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LOCALLY ANALYTIC VECTORS OF UNITARY
PRINCIPAL SERIES OF GL2(Qp)

 R LIU, B XIE  Y ZHANG

A. – The p-adic local Langlands correspondence for GL2(Qp) attaches to any 2-di-
mensional irreducible p-adic representation V of GQp an admissible unitary representation Π(V )

of GL2(Qp). The unitary principal series of GL2(Qp) are those Π(V ) corresponding to trianguline
representations. In this article, for p > 2, using the machinery of Colmez, we determine the space of
locally analytic vectors Π(V )an for all non-exceptional unitary principal series Π(V ) of GL2(Qp) by
proving a conjecture of Emerton.

R. – La correspondance de Langlands locale p-adique pour GL2(Qp) associe à toute repré-
sentation irréductible p-adique V de dimension 2 deGQp une représentation admissible unitaire Π(V )

de GL2(Qp). Les séries principales unitaires de GL2(Qp) sont les Π(V ) correspondant aux représenta-
tions triangulines. Dans le présent article, en utilisant la machinerie de Colmez, on détermine l’espace
des vecteurs localement analytiques Π(V )an pour toute série principale unitaire non-exceptionnelle
Π(V ) de GL2(Qp), et on démontre ainsi une conjecture d’Emerton.

1. Introduction

Let F be a finite extension of Qp. The aim of the p-adic local Langlands programme ini-
tiated by Breuil is to look for a “natural” correspondence between certain n-dimensional
p-adic representations of Gal(Qp/F ) and certain Banach space representations of GLn(F ).
Thanks to much recent work, especially that of Colmez and Paškūnas, we have gained a fairly
clear picture in the case F = Qp and n = 2 which is the so-called p-adic local Langlands
correspondence for GL2(Qp) establishing a functorial bijection between 2-dimensional irre-
ducible p-adic representations of Gal(Qp/Qp) and non-ordinary irreducible admissible uni-
tary representations of GL2(Qp).

Although the present version of p-adic local Langlands correspondence is formulated at
the level of Banach space representations, it is very useful, as in Breuil’s initial work [4], to
have information of the subspace of locally analytic vectors. Fix a finite extension L of Qp

as the coefficient field, and we denote by Π(V ) the corresponding unitary representation
of GL2(Qp) for any 2-dimensional irreducible L-linear representation V of Gal(Qp/Qp).
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168 R. LIU, B. XIE AND Y. ZHANG

The unitary principal series of GL2(Qp), which are the simplest ones among these Π(V ),
are those corresponding to trianguline representations. In [13], Emerton made a conjectural
description of the subspace of locally analytic vectors Π(V )an for all unitary principal series
Π(V ). We recall his conjecture below.

Let Sirr be the parameterizing space of 2-dimensional irreducible trianguline repre-
sentations of Gal(Qp/Qp) introduced by Colmez in [7]. For any s ∈ Sirr, let V (s) be the
corresponding trianguline representation. We may write s = (δ1, δ2,L ) so that the étale
(ϕ,Γ)-module Drig(V (s)) is isomorphic to the extension of R(δ2) by R(δ1) defined by L .
For any such s, if δ1δ−1

2 = xk|x| for some k ∈ Z+, then we set Σ(s) to be the locally analytic
GL2(Qp)-representation Σ(k + 1,L ) ⊗ ((δ2|x|

2−k
2 ) ◦ det) where {Σ(k + 1,L )} is the

family of locally analytic GL2(Qp)-representations introduced by Breuil in [4]. Otherwise,

we define Σ(s) to be the locally analytic principal series
Ä
Ind

GL2(Qp)

B(Qp) δ2 ⊗ δ1(x|x|)−1
ä

an
. The

conjecture of Emerton is:

C 1.1 ([13, Conjecture 6.7.3, 6.7.7]). – For any s ∈ Sirr, Π(V (s))an sits in an
exact sequence

(1.1) 0 −→ Σ(s) −→ Π(V (s))an −→
Ä
Ind

GL2(Qp)

B(Qp) δ1 ⊗ δ2(x|x|)−1
ä

an
−→ 0.

In the special cases when V (s) are twists of crystabelian representations and non-
exceptional, there is a more precise conjectural description of Π(V (s))an due to Breuil.
In [16], the first author proved Breuil’s conjecture. The main result of this paper is:

T 1.2 (Theorem 6.13). – For p > 2, Conjecture 1.1 is true if V (s) is non-
exceptional.

In fact, one can easily deduce Breuil’s conjecture from Emerton’s conjecture. Thus
for p > 2, the above theorem covers the aforementioned result of the first author.

We now explain the strategy of the proof of Theorem 1.2. The whole proof builds on
Colmez’s machinery of p-adic local Langlands correspondence for GL2(Qp) developed in
[12]. The key ingredient is Colmez’s identification of the locally analytic vectors:

(1.2) (Π(V̌ )an)∗ = D\
rig � P1

where D = D(V ) is Fontaine’s étale (ϕ,Γ)-module associated to V . To apply this formula,
for any continuous characters δ, η : Q×p → L×, we construct the objects R(η) �δ P1

and R+(η) �δ P1 which are equipped with continuous GL2(Qp)-actions, and the latter is

topologically isomorphic to (
Ä
Ind

GL2(Qp)

B(Qp) δ−1η ⊗ η−1
ä

an
)∗. In doing so, we are led to modify

some of Colmez’s constructions to twists of étale (ϕ,Γ)-modules and rank 1 (ϕ,Γ)-modules.
On the other hand, Colmez [9] (for p > 2 and s ∈ S ng

∗
∐

S st
∗ ; this is the only place where

we need p > 2) and Berger-Breuil [3] (for s ∈ Sirr non-exceptional) establish an explicit
isomorphism As : Π(V (s)) ∼= Π(s) (for s exceptional, Paškūnas proves Π(V (s)) ∼= Π(s)

by an indirect method [17]) where Π(s) is the unitary principal series associated to V (s).
We deduce from the explicit description of As plus a duality argument the following exact
sequence

(1.3) 0 −→ R(δ1) � P1 −→ Drig(V (s)) � P1 −→ R(δ2) � P1 −→ 0.
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Then the natural inclusion
Ä
Ind

GL2(Qp)

B(Qp) δ2 ⊗ δ1(x|x|)−1
ä

an
↪→ Π(s)an induces the following

commutative diagram

(1.4) (Π(s)an)∗ //

��

D\
rig(š) � P1

��ÄÄ
Ind

GL2(Qp)

B(Qp) δ2 ⊗ δ1(x|x|)−1
ä

an

ä∗
// R(δ̌1) � P1

where š = (δ̌2, δ̌1,L ) corresponds to the Tate dual of V (s). Using (1.4) together with the
fact thatD\

rig(s)�P1 andD\
rig(š)�P1 are orthogonal complements of each other under the

paring
{·, ·}P1 : Drig(V (s)) � P1 ×Drig(V (š)) � P1 → L,

and that (1.3) is dual to

(1.5) 0 −→ R(δ̌2) � P1 −→ Drig(V (š)) � P1 −→ R(δ̌1) � P1 −→ 0,

we deduce that if δ1δ−1
2 6= xk|x| for any k ∈ Z+, then D\

rig(š) sits in the exact sequence

(1.6) 0 −→ R+(δ̌2) � P1 −→ D\
rig(š) � P1 −→ R+(δ̌1) � P1 −→ 0.

We therefore conclude (1.1) by taking the dual of (1.6). If δ1δ−1
2 = xk|x| for some k ∈ Z+,

we have that the image of D\
rig(š) in R(δ̌1) � P1 is a closed subspace of R+(δ̌1) � P1 of

codimension k and R(δ̌2) � P1 ∩D\
rig(š) � P1 contains R+(δ̌2) � P1 as a closed subspace

of codimension k. We then conclude (1.1) using Schneider and Teitelbaum’s results on the
Jordan-Hölder series of locally analytic principal series of GL2(Qp).

The organization of the paper is as follows. In §2, we recall some necessary background of
the theory of (ϕ,Γ)-modules. In §3, we recall some of Colmez’s constructions of the p-adic
local Langlands correspondence for GL2(Qp) especially his identification of the locally ana-
lytic vectors, and we make the aforementioned modification. We review the isomorphism
As : Π(V (s)) ∼= Π(s) in §4. In §5.1, we recall Schneider and Teitelbaum’s results on Jordan-
Hölder series of the locally analytic principal series of GL2(Qp). We prove that R+(η)�δP1

is isomorphic to (
Ä
Ind

GL2(Qp)

B(Qp) δ−1η ⊗ η−1
ä

an
)∗ in §5.2. Section 6 is devoted to the proof of

Theorem 1.2. We first recall the definition of Σ(s) and restate Emerton’s conjecture in §6.1.
Then we prove the exact sequence (1.3) in §6.2. We finish the proof of Theorem 1.2 in §6.3.

After the work presented in this paper was finished, we learned from Colmez that he had a
proof of Conjecture 1.1 for all p and all trianguline representations ofGQp . The strategy of his

proof is different from ours. He constructs the map Π(s)an →
Ä
Ind

GL2(Qp)

B(Qp) δ1 ⊗ δ2(x|x|)−1
ä

an
directly by computing the module de Jacquet dual of Π(s)an. We refer the reader to his paper
[10] for more details.

