles exceptionnels de points Eβ d’indice de divergence donné β.
Nous montrons que quasi-toute fonction de Lp (au sens de Baire) a un comportement multifractal. De
façon précise, quasi-sûrement dansLp, pour toutβ, la dimension de Hausdorff deEβ vaut 1−βp. Nous
nous intéressons aussi aux fonctions continues pour lesquelles la croissance de Snf(x) est contrôlée
par le logarithme de n. Là encore un indice de divergence (logarithmique) peut être introduit et nous
obtenons des résultats surprenants sur la taille des ensembles exceptionnels.

1. Introduction

1.1. Description of the results

The famous theorem of Carleson and Hunt asserts that, when f belongs to Lp(T),
1 < p < +∞, where T = R/Z, the sequence of the partial sums of its Fourier series
(Snf(x))n≥0 converges for almost every x ∈ T. On the other hand, it can diverge at
some point. This divergence cannot be too fast since, for any f ∈ Lp(T) and any x ∈ T,
|Snf(x)| ≤ Cpn

1/p‖f‖p (see [14] for instance). In view of these results, a natural question
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928 F. BAYART AND Y. HEURTEAUX

arises. How big can the sets F be such that |Snf(x)| grows as fast as possible for every
x ∈ F ? More generally, can we say something on the size of the sets such that |Snf(x)|
behaves like (or as bad as) nβ for some β ∈ (0, 1/p]?

To measure the size of subsets of T, we shall use the Hausdorff dimension. Let us recall
the relevant definitions (we refer to [5] and to [11] for more on this subject). If φ : R+ → R+

is a nondecreasing continuous function satisfying φ(0) = 0 (φ is called a dimension function
or a gauge function), the φ-Hausdorff outer measure of a set E ⊂ Rd is

H φ(E) = lim
ε→0

inf
r∈Rε(E)

∑
B∈r

φ(|B|),

Rε(E) being the set of countable coverings of E with balls B of diameter |B| ≤ ε. When
φs(x) = xs, we write for short H s instead of H φs . The Hausdorff dimension of a set E is

dim H (E) := sup{s > 0; H s(E) > 0} = inf{s > 0; H s(E) = 0}.

There exist old results measuring the size of sets of points of divergence of Fourier series.
For example, in the book of Kahane and Salem ([9]), we can find such results for functions
belonging to a Sobolev space “close“ to L2. The relevant result in our context is due to J-M.
Aubry [1].

T 1.1. – Let f ∈ Lp(T), 1 < p < +∞. For β ≥ 0, define

E(β, f) =

{
x ∈ T; lim sup

n→+∞
n−β |Snf(x)| > 0

}
.

Then dim H
(
E(β, f)

)
≤ 1−βp. Conversely, given a set E such that dim H (E) < 1−βp, there

exists a function f ∈ Lp(T) such that, for any x ∈ E, lim supn→+∞ n−β |Snf(x)| = +∞.

This result motivated us to introduce the notion of divergence index. For a given function
f ∈ Lp(T) and a given point x0 ∈ T, we can define the real number β(x0) as the infimum
of the non negative real numbers β such that |Snf(x0)| = O(nβ). The real number β(x0)

will be called the divergence index of the Fourier series of f at point x0. Of course, for any
function f ∈ Lp(T) (1 < p < +∞) and any point x0 ∈ T, 0 ≤ β(x0) ≤ 1/p. Moreover,
Carleson’s theorem implies that β(x0) = 0 almost everywhere and we would like to have
precise estimates on the size of the level sets of the function β. These are defined as

E(β, f) = {x ∈ T; β(x) = β}

=

{
x ∈ T; lim sup

n→+∞

log |Snf(x)|
log n

= β

}
.

We can ask for which values of β the sets E(β, f) are non-empty. This set of values will
be called the domain of definition of the divergence spectrum of f . If β belongs to the
domain of definition of the divergence spectrum, it is also interesting to estimate the Haus-
dorff dimension of the sets E(β, f). The function β 7→ dim H (E(β, f)) will be called the
divergence spectrum of the function f (in terms of its Fourier series). By Aubry’s result,
dim H (E(β, f)) ≤ 1 − βp and, for any fixed β0 ∈ [0, 1/p), for any ε > 0, one can find

f ∈ Lp(T) such that dim H

(⋃
β0≤β≤1/pE(β, f)

)
≥ 1 − β0p − ε. Our first main result is

that a typical function f ∈ Lp(T) satisfies dim H (E(β, f)) = 1− βp for any β ∈ [0, 1/p]. In
particular, f has a multifractal behavior with respect to the summation of its Fourier series,
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meaning that the domain of definition of its divergence spectrum contains an interval with
non-empty interior.

T 1.2. – Let 1 < p < +∞.

(1) For all functions f ∈ Lp(T), for any β ∈ [0, 1/p], dim H
(
E(β, f)

)
≤ 1− βp.

(2) For quasi-all functions f ∈ Lp(T), for any β ∈ [0, 1/p], dim H
(
E(β, f)

)
= 1− βp.

The terminology "quasi-all" used here is relative to the Baire category theorem. It means
that this property is true for a residual set of functions in Lp(T). Theorem 1.2 can be
compared with other types of results in multifractal analysis, for example regarding Hölder’s
regularity (see [7]) or fast points for the Brownian motion (see [12]).

In a second part of the paper, we turn to the case of C(T), the set of continuous func-
tions on T. In that space, the divergence of Fourier series is controlled by a logarithmic
factor. More precisely, if (Dn) is the sequence of the Dirichlet kernels, we know that
‖Snf‖∞ ≤ ‖Dn‖1‖f‖∞, so that there exists some absolute constant C > 0 such that
‖Snf‖∞ ≤ C‖f‖∞ log n for any f ∈ C(T) and any n > 1. As before, one can discuss
the size of the sets such that |Snf(x)| behaves badly, namely like (log n)β , β ∈ [0, 1]. More
precisely, mimicking the case of the Lp spaces, we introduce, for any β ∈ [0, 1] and any
f ∈ C(T), the following sets:

F (β, f) =

{
x ∈ T; lim sup

n→+∞
(log n)−β |Snf(x)| > 0

}
.

