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NORMAL FORMS OF ANALYTIC PERTURBATIONS
OF QUASIHOMOGENEOUS VECTOR FIELDS:
RIGIDITY, INVARIANT ANALYTIC SETS AND
EXPONENTIALLY SMALL APPROXIMATION

 E LOMBARDI  L STOLOVITCH

This article is dedicated to Bernard Malgrange on the occasion of his 80th birthday

A. – In this article, we study germs of holomorphic vector fields which are “higher order”
perturbations of a quasihomogeneous vector field in a neighborhood of the origin of Cn, fixed point
of the vector fields. We define a “Diophantine condition” on the quasihomogeneous initial part S

which ensures that if such a perturbation of S is formally conjugate to S then it is also holomorphically
conjugate to it. We study the normal form problem relatively to S. We give a condition on S that
ensures that there always exists an holomorphic transformation to a normal form. If this condition is
not satisfied, we also show, that under some reasonable assumptions, each perturbation of S admits
a Gevrey formal normalizing transformation to a Gevrey formal normal form. Finally, we give an
exponentially good approximation of the dynamic by a partial normal form.

R. – Dans cet article, nous étudions des germes de champs de vecteurs holomorphes qui
sont des perturbations « d’ordres supérieurs » de champs de vecteurs quasi-homogènes au voisinage de
l’origine de Cn, point fixe des champs considérés. Nous définissons une condition « diophantienne »
sur le champ quasi-homogène initial S qui assure que si une telle perturbation de S est formellement
conjuguée à S alors elle l’est aussi holomorphiquement. Nous étudions le problème de mise sous forme
normale relativement à S. Nous donnons une condition suffisante assurant l’existence d’une transfor-
mation holomorphe vers une forme normale. Lorsque cette condition n’est pas satisfaite, nous mon-
trons néanmoins, sous une condition raisonnable, l’existence d’une normalisation formelle Gevrey vers
une forme normale Gevrey. Enfin, nous montrons l’existence d’une approximation exponentiellement
bonne de la dynamique par une forme normale partielle.

1. Introduction

The aim of this article is to study germs of holomorphic vector fields in a neighborhood
of a fixed point, say 0, in Cn. Lot of work is devoted to this problem mainly when the vector
field is not too degenerate, that is when not all the eigenvalues of the linear partDX(0) ofX
at the origin are zero. In this situation, the aim is to compare the vector field to its linear
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660 E. LOMBARDI AND L. STOLOVITCH

part. One way to achieve this, is to transform the vector field “as close as possible”, in some
sense, to its linear part by mean of a regular change of variables.

In this article we shall focus on germs of vector fields which are degenerate and which
may not have a nonzero linear part at the origin. This problem has been widely studied in
dimension 2 mostly by mean of desingularizations (blow-ups). Unfortunately, this tool is not
available in dimension greater than 3.

We shall be given a “reference” polynomial vector field S to which we would like to
compare a suitable perturbation of it. This means that we would like to know if some of
the geometric or dynamical properties of the model can survive for the perturbation. For
instance, the models S1 = y ∂

∂x and S2 = y ∂
∂x + x2 ∂

∂y are quite different although they have
the same linear part at the origin of C2. In fact, for S1, each point of {y = 0} is fixed whereas
the “cusp” {2x3 − 3y2 = 0} is globally invariant by S2.

In this article, we shall assume that the unperturbed vector field S is quasihomogeneous
with respect to some weight p = (p1, . . . , pn) ∈ (N∗)n. This means that each variable xi has
the weight pi while ∂

∂xi
has the weight −pi. Hence, the monomial xQ is quasihomogeneous

of quasidegree (Q, p) :=
∑n
i=1 qipi. In particular, the vector field S =

∑n
i=1 Si(x) ∂

∂xi
is

quasihomogeneous of quasidegree s if and only if Si is a quasihomogeneous polynomial of
degree s+ pi.

We shall then consider a germ of holomorphic vector field X which is a good
perturbation of a quasihomogeneous vector field S, this means that the smallest quasidegree of
nonzero terms in the Taylor expansion of X −S is greater than s. In the homogeneous case
(p = (1, . . . , 1)), a linear vector field S is quasihomogeneous of degree 0 and a good
perturbation is a nonlinear perturbation of S (i.e. the order at 0 of the components ofX−S
is greater or equal than 2).