Notation and conventions

Let p be a prime number, and let vp denote the p-adic valuation on Qp, normalized
by vp(p) = 1; the corresponding norm is denoted by | · |. Let GQp

denote Gal(Qp/Qp)

for simplicity. Let χ : GQp
→ Z×p be the p-adic cyclotomic character. The kernel of χ is

H = Gal(Qp/Qp(µp∞)), and let Γ = Gal(Qp(µp∞)/Qp). For any a ∈ Z×p , let σa be the
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unique element in Γ such that χ(σa) = a. For any positive integer h, let Γh = χ−1(1+phZp).
If we regard χ as a character of Q×p via the local Artin map, then it is equal to ε(x) = x|x|.
Throughout this paper, we fix a finite extension L of Qp. We denote by OL the ring of inte-
gers of L, and by kL the residue field. Let T̂ (L) be the set of all continuous characters
δ : GQp → L×. For any δ ∈ T̂ (L), the Hodge-Tate weight w(δ) of δ is defined

by w(δ) = log δ(u)
log u where u is any element of Q×p \ µp∞ . For any L-linear representation

V of GQp , we denote by V̌ the Tate dual V ∗(ε) of V . For any L ∈ L, let logL : Q×p → L be

the homomorphism defined by logL (p)=1 and logL (x) = −
+∞∑
n=1

(1−x)n

n when |x − 1| < 1.

We put log∞ = vp. Hence logL is defined for all L ∈ P1(L).
Let B be the subgroup of upper triangular matrices of GL2, let P = [ ∗ ∗0 1 ] be the mirabolic

subgroup of GL2, let T be the subgroup of diagonal matrices of GL2, and let Z be the center
of GL2. Put w = [ 0 1

1 0 ]. Let ReptorsGL2(Qp) be the category of smooth OL[GL2(Qp)]-mod-
ules which are of finite lengths and admit central characters. Let Rep OL

GL2(Qp) be the cate-
gory of OL[GL2(Qp)]-modules Π which are separated and complete for the p-adic topology,
p-torsion free, and Π/pnΠ ∈ ReptorsGL2(Qp) for any n ∈ N.
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2. Preliminaries on (ϕ,Γ)-modules

2.1. Dictionary of p-adic functional analysis

Let OE be the ring of Laurent series f =
∑
i∈Z aiT

i, where ai ∈ OL, such that vp(ai)→∞
as i→ −∞. Let E = OE [1/p] be the fraction field of OE .

For any r ∈ R+ ∪ {+∞}, let E ]0,r] be the ring of Laurent series f =
∑
i∈Z aiT

i, with
ai ∈ L, such that f is convergent on the annulus 0 < vp(T ) ≤ r. For any 0 < s ≤ r ≤ +∞,
we define the valuation v{s} on E ]0,r] by

v{s}(f) = inf
i∈Z
{vp(ai) + is} if s 6=∞; v{∞}(f) = vp(f(0)).

We provide E ]0,r] with the Fréchet topology defined by the family of valuations
{v{s}|0 < s ≤ r}; then E ]0,r] is complete. We equip the Robba ring R =

⋃
r>0 E ]0,r]
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with the inductive limit topology. We denote E ]0,+∞], the ring of analytic functions on the
open unit disk, by R+.

Let E † be the subring of overconvergent elements of E , i.e. E † is the set of f ∈ E such
that f(T ) is convergent over some annulus 0 < vp(T ) ≤ r. Let E (0,r] = E † ∩ E ]0,r]. We
equip E † =

⋃
r>0 E (0,r] with the inductive limit topology. We denote E (0,∞] = OL[[T ]][1/p]

by E +, and let OE + = OL[[T ]].

LetR denote any of OE + ,E +, OE ,E ,E †,R+ and R. We equip the ringRwith commuting
continuous actions of ϕ and Γ defined by

(2.1) ϕ(f(T )) = f((1 + T )p − 1), γ(f(T )) = f((1 + T )χ(γ) − 1), γ ∈ Γ.

If we view R as a ϕ(R)-module, then R is freely generated by {(1 + T )i|i = 0, . . . , p − 1}.

Thus for any y ∈ R, we may write y =
p−1∑
i=0

(1 + T )iϕ(yi) for some uniquely determined

y0, . . . , yp−1 ∈ R, and we define the operator ψ : R → R by setting ψ(y) = y0. It
follows directly from the definition that ψ is a left inverse to ϕ, and that ψ commutes with
the Γ-action. For any f =

∑
i∈Z aiT

i ∈ R, we define the residue of the 1-form ω = f · dT
as res(ω) = a−1; and for any f ∈ R, we define res0(f) = res(f dT

1+T ).

We denote by C 0(Zp, L) the space of continuous functions on Zp with values in L; this is
an L-Banach space equipped with the supremum norm. Let LA(Zp, L) denote the space of
locally analytic functions on Zp with values in L. The classical results of Mahler and Amice
assert that the set of functions {

(
x
n

)
}n∈N constitutes an orthogonal basis of C 0(Zp, L), and

that for f =
∑
n∈N an(f)

(
x
n

)
∈ C 0(Zp, L), f ∈ LA(Zp, L) if and only if there exists some

r > 0 such that vp(an(f))− rn→ +∞ as n→ +∞.

For any u ≥ 0, we denote by C u(Zp, L) the space of all C u-functions on Zp; this is an
L-Banach space (see [8] for more details). We have LA(Zp, L) ⊂ C u(Zp, L) ⊆ C 0(Zp, L),
and that LA(Zp, L) is dense in C u(Zp, L) for any u ≥ 0.

We denote by D(Zp, L),Du(Zp, L) the topological dual of LA(Zp, L),C u(Zp, L) respec-
tively. Note that the natural map Du(Zp, L)→ D(Zp, L) is injective since LA(Zp, L) is dense
in C u(Zp, L). The elements of D(Zp, L) are called distributions on Zp. A distribution µ is
called of order u if µ ∈ Du(Zp, L). We define the actions of ϕ,ψ and Γ on D(Zp, L) by the
formulas∫

Zp

fϕ(µ) =

∫
Zp

f(px)µ,

∫
Zp

fψ(µ) =

∫
pZp

f(p−1x)µ,

∫
Zp

fσa(µ) =

∫
Zp

f(ax)µ

for any f ∈ LA(Zp, L), µ ∈ D(Zp, L) and a ∈ Z×p .

The Amice transformation A on D(Zp, L) is defined by

A : D(Zp, L)→ L[[T ]], A (µ) =

∫
Zp

(1 + T )xµ(x) =
+∞∑
n=0

Tn
∫

Zp

(
x

n

)
µ.

It is an immediate consequence of the results of Mahler and Amice that the Amice transfor-
mation µ 7→ A (µ) induces topological isomorphisms from D0(Zp, L) and D(Zp, L) to E +

and R+ respectively which are compatible with the actions of ϕ,ψ and Γ.

We denote by LAc(Qp, L) the space of compactly supported L-valued locally analytic
functions on Qp, and denote by D(Qp, L) the topological dual of LAc(Qp, L). The elements
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of D(Qp, L) are called distributions on Qp. For any µ ∈ D(Qp, L), let µ(n) be the distribution
on Zp defined by ∫

Zp

fµ(n) =

∫
p−nZp

f(pnx)µ

for any f ∈ LA(Zp, L). It follows that ψ(µ(n+1)) = µ(n), and that any sequence of
distributions (µ(n))n∈N on Zp so that ψ(µ(n+1)) = µ(n) uniquely determines a distribution µ
on Qp. The Amice transformation A (µ) for µ ∈ D(Qp, L) is then defined to be the sequence
(A (µ(n)))n∈N.

A distribution µ on Qp is said to be of order u if all µ(n) are of order u. The distribution µ
is said to be globally of order u, if there is a constantCu(µ) such that vDu(µ(n)) ≥ nu+Cu(µ)

for all n ∈ N. Let Du(Qp, L) denote the space of distributions on Qp globally of order u.

2.2. The category of (ϕ,Γ)-modules

Keep notations as in §2.1. We define a (ϕ,Γ)-module over R to be a finite free
R-module D equipped with commuting continuous semilinear ϕ,Γ-actions. When R = OE ,
the (ϕ,Γ)-module D is called étale if ϕ(D) generates D as an OE -module. When R = E , the
(ϕ,Γ)-module D is called étale if it arises by base change from an étale (ϕ,Γ)-module over
OE . A (ϕ,Γ)-moduleD over E † is called étale ifD⊗E † E is étale as an (ϕ,Γ)-module over E .
A (ϕ,Γ)-module D over R is called étale if the underlying ϕ-module is pure of slope 0 in the
sense of Kedlaya’s slope theory [15].

E 2.1. – For any δ ∈ T̂ (L), we define R(δ) to be the rank 1 (ϕ,Γ)-module
over R which has an R-base e satisfying

(2.2) ϕ(e) = δ(p)e, σa(e) = δ(a)e, a ∈ Z×p .

Such an element e, which is unique up to a nonzero scalar (this is because Rϕ=1,Γ=1 = L or
OL), is called a standard basis of R(δ).

Let V be a d-dimensional L-linear representation of GQp
, and let T be a GQp

-invariant

OL-lattice of V . Let Ê ur be the p-adic completion of the maximal unramified extension

of E , and let Ôur
E be the ring of integers of Ê ur. The ϕ,Γ-actions on E naturally extend to

continuous actions, which we again denote by ϕ,Γ respectively, on Ê ur. We define

D(T ) = (T ⊗ OE
Ôur

E )H (resp. D(V ) = (V ⊗E Ê ur)H),

which is a (ϕ,Γ)-module over OE (resp. E ). We define D†(V ) to be the maximal finite
dimensional ϕ,Γ-stable E †-subspace of D(V ), and we define Drig(V ) = D†(V )⊗E † R; then
D†(V ) and Drig(V ) are (ϕ,Γ)-modules over E † and R respectively.