When we try to estimate the size of the sets F (β, f), we observe that the Hausdorff

dimension is not sufficiently precise. We need a new family of gauge functions. For s > 0

and t ∈ (0, 1], we consider

φs,t(x) = xs exp
[
(log 1/x)1−t

]
.

It is not difficult to check that φs,t(x) ≤ φs′,t′(x) for small values of x iff

s > s′ or (s = s′ and t ≥ t′).

The analogue of Aubry’s theorem in this context is

P 1.3. – Let β ∈ (0, 1) and f ∈ C(T). Then, for any γ > 1− β,

H φ1,γ
(
F (β, f)

)
= 0.

Following the Lp case, we define for f ∈ C(T) and β ∈ [0, 1] the level set

F (β, f) =

{
x ∈ T; lim sup

n→+∞

log |Snf(x)|
log log n

= β

}
.

As indicated in Proposition 1.3 the size of the level sets are measured using the following
refinement of the Hausdorff dimension.

D 1.4. – Let E ⊂ Rd. We say that E has precised Hausdorff dimension (α, β)

if α is the Hausdorff dimension of E and

– β = 0 if H φα,t(E) = 0 for every t ∈ (0, 1);
– β = sup

{
t ∈ (0, 1); H φα,t(E) > 0

}
otherwise.
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The precised Hausdorff dimension is a tool to classify sets that have the same Hausdorff

dimension. The natural order for the precised dimension (s, t) is the lexicographical order
which will be denoted by ≺. With respect to this order, we can say that the greater is the set,
the greater is the precised dimension. Moreover, if (s, t) ≺ (s′, t′) and (s, t) 6= (s′, t′), then
φs′,t′ � φs,t. It follows that H φs′,t′ (E) = 0 as soon as H φs,t(E) <∞.

Our main theorem on C(T) is the following:

T 1.5. – The following statements are true.

(1) For all functions f ∈ C(T), for any β ∈ [0, 1], the precised Hausdorff dimension
of F (β, f) is at most (1, 1− β).

(2) For quasi-all functions f ∈ C(T), for any β ∈ [0, 1], the precised Hausdorff dimension
of F (β, f) is equal to (1, 1− β). In particular dim H (F (β, f)) = 1.

The paper is organized as follows. In the remaining part of this section, we introduce tools
which will be needed during the rest of the paper. In Section 2, we prove Theorem 1.2 whereas
in Section 3, we prove Theorem 1.5.

We conclude this introduction by mentioning that the companion problem of obtaining
similar results for genericity in the sense of prevalence is considered in [2].

1.2. A precised version of Fejér’s theorem

Working on Fourier series, we will need results on approximation by trigonometric poly-
nomials. Let k ∈ Z and ek : t 7→ e2πikt, so that, for any g ∈ L1(T) and any n ∈ N,

Sng : t 7→
n∑

k=−n

〈g, ek〉ek(t).

Let σng be the n-th Fejér sum of g,

σng : t 7→ 1

n

n−1∑
k=0

Skg(t).

σng is obtained by taking the convolution of g with the Fejér kernel

Fn : t 7→ 1

n

(
sin(nπt)

sin(πt)

)2

.

If g belongs to C(T), (σng)n≥1 converges uniformly to g. For our purpose, we need to
estimate how quick the convergence is. This is the content of the next lemma (part (1) rectifies
a mistake in the proof of Lemma 12 in [1] and requires to replace ‖θ‖∞/4 in Aubry’s version
by ‖θ‖∞/2).

L 1.6. – Let θ be a Lipschitz function on T, let n ∈ N and let x ∈ T. Suppose that
‖θ′‖∞ ≤ n and that θ(x) = 0. Then the two following inequalities hold:

|σnθ(x)| ≤
1

4
+

1

2
‖θ‖∞ for any n ≥ 8(1)

|σnθ(x)| ≤ 4 +
1

4
‖θ‖∞ for any n ≥ 4.(2)
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Proof. – We may assume that x = 0. Hence, σnθ(0) =
∫ 1/2

−1/2
θ(y)Fn(y) dy. Let us

consider δ ∈ (0, 2] and n ≥ 4. On the one hand, for any y ∈ [0, 1/2),

0 ≤ Fn(y) =
sin2(nπy)

n sin2(πy)
≤ 1

n(2y)2

so that ∣∣∣∣∣
∫
δ/n<|y|≤1/2

θ(y)Fn(y) dy

∣∣∣∣∣ ≤ 1

2n
‖θ‖∞

∫ +∞

δ/n

dy

y2
=
‖θ‖∞

2δ
.

On the other hand,∣∣∣∣∣
∫ δ/n

−δ/n
θ(y)Fn(y) dy

∣∣∣∣∣ ≤ 2

∫ δ/n

0

(
sin(nπy)

sin(πy)

)2

y dy := un.

Using the convexity inequality sin
(

n
n+1πy

)
≥ n

n+1 sin(πy) and a change of variables,

we see that (un) is non-increasing. To prove (1), we choose δ = 1 and we observe that
u8 = 0.2496... ≤ 1

4 . To prove (2), we choose δ = 2 and we observe that, since the maximum
of Fn is Fn(0) = n,

|un| ≤ 2n2

∫ 2/n

0

ydy = 4.

1.3. The mass transference principle

The second main tool that we need in this paper is a method to produce sets with large
Hausdorff dimension (Theorem 1.2) or with large precised Hausdorff dimension (Theo-
rem 1.5). An efficient way to do this is to consider ubiquitous systems like this was done in
[4, 6]. This was later refined in [3] to obtain a general mass transference principle, which we
recall in the form that we need.

T 1.7 (The mass transference principle). – Let (xn)n≥0 be a sequence of points
in [0, 1]d and let (rn)n≥0 be a sequence of positive real numbers decreasing to 0. Let also
φ : R+ → R+ be a dimension function satisfying φ(s) � sd when s goes to 0 and s−dφ is
monotonic. Define

E = lim sup
n

B(xn, rn)

Eφ = lim sup
n

B
(
xn, φ

−1(rdn)
)

and suppose that almost every point of [0, 1]d (in the sense of the Lebesgue’s measure) lies inE.
Then, H φ(Eφ) = +∞.