We shall develop an approach of these problems through normal forms. By this, we
mean that the group of germs of holomorphic diffeomorphisms (biholomorphisms)
of (Cn, 0) acts on the space of vector fields by conjugacy: if X (resp. Φ) is a germ
of vector field (resp. biholomorphism) at 0 of Cn, then the conjugacy of X by Φ is
Φ∗X(y) := DΦ(Φ−1(y))X(Φ−1(y)). A normal form is a special representative of this
orbit which satisfies some properties. Although, the formal normal form theory of vector
fields which are non-linear perturbations of a semi-simple (resp. nilpotent, general) linear
vector field is well known [1] (resp. [3, 12, 29]), it is much more difficult to handle the problem
when the vector field does not have a nonzero linear part. It might also be useful in problems
with parameters to consider some of the parameters as a variable with a prescribed weight.

First of all, we shall define a special Hermitian product 〈., .〉
p,δ

on each space H δ of
quasihomogeneous vector fields of quasidegree δ (see (5)). Its main property is that the
associated norm of a product is less than or equal to the product of the norms. Let us
consider the cohomological operator:

d0 : H δ → H s+δ

U 7→ [S,U ]

where [., .] denotes the usual Lie bracket of vector fields. We emphasize that, contrary to the
case where S is linear (s = 0), d0 does not leave H δ invariant. Let d∗0 : H δ+s → H δ be the
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NORMAL FORMS OF ANALYTIC PERTURBATIONS 661

adjoint of d0 with respect to the Hermitian product. An element of the kernel of this operator
will be called resonant or harmonic. The first result we have is the following:

F    (see Proposition 4.4)

There exists a formal change of coordinates tangent to Id at the origin, such that, in the new
coordinates, X − S is resonant.

This means that there exists Φ̂ ∈ (C[[x1, . . . , xn]])n such that Φ̂(0) = 0 and DΦ̂(0) = Id

and d∗0(Φ̂∗X − S) = 0. When S is linear, this corresponds to classical normal forms [1, 29].
In the homogeneous case, the first result in this direction is due to G. Belitskii [3, 4] using
a renormalized scalar product. In the quasihomogeneous case, a general scheme has been
devised by H. Kokubu and al. [22] in order to obtain a unique normal form. This scheme
can be combined with our definition. For instance, a formal normal form of a nonlinear
perturbation of

ẋ = y(1)

ẏ = z

ż = 0

is of the form

ẋ = y + xP1(x, u)(2)

ẏ = z + yP1(x, u) + xP2(x, u)

ż = zP1(x, u) + yP2(x, u) + xP3(x, u)

where u = y2 − 2xz and where the Pi’s are formal power series [21].

One of the main novelties of this article is to consider the Box operator

�δ : H δ → H δ

U 7→ �δ(U) := d0d
∗
0(U)

which is self-adjoint and whose spectrum is non-negative. Its nonzero spectrum is composed
of the (squared) small divisors of the problem. These are the numbers that we need to control.
For instance in the homogeneous case, if S =

∑n
i=1 λixi

∂
∂xi

, then the eigenvalues of �k−1

are the |(Q,λ)− λi|2, where Q ∈ Nn, |Q| = k and 1 ≤ i ≤ n.

For each quasidegree δ > s, let us set

aδ := min
λ∈Spec(�δ)\{0}

√
λ.

Then, we shall construct inductively a sequence of positive numbers ηδ from the aδ’s (see
(14)). We shall say that S is Diophantine if there exist positive constants M, c such that
ηδ ≤ Mcδ. Being Diophantine is a quantitative way of saying that the sequence {aδ} does
not accumulate the origin too fast. Hence, we have defined a small divisors condition for
quasihomogeneous vector fields. For instance in the homogeneous case, S =

∑n
i=1 λixi

∂
∂xi

is Diophantine if it satisfies Brjuno’s small divisors condition [7]:

(ω) −
∑
k≥1

lnωk
2k

< +∞,
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662 E. LOMBARDI AND L. STOLOVITCH

where

ωk := inf{|(Q,λ)− λi| 6= 0, Q ∈ Nn, 2 ≤ |Q| ≤ 2k, 1,≤ i ≤ n}.

R  (see Theorem 5.8). – In the general quasihomogeneous case, assume
that the quasihomogeneous vector field S is Diophantine. Let X be a good holomorphic
deformation of S. If X is formally conjugate to S then it is holomorphically conjugate to it.