T 2.2 (Fontaine [14], Cherbonnier-Colmez [6], Berger [1], [2])

D(T ) (resp. D(V ), D†(V ), Drig(V )) is an étale (ϕ,Γ)-module of rank d. Furthermore, the
functor T 7→ D(T ) (resp. V 7→ D(V ), V 7→ D†(V ), V 7→ Drig(V )) is a rank preserving
equivalence of categories from the category of OL-linear (resp. L-linear) GQp -representations
to the category of étale (ϕ,Γ)-modules over OE (resp. E , E †, R).
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LetD be a (ϕ,Γ)-module overR. IfD is isomorphic to itsϕ-pullback, then for any y ∈ D,
we may write y =

∑p−1
i=0 (1 + T )iϕ(yi) for some uniquely determined yi ∈ D. We define

ψ : D → D by setting ψ(y) = y0. It follows that ψ commutes with Γ and satisfies

ψ(aϕ(x)) = ψ(a)x, ψ(ϕ(a)x) = aψ(x)

for any a ∈ R, x ∈ D. In particular, ψ is a left inverse to ϕ. Set RespZp
(y) = ϕψ(y),

ResZ×p (y) = (1−ϕψ)(y), and denote RespZp
(D), ResZ×p (D) byD�pZp,D�Z×p respectively.

For an étale (ϕ,Γ)-module D over OE , A treillis of D is a compact OE + -submodule N
which OE -linearly generates D. Colmez [11] proves that the set of ψ-stable treillis admits a
unique minimal element D\,and that ψ is surjective on D\. It follows from the uniqueness
that D\ is stable under the Γ-action. In the simplest case when D = OE , we have D\ = OE + .
For an étale (ϕ,Γ)-module D over E , if D is the base change of an étale (ϕ,Γ)-module D0

over OE , we define D\ = D\
0[1/p] which is independent of the choice of D0.

We define the ϕ,Γ-actions on the rank 1 R-module R dT
1+T formally by

ϕ(x
dT

1 + T
) = ϕ(x)

dT

1 + T
, γ(x

dT

1 + T
) = χ(γ)γ(x)

dT

1 + T
, x ∈ R.

Then the rank 1 (ϕ,Γ)-module R dT
1+T is isomorphic to R(ε). For any étale (ϕ,Γ)-module D

overR, the étale (ϕ,Γ)-module Ď = HomR(D,R dT
1+T ) is called the Tate dual ofD. We define

the pairing {·, ·} : Ď × D → L by setting {x, y} = res0(σ−1(x)(y)). It follows that {·, ·} is
perfect and satisfies

(2.3) {x, ϕ(y)} = {ψ(x), y}.

3. p-adic local Langlands correspondence for GL2(Qp)

3.1. Operator wδ

For an étale (ϕ,Γ)-module D over OE or E and a continuous character δ : Q×p → O×L ,
Colmez constructs the involution wδ : D � Z×p → D � Z×p defined by

wδ(z) = lim
n→+∞

∑
i∈Z×p mod pn

δ(i−1)(1 + T )iσ−i2 · ϕnψn((1 + T )−i
−1

z).(3.1)

Note that the right hand side of (3.1) only involves δ|Z×p . Since δ(Z×p ) ⊆ O×L for any

δ ∈ T̂ (L), (3.1) is still convergent for any D which is a twist of an étale (ϕ,Γ) one and
δ ∈ T̂ (L). From now on, we suppose D is a twist of an étale (ϕ,Γ)-module over OE or
E and δ ∈ T̂ (L), and define wδ : D � Z×p → D � Z×p by (3.1). Let D†, Drig denote the
(ϕ,Γ)-modules over E †,R corresponding to D.

E 3.1. – It follows from (3.1) that OE + � Z×p ⊂ OE � Z×p is stable under wδ.
By [11, V], one can describe the wδ-action on ( OE +)ψ=0 more explicitly. Namely, for any
f ∈ C 0(Zp, L) and z ∈ O+

E � Z×p ,

(3.2)
∫

Z×p
f(x)A −1(wδ(z)) =

∫
Z×p
δ(x)f(1/x)A −1(z).
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For any abelian profinite group C, we denote by ΛC the complete group algebra

OL[[C]] = lim←− OL[C/C ′]

where C ′ goes through all open subgroups of C. If C is pro-p cyclic, and if c is a topological
generator of C, then ΛC is canonically isomorphic to the ring consisting of g(c − 1) for all
g(T ) ∈ OL[[T ]], and we further define R(C) to be the ring consisting of g(c − 1) for all
g(T ) ∈ R for anyR of E +, E †, O†E , E , OE , R+ and R; this is independent of the choice of c.
Now we choose d ≥ 1 such that Γd is pro-p cyclic (in fact, we can choose d = 1 if p is odd,
and d = 2 if p = 2), then we define R(Γ) = ΛΓ ⊗ΛΓd

R(Γd) which is independent of the
choice of d. The topological rings OE (Γ) or E (Γ), E †(Γ) and R(Γ) naturally act onD�Z×p ,
D† � Z×p and Drig � Z×p respectively. The following Lemma follows from the proof of [12,
Lemme V.2.2].

L 3.2. – For any γ ∈ Γ and z ∈ D � Z×p , wδ(γ(z)) = δ(χ(γ))γ−1(wδ(z)).

Let ιδ : R(Γ) → R(Γ) denote the involution defined by γ → δ(χ(γ))γ−1. It is an
immediate consequence of Lemma 3.2 that the action of wδ on D� Z×p is OE (Γ)-semilinear
with respect to ιδ, i.e.

(3.3) wδ(λ(z)) = ιδ(λ)(wδ(z)), λ ∈ OE (Γ), z ∈ D � Z×p .

Let η ∈ T̂ (L).

P 3.3. – E +(η)�Z×p is a free E +(Γ)-module of rank 1. Furthermore, we have

R+(η) � Z×p = R+(Γ)⊗E +(Γ) E +(η) � Z×p , E †(η) � Z×p = E †(Γ)⊗E +(Γ) E +(η) � Z×p .

As a consequence, E †(η) � Z×p is stable under wδ.

Proof. – It suffices to treat the case η = 1. By [12, Lemme V.1.16], E † � Z×p is a free
E †(Γ)-module of rank 1 generated by 1+T . By [18, B.2.8], R+ �Z×p is a free R+(Γ)-module
also generated by 1 + T . We thus deduce that E + � Z×p = (E †)ψ=0 ∩ (R+)ψ=0 is a free
E +(Γ)-module generated by 1 + T . The last assertion follows from (3.3) and the fact that
E + � Z×p is stable under wδ.

3.2. Construction of the correspondence

We define

D �δ P1 =
¶
z = (z1, z2) ∈ D ×D | ResZ×p (z2) = wδ(ResZ×p (z1))

©
,

and we equip D �δ P1 with the subspace topology of D ×D.

P 3.4. – There exists a unique continuous action of GL2(Qp) on D �δ P1

satisfying the following conditions:

(i) w(z1, z2) = (z2, z1);
(ii) if a ∈ Q×p , then [ a 0

0 a ] (z1, z2) = (δ(a)z1, δ(a)z2);
(iii) if a ∈ Z×p , then [ a 0

0 1 ] (z1, z2) = (σa(z1), δ(a)σa−1(z2));
(iv) if z = (z1, z2) and if z′ =

[
p 0
0 1

]
(z), then RespZp

z′ = ϕ(z1) and ResZp
(wz′) =

δ(p)ψ(z2);
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(v) for b ∈ pZp, if z = (z1, z2) and if z′ = [ 1 b
0 1 ] z, then ResZp

z′ = [ 1 b
0 1 ] z1 and

RespZp
(wz′) = ub(RespZp

(z2)), where

ub = δ(1 + b)
[

1 −1
0 1

]
◦ wδ ◦

î
(1+b)−2 b(1+b)−1

0 1

ó
◦ wδ ◦

[
1 1/(1+b)
0 1

]
.

Proof. – It is easy to see that the matrices given in the proposition generate GL2(Qp).
This implies the uniqueness. The existence follows from [12, Proposition II.1.8]. (Its proof
applies to our more general situation.)

We extend {·, ·} : Ď ×D → L to a pairing {·, ·}P1 : (Ď �δ−1 P1) × (D �δ P1) → L by
setting

(3.4) {(z1, z2), (z′1, z
′
2)}P1 = {z1, z

′
1}+ {RespZp

(z2),RespZp
(z′2)}.

P 3.5. – The pairing {·, ·}P1 : (Ď �δ−1 P1)× (D �δ P1)→ L is perfect and
GL2(Qp)-equivariant.

Proof. – This follows immediately from [12, Théorème II.3.1].

Now Let D be of rank two. Then detD is of the form OE (δ′D) or E (δ′D) for some
δ′D ∈ T̂ (L). Let δD = ε−1δ′D, and we denote wδD

, D �δD
P1 by wD, D � P1 for simplicity.

For z = (z1, z2) ∈ D � P1, set ResZp
(z1, z2) = z1. We then define

D\ � P1 = {z ∈ D � P1 | ResZp(
[
pn 0
0 1

]
z) ∈ D\,∀n ∈ N}.

T 3.6 ([12, Théorème II.3.1]). – Let D be an irreducible rank 2 étale (ϕ,Γ)-mod-
ule over OE . Then the following hold:

(i) The submodule D\ � P1 of D � P1 is stable under the action of GL2(Qp).
(ii) The quotient GL2(Qp)-representation Π(D) = D � P1/D\ � P1 is an object

of Rep OL
GL2(Qp), and has central character δD. The continuous GL2(Qp)-repre-

sentation D\ � P1 is naturally isomorphic to Π(D)∗ ⊗ δD. Hence we have the following
exact sequence

0 −→ Π(D)∗ ⊗ δD −→ D � P1 −→ Π(D) −→ 0.

Note that Ď ∼= D(δ−1
D ) because D is of rank two. Hence Π(D)∗ ⊗ δD is isomorphic to

(Π(Ď)⊗ δD)∗ ⊗ δD = Π(Ď)∗.