We shall use it in the following situation.

C 1.8. – Let (qn) be a sequence of integers and, for each n ∈ N, each k ≤ qn,
let Bk,n = B(xk,n, rn) be a ball with center xk,n ∈ [0, 1]d and with radius rk,n such that
limn→+∞maxk(rk,n) = 0. Let also φ : R+ → R+ be a dimension function satisfying
φ(s)� sd when s goes to 0 and s−dφ is monotonic. Define

Bn =
⋃qn
k=1Bk,n E = lim supnBn

Bφn =
⋃qn
k=1B(xk,n, φ

−1(rdk,n)) Eφ = lim supnB
φ
n .
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932 F. BAYART AND Y. HEURTEAUX

Suppose that almost every point of [0, 1]d (in the sense of the Lebesgue’s measure) lies in E.
Then, H φ(Eφ) = +∞.

Proof. – Reordering the sequences (Bk,n) and (Bφk,n) as (Cj) and (Cφj ), we can observe
that

lim sup
n

Bn = lim sup
j

Cj = E

lim sup
n

Bφn = lim sup
j

Cφj = Eφ.

Thus the corollary follows from a direct application of Theorem 1.7.

2. Multifractal analysis of the divergence of the Fourier series of functions of Lp(T)

In this section, we shall prove Theorem 1.2. Our method, which is inspired by [7], is divided
into two parts. During the first one, we will construct a single function, which we call the
saturating function, satisfying the conclusions of Theorem 1.2. During the second one, we
will show how to derive a residual set from this single function.

2.1. The saturating function

Our intention is to construct a function g such that |Sng(x)| is big when x is close to a
dyadic number. The following definition gives a precise meaning.

D 2.1. – A real number x is α-approximable by dyadics, α ≥ 1, if there exist
two sequences of integers (kn), (jn) such that∣∣∣∣x− kn

2jn

∣∣∣∣ ≤ 1

2αjn

and (jn) goes to infinity. The dyadic exponent of x is the supremum of the set of real numbers
α such that x is α-approximable by dyadics.

We denote by

Dα = {x ∈ [0, 1]; x is α-approximable by dyadics} .

It is easy to check that H β(Dα) = 0 for β > 1/α so that dim H (Dα) ≤ 1/α. On the other
hand, it is well-known that dim H (Dα) ≥ 1

α .
Let us nevertheless show how this follows from Corollary 1.8. Indeed,Dα can be described

as a limsup set:

Dα = lim sup
j→+∞

2j−1⋃
k=0

Iαk,j

where the Ik,j are the dyadic intervals

Ik,j =

[
k

2j
− 1

2j
,
k

2j
+

1

2j

]
and

Iαk,j =

[
k

2j
− 1

2αj
,
k

2j
+

1

2αj

]
.
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Since
⋃2j−1
k=0 Ik,j ⊃ [0, 1], Corollary 1.8 implies that H 1/α(Dα) = +∞.

We are going to define g ∈ Lp(T) such that the divergence index of g at x depends on
the dyadic exponent of x. The greater the dyadic exponent will be, the greater the divergence
index of g at x will be. To do this, we will classify the dyadic intervals following their center.
Namely, each k/2j can be uniquely writtenK/2J withK /∈ 2Z and 1 ≤ J ≤ j (such a center
comes into play from the J-th generation). Let I J = {K/2J ; K /∈ 2Z, 0 ≤ K ≤ 2J − 1}
and

IJ,j =
⋃
k

2j
∈ IJ

Ik,j I′J,j =
⋃
k

2j
∈ IJ

2Ik,j .

Here and elsewhere, when I is an interval and c is a positive real number, cI means the interval
with the same center as I and with length c|I|. Observe that, when 1 ≤ J < j, the intervals
2Ik,j , k

2j ∈ I J do not overlap and the set I′J,j has measure 2J−122−j . Observe also that when
J is small with respect to j, the real numbersx in IJ,j are well-approximated by dyadicsK/2J ,
since |x−K/2J | ≤ 1/2j .

We first define a trigonometric polynomial with Lp-norm 1 which is almost constant on
each I J,j and which is big on I J,j when J is small.

L 2.2. – Let j ≥ 1. There exists a trigonometric polynomial gj ∈ Lp(T) with Fourier
spectrum contained in [0, j2j+1) such that

– ‖gj‖p ≤ 1;
– For any 1 ≤ J ≤ j and any x ∈ IJ,j , we can find two integers n1 and n2 satisfying

0 ≤ n1 < n2 < j2j+1 and such that

|Sn2
gj(x)− Sn1

gj(x)| ≥
1

4j
2−(J−j+1)/p.

Proof. – We set for any 1 ≤ J ≤ j:

– χJ,j a continuous piecewise linear function equal to 1 on IJ,j , equal to 0 outside I′J,j ,
and satisfying 0 ≤ χJ,j ≤ 1 and ‖χ′J,j‖∞ ≤ 2j ;

– cJ,j = 1
j 2
−(J−j+1)/p (cJ,j is big when J is small);

– gJ,j = e(2J−1)2jσ2jχJ,j .

It is straightforward to observe that the Fourier spectrum of gJ,j is contained in [nJ,j ,mJ,j ]

with {
nJ,j = (2J − 1)2j − (2j − 1)

mJ,j = (2J − 1)2j + (2j − 1).

Thus, the Fourier spectra of the gJ,j , 1 ≤ J ≤ j are disjoint. Moreover, ‖gj,j‖p = 1 and
for 1 ≤ J < j, ‖gJ,j‖p ≤ ‖χJ,j‖p ≤ 2(J−j+1)/p.

We finally set

gj =

j∑
J=1

cJ,jgJ,j
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and we claim that gj is the trigonometric polynomial we are looking for. First of all, the
Fourier spectrum of gj is included in [n1,j ,mj,j ] which is contained in [0, j2j+1). Moreover,
the Lp norm of gj is

‖gj‖p ≤
j∑

J=1

1

j
2−(J−j+1)/p‖gJ,j‖p ≤ 1.