For instance in the homogeneous case and if S =
∑n
i=1 λixi

∂
∂xi

, this is the classical
Siegel-Brjuno linearization theorem: if S satisfies the Diophantine condition (ω) and if a
holomorphic nonlinear perturbation X is formally linearizable, then X is holomorphically
linearizable. For instance, a good holomorphic perturbation of S:

ẋ = x2

ẏ = xy

which is formally conjugate to it, is also holomorphically conjugate to S. This is due to the
fact that minλ∈Spec(�δ)\{0}

√
λ ≥ M

√
δ. Hence, the “small divisors” are in fact large. The

same statement holds for perturbations of (1) since minλ∈Spec(�δ)\{0}
√
λ is bounded away

from 0.

Assume that the ring of polynomial first integrals of S is generated by some quasihomo-
geneous polynomials h1, . . . , hr. Let us denote by I (resp. Î ) the ideal they generate in the
ring of germs of holomorphic functions at the origin (resp. formal power series). The germ
of the variety Σ = {h1 = · · · = hr = 0} at the origin is invariant by the flow of S. Does a
good perturbation of S still have an invariant variety of this kind?

I   (see Theorem 5.6). – In the general quasihomogeneous
case, assume that the quasihomogeneous vector field S is Diophantine. Let X be a good
holomorphic deformation of S. If X is essentially formally conjugate to S modulo Î then it is
holomorphically conjugate to S modulo I .

This means that there exists a germ of holomorphic diffeomorphism Φ such that

Φ∗X = S +
n∑
i=1

gi(x)
∂

∂xi
, with gi ∈ I .

Hence, in the new holomorphic coordinate system, Σ is an invariant variety of X since
gi|Σ = 0. The Diophantine condition can eventually be relaxed a little bit taking into account
the ideal I . This is a first step toward the generalization to any dimension of Camacho-
Sad’s theorem [8] about the existence of a holomorphic separatrix of a two dimensional
foliation with an isolated singularity. If S =

∑n
i=1 λixi

∂
∂xi

, this was proved by L. Stolovitch
[35]. Furthermore, for instance, if a formal normal form (2) of a perturbation of (1) satisfies
Pi(x, 0) = 0, i = 1, 2, 3, then in good holomorphic coordinates, {y = z = 0} is an invariant
analytic set of the perturbation.

What happens if instead of accumulating the origin, the sequence aδ tends to infinity
with δ? Let us set ν := max

(
1, max pi

2

)
.
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P’    (see Theorem 6.2). – Assume that there exists a
constant M such that for all δ > s,

min
λ∈Spec(�δ)\{0}

√
λ ≥M(δ − s)ν .

Then, any holomorphic good perturbation of S is holomorphically conjugate to a normal form.

For instance in the homogeneous case, if S =
∑n
i=1 λixi

∂
∂xi

belongs to Poincaré’s domain
[1] then the convex hull of the λi in the complex plane does not contain the origin. This
implies that |(Q,λ)| ≥ ε|Q| from which we infer that |(Q,λ) − λi| ≥ ε′|Q| if |Q| is large
enough.
We refer to [37, 38, 39] for recent results and overview about the problem of holomorphic
conjugacy to a normal form when S is a linear diagonal vector field.

Let f̂ =
∑
Q∈Nn fQx

Q be a formal power series of Cn and α > 0. We say that f̂ is
α-Gevrey if for all Q ∈ Nn, |fQ| ≤ Mc|Q|(|Q|!)α. As we know from the linear diagonal
case, normalizing transformations (that is formal transformation to a normal form) usually
diverge. How bad can this divergence be? We show that if the spectrum of �δ is of Siegel
type, then, at worst, there exists a formal Gevrey normalizing transformation:

G     (see Theorem 6.4). – Assume that there
exist a positive constant M and nonnegative τ such that for all δ > s,

min
λ∈Spec(�δ)\{0}

√
λ ≥ M

(δ−s)τ .

Then any good holomorphic perturbation of S admits a formal p̄(b̃ + τ)-Gevrey normalizing
transformation to a p̄(b̃+ τ)-Gevrey formal normal form. Here, p̄ = maxi pi and b̃ is a positive
number depending only on p.