C 3.7. – IfD is an irreducible étale (ϕ,Γ)-module of rank 2 over E , thenD\�P1

is stable under the GL2(Qp)-action and the quotient representation Π(D) = D� P1/D\ � P1

is an admissible unitary representation of GL2(Qp). Moreover,D\�P1 is naturally isomorphic
to the contragredient representation Π(Ď)∗ .
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3.3. Locally analytic vectors

Now suppose that D is a twist of an irreducible rank 2 étale (ϕ,Γ)-module over E . The
following proposition follows immediately from ([12, Lemme V.2.4]).

P 3.8. – D† � Z×p is stable under the action of wD.

By [12, Théorème V.1.12(iii)], we have Drig � Z×p = R(Γ) ⊗E †(Γ) (D† � Z×p ). Then
for ∆ = R(η), ∗ = δ, or ∆ = Drig, ∗ = δD, we extend the w∗-action to ∆ � Z×p by setting

w∗(λ⊗ z) = ι∗(λ)⊗ w∗(z).

For ∆ = E †(η),R+(η),R(η), ∗ = δ, or ∆ = D†, Drig, ∗ = δD, we set

∆ �∗ P1 = {(z1, z2) ∈ ∆×∆,ResZ×p (z2) = w∗(ResZ×p (z1))},

and we equip ∆�∗P1 with the subspace topology of ∆×∆. Henceforth we denoteD†�δD
P1,

Drig �δD
P1 by D† � P1, Drig � P1 for simplicity.

By Proposition 3.4, it is clear that both E †(η)�δP
1 andD†�P1 are stable under GL2(Qp).

Since D† is dense in Drig for any (ϕ,Γ)-module D over E , we extend the GL2(Qp)-actions
on E †(η) �δ P1 and D† � P1 to continuous GL2(Qp)-actions on R(η) �δ P1 and Drig � P1

which satisfy the formulas listed in Proposition 3.4 by continuity. This yields the following
proposition.

P 3.9. – There exists a unique continuous action of GL2(Qp) on ∆ �∗ P1

satisfying the formulas listed in Proposition 3.4.

For ∆ = R(η), ∗ = δ, or ∆ = Drig, ∗ = δD, we set the pairing

{·, ·}P1 : ∆̌ �∗−1 P1 ×∆ �∗ P1 → L

by formula (3.4).

P 3.10. – The pairing {·, ·}P1 : ∆̌ �∗−1 P1 × ∆ �∗ P1 → L is perfect and
GL2(Qp)-equivariant.

Proof. – The restriction of {·, ·}P1 on E †(η̌)�δ−1 P1×E †(η)�δP1 or Ď†�P1×D†�P1

is GL2(Qp)-equivariant by Proposition 3.5. Hence {·, ·}P1 itself is GL2(Qp)-equivariant by
the density of E †(η)�δP1 orD†�P1. The perfectness of {·, ·}P1 follows from the perfectness
of {·, ·} on ∆̌×∆ and ∆̌ � pZp ×∆ � pZp.

If D is étale, it follows from [11, Corollaire II.7.2] that D\ ⊂ D†; hence we may view
D\�P1 as a submodule ofDrig �P1. Colmez shows that the inclusion Π(Ď)∗ = D\�P1 ⊂
Drig � P1 extends naturally to a GL2(Qp)-equivariant embedding (Π(Ď)an)∗ ↪→ Drig � P1,
and he further shows that the image of this embedding, which is denoted byD\

rig �P1, is the
orthogonal complement of Ď\�P1 under the pairing {·, ·}P1 : Ďrig�P1×Drig�P1 → L ([12,
Remarque V.2.21(ii)]). The following proposition is the key ingredient for our determination
of locally analytic vectors of unitary principal series.

P 3.11 ([12, Remarque V.2.21(i)]). – D\
rig � P1 and Ď\

rig � P1 are orthogonal
complements of each other under the pairing {·, ·}P1 : Ďrig � P1 ×Drig � P1 → L.
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4. Unitary principal series and 2-dimensional trianguline representations

4.1. 2-dimensional irreducible trianguline representations

A (ϕ,Γ)-module over R is called triangulable if it is a successive extensions of rank 1
(ϕ,Γ)-modules over R; an L-linear representation V of GQp is called trianguline if Drig(V )

is triangulable.

P 4.1 ([7, Proposition 3.1]). – If D is a rank 1 (ϕ,Γ)-module over R, then
there exists a unique δ ∈ T̂ (L) such that D is isomorphic to R(δ).

It follows that if V is a 2-dimensional irreducible trianguline representation, then Drig(V )

sits in a short exact sequence

(4.1) 0 −→ R(δ1) −→ Drig(V ) −→ R(δ2) −→ 0

for some δ1, δ2 ∈ T̂ (L). Furthermore, we have that (4.1) is non-split by Kedlaya’s slope
theory. Therefore V is uniquely determined by the triple (δ1, δ2, c) where

c ∈ Proj(Ext1(R(δ2),R(δ1))) = Proj(H1(R(δ1δ
−1
2 )))

is the element representing the extension (4.1). Let

S = {(δ1, δ2, c)|δi ∈ T̂ (L), c ∈ Proj(H1(R(δ1δ
−1
2 )))}

be the set of all such triples; then each element of S naturally defines a rank 2 triangulable
(ϕ,Γ)-module: the non-split extension of R(δ2) by R(δ1) defined by c. In the rest of this
section we assume p > 2. The following calculation is due to Colmez.

P 4.2 ([7, Théorème 2.9]). – (i) If δ = x−k or xk+1|x| for k ∈ N, then
dimLH

1(R(δ)) = 2.
(ii) Otherwise, dimL(R(δ)) = 1.

Colmez further specifies an explicit basis of H1(R(δ)) in case (i), and identifies
Proj(H1(R(δ))) with P1(L) via this basis. By this identification, we may write any s ∈ S

as s = (δ1, δ2,L ) where L ∈ P1(L) if δ1δ−1
2 = x−k or xk+1|x| for some k ∈ N, or

L =∞ otherwise. Let D(s) denote the rank 2 triangulable (ϕ,Γ)-module defined by s. We
set š ∈ S to be the triple (δ̌1, δ̌2,L ) = (εδ−1

2 , εδ−1
1 ,L ). Then Ď(s) is isomorphic to D(š)

under Colmez’s identification.
Let S∗ be the set of all s = (δ1, δ2,L ) ∈ S such that

vp(δ1(p)) + vp(δ2(p)) = 0, vp(δ1(p)) > 0.

For s ∈ S∗, set u(s) = vp(δ1(p)) = −vp(δ2(p)), w(s) = w(δ1)−w(δ2), δs = δ1δ
−1
2 (x|x|)−1,

and we define

S ng
∗ = {s ∈ S∗ | w(s) is not a positive integer},

S cris
∗ = {s ∈ S∗ | w(s) is a positive integer, u(s) < w(s),L =∞},
S st
∗ = {s ∈ S∗ | w(s) is a positive integer, u(s) < w(s),L 6=∞},

and Sirr = S ng
∗
∐

S cris
∗

∐
S st
∗ . Note that if s ∈ S st

∗ , we must have δs = xk−1 for some
k ∈ Z+.
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P 4.3 ([7, Proposition 3.5, 3.7]). – If s ∈ Sirr, then D(s) is étale, and the
correspondingL-linear representation, which we denote byV (s), is irreducible. Conversely, every
2-dimensional irreducible trianguline representation is isomorphic to V (s) for some s ∈ Sirr.
Moreover, for s = (δ1, δ2,L ), s′ = (δ′1, δ

′
2,L

′) ∈ Sirr, if δ1 = δ′1, then V (s) ∼= V (s′) if and
only if δ2 = δ′2 and L = L ′; if δ1 6= δ′1, then V (s) ∼= V (s′) if and only if s, s′ ∈ S cris

∗ and
δ′1 = xw(s)δ2, δ

′
2 = x−w(s)δ1.

We call s ∈ Sirr exceptional if s ∈ S cris
∗ and V (s) is not Frobenius semi-simple; this is

equivalent to δs = xk−1|x|−1 for some k ∈ Z+.

4.2. Unitary principal series

Throughout this subsection, let s = (δ1, δ2,L ) ∈ Sirr. Let C u(P1(δ)) be the L-vector
space of C u functions f : Qp → L such that δ(x)f(1/x)|Qp−{0} extends to a C u-function
on Qp. In other words, C u(s)(P1(δs)) is the L-vector space of functions f : Qp → L

satisfying:
• f |Zp is of class C u(s).

• δs(z)f(1/z)|Zp−{0} extends to a C u(s)-function on Zp.
We thus have an isomorphism

C u(s)(P1(δs)) ' C u(s)(Zp, L)⊕ C u(s)(Zp, L), f 7→ (f1, f2)

where f1(z) = f(pz) and f2 is the extension of δs(z)f(1/z). By this isomorphism, we may
equip C u(s)(P1(δs)) with a Banach space structure by defining

||f || = max
(
||f1||C u(s) , ||f2||C u(s)

)
.

We define a GL2(Qp)-representation B(s) on C u(s)(P1(δs)) by([
a b
c d

]
?s f

)
(x) = δ2(ad− bc)δs(−cx+ a)f

Å
dx− b
−cx+ a

ã
;

then B(s) is a Banach space representation. We define a subspace M(s) of B(s) as below:

– If δs 6= xk for any k ∈ N, we define M(s) to be the subspace generated by
{xi|0 ≤ i < u(s)} and {(x− a)−iδs(x− a)|a ∈ Qp, 0 ≤ i < u(s)}.

– If δs = xk−1 for some k ∈ Z+, let M(s)′ be the space of functions of the form

f =
∑
u∈U

λu(x− au)ju logL (x− au)

where U is a finite set, ju are integers between [k+1
2 ] and k, λu ∈ L and au ∈ Qp

such that deg(
∑
u∈U λu(x − au)ju) < u(s). By [5, Lemme 3.3.2], M(s)′ is a sub-

space of B(s). We define M(s) to be the subspace generated by M(s)′ and xi for
0 ≤ i ≤ k − 1.