Pick now any x ∈ IJ,j , 1 ≤ J ≤ j so that

|SmJ,jgj(x)− SnJ,j−1gj(x)| = |cJ,jgJ,j(x)|

=
1

j
2−(J−j+1)/p|σ2jχJ,j(x)|.

Observing that χJ,j(x) = 1 and applying the first point of Lemma 1.6 to 1− χJ,j , we find

|σ2jχJ,j(x)| ≥ 1− |σ2j (1− χJ,j(x))| ≥
1

4
.

Thus,

|SmJ,jgj(x)− SnJ,j−1gj(x)| ≥
1

4j
2−(J−j+1)/p

and the conclusion follows with n2 = mJ,j and n1 = nJ,j − 1.

We are now ready to construct the saturating function. It is defined by

g =
∑
j≥1

1

j2
ej2j+1gj .

Observe in particular that the functions ej2j+1gj have disjoint Fourier spectra (the Fourier
spectrum of ej2j+1gj is contained in [j2j+1; j2j+2)) and that g belongs to Lp(T).

We then show that for any x ∈ Dα, α > 1,

lim sup
n→+∞

log |Sng(x)|
log n

≥ 1

p

(
1− 1

α

)
.

Indeed, let x ∈ Dα and let ε > 0 with α − ε > 1. We can find integers K and J with J as
large as we want and K /∈ 2Z such that∣∣∣∣x− K

2J

∣∣∣∣ ≤ 1

2(α−ε/2)J .

We set j = [(α−ε/2)J ] the integer part of (α−ε/2)J and k such that k/2j = K/2J . Hence,∣∣∣∣x− k

2j

∣∣∣∣ ≤ 1

2(α−ε/2)J ≤
1

2j
.

Using Lemma 2.2, we can find two integersn1 andn2 satisfying j2j+1 ≤ n1 < n2 < j2j+2

and such that

|Sn2
g(x)− Sn1

g(x)| = 1

j2
|Sn2

(ej2j+1gj)(x)− Sn1
(ej2j+1gj)(x)|

≥ 1

4j3
2−(J−j+1)/p

≥ 1

4j3
2

1
p (j−

j+1
α−ε/2−1)

≥ C2
1
p (1−

1
α−ε )j .
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It follows that we can find n ∈ {n1, n2} such that |Sng(x)| ≥ C
2 2

1
p (1−

1
α−ε )j . Combining the

estimates on n and on |Sng(x)|, and since J (hence j, hence n) can be taken as large as we
want, we get that

lim sup
n→+∞

log |Sng(x)|
log n

≥ 1

p

(
1− 1

α− ε

)
.

Since ε > 0 is arbitrary, we obtain in fact that

for any x ∈ Dα, lim sup
n→+∞

log |Sng(x)|
log n

≥ 1

p

(
1− 1

α

)
.

At this point, it would be nice to get a lower bound for lim supn→+∞
log |Sng(x)|

logn for any x
with dyadic exponent equal to α. Unfortunately, this does not seem easy and we will rather
conclude by using an argument lying on Hausdorff measures. Indeed, define

D1
α =

{
x ∈ Dα; lim sup

n→+∞

log |Sng(x)|
log n

=
1

p

(
1− 1

α

)}
D2
α =

{
x ∈ Dα; lim sup

n→+∞

log |Sng(x)|
log n

>
1

p

(
1− 1

α

)}
.

We have already observed that H 1/α(D1
α ∪ D2

α) = H 1/α(Dα) = +∞. It suffices to prove
that H 1/α(D2

α) = 0. Let (βn) be a sequence of real numbers such that βn > 1
p

(
1− 1

α

)
and

limn→+∞ βn = 1
p

(
1− 1

α

)
.

Let us observe that

D2
α ⊂

⋃
n≥0

E(βn, g).

Moreover, Theorem 1.1 implies that H 1/α( E(βn, g)) = 0 for all n. Hence, H 1/α(D2
α) = 0

and H 1/α(D1
α) = +∞, which proves that

dim H

(
E

(
1

p

(
1− 1

α

)
, g

))
≥ 1

α
.

By Theorem 1.1 again, this inequality is necessarily an equality. Finally, g satisfies the con-
clusions of Theorem 1.2, setting 1− βp = 1/α.

R 2.3. – If α = 1, then β = 0 and the conclusion is a consequence of Carleson’s
Theorem.

2.2. The residual set

To build the denseGδ-set, the idea is that any function whose Fourier coefficients are suf-
ficiently close to those of the saturating function g on infinitely many intervals [j2j+1; j2j+2)

will satisfy the conclusions of Theorem 1.2. Precisely, let (fj)j≥1 be a dense sequence of poly-
nomials in Lp(T) with Fourier spectrum contained in [−j, j]. We define a sequence (hj)j≥1

as follows:

hj = fj +
1

j
ej2j+1gj

so that ‖hj−fj‖p goes to 0 and (hj)j≥1 remains dense inLp(T). Observe also that the Fourier
spectra of fj and hj−fj do not overlap. Finally, let (rj)j≥1 be a sequence of positive integers
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so small that, for any f ∈ Lp(T) with ‖f‖Lp ≤ rj , ‖Snf‖∞ ≤ 1 for any n ≤ j2j+2. The dense
Gδ set we will consider is

A =
⋂
l∈N

⋃
j≥l

B(hj , rj).

Let f belong to A and let (jl)l≥1 be an increasing sequence of integers such that f belongs
to B(hjl , rjl) for any l. Then, for any α > 1, we define Jl = [jl/α] + 1 (which is smaller than
jl if l is large enough) and

E = lim sup
l→+∞

IJl,jl .

For any x ∈ E one can find j = jl as large as we want, the corresponding J = Jl and
1 ≤ k ≤ 2j − 1 such that x belongs to Ik,j with k/2j ∈ I J .

Observe that f = fj + 1
j ej2j+1gj + (f − hj). By Lemma 2.2, we can find two integers n1

and n2 satisfying j2j+1 ≤ n1 < n2 < j2j+2 and such that

|Sn2
(ej2j+1gj)(x)− Sn1

(ej2j+1gj)(x)| ≥
1

4j
2−(J−j+1)/p.