In the homogeneous case with S a linear vector field, this result was proved (but not
stated!) by G. Iooss and E. Lombardi [32, Lemma 1]. This kind of result was obtained in
a very particular case. Namely, in the case of a two-dimensional saddle-node (resp. resonant
saddle),X is a suitable perturbation of x ∂

∂x+y2 ∂
∂y (resp. px ∂

∂x−qx
∂
∂x+xqyp+1 ∂

∂y ) (these are
not quasihomogeneous), the Gevrey character with respect to y (resp. to the monomial xqyp)
was obtained by J. Écalle [14], J. Martinet and J.-P. Ramis [25, 27, 28] and S. Voronin [42] (see
also [19] for a general overview). In this case, there is no small divisor (i.e. τ = 0). For general
n-dimensional 1-resonant saddle, there are usually small divisors; the results were devised by
J. Écalle [15], by L. Stolovitch [36] and B. Braaksma and L. Stolovitch [6]. In the case of the
“cusp”, S = 2y ∂

∂x + 3x2 ∂
∂y (p = (2, 3)), a formal normal form of vector fields tangent

to the cusp was given by F. Loray. A very precise study of this case with sharp estimates
of the Gevrey order was done by M. Canalis-Durand and R. Schäfke [9]. T. Gramchev
and M. Yoshino studied the cohomological equation (i.e. the linearized equation of the
conjugacy equation) of a pair of commuting 4-dimensional vector fields having linear part
with a Jordan block [43].

By applying a polynomial change of coordinates Ψδ−s of some quasidegree δ − s, one
can transform the perturbationX into a normal formS+ N δ up to some quasiorder δ, that is
(Ψδ−s)∗X − (S + N δ) is of quasiorder greater than δ. Hence, the norm of (Ψδ−s)∗X − (S + N δ)

on a ball of radius ε centered at the origin is bounded by a power of ε. Nevertheless, the
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664 E. LOMBARDI AND L. STOLOVITCH

formal normalizing diffeomorphism Φ we obtained from the previous theorem allows us
to obtain a much better estimate, that is an exponentially small estimate. Namely, let us
consider the “twisted ball” B̃ε = {(

∑n
i=1 pi|xi|2/pi)1/2 < ε}.

E         (see
Theorem 6.11)

For each ε > 0 sufficiently small, there exists a quasidegree δopt such that∥∥(Φδopt)∗X −
(
S + N δopt

)∥∥
qh,ε

< M exp

Å
−A
εb

ã
for some exponent b that depends on τ , the order of small divisors. Here, ‖X‖gh,ε is a “twisted
norm” of the vector field X that measures its size on the twisted ball B̃ε.

Some of these results were announced in [23].

2. Notation

Let us set some notation which will be used throughout this article.

– “Xn denotes the C-space of formal vector fields on Cn,
– Xn denotes the C-space of germs of holomorphic vector fields on (Cn, 0),
– Ôn denotes the ring of formal power series in Cn,
– On denotes the ring of germs at 0 of holomorphic functions in Cn.

Let Q = (q1, . . . , qn) ∈ Nn. Let |Q| := q1 + · · · + qn be the length of Q. As usual, if
x = (x1, . . . , xn), xQ denotes the monomial xq11 · · ·xqnn . Let n, k ∈ N with k ≤ n; we denote
by Ckn := n!

k!(n−k)! the binomial coefficients.

3. Quasihomogeneous vector fields and polynomials

3.1. Definitions and notation

Let p = (p1, . . . , pn) ∈ (N∗)n be such that the largest common divisor of its components
p1 ∧ · · · ∧ pn is equal to 1. Let us denote by

Rp :=
n∑
i=1

pixi
∂

∂xi

the p-radial vector field Cn. Let Q = (q1, . . . , qn) ∈ Nn. Let (Q, p) stand for
n∑
i=1

qipi.

A polynomial will be called quasihomogeneous of degree δ if it can be written as a finite sum∑
(Q,p)=δ

pQx
Q

with complex coefficients. It is equivalent to say that the Lie derivative Rp(f) :=
n∑
i=1

pixi
∂f
∂xi

= δf since Rp(xQ) = (Q, p)xQ. The integer δ = (Q, p) is the p-degree of
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quasihomogeneity (or p-quasidegree) of xQ. When there is no possible confusion, we shall
omit the reference to p, which is fixed once for all. Let us define

p̄ := max
1≤i≤n

pi p := min
1≤i≤n

pi.

Let us define ∆ to be the totally ordered set of p-quasihomogeneity degrees of poly-
nomials; that is to say ∆ = {δ1, δ2, δ3, . . .} where δ1 < δ2 < δ3 < · · · . It is the set

∆ = {d ∈ N/ d = (α, p) , with α ∈ Nn}.

An element of ∆ will be called a quasidegree.