An easy computation shows that M(s) is stable under GL2(Qp) in both cases. We set
Π(s) = B(s)/M̂(s) where M̂(s) is the closure of M(s) in B(s).

Let D\(s) denote (D(V (s)))\ for simplicity. We fix a standard basis e2 of R(δ2). For any
z ∈ D\(s)�P1, suppose that the image of ResZp

(
[
pn 0
0 1

]
z) in R(δ2) is z(n)

2 e2. The following
theorem follows from [12, Théorème IV.4.12].
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T 4.4. – For s ∈ Sirr non-exceptional and z ∈ D\(s) � P1, there exists µz ∈
Du(s)(Qp) such that

A (n)(µz) = (δ2(p))−nz
(n)
2 .

Furthermore, the map z 7→ µz is a GL2(Qp)-equivariant topological isomorphism fromD\(s)�
P1 to Π(š)∗.

We denote the converse of this isomorphism by As.

5. Locally analytic principal series and rank 1 (ϕ,Γ)-modules

5.1. Locally analytic principal series

For any δ ∈ T̂ (L), we denote by LA(P1(δ)) the L-vector space of locally analytic
functions f : Qp → L such that δ(x)f(1/x)|Qp−{0} extends to a locally analytic function
on Qp. As in the case of C u(P1(δ)), for any f ∈ LA(P1(δ)), if we set f1(pz) = f |pZp and f2

to be the extension of δs(x)f(1/x)|Zp−{0}, then the map f 7→ f1⊕f2 induces an isomorphism
LA(P1(δ)) ∼= LA(Zp, L)⊕LA(Zp, L). We then equip LA(P1(δ)) with the topology induced
from LA(Zp, L)⊕ LA(Zp, L).

For any pair (δ1, δ2) ∈ T̂ (L) × T̂ (L), let Σ̃(δ1, δ2) denote the locally analytic parabolic
inductionÄ

Ind
GL2(Qp)

B(Qp) δ2 ⊗ δ1ε−1
ä

an
= {locally analytic functions F : GL2(Qp)→ L such

that F (bg) = (δ2 ⊗ δ1ε−1)(b)F (g) for all b ∈ B(Qp)},

which is equipped with the left GL2(Qp)-action (gF )(g′) = F (g′g) for any g, g′ ∈ GL2(Qp).
Put δ = δ1δ

−1
2 ε−1. We may identify the underlying topological space of Σ̃(δ1, δ2) with

LA(P1(δ)) by the map
F 7→ f(x) := F (

[
0 1
−1 x

]
)

for anyF ∈ Σ̃(δ1, δ2). In addition, the corresponding GL2(Qp)-action on LA(P1(δ)) is given
by the formula

(5.1)
([
a b
c d

]
· f
)

(x) = δ2(ad− bc)δ(−cx+ a)f

Å
dx− b
−cx+ a

ã
.

If k = w(δ1δ
−1
2 ) = w(δ) + 1 is a positive integer, then the k-th differential map

Ik : LA(P1(δ))→ LA(P1(x−2kδ)), f(x) 7→
Å

d

dx

ãk
f(x),

induces an intertwining between Σ̃(δ1, δ2) and Σ̃(x−kδ1, x
kδ2). The kernel of Ik, which

consists of locally polynomial functions of degree ≤ k − 1, is isomorphic to

(5.2) (δ2 ◦ det)⊗ Symk−1L2 ⊗ Ind
GL2(Qp)

B(Qp) (1⊗ (x−k+1δ))sm

as a locally analytic representation. Moreover, if δ = xk−1, the L-vector subspace generated
by {xi|0 ≤ i ≤ k − 1} is GL2(Qp)-invariant, and is isomorphic to (δ2 ◦ det) ⊗ Symk−1L2

as a GL2(Qp)-representation. The quotient of ker Ik by this subspace is isomorphic to
(δ2 ◦ det)⊗ Symk−1L2 ⊗ St.
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We define

(5.3) Σ(δ1, δ2) =

{
Σ̃(δ1, δ2)/(δ2 ◦ det)⊗ Symk−1L2 if δ = xk−1 for some integer k ≥ 1;

Σ̃(δ1, δ2) otherwise.

The following proposition, which follows by the main results of [21], [20], determines the
Jordan-Hölder series of Σ(δ1, δ2).

P 5.1. – With notations as above, the following are true.

(i) If w(δ) /∈ N, then Σ(δ1, δ2) = Σ̃(δ1, δ2) is a topological irreducible locally analytic
representation of GL2(Qp).

(ii) If w(δ) ∈ N and δ 6= xk−1, then Ik is surjective, and Σ(δ1, δ2) = Σ̃(δ1, δ2) is a non-split
extension of Σ̃(x−kδ1, x

kδ2) by (δ2 ◦det)⊗Symk−1L2⊗ Ind
GL2(Qp)

B(Qp) (1⊗ (x−k+1δ))sm,

and both Σ̃(x−kδ1, x
kδ2) and (δ2 ◦ det) ⊗ Symk−1L2 ⊗ Ind

GL2(Qp)

B(Qp) (1 ⊗ (x−k+1δ))sm

are topological irreducible.
(iii) If δ = xk−1 for some integer k ≥ 1, then Σ(δ1, δ2) is a non-split extension

of Σ̃(x−kδ1, x
kδ2) by (δ2 ◦ det) ⊗ Symk−1L2 ⊗ St, and both Σ̃(x−kδ1, x

kδ2) and
(δ2 ◦ det)⊗ Symk−1L2 ⊗ St are topological irreducible.

5.2. Σ̃(η−1ε, δ−1η)∗ ∼= R+(η) �δ P1.

For any δ1, δ2 ∈ T̂ (L), let GL2(Qp) acts on Σ̃(δ1, δ2)∗ by the formula 〈f, g · µ〉 =

〈g−1 · f, µ〉 for any f ∈ Σ̃(δ1, δ2), µ ∈ Σ̃(δ1, δ2)∗ and g ∈ GL2(Qp). Thus by (5.1), we
have

(wf)(x) = η(−1)δη−2(x)f(1/x)

for any f ∈ Σ̃(η−1ε, δ−1η). Therefore, by the description of LA(P1(δ)) given in §5.1, we see
that the map µ 7→ (µ|Zp

, wµ|Zp
) is a homeomorphism from Σ̃(η−1ε, δ−1η)∗ to

(5.4) {(µ1, µ2) ∈ D(Zp, L)⊕D(Zp, L)|
∫

Z×p
f(x)µ2 =

∫
Z×p
η(−1)(δη−2)(x)f(1/x)µ1},

where the latter object is equipped with the subspace topology of D(Zp, L)⊕D(Zp, L).

We fix a standard basis eη ∈ E +(η).

L 5.2. – A (wµ|Z×p )⊗ eη = wδ(A (µ|Z×p )⊗ eη) for any µ ∈ Σ̃(η−1ε, δ−1η)∗.

Proof. – The case A (µ|Z×p ) ∈ E + � Z×p follows directly from (3.2) and (5.4). Since
E + is dense in R+, we deduce the case A (µ|Z×p ) ∈ R+ � Z×p by the continuity of w and
A . We then conclude the general case by Proposition 3.3.

As a consequence, Aδ,η(µ) = (A (µ|Zp
)⊗eη,A (wµ|Zp

)⊗eη) is an element of R+(η)�δP
1.

P 5.3. – The map Aδ,η : Σ̃(η−1ε, δ−1η)∗ → R+(η) �δ P1 is a
GL2(Qp)-equivariant topological isomorphism.

4 e SÉRIE – TOME 45 – 2012 – No 1



LOCALLY ANALYTIC VECTORS 181

Proof. – By the description of Σ̃(η−1ε, δ−1η)∗ given in (5.4), one sees easily that Aη,δ is
an embedding. On the other hand, for any z = (z1 ⊗ eη, z2 ⊗ eη) ∈ R+(η) �δ P1, if we
put µ = A −1(z1) + wA −1(RespZp

(µ2)), then Aη,δ(µ) = z. Hence Aη,δ is a topological
isomorphism.

To prove that Aη,δ is GL2(Qp)-equivariant, we only need to show

(5.5) Aη,δ(g · µ) = g ·Aη,δ(µ)

for (1) g = [ 0 1
1 0 ]; (2) g = [ a 0

0 a ] , a ∈ Q×p ; (3) g = [ a 0
0 1 ] , a ∈ Z×p ; (4) g =

[
p 0
0 1

]
; (5)

g = [ 1 b
0 1 ] , b ∈ pZp.

Case (1) is trivial. Both Σ̃(η−1ε, δ−1η)∗ and R+(η) �δ P1 have central characters δ; this
proves (2). For any a ∈ Z×p , we have∫

Zp

f(x)([ a 0
0 1 ])µ) =

∫
Zp

(
[
a−1 0

0 1

]
f(x))µ =

∫
Zp

η(a−1)f(ax)µ =

∫
Zp

f(x)(η(a−1)(σa(µ)));

this yields (3). For case (4), we have∫
pZp

f(x)(
[
p 0
0 1

]
µ) =

∫
pZp

î
p−1 0

0 1

ó
(f(x)1Zp

(x))µ

=

∫
Zp

η(p)f(px)µ

=

∫
Zp

f(x)(η(p)ϕ(µ|Zp
)),

yielding
[
p 0
0 1

]
µ|pZp = η(p)ϕ(µ|Zp). This implies

(5.6) RespZp
(Aδ,η(

[
p 0
0 1

]
µ)) = ϕ(ResZp

(Aδ,η(µ))).