Using the definition of the rj , we obtain

|Sn2f(x)− Sn1f(x)| ≥ 1

4j2
2−(J−j+1)/p − |Sn2(f − hj)(x)| − |Sn1(f − hj)(x)|

≥ 1

4j2
2−(J−j+1)/p − 2

so that

|Sn2f(x)| ≥ C

j2
2−(J−j+1)/p or |Sn1f(x)| ≥ C

j2
2−(J−j+1)/p.

Observing that 
max(log n2, log n1) = j log 2 +O(log j)

log
(
j−22−(J−j+1)/p

)
= 1

p

(
1− 1

α

)
j log 2 +O(log j)

we find in particular that, for any x ∈ E,

lim sup
n→+∞

log |Snf(x)|
log n

≥ 1

p

(
1− 1

α

)
.

On the other hand, let us write

IJl,jl =
⋃

1≤K<2Jl , K /∈2Z

[
K

2Jl
− 1

2jl
,
K

2Jl
+

1

2jl

]
and remark that for any l, since Jl ≥ jl/α,⋃

1≤K<2Jl , K /∈2Z

[
K

2Jl
− 1

2jl/α
,
K

2Jl
+

1

2jl/α

]
⊃ [0, 1].

Hence, we can apply Corollary 1.8 to get H 1/α(E) = +∞. We now conclude exactly as
in Section 2.1 to get H 1/α(E1) = +∞, with

E1 =

{
x ∈ E; lim sup

n→+∞

log |Snf(x)|
log n

=
1

p

(
1− 1

α

)}
.
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Finally,

dim H

(
E

(
1

p

(
1− 1

α

)
, f

))
≥ 1

α

and f satisfies the conclusions of Theorem 1.2, setting 1− βp = 1/α.

R 2.4. – During the construction, we did not use that the Fourier spectra of the
functions ej2j+1gj are disjoint, because we considered each one separately. We could also
define hj by hj = fj + 1

j ej+1gj .

R 2.5. – The above construction can be carried on L1(T). Namely, for quasi-all
f ∈ L1(T), we obtain for any β ∈ [0, 1],

dim H (E (β, f)) ≥ 1− β.

However, the Hunt-Carleson’s maximal inequality dramatically breaks down in L1(T) and
Aubry’s method is not relevant in this context. In a recent paper, we tackled this difficulty and
obtained an analogue of Theorem 1.1 in the L1 context, thus extending Theorem 1.2 when
p = 1 (see [2]).

3. Multifractal analysis of the divergence of the Fourier series of functions of C(T)

We turn to the proof of Theorem 1.5. We follow a strategy close to that of Section 2. First
of all, we will give an upper bound for the precised Hausdorff dimension of the sets F (β, f)

(hence, of the sets F (β, f)) for any f ∈ C(T) and any β ∈ (0, 1). Second, we will build
polynomials with small L∞-norms and such that their Fourier series have big partial sums
on big intervals. These polynomials will be the blocks of our final construction. Working
on C(T) adds several difficulties which will be explained when we will encounter them.

3.1. The sets F (β, f) cannot be too big

We begin with the following lemma which completes Proposition 1.3 (recall that
φs,t(x) = xs exp

(
(log 1/x)1−t

)
).

L 3.1. – Let β ∈ (0, 1) and f ∈ C(T). Then, for any γ > 1− β,

H φ1,γ
(
F (β, f)

)
= 0.

In particular, the precised Hausdorff dimension of F (β, f) andF (β, f) cannot exceed (1, 1−β).

Proof. – A key point in Aubry’s proof of Theorem 1.1 is the Carleson-Hunt theorem
which asserts that, for any g ∈ Lp(T), 1 < p < +∞,

‖S∗g‖p ≤ Cp‖g‖p where S∗g(x) = sup
n≥0
|Sng(x)|.

On C(T), a weak inequality (also due to Hunt) remains valid (see [13, Theorem 12.5]): there
are two absolute constants A,B > 0 such that, for every f ∈ C(T) and every y > 0,

λ
(
{x ∈ T ; S∗f(x) > y}

)
≤ Ae−By/‖f‖∞ .

Here, λ denotes the Lebesgue measure on T.
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So, let β ∈ (0, 1) and f ∈ C(T). We may assume ‖f‖∞ ≤ 1. For anyM > 0, we introduce

F (β, f,M) =

{
x ∈ T; lim sup

n→+∞
(log n)−β |Snf(x)| > M

}
.

Since F (β, f) =
⋃
M>0 F (β, f,M), we just need to prove that H φ1,γ

(
F (β, f,M)

)
= 0 for

every M > 0. From now on, we fix some M > 0. We pick any x ∈ F (β, f,M) and nx large
enough such that

|Snxf(x)| ≥M(log nx)
β .

Such an inequality remains true in an interval around x whose size is not so small. Precisely,
because nx can be assumed to be large and since the L1-norm of the Dirichlet kernel Dn

behaves like 4
π2 log n, we may assume that ‖Snxf‖∞ ≤ (log nx)‖f‖∞ ≤ log nx. By

Bernstein’s inequality, ‖(Snxf)′‖∞ ≤ nx log nx. Let

Ix =

[
x− M

2nx(log nx)1−β
, x+

M

2nx(log nx)1−β

]
.

For any y ∈ Ix, we get

|Snxf(y)| ≥ M

2
(log nx)

β .(3)

(Ix)x∈ F (β,f,M) is a covering of F (β, f,M). We can extract a Vitali’s covering, namely a
countable family of disjoint intervals Ii, i ∈ N, of length M

ni(logni)1−β
such that

F (β, f,M) ⊂
⋃
i 5Ii. Let us finally set, for any q ≥ 1, Uq =

{
i; 2q+1 ≥ M(logni)

β

2 > 2q
}

.

Without loss of generality, we may assume the ni so large that
⋃
q Uq = N. By applying

Hunt’s theorem,
λ ({x; S∗f(x) > 2q}) ≤ Ae−B2q .

Now, by (3), the set {x; S∗f(x) > 2q} contains the disjoint intervals Ii, for i ∈ Uq. Thus,∑
i∈ Uq

|Ii| ≤ Ae−B2q .