For δ ∈ ∆, we shall denote by Pδ the complex vector space of p-quasihomogeneous
polynomials of degree δ. If δ 6∈ ∆, we set Pδ := {0}. Hence, for any δ ∈ N,

Pδ :=

ß
f ∈ C[x], f(x) =

∑
(Q,p)=δ

fQx
Q

™
if δ ∈ ∆, Pδ := {0} otherwise.

A vector field X =
n∑
i=1

Xi
∂
∂xi

is quasihomogeneous of quasidegree δ ≥ 0 if, for each

1 ≤ i ≤ n,Xi belongs to Pδ+pi . It is equivalent to say that [Rp, X] = δX where [., .] denotes
the Lie bracket. In other words, xi has weight pi and ∂

∂xi
has weight −pi.

We shall denote by ∆̃ the totally ordered set of p-quasihomogeneity degrees of non zero
polynomial vector fields. As a set, we have

∆̃ = {δ̃ ∈ Z/δ̃ = δ − pi,with δ ∈ ∆, 1 ≤ i ≤ n}.

For δ ∈ ∆̃, we shall denote by H δ the complex vector space of p-quasihomogeneous
polynomial vector fields of quasidegree δ. If δ 6∈ ∆̃, we shall set H δ := {0}.

R 3.1. – Let us notice that if δ ∈ ‹∆, then there exists 1 ≤ j0 ≤ n such that
pj0 + δ ∈ ∆. It may happen that for some 1 ≤ j ≤ n, pj + δ /∈ ∆. This simply means that

any polynomial vector field X =
n∑
i=1

Xi
∂
∂xi

belonging to H δ has a j-th component Xj which is

equal to 0.

R 3.2. – There is only a finite number of elements of ∆̃ which are negative. In fact,
if δ ∈ ∆̃, then δ ≥ −pi for some i.

In general, the sets ∆ and ‹∆ do not contain all the integers. However we have the following
lemma (inspired by a remark of J.-C. Yoccoz):

L 3.3. – Let p = (p1, . . . , pn) ∈ (N∗)n as above.

(a) There exists δ0 such that, for every integer, δ ≥ δ0 belongs to ∆.
(b) We have ‹∆ ⊃ ∆.
(c) ∆ is stable by multiplication by any nonnegative integer and by addition (this is a priori

not the case for ‹∆).
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Proof. – The following proof of (a) is due to Marc Revesat: let N > 0 be an integer.
Then, we can write it as N = p1u1 + · · · + pnun, where the ui’s are integers. For all
i, there exists an integer ki such that 0 ≤ piui + kip1 · · · pn < p1 · · · pn. Let us set
vi = p1 · · · pi−1pi+1pn, ṽi = ui+kivi and k = k1+· · ·+kn. Hence we have: N+kp1 · · · pn =

p1ṽ1 + · · ·+ pnṽn with 0 ≤ piṽi < p1 · · · pn.
Let us assume that N ≥ np1 · · · pn. Therefore, according to the previous computations,

we have N + kp1 · · · pn = p1ṽ1 + · · · + pnṽn < np1 · · · pn. Hence, k is negative. We
obtain the result by changing, for instance, v1 into v1 − kp2 · · · pn. Since for any δ ∈ ∆,
δ = (α, p) = (α+ ej , p) − pj where α ∈ Nn and ej is the j-th vector of the canonical basis
of Rn, we get that ‹∆ ⊃ ∆ holds. Finally statement (c) readily follows from the definition
of ∆.

P 3.4. – Let k, ` ∈ Z be two integers.

(a) Let f, g be two quasihomogeneous polynomials belonging respectively to Pk and P`.
Then, fg belongs to Pk+`.

(b) Let f be a quasihomogeneous polynomial belonging to Pk and let X be a
quasihomogeneous polynomial vector field belonging to H `. Then,

(i) the Lie derivative X(f) belongs to Pk+`;
(ii) fX belongs to H k+`.

(c) Let S,U be two quasihomogeneous vector fields belonging to H k and H ` respectively.
Then,

(i) DS.U belongs to H k+`;
(ii) the Lie bracket [S,U ] belongs to H k+`.

Proof. – The proof readily follows from the definition of Pk and H ` observing that if
f lies in Pk then ∂f

∂xj
lies in Pk−pj .

3.2. Decomposition of functions and vector fields as sum of homogeneous and quasihomoge-
neous components.

Let f ∈ C[[x1, . . . , xn]] be a formal power series. Hence f reads

f(x) =
∑
Q∈Nn

fQ x
Q where fQ ∈ C.

It admits a unique decomposition into a sum of homogeneous polynomials, f•,r, of different
degree r:

f =
∑
r≥0

f•,r where f•,r(x) =
∑
|Q|=r

fQ x
Q.