A similar computation shows that

ResZp
(w(Aδ,η(

[
p 0
0 1

]
µ))) = ResZp

(Aδ,η(
[

1 0
0 p

]
wµ)) = δ(p)ResZp

(Aδ,η(
î
p−1 0

0 1

ó
wµ))

= δ(p)ψ(ResZp
((Aδ,η(wµ)))) = δ(p)ψ(ResZp

(w(Aδ,η(µ)))).
(5.7)

This proves (4).

For case (5), first note that∫
f(x)

[
1 b′

0 1

]
µ =

∫ [
1 −b′
0 1

]
f(x)µ =

∫
f(x+ b′)µ.

This implies

(5.8) A (
[

1 b′

0 1

]
µ|U ) =

[
1 b′

0 1

]
A (µ|U )

for any b′ ∈ U ⊆ Zp. Hence ResZp(Aδ,η([ 1 b
0 1 ]µ)) = [ 1 b

0 1 ] ResZp
(Aδ,η(µ)). It remains to

check that

(5.9) RespZp
(Aδ,η(w [ 1 b

0 1 ]µ)) = ub(RespZp
(Aδ,η(wµ))),

where

ub = δ(1 + b)
[

1 −1
0 1

]
◦ wδ ◦

î
(1+b)−2 b(1+b)−1

0 1

ó
◦ wδ ◦

[
1 1/(1+b)
0 1

]
.
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By (5.8), Lemma 5.2 and case (2),

ub(RespZp
(Aδ,η(wµ)))

= RespZp(Aδ,η(δ(1 + b)
[

1 −1
0 1

]
w
î

(1+b)−2 b(1+b)−1

0 1

ó
w
[

1 1/(1+b)
0 1

]
w
î

1/(1+b) 0
0 1/(1+b)

ó
µ))

= RespZp
(Aδ,η([ 0 1

1 b ]µ))

= RespZp
(Aδ,η(w [ 1 b

0 1 ]µ)).

This proves (5.12).

6. Determination of locally analytic vectors

6.1. Σ(s) and Emerton’s conjecture

We first recall the locally analytic representations Σ(k,L ) of GL2(Qp) which are origi-
nally constructed by Breuil (in the case L 6=∞). We refer the reader to [4, 2.1] and [13, 5.1]
for more details. Fix an integer k ≥ 2. Given L ∈ P1(L), let σ(L ) denote the representation
of B(Qp) on L2 = Le1⊕Le2 defined by

[
a b
0 d

]
e1 = e1,

[
a b
0 d

]
e2 = e1 + (logL a− logL d)e2.

One thus has a non-split extension

(6.1) 0 −→ 1 −→ σ(L ) −→ 1 −→ 0.

We put σ(k,L ) = σ(L )⊗ χk where χk : B(Qp)→ L× is the character
[
a b
0 d

]
7→ |ad| k−2

2 dk−2.
Twisting (6.1) by χk, and then taking locally analytic parabolic induction, one obtains an
exact sequence of locally analytic representations

(6.2) 0 −→ (Ind
GL2(Qp)

B(Qp) χk)an −→ (Ind
GL2(Qp)

B(Qp) σ(k,L ))an
sL−→ (Ind

GL2(Qp)

B(Qp) χk)an −→ 0.

Note that χk = |x| k−2
2 ⊗ xk−2|x| k−2

2 . Thus (Ind
GL2(Qp)

B(Qp) χk)an = Σ̃(xk−1|x| k2 , |x| k−2
2 ) which

has (|x| k−2
2 ◦ det) ⊗ Symk−2L2 as a subrepresentation following the discussion above. We

define

(6.3) Σ(k,L ) = s−1
L ((|x|

k−2
2 ◦ det)⊗ Symk−2L2)/(|x|

k−2
2 ◦ det)⊗ Symk−2L2.

One thus has an extension of locally analytic representations

(6.4) 0 −→ Σ(xk−1|x| k2 , |x|
k−2

2 ) −→ Σ(k,L ) −→ (|x|
k−2

2 ◦ det)⊗ Symk−2L2 −→ 0.

From now on, let s = (δ1, δ2,L ) ∈ Sirr. We define
(6.5)

Σ(s) =

{
Σ(k + 1,L )⊗ ((δ2|x|

2−k
2 ) ◦ det) if w(s) = k is a positive integer and δs = xk−1;

Σ̃(δ1, δ2) otherwise.

It follows that in the first case Σ(s) sits in the exact sequence

(6.6) 0 −→ Σ(δ1, δ2) −→ Σ(s) −→ (δ2 ◦ det)⊗ Symk−1L2 −→ 0.

Following [4, 2.2], we now give a geometric model of Σ(s) in the first case. Let
LA(P1(xk−1,L )) be the space of locally analytic functions H on Qp with values in L

such that

(6.7) H(z) = zk−1(
+∞∑
n=0

an
zn

) + P (z) logL (z),
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for |z| � 0, where an ∈ L, P (z) is a polynomial of degree ≤ k − 1 with coefficients in L.
Let GL2(Qp) act on this space by

([ a b
c d ]?sH)(z) = δ2(ad−bc)(−cz+a)k−1

ï
H
(
dz − b
−cz + a

)
− 1

2
P
(
dz − b
−cz + a

)
logL

Å
ad− bc

(−cz + a)2

ãò
.

Note that LA(P1(xk−1)) is exactly the subspace consisting of functions H with P = 0

in the expression (6.7). An easy computation shows that the L-vector subspace generated
by xi, 0 ≤ i ≤ k − 1, is GL2(Qp)-invariant. We define C(xk−1,L ) to be the quo-
tient of LA(P1(xk−1,L )) by this subspace. It turns out that the resulting representation
of GL2(Qp) on C(xk−1,L ) is topologically isomorphic to Σ(s), and the natural map
LA(P1(xk−1)) → C(xk−1,L ) gives rise to the inclusion Σ(δ1, δ2) ↪→ Σ(s). We denote
by C(xk−1) the image of the map LA(P1(xk−1)) → C(xk−1,L ). Then the quotient
C(xk−1,L )/C(xk−1) is a k-dimensional L-vector space spanned by 1D(∞,1) · xn logL x,
0 ≤ n ≤ k− 1, which is isomorphic to (δ2 ◦det)⊗Symk−1L2. By this geometric model, one
can show that (cf. [4, Lemme 2.4.2]) (δ2◦det)⊗Symk−1L2⊗St (resp. (δ2◦det)⊗Symk−1L2) is
the only topologically irreducible subrepresentation (resp. quotient representation) of Σ(s).
In particular, the extension (6.6) is non-split.

Although it is known to experts that there is a natural morphism Σ(s) → Π(s) which
realizes Π(s) as the universal completion of Σ(s), we cannot find a reference for this
result. For our purpose, we rephrase the work of Breuil and Emerton in the following
proposition to construct the desired morphism. We first note that the natural inclusion
LA(P1(δs)) ⊂ C u(s)(P1(δs)) induces a GL2(Qp)-equivariant continuous map

ιs : Σ̃(δ1, δ2)→ Π(s), f 7→ f̄ .

P 6.1. – For s ∈ Sirr non-exceptional, the GL2(Qp)-equivariant continuous
map ιs : Σ̃(δ1, δ2) → Π(s) induces an injection ιs : Σ(δ1, δ2) → Π(s). Moreover, in the case
when δs = xk−1 for some positive integer k, the map ιs : Σ(δ1, δ2) → Π(s) extends naturally
to an injective map ιs : Σ(s)→ Π(s) which is continuous and GL2(Qp)-equivariant.

Proof. – If δs = xk−1, since the subrepresentation (δ2 ◦det)⊗Symk−1L2, which consists
of polynomials of degree ≤ k− 1, is contained in M(s), ιs induces a map Σ(δ1, δ2)→ Π(s).
The injectivity of ιs on Σ(δ1, δ2) is proved by Emerton in [13, Lemma 6.7.2]. We rewrite his
proof in our set up as below for the reader’s convenience.

We first have that ιs(Σ(δ1, δ2)) is dense in Π(s) since LA(P1(δs)) is dense in C u(s)(P1(δs)).
Hence ιs is nonzero because Π(s) 6= 0 by Theorem 4.4. If w(δs) /∈ N, Σ(δ1, δ2) is topolog-
ically irreducible by Proposition 5.1. Thus ιs is either injective or zero. It therefore follows
that ιs must be injective.

In case w(δs) ∈ N, we put k = w(s) = w(δs) + 1. We see from Proposition 5.1 that all the
proper admissible subrepresentations of Σ(δ1, δ2) are contained in the image of ker(Ik). Thus
it reduces to show that ιs is injective on the image of ker(Ik). Note that k = w(s) > u(s).
Therefore LP[0,k−1](Zp, L), the space of locally polynomial functions of degree ≤ k − 1

on Zp, is dense in C u(s)(Zp, L) by the classical theorem of Amice-Vélu and Vishik. We thus
deduce that ιs(ker(Ik)) is dense in Π(s). It follows that ιs(ker(Ik)) is infinite dimensional
because Π(s) is infinite dimensional. If δs 6= xk−1, the only possible nontrivial quotient
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of ker(Ik) is the finite dimensional representation (δ2|x|−1◦det)⊗Symk−1L2). Hence ιs must
be injective on ker(Ik) in this case. If δs = xk−1, note that the image of ker(Ik) in Σ(δ1, δ2),
which is isomorphic to (δ2 ◦det)⊗Symk−1L2, is irreducible. It follows that ιs is injective on
the image of ker(Ik) as well.