Moreover, for any i ∈ Uq, it is not hard to check that

|Ii| ≥ Ce−D2q/β

for some positive constants C,D which do not depend on q. Picking any α such that
1− β < α < γ, we get∑

i∈ Uq

φ1,α(5|Ii|) =
∑
i∈ Uq

5|Ii| exp
(
(log(1/5|Ii|))1−α

)

≤ 5

∑
i∈ Uq

|Ii|

 exp

((
D2q/β − log 5C

)1−α
)

≤ 5Ae−B2q+D′2q(1−α)/β

.

Since 1− α < β, this shows that there exists C0 < +∞ such that∑
i∈N

φ1,α(5|Ii|) =
∑
q∈N

∑
i∈ Uq

φ1,α(5|Ii|) ≤ C0.
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Remember that
⋃
i 5Ii is a covering of F (β, f,M) and that the Ii can be chosen as

small as we want. We can then conclude that H φ1,α( F (β, f,M)) ≤ C0. In particular,
H φ1,γ

(
F (β, f,M)

)
= 0, since φ1,α � φ1,γ .

R 3.2. – The functions φ1,γ , for γ > 1−β, are not optimal in the statement of the
previous lemma. We can replace them by any function φ(x) = x exp

(
(log 1/x)βε(x)

)
with

ε(x) going to 0 as x goes to 0.

3.2. The basic construction

When we try to build explicitly a continuous function whose Fourier series diverges at
some point, say 0, a natural way is to consider polynomials P with small L∞ norm, and
satisfying nevertheless that |SnP (0)| is big for some large value of n. The easiest examples
are

PN (x) = eN (x)

N∑
j=1

sin(2πjx)

j
,

since the sequence (‖PN‖∞)N≥1 is bounded whereas |SN (P )(0)| ∼ 1
2 logN . Considering

series of the form
∑
j ωjPNj and a sequence (εn) decreasing to 0, it is possible to obtain a

continuous function f such that lim supn→+∞ Snf(0)/(εn log n) = +∞. This is optimal
since Snf(0) = o(log n) for any f ∈ C(T) (see for example [14]).

In our context, we need to find a polynomial P which satisfies a similar property not only
at one point, but on a set which is rather big since at the end we want to construct sets of
divergence with Hausdorff dimension 1. This does not seem to be the case for PN , the reason
being that |(SNP )′(0)| behaves like N , which is much bigger than SNP (0).

To tackle this problem, we start from a construction of Kahane and Katznelson in [8] (see
also [10]) which they use to prove that every subset of T of Lebesgue measure 0 is a set of
divergence for C(T). Since we want to control both the size of the setsE and the index n such
that SnP (x) becomes larger than some given real number for any x ∈ E, the forthcoming
lemma needs very careful estimations.

L 3.3. – Let β ∈ (0, 1), δ ∈ (0, 1) andK ≥ 2. Then there exist an integer k ≥ K, an
integern as large as we want and a trigonometric polynomialP with Fourier spectrum contained
in [0, 2n− 1] such that

– |P (x)| ≤ 1 for any x ∈ T;
– log |SnP (x)| ≥ (1− δ)β log log n for any x ∈ Iβk ,

where Iβk =
⋃k−1
j=0

[
j
k −

1

2k exp
(
(log k)β

) , jk + 1

2k exp
(
(log k)β

)].

Proof. – Let us first describe the idea of the proof. We shall construct a trigonometric
polynomial Q with Fourier spectrum in [1, n− 1] and with the following properties: |=mQ|
is small and |Q| is large on a set E. We then set P = en ×=mQ, so that ‖P‖∞ is small. On
the other hand, writing Q =

∑n−1
k=1 akek, 2i=mQ = −

∑n−1
k=1 ake−k +

∑n−1
k=1 akek, so that

|Sn(P )| = 1

2

∣∣∣∣∣
n−1∑
k=1

aken−k

∣∣∣∣∣ = 1

2

∣∣∣∣∣
n−1∑
k=1

akek

∣∣∣∣∣ = 1

2
|Q|
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is large on E. The construction of Q will be done by taking log f , the logarithm of a
holomorphic function defined on a neighborhood of the closed unit disk D (which allows
to control the imaginary part of log f while its modulus can be large), and by taking a Fejér
sum of log f .

We now proceed with the details. The proof uses holomorphic functions and it is better to
see T as the boundary of the unit disk D. To avoid cumbersome notations, the letter C will
denote throughout the proof a positive and absolute constant, whose value may change from
line to line. Let k ≥ K whose value will be fixed later. We set:

ε =
1

k exp
(
(log k)β

)
zj = e

2πij
k , j = 0, . . . , k − 1

f(z) =
1

k

k−1∑
j=0

1 + ε

1 + ε− zjz
.

f is holomorphic in a neighborhood of D. We claim that f satisfies the following four
properties.

(P1): ∀z ∈ D, <ef(z) ≥ Cε;
(P2): ∀z ∈ Iβk , |f(z)| ≥ <ef(z) ≥ C exp

(
(log k)β

)
;

(P3): ∀z ∈ T, |f(z)| ≤ C exp
(
(log k)β

)
;

(P4): ∀z ∈ T,
∣∣∣ f ′(z)f(z)

∣∣∣ ≤ C
ε3 .

Indeed, for any z ∈ D and any j ∈ {0, . . . , k − 1},

<e
(

1 + ε

1 + ε− zjz

)
=

1 + ε

|1 + ε− zjz|2
<e
(
1 + ε− zjz

)
≥ 1 + ε

(2 + ε)2
× ε ≥ Cε,(4)

which proves (P1). To prove (P2), we may assume that z = e2πiθ with θ ∈
[−ε

2 ; ε2
]
. Then

<e
(

1 + ε

1 + ε− z0z

)
=

1 + ε

|1 + ε− z|2
<e
(
1 + ε− z

)
≥ C

ε
.

If we combine this with (4), we get

<ef(z) ≥ C

kε
+
k − 1

k
Cε ≥ C

kε
= C exp

(
(log k)β

)
.

which gives (P2).