In a similar way, f admits a unique decomposition as a sum of quasihomogeneous polyno-
mials fδ of different quasidegree δ:

f =
∑
δ∈∆

fδ with fδ(x) =
∑

(Q,p)=δ

fQ x
Q.

We shall say that f is of p-order δ0 if fδ0 6= 0 and fδ = 0 for all quasidegree δ < δ0. Let µ
be a quasidegree. We shall define the µ-quasijet of f (at 0) to be

Jµ(f) :=
∑

δ∈∆, δ≤µ

fδ.
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NORMAL FORMS OF ANALYTIC PERTURBATIONS 667

Furthermore, if f is a germ of holomorphic function at the origin of Cn, we will denote by
{f}µ := fµ the quasihomogeneous component of degree µ in the Taylor expansion of f at
the origin.

Finally, f admits a unique decomposition as a sum of polynomials fδ,r which are simul-
taneously quasihomogeneous of quasidegree δ and homogeneous of degree r:

f =
∑
δ∈∆

∑
δ
p
≤r≤ δp

fδ,r with fδ,r(x) =
∑
|Q|=r

(Q,p)=δ

fQ x
Q.

In the last decomposition of f , we have δ/p ≤ r ≤ δ/p since for every Q ∈ Nn,
p|Q| ≤ (Q, p) ≤ p|Q|.

Any formal vector field V can be written as an element of (C[[x1, . . . , xn]])n. Hence it can
be decomposed along the quasihomogeneous filtration:

V =
∑
δ∈∆̃

Vδ

where Vδ is a quasihomogeneous vector field of quasidegree δ. By definition, we have
Vδ =

∑n
i=1 Vi,δ

∂
∂xi

with Vi,δ ∈ Pδ+pi . We recall that Pδ+pj is equal to {0}when δ+pj /∈ ∆.
Moreover, each quasihomogeneous component Vδ can be decomposed into homogeneous
components Vδ,r of degree r:

Vδ =
∑

δ∗≤r≤δ∗
Vδ,r with Vj,δ,r(x) =

∑
|Q|=r

(Q,p)=δ+pj

Vj,Q x
Q

where

(3) δ∗ :=
min{δ + pi | δ + pi ∈ ∆}

p̄
and δ∗ :=

max{δ + pi | δ + pi ∈ ∆}
p

.

We recall that, for any q ≥ 1 and for any homogeneous polynomial φ ∈ (C[x1, . . . , xn])q

of degree r, there exists a unique r-linear, symmetric, operator φ̃ : (Cn)r → Cq such that
φ̃(x, . . . , x︸ ︷︷ ︸

r times

) = φ(x) where x = (x1, . . . , xn). Moreover, for every x(`) ∈ Cn with 1 ≤ ` ≤ r,

φ̃ is given by

φ̃(x(1), . . . , x(r)) =
1

r!
Dr
xφ(0).[x(1), · · · , x(r)] =

1

r!
∆x(1) · · ·∆x(r)φ

where ∆hφ(x) = φ(x + h) − φ(x) and where one checks that ∆x(1) · · ·∆x(r)φ(x) does not
depend on x (see for instance the book of Cartan [10, corollaire 6.3.3]).

The homogeneous and quasihomogeneous components of sums, products and derivatives
of formal power series and vector fields can be computed with the standard rules (see Lem-
mas A.1, A.2 in Appendix A). Computation of quasihomogeneous components of the com-
position of a function or a vector field by a map is given by the following lemma:

L 3.5 (Components of the composition). – Let f ∈ C[[x1, · · ·xn]] and U, V in
(C[[x1, · · ·xn]])n. Then,
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(a) {f ◦ U}δ′ =
∑

δ≤δ′, δ
p
≤r≤ δp

δ+δ1+···+δr=δ′

f̃δ,r(Uδ1 , · · ·Uδr ),

(b) {V ◦ U}δ′ =
∑

δ≤δ′, δ∗≤r≤δ∗
δ+δ1+···+δr=δ′

‹Vδ,r(Uδ1 , · · ·Uδr ), where δ∗ and δ∗ are defined in (3).

The proof of this lemma is given in Appendix A.