Now suppose δs = xk−1. The extension of ιs to Σ(s) is actually due to Breuil who
identifies Π(s) with the universal unitary completion of Σ(s) and shows that the natural map
Σ(s)→ Π(s) is injective as long as Π(s) 6= 0 ([4, Proposition 4.3.5], [5, Corollaire 3.3.4]). We
briefly recall his construction of the natural map Σ(s)→ Π(s) as below. One easily sees that
Breuil’s map extends ιs. For any 0 ≤ i ≤ k − 1, and

li(x) =
∑
u∈U

λu(x− au)ju logL (x− au)

where U is a finite set, ju are integers between [k+1
2 ] and k − 1, λu ∈ L, au ∈ Qp

such that deg(
∑
u∈U λu(x − au)ju + xi) < u(s), it follows from [5, Lemme 3.3.2] that

li(x) + xi logL (x)1D(∞,n) ∈ C u(s)(P1(δs)) for n ∈ Z. We thus define∫
D(∞,n)

xi logL (x)µ(x) =

∫
P1(Qp)

(li(x) + xi logL (x)1D(∞,n))µ(x)

for anyµ ∈ Π(s)∗; this is independent of the choice of li(x) because the difference of any such
two l′is lies inM(s)′ which is killed by µ. By this way, we extend µ to an element ofC(δs,L )∗.
This yields a continuous GL2(Qp)-equivariant morphism Π(s)∗ → Σ(s)∗. Taking dual of
this morphism, we get Breuil’s map Σ(s)→ Π(s).

We are now in the position to reformulate Emerton’s conjecture for non-exceptional s.
Note that ιs(Σ(s)) ⊂ Π(s)an since Σ(s) is a locally analytic representation.

C 6.2. – For s ∈ Sirr non-exceptional, the cokernel of the inclusion ιs :

Σ(s) → Π(s)an is isomorphic to Σ̃(δ2, δ1) as locally analytic GL2(Qp)-representations. Thus
the space of locally analytic vectors Π(s)an sits in a short exact sequence of locally analytic
GL2(Qp)-representations

(6.8) 0 −→ Σ(s) −→ Π(s)an −→ Σ̃(δ2, δ1) −→ 0.

R 6.3. – Emerton shows that if the above conjecture is true, then the extension
(6.8) must be non-split ([13]).

In the case when s ∈ S cris
∗ , there is a more explicit description of Π(s)an which is due to

Breuil. Recall that D(s) is isomorphic to D(s′) for s′ = (xw(s)δ2, x
−w(s)δ1,L ). We thus

obtain a morphism Σ((xw(s)δ2, x
−w(s)δ1) → Π(s′)an

∼= Π(s)an. On the other hand, if
α, β : Q×p → L× are smooth characters such that |α(p)| ≤ |β(p)|, there is an intertwining

from Ind
GL2(Qp)

B(Qp) (α⊗β|x|−1)sm to Ind
GL2(Qp)

B(Qp) (β⊗α|x|−1)sm, yielding an intertwining from

Symk−1L2 ⊗ Ind
GL2(Qp)

B(Qp) (α⊗ β|x|−1)sm to Symk−1L2 ⊗ Ind
GL2(Qp)

B(Qp) (β ⊗ α|x|−1)sm. It thus
follows that if we set Σ(δ1, δ2)lalg to be the image of ker Ik in Σ(δ1, δ2), then there exists an
intertwining between Σ(δ1, δ2)lalg and Σ(xw(s)δ2, x

−w(s)δ1)lalg which is always injective (but
the direction can be either way). We therefore get a morphism

(6.9) Σ(δ1, δ2) ‹⊕ Σ(xw(s)δ2, x
−w(s)δ1)→ Π(s)an
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where ‹⊕ denotes the amalgamated sum of two summands over the intertwining between
Σ(δ1, δ2)lalg and Σ(xw(s)δ2, x

−w(s)δ1)lalg.

C 6.4 ([3, Conjectures 4.4.1, 5.3.7]). – For s ∈ S cris
∗ non-exceptional, (6.9)

is a topological isomorphism.

P 6.5. – For s ∈ S cris
∗ non-exceptional, Emerton’s conjecture is equivalent to

Breuil’s conjecture.

Proof. – The generic case that V (s) does not admit an L -invariant (this is equiv-
alent to δs 6= xw(s)−1, xw(s)−1|x|−2) is already proved in [13, 6.7.5]. We now prove
the remaining cases. The injectivity of (6.9) is already ensured by [3, Corollaires 5.3.6,
5.4.3]. It reduces to show that Σ(δ1, δ2) ‹⊕ Σ(xw(s)δ2, x

−w(s)δ1) and Σ(s) ⊕ Σ̃(δ2, δ1) have
same constitutes. If δs = xw(s)−1|x|−2, then Σ(s) = Σ(δ1, δ2) and the intertwining is
Σ(xw(s)δ2, x

−w(s)δ1)lalg → Σ(δ1, δ2)lalg. ThereforeÄ
Σ(δ1, δ2) ‹⊕ Σ(xw(s)δ2, x

−w(s)δ1)
ä
/Σ(s)

= Σ(xw(s)δ2, x
−w(s)δ1)/Σ(xw(s)δ2, x

−w(s)δ1)lalg
∼= Σ̃(δ2, δ1)

by Proposition 5.1. If δs = xw(s)−1, the intertwining is Σ(δ1, δ2)lalg → Σ(xw(s)δ2, x
−w(s)δ1)lalg

and the quotient is isomorphic to (δ2 ◦ det)⊗ Symw(s)−1L2. ThusÄ
Σ(δ1, δ2) ‹⊕ Σ(xw(s)δ2, x

−w(s)δ1)
ä
/Σ(δ1, δ2)

is an extension of Σ(xw(s)δ2, x
−w(s)δ1)/Σ(xw(s)δ2, x

−w(s)δ1)lalg
∼= Σ̃(δ2, δ1) by

(δ2 ⊗ det) ⊗ Symw(s)−1L2. We thus obtain that Σ(δ1, δ2) ‹⊕ Σ(xw(s)δ2, x
−w(s)δ1) and

Σ(s)⊕ Σ̃(δ2, δ1) have same constitutes in both cases.

6.2. An exact sequence

From now on, we suppose p > 2. Recall that for any s = (δ1, δ2,L ) ∈ Sirr, there is an
exact sequence

0 −→ R(δ1)
i−→ D(s)

j−→ R(δ2) −→ 0.

For i = 1, 2, we denote Aδs,δi
,R+(δi) �δs

P1,R(δi) �δs
P1 by Ai,R+(δi) � P1,R(δi) � P1

for simplicity. Recall that As : Π(š)∗ → D\(s) � P1 is the topological GL2(Qp)-equivariant
isomorphism given by Theorem 4.4.

P 6.6. – If s is non-exceptional, then the GL2(Qp)-equivariant morphism

A2 ◦ ι∗š ◦A −1
s : D\(s) � P1 → R+(δ2) � P1

satisfies A2 ◦ ι∗š ◦A −1
s ((z, z′)) = (j(z), j(z′)) for any (z, z′) ∈ D\(s) � P1.

Proof. – Suppose that the images of z, z′ in R(δ2) are z2e2, z
′
2e2 where e2 is the standard

basis of R(δ2) fixed in §4.2. Suppose A −1
s ((z, z′)) = µ. Then by the definition of As, we see

that A (µ|Zp) = z2,A (wµ|Zp) = z′2. Hence A2 ◦ ι∗s ◦ A −1
s ((z, z′)) = (z2 ⊗ e2, z

′
2 ⊗ e2) =

(j(z), j(z′)).

C 6.7. – If s is non-exceptional, then j(wD(x)) = wδs(j(x)) for any x ∈
D(s) � Z×p .
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Proof. – If x ∈ (1 − ϕ)D(s)ψ=1, by the proof of [12, Proposition V.2.1], there exists
z = (z1, z2) ∈ D\(s) � P1 such that ResZ×p z1 = x. Since j commutes with ResZ×p and

(j(z1), j(z2)) ∈ R+(δ2) � P1, we get

wδs(j(x)) = wδs(j(ResZ×p (z1))) = wδs(ResZ×p (j(z1)))

= ResZ×p (j(z2)) = j(ResZ×p (z2)) = j(wD(x)).

By [12, Corollaire V.1.13], D(s) � Z×p is generated by (1 − ϕ)D(s)ψ=1 as an R(Γ)-module.
We conclude the corollary from the case x ∈ (1−ϕ)D(s)ψ=1 and the fact that both wD, wδs

are R(Γ)-antilinear.

P 6.8. – The maps

iP1 : R(δ1) � P1 → D(s) � P1, (z1, z2) 7→ (i(z1), i(z2))

and

jP1 : D(s) � P1 → R(δ2) � P1, (z1, z2) 7→ (j(z1), j(z2))

are well-defined morphisms of continuous GL2(Qp)-representations. Moreover, we have the
short exact sequence

(6.10) 0 −→ R(δ1) � P1 iP1−→ D(s) � P1 jP1−→ R(δ2) � P1 −→ 0.

Proof. – By Propositions 3.4, 3.9, the GL2(Qp)-actions on R(δ1) � P1,R(δ2) � P1 and
D(s) � P1 satisfy the same set of formulas. It thus follows that iP1 , jP1 are GL2(Qp)-equiv-
ariant as long as they are well-defined. In general, the formula (3.1) of wD is not convergent
onD†�Z×p . Hence the well-defineness of iP1 and jP1 are not obvious from their definitions.

The well-defineness of jP1 follows from Corollary 6.7. To show that iP1 is well-defined,
we use the pairing {·, ·}. First note that i : R(δ1) → D(s) is dual to j : D(š) → R(δ̌1)

with respect to 〈·, ·〉. It therefore follows that i : R(δ1) � Z×p → D(s) � Z×p is the dual
of j : D(š) � Z×p → R(δ̌1) � Z×p with respect to 〈·, ·〉. Hence i : R(δ1) � Z×p → D(s) � Z×p
is the dual of j : D(š) � Z×p → R(δ̌1) � Z×p with respect to {·, ·}. Since {·, ·} is w-invariant
and we have already proved that j commutes with w on D(š) � Z×p , we thus deduce that
i commutes with w on R(δ1) � Z×p . Hence iP1 : R(δ1) � P1 → D(s) � P1 is well-defined.