Conversely, we want to control supz∈T |f(z)|. Pick any z = e2πiθ ∈ T. By symmetry, we
may and shall assume that |θ| ≤ 1

2k . Then we get∣∣∣∣ 1 + ε

1 + ε− z0z

∣∣∣∣ ≤ C

ε
.
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Now, for any j ∈ {1, . . . , k/4}, we can write

|1 + ε− zjz| ≥ |=m(zjz)|

≥ sin

(
2πj

k
− 2πθ

)
≥ 2

π
× 2π

(
j

k
− θ
)

≥ 4

k

(
j − 1

2

)
.

Taking the sum, ∣∣∣∣∣∣
k/4∑
j=1

1 + ε

1 + ε− zjz

∣∣∣∣∣∣ ≤ k(1 + ε)

4

k/4∑
j=1

1

j − 1/2
≤ Ck log k.

In the same way, we obtain ∣∣∣∣∣∣
k−1∑

j=3k/4

1 + ε

1 + ε− zjz

∣∣∣∣∣∣ ≤ Ck log k

whereas |1 + ε− zjz| ≥ C for any j ∈ [k/4, 3k/4], so that∣∣∣∣∣∣
3k/4∑
j=k/4

1 + ε

1 + ε− zjz

∣∣∣∣∣∣ ≤ Ck.
Putting this together, we get

|f(z)| =

∣∣∣∣∣∣1k
k−1∑
j=0

1 + ε

1 + ε− zjz

∣∣∣∣∣∣ ≤ C
(

1

kε
+ log k + 1

)
≤ C exp

(
(log k)β

)
.

Finally, it remains to prove (P4). We observe that

f ′(z) =
1

k

k−1∑
j=0

(1 + ε)zj
(1 + ε− zjz)2

.

We do not try to get a very precise estimate for |f ′(z)| (this is not useful for us). We just
observe that |1 + ε− zjz|2 ≥ ε2 for any j ∈ {0, . . . , k − 1} and any z ∈ T, so that

|f ′(z)| ≤ C

ε2
.

If we combine this with (P1), we get (P4).

We are almost ready to construct P . The next step is to take h(z) = log(f(z)), which
defines a holomorphic function in a neighborhood of D by (P1). Moreover, |=m(h(z))| ≤ π/2
for any z ∈ D and h(0) = 0. Now, we look at the function h on the boundary of the unit
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disk D, that is we introduce the function g(x) = h(e2iπx) defined on the circle T = R/Z.
Properties (P2), (P3) and (P4) can be rewritten as

∀x ∈ Iβk , |g(x)| ≥ (log k)β − C
∀x ∈ T, |g(x)| ≤ (log k)β + C

∀x ∈ T, |g′(x)| ≤ Ck3 exp
(
3(log k)β

)
.

Now letn be the smallest integer such thatCk3 exp
(
3(log k)β

)
≤ n. We also have ‖g′‖∞ ≤ n

and we can apply the second part of Lemma 1.6 to the function θ(t) = g(t) − g(x) when
x ∈ Iβk . Recall that ‖θ‖∞ ≤ 2(log k)β + C. We get

|σnθ(x)| ≤
(log k)β

2
+ C

and we can conclude that

|σng(x)| ≥ |g(x)| − |σnθ(x)| ≥
(log k)β

2
− C.

We finally set

P =
2

π
enσn(=mg) =

2

π
en=m(σng).

It is straightforward to check that ‖P‖∞ ≤ 1 (recall that σn is a contraction on C(T)), and
that the Fourier spectrum of σng is contained in [1, n − 1] (ĝ(0) = 0 since h(0) = 0). Now,
the simple algebraic trick exposed at the beginning of the proof shows that

|SnP (x)| =
∣∣∣∣ 1πσng(x)

∣∣∣∣ ,
so that, for any x ∈ Iβk ,

|SnP (x)| ≥ 1

2π
(log k)β − C.

This leads to
log |SnP (x)| ≥ β log log k − C.

On the other hand,

log log n ≤ log
(
3 log k + 3(log k)β + logC

)
≤ log log k + C.

Finally,
log log |SnP (x)|

log log n
≥ β log log k − C

log log k + C
≥ (1− δ)β,

provided k has been chosen large enough. Moreover, n can be chosen as large as we want
since n→ +∞ when k → +∞.

R 3.4. – The fact that we have to compare log log n and log |Sn| helps us for the
previous proof. Even if n and k do not have the same order of growth, this is not apparent
when we apply the iterated logarithm.

R 3.5. – During the construction, the integers k and n cannot be chosen indepen-
dently : they satisfy n− 1 ≤ Ck3 exp

(
3(log k)β

)
≤ n where C is an absolute constant. If we

want to construct a polynomial P satisfying the conclusion of Lemma 3.3 with a large value
of n, we need also to choose a large value of k.
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3.3. The conclusion

We are now going to prove the full statement of Theorem 1.5. At this point, the situation
is less favorable than in the Lp-case. There, the basic construction done at each step j did
not depend on the index of divergence that we would like to get. We had the same function
gj which worked for all indices of divergence, and it was the dyadic exponent of x which
decided how large |gj(x)| was. The construction done in Lemma 3.3 is less efficient, because
the polynomialP does depend on the expected divergence index β (the index β is a parameter
of the definition of f above). We have to overcome this new difficulty and the solution will
be to introduce redundancy in the construction of the Gδ-set.

As usual, we start from a sequence (fj)j≥1 of polynomials which is dense in C(T). For
convenience, we assume that ‖fj‖∞ ≤ j for any j and that the Fourier spectrum of fj is
contained in [−j, j]. Furthermore, we fix four sequences (αl), (βl), (δl) and (εl) with values
in (0, 1) and such that:

– (βl) is dense in (0, 1) and l 7→ βl is one to one;
–
∑
l εl ≤ 1;

– (δl) and (αl) go to zero.
– δl < 1/3.

Let now j ≥ 1. By induction on l = 1, . . . , j, we build sequences (Pj,l), (nj,l) and (kj,l)

satisfying the conclusions of Lemma 3.3 with β = βl, δ = δl and K = j (to ensure that
limj→+∞ kj,l = +∞) and we will decide how large should nj,l be during the construction.
According to Remark 3.5, these constraints on nj,l will determine the values of the kj,l. We
then set

gj := fj + αj

j∑
l=1

εlenj,lPj,l

so that ‖gj − fj‖∞ ≤ αj
∑j
l=1 εl‖Pj,l‖∞ ≤ αj . In particular, the sequence (gj) remains

dense in C(T).