3.3. Hermitian product for quasihomogeneous polynomials and vector fields

We shall provide on C[x1, . . . , xn] a Hermitian product compatible with the grading into
quasihomogeneous space. Moreover, on each Pδ, this Hermitian product will induce a
submultiplicative norm, i.e. the associated norm of the product of two functions is less than
or equal to the product of the norms. There are several ways for defining an inner product
with such a property (see Appendix A Subsection A.2). In this paper, we shall choose the
following one:

– for quasihomogeneous functions f, g ∈ Pδ, we define the following inner product

(4) 〈f, g〉
p,δ

:=
∑
Q∈Nn

(Q,p)=δ

fQ.gQ
(Q!)p

δ!
where (Q!)p := (q1!)p1 · · · (qn!)pn .

Hence, we have

(5)
〈
xR, xQ

〉
p,δ

:=

{
(r1!)p1 ···(rn!)pn

δ! if R = Q

0 otherwise

the associated norm will be denoted by |.|p,δ. If p = (1, . . . , 1) (i.e. in the homogeneous
case), this is the Fischer scalar product [13, 17, 21, 32].

– for quasihomogeneous vector field of degree delta δ ∈ ∆̃ we define the associated inner
product and norm to be:

(6) 〈U, V 〉
p,δ

:=
n∑
i=1

〈Ui, Vi〉p,δ+pi and ‖U‖2
p,δ

:=
n∑
i=1

|Ui|2
p,δ+pi

where U =
n∑
i=1

Ui
∂
∂xi
∈ H δ and V =

n∑
i=1

Vi
∂
∂xi
∈ H δ.

One of the main features of these Hermitian products is their good behavior with respect
to the product. More precisely, we have

P 3.6 (submultiplicativity of the norms). – (a) Let f, g be p-quasihomoge-
neous polynomials of δ, δ′ respectively. Then,

|fg|
p,δ+δ′

≤ |f |
p,δ
|g|
p,δ′

.

(b) Let fδ,r be a polynomial which is simultaneously quasihomogeneous of degree δ and
homogeneous of degree r. Let f̃δ,r be the unique r-linear, symmetric form such that
f̃δ,r(X, . . . ,X︸ ︷︷ ︸

r times

) = fδ,r(X) where X = (x1, . . . , xn). For each i = 1, . . . , r, let Uδi be a

p-quasihomogeneous vector field of degree δi.
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Then, f̃δ,r(Uδ1 , . . . , Uδr ) is p-quasihomogeneous of degree δ + δ1 + · · ·+ δr and

(7)
∣∣∣f̃δ,r(Uδ1 , . . . , Uδr )∣∣∣

p,δ+δ1+···+δr
≤ N1(f̃δ,r) ‖Uδ1‖p,δ1 · · · ‖Uδr‖p,δr

with N1(R̃δ,r) :=
∑

1≤i`≤n
1≤`≤r

∣∣f̃δ,r(ei1 , . . . , eir )∣∣ where (e1, . . . , en) is the canonical basis of

Cn.
(c) Let Rδ,r be a vector field of Cn which is simultaneously quasihomogeneous of degree δ

and homogeneous of degree r. Let R̃δ,r be the unique r-linear, symmetric operator such
that R̃δ,r(X, . . . ,X︸ ︷︷ ︸

r times

) = Rδ,r(X). For each i = 1, . . . , r, letUδi be a p-quasihomogeneous

vector field of degree δi.

Then, R̃δ,r(Uδ1 , . . . , Uδr ) is p-quasihomogeneous of degree δ + δ1 + · · ·+ δr and we
have

(8)
∥∥∥R̃δ,r(Uδ1 , . . . , Uδr )∥∥∥

p,δ+δ1+···+δr
≤ N2,1(R̃δ,r) ‖Uδ1‖p,δ1 · · · ‖Uδr‖p,δr ,

withN2,1(R̃δ,r) :=

 
n∑
j=1

(
N1(R̃δ,r,j)

)2

where R̃δ,r,j denotes the j-th component of R̃δ,r

in the canonical basis of Cn.
(d) Let U and N be two p-quasihomogeneous vector fields of quasidegree δ > 0 and α

respectively. ThenDU.N is a p-quasihomogeneous vector field of degree δ+α satisfying

‖DU.N‖
p,δ+α

≤ n(δ + p)ν ‖U‖
p,δ
‖N‖

p,α

≤Mpδ
ν ‖U‖

p,δ
‖N‖

p,α

where ν := max(1, p̄2 ) andMp = n sup
δ∈∆̃

Ä
δ+p
δ

äν
.

The proof of this proposition is given in Appendix A, Subsection A.2. In the homoge-
neous case, this result is due to G. Iooss and E. Lombardi [21, Lemma A.8].