For (6.10), the injectivity of iP1 and the exactness at D(s) � P1 are obvious. To show the
surjectivity of jP1 , for any (z, z′) ∈ R(δ2) � P1, we pick y ∈ D(s) and y′ ∈ D(s) � pZp
which lift z and RespZpz

′ respectively. Then an easy computation shows that

jP1(y, y′ + wD(ResZ×p y)) = (z, z′).

This proves that jP1 is surjective.

Henceforth we identify R(δ1) � P1 with a submodule of D(s) � P1 via iP1 .
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6.3. Proof of Emerton’s conjecture

We prove Conjecture 6.2 for p > 2 in this subsection. From now on, let s ∈ Sirr be
non-exceptional. Since As is a topological GL2(Qp)-equivariant isomorphism between the
contragredient representation Π(š)∗ and D\(š) � P1, it induces an isomorphism

As,an : (Π(š)an)∗ → ((D\(s) � P1)an)∗ = D\
rig(s) � P1

between coadmissibleD(GL2(Zp))-modules (Π(š)an)∗ andD\
rig(s)�P1, whereD(GL2(Zp))

denotes the algebra of locally analytic distributions on GL2(Zp).

P 6.9. – The diagram

(6.11) (Π(š)an)∗
As,an//

ι∗š
��

D\
rig(s) � P1

jP1

��
Σ̃(δ̌2, δ̌1)∗

A2 // R(δ2) � P1

is commutative. As a consequence, we have jP1(D\
rig(s) � P1) = A2(Σ(δ̌2, δ̌1)∗).

Proof. – Recall that for an admissible Banach space representation U of GL2(Qp), Uan

is dense in U ([22, Theorem 7.1]); hence U∗ is dense in U∗an. The diagram (6.11) commutes
on Π(š)∗ ⊂ (Π(š)an)∗ following Proposition 6.6. We thus conclude the commutativity
of (6.11) by the density of Π(š)∗ in (Π(š)an)∗. It thus follows that jP1(D\

rig(s) � P1) =

A2(ι∗š((Π(š)an)∗)) = A2(Σ(δ̌2, δ̌1)∗).

L 6.10. – R+(η̌) �δ−1 P1 and R+(η) �δ P1 are orthogonal complements of each
other under the pairing R(η̌) �δ−1 P1 ×R(η) �δ P1 → L.

Proof. – It suffices to show that R+ is the orthogonal complements of itself under the
pairing {·, ·} : R × R → L. It is obvious that {R+,R+} = 0. On the other hand, if
f =

∑
i∈Z aiT

i ∈ (R+)⊥, then for any j ∈ N, {σ−1(T j), f} = a−j−1 implies a−j−1 = 0,
yielding f ∈ R+.

L 6.11. – jP1(D\
rig(s) � P1) ⊂ R(δ2) � P1 and D\

rig(š) � P1 ∩ R(δ̌2) � P1 are
orthogonal complements of each other under {·, ·}P1 : R(δ2) � P1 ×R(δ̌2) � P1 → L.

Proof. – By the constructions of iP1 and jP1 , one easily checks that
iP1 : R(δ̌2) � P1 → D(š) � P1 is dual to jP1 : D(s) � P1 → R(δ2) � P1 with respect
to {·, ·}P1 . Thus by Proposition 3.11, we deduce that

{jP1(x), y}P1 = {x, y}P1 = 0

for any x ∈ D\
rig(s) � P1 and y ∈ D\

rig(š) � P1 ∩ R(δ̌2) � P1. This proves

jP1(D\
rig(s) � P1) ⊆ (D\

rig(š) � P1 ∩R(δ̌2) � P1)⊥.

On the other hand, since Σ(δ̌1, δ̌2) and Σ̃(δ̌1, δ̌2) are admissible locally analytic rep-
resentations, Σ(δ̌1, δ̌2)∗ and Σ̃(δ̌1, δ̌2)∗ are coadmissible D(GL2(Zp))-modules. There-
fore Σ(δ̌1, δ̌2)∗ is a closed subspace of Σ̃(δ̌1, δ̌2)∗ by [22, Lemma 3.6]. This implies that
jP1(D\

rig(š)�P1) = A2(Σ(δ̌1, δ̌2)∗) is a closed subspace of R+(δ̌1)�P1 by Proposition 6.9;

hence jP1(D\
rig(š) � P1) is Fréchet complete with the subspace topology of R(δ̌1) � P1. By
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the open mapping theorem for Fréchet type spaces ([19, Proposition 8.8]), we deduce that
jP1 : D\

rig(š) � P1 → jP1(D\
rig(š) � P1) is open. Therefore the quotient topology and the

subspace topology on jP1(D\
rig(š) � P1) coincide.

Now for any x ∈ (D\
rig(š) � P1 ∩R(δ̌2) � P1)⊥ ⊂ R(δ2) � P1, we pick x̃ ∈ D(s) � P1

lifting x. The continuous linear functional f(y) = {x̃, y}P1 on D\
rig(š) � P1 induces a

continuous linear functional f̄ on jP1(D\
rig(š) � P1). Applying Hahn-Banach theorem for

Fréchet type spaces ([19, Corollary 9.4]), we extend f̄ to a continuous linear functional
on R(δ̌1) � P1. Since the pairing R(δ̌1) � P1×R(δ1) � P1 → L is perfect, we may suppose
that the extension of f̄ is defined by some x′ ∈ R(δ1) � P1. It therefore follows that for any
y ∈ D\

rig(š) � P1,

{x̃− x′, y}P1 = {x̃, y}P1 − {x′, jP1(y)}P1 = f̄(jP1(y))− {x′, jP1(y)}P1 = 0,

yielding x̃ − x′ ∈ D\
rig(s) � P1. We thus conclude that x ∈ jP1(D\

rig(s) � P1) because

jP1(x̃− x′) = x. This proves (D\
rig(š) � P1 ∩R(δ̌2) � P1)⊥ ⊆ jP1(D\

rig(s) � P1).

P 6.12. – The following are true:

(i) if δs = xk−1, where k is an integer ≥ 2, then R(δ1) � P1 ∩ D\
rig(s) � P1 contains

R+(δ1) � P1 as a closed subspace of codimension k, and jP1(D\
rig(s) � P1) is a closed

subspace of R+(δ2) � P1 of codimension k;
(ii) otherwise, R(δ1) � P1 ∩ D\

rig(s) � P1 = R+(δ1) � P1 and jP1(D\
rig(s) � P1) =

R+(δ2) � P1.

Proof. – We prove (i) only. The proof of (ii) is similar. For (i), it follows from Propo-
sition 6.9 that jP1(D\

rig(s) � P1) = A2(Σ(δ̌2, δ̌1)∗). Recall that Σ(δ̌2, δ̌1) is a quotient

of Σ̃(δ̌2, δ̌1) by a k-dimensional subrepresentation. Hence Σ(δ̌2, δ̌1)∗ is a closed sub-
space of Σ̃(δ̌2, δ̌1)∗ of codimension k, yielding that jP1(D\

rig(s) � P1) is a closed subspace
of R+(δ2) � P1 of codimension k.

On the other hand, as

R(δ1) � P1 ∩D\
rig(s) � P1 = jP1(D\

rig(š) � P1)⊥ and R+(δ1) � P1 = (R+(δ̌1) � P1)⊥

by Lemmas 6.11, 6.10, we deduce that R+(δ1) � P1 is a codimension k closed subspace
of R(δ1) � P1 ∩D\

rig(s).

T 6.13. – Conjecture 6.2 is true for p > 2.

Proof. – By Proposition 6.12, R+(δ̌2) � P1 is contained in D\
rig(š) � P1. Let Σ be the

locally analytic representation such that Σ∗ is isomorphic to D\
rig(š) � P1/R+(δ̌2) �δ̌ P1.

Since R+(δ̌2) � P1 is isomorphic to Σ̃(δ2, δ1)∗, we thus have an exact sequence of locally
analytic L-representations of GL2(Qp)

(6.12) 0 −→ Σ
ι1−→ Π(s)an

ι2−→ Σ̃(δ2, δ1) −→ 0.

If δs is not of the form xk−1 for any k ∈ Z+, then Σ∗ ∼= R+(δ̌1)�P1 by Proposition 6.12(ii),
which in turn is isomorphic to the dual of Σ̃(δ1, δ2). We thus have that Σ is isomorphic
to Σ̃(δ1, δ2) = Σ(s), yielding (6.8) in this case. Now suppose δs = xk−1 for some integer
k ≥ 1. Since Σ̃(δ2, δ1) is topologically irreducible, and it is not isomorphic to any topological
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irreducible subquotients of Σ(s) by Proposition 5.1, we deduce that ι2(ιs(Σ(s))) = 0.
Hence ιs(Σ(s)) ⊆ ι1(Σ). On the other hand, by Proposition 6.12 (i), we see that Σ∗ is
an extension of Σ(δ1, δ2)∗ by a k-dimensional L-vector space. Hence Σ contains Σ(δ1, δ2)

as a subrepresentation of codimension k. Since Σ(δ1, δ2) is a subrepresentation of Σ(s) of
codimension k as well, we conclude that ιs(Σ(s)) = ι1(Σ).

R 6.14. – As a consequence of Theorem 6.13 and Proposition 6.12, we see that
in case δs = xk−1 for some k ∈ Z+, the dual of the quotient Π(s)an/Σ(δ1, δ2), which is an
extension of Σ̃(δ2, δ1) by (δ2 ◦det)⊗Symk−1L2, is isomorphic to R(δ̌2)�P1∩D\

rig(š)�P1.
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