Recall that the Fourier spectrum of fj is included in [−j, j] and observe that the Fourier
spectrum of enj,lPj,l lies in [nj,l, 3nj,l−1]. If we suppose that nj,1 = j+1 and nj,l+1 ≥ 3nj,l,
we can conclude that the Fourier spectra of fj , enj,1Pj,1, · · · , enj,jPj,j are disjoint.

Let now x belongs to Iβlkj,l for some l ≤ j. Then

∣∣S2nj,lgj(x)
∣∣ ≥ αjεl

∣∣Snj,lPj,l(x)∣∣− αj l−1∑
m=1

εm‖Pj,m‖∞ − j

≥ αjεl
∣∣Snj,lPj,l(x)∣∣− αj − j.

Because we can choose nj,l as large as we want in the process, we may always assume that
the choice that we have made ensures that∣∣S2nj,lgj(x)

∣∣ ≥ αjεl
2

∣∣Snj,lPj,l(x)∣∣ .
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Taking the logarithm, we find

log
∣∣S2nj,lgj(x)

∣∣ ≥ log
∣∣Snj,lPj,l(x)∣∣+ log εl + logαj − log 2

≥ (1− δl)βl log log(nj,l) + log εl + logαj − log 2

≥ (1− 2δl)βl log log(2nj,l)

provided again that we have chosen nj,l very large.

We then fix rj > 0 so small that, for any f ∈ B(gj , rj) (the balls are related to the norm
‖ · ‖∞), for any l ≤ j,

‖S2nj,lf − S2nj,lgj‖∞ ≤ 1/2.

Observe that for every real number t ≥ 1, we have log(t − 1/2) ≥ log(t) − log 2. For any
x ∈ Iβlkj,l with l ≤ j, we get

log
∣∣S2nj,lf(x)

∣∣ ≥ log
∣∣S2nj,lgj(x)

∣∣− log 2

≥ (1− 2δl)βl log log(2nj,l)− log 2

≥ (1− 3δl)βl log log(2nj,l)

if nj,l are chosen sufficiently large such that δlβl log log(2nj,l) ≥ log 2.

We finally set

A =
⋂
p∈N

⋃
j≥p

B(gj , rj),

and we claim that A is the dense Gδ set we are looking for.

Indeed, let f belong to A and let (jp) be an increasing sequence of integers such that for
every p ≥ 0, f ∈ B(gjp , rjp). We consider β ∈ (0, 1) and choose p0 such that{

β1, · · · , βjp0
}
∩ (0, β) 6= ∅.

Such a p0 exists since the sequence (βl)l≥1 is dense in (0, 1). For every p ≥ p0, let lp be
chosen in {1, · · · , jp} such that

β − βlp = inf{β − βl; l ≤ jp and β > βl}.

Since the sequence (βl) is dense in (0, 1), βlp < β for p ≥ p0 and βlp → β. Moreover, since
l 7→ βl is one to one, it is clear that lp is non decreasing and goes to +∞.

Observe that, for p ≥ p0, Iβkjp,lp ⊂ I
βlp
kjp,lp

, so that, for any x ∈ Iβkjp,lp , settingNp = 2njp,lp ,

log |SNpf(x)| ≥ (1− 3δlp)βlp log log(Np).

In particular, setting F = lim supp I
β
kjp,lp

, we get that

lim sup
n→+∞

log |Snf(x)|
log logn

≥ β

for any x ∈ F . Now, we can apply Corollary 1.8 with a gauge function φ satisfying
φ−1(y) = y exp

[
−(log(1/2y))β

]
to obtain H φ(F ) =∞.

Observe that if y = φ(x), then

y = x exp
[
(log(1/2y))β

]
and log x ≤ log y.

It follows that φ(x) ≤ x exp
[
(log(1/2x))β

]
≤ φ1,1−β(x) and H φ1,1−β (F ) = +∞.
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We now conclude exactly as in the Lp-case, using Lemma 3.1 to replace Aubry’s result.
Namely, we set

F 1 =

{
x ∈ F ; lim sup

n→+∞

log |Snf(x)|
log log n

= β

}
F 2 =

{
x ∈ F ; lim sup

n→+∞

log |Snf(x)|
log log n

> β

}
and we observe that Lemma 3.1 guarantees that H φ1,1−β (F 2) = 0. Thus, H φ1,1−β (F 1) = +∞
and the precised Hausdorff dimension of F (β, f), which contains F 1, is at least (1, 1 − β).
By Lemma 3.1, it is exactly (1, 1− β).

R 3.6. – It is amazing that, with our method, it is easier to prove Theorem 1.5
than to directly prove that the Hausdorff dimension of the sets F (β, f) are all equal to one.
Indeed, to ensure that the sets F (β, f) are big, we need to know that the sets F (β′, f) are
small for β′ > β. This cannot be done if we stay within the notion of Hausdorff dimension.

R 3.7. – The method developed above allows us to construct a “concrete func-
tion” that satisfies the conclusion of Theorem 1.5. More precisely, it suffices to consider

g =

+∞∑
j=1

1

j2

j∑
l=1

εlenj,lPj,l

with the constraint 3nj,j < nj+1,1 to ensure that the blocks
∑j
l=1 εlenj,lPj,l have disjoint

Fourier spectra. Such a function is some kind of saturating function in the continuous case.

R 3.8. – Refining the method developed here, in [2] we have been able to prove
the following result: for any sequence (εn) decreasing to 0, quasi surely in C(T), the set of
points x ∈ T such that lim supn→+∞ Snf(x)/(εn log n) = +∞ has Hausdorff dimension 1.

R 3.9. – If f ∈ Lp(T), we always have dim H (E(0, f)) = 1. We could analyze
this set more finely by introducing again the family of sets F (β, f), allowing now β to live
in (0,+∞). In this Lp context, we do not know the corresponding gauges.
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