Finally, the convergence of a formal power series is linked with the growth of the norms
of its quasihomogeneous components. More precisely we have:

P 3.7. – (a) For a formal power series f , the following properties are
equivalent:

(i) f is uniformly convergent in a neighborhood of the origin,
(ii) There exist M,R > 0 such that for every δ ∈ ∆, |fδ|

p,δ
≤ M

Rδ
.

(iii) There exist M,R > 0 such that for every δ ∈ ∆ and r ≥ 0, N1(f̃δr) ≤ M
Rr .

(b) For a formal vector field V , the following properties are equivalent:
(i) V is uniformly convergent in a neighborhood of the origin,

(ii) There exist M,R > 0 such that for every δ ∈ ‹∆, ‖Vδ‖
p,δ
≤ M

Rδ
.

(iii) There exist M,R > 0 such that for every δ ∈ ‹∆ and r ≥ 0, N2,1(‹Vδr) ≤ M
Rr .

The proof of this lemma is given in Appendix A, Subsection A.2. In the homogeneous
case, this result is due to H. Shapiro [32, Lemma 1].
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L 3.8. – Let f =
∑
δ∈∆ fδ =

∑
Q∈N fQx

Q be a formal power series. If there exists
a constant C such that, for all δ ∈ ∆, |fδ|p,δ ≤ Cδ(δ!)b, then f is a (p̄b)-Gevrey formal power
series. This means that there exists a positive constant D such that |fQ| ≤ C |Q|(|Q|!)p̄b for all
multiindices Q ∈ Nn.

The proof of this lemma is given in Appendix A.4.

4. Normal forms for perturbation of quasihomogeneous vector fields

4.1. Good perturbations

Let n ≥ 2 be an integer. Let p = (p1, . . . , pn) ∈ (N∗)n be fixed such that the largest
common divisor of its components p1 ∧ · · · ∧ pn is equal to 1. Let S be a quasihomogeneous
vector field of Cn of quasidegree s. We are interested in suitable holomorphic perturbations
of S.

D 4.1. – Let X be a germ of holomorphic vector field at the origin of Cn. We
shall say that X is a good perturbation of S if the Taylor expansion of X − S at the origin is
of quasiorder greater than s.

E 4.2. – Let us consider the germ of vector field at the origin of C2

X = (2y + xpU(x))
∂

∂x
− nxn−1 ∂

∂y

where U(0) = 1. This example was considered by Cerveau and Moussu [11]. Let us define
S = 2y ∂

∂x −nx
n−1 ∂

∂y . If n = 2m is even, then it is (1,m)-quasihomogeneous of degreem−1.
If n = 2m+ 1 is odd, then it is (2, n)-quasihomogeneous of degree n− 2. In both cases X is
good perturbation of S whenever 2p > n.

4.2. Formal normal form of a good deformation

In this section, we shall define a formal normal form of a good perturbation of a quasi-
homogeneous vector field S.

Let δ ∈ ∆̃. Let us define the coboundary operator d0 : H δ → H s+δ to be the linear map

d0(U) = [S,U ]

where [., .] denotes the Lie bracket of vector fields.
For any quasidegree α ∈ ∆̃ such that α > s, we consider the selfadjoint operator

�α : H α → H α

U 7→ �αU := d0d
∗
0U

where d∗0 denotes the adjoint operator of d0 relatively to the scalar product 〈., .〉
p,δ

(defined
by (4)). Let spec (�α) denote its spectrum. It is included in the nonnegative real axis.

D 4.3. – (a) We shall say that a vector field of H α is resonant (or harmonic)
if it belongs to the kernel Ker �α of �α.

(b) A formal vector field will be called resonant if all of its quasihomogeneous components
are resonant.
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(c) A good perturbation X = S +R of S is a normal form relatively to S if R is resonant.

P 4.4. – Let S be a p-quasihomogeneous vector field of Cn. Let X := S +R

be a good holomorphic perturbation of S in a neighborhood of the origin of Cn. Then,

(a) (Formal normal form) there exists a formal diffeomorphism Φ̂ tangent to the identity
which conjugates X to a formal normal form; that is Φ̂∗X − S is resonant. Moreover,
there exists a unique normalizing diffeomorphism Φ = Id + U such that U has a zero
projection on the kernel of d0 = [S, .].

(b) (Partial Normal Form) for every α ∈ ‹∆, there exists a polynomial diffeomorphism
tangent to identity Φ−1

α = Id+ Uα where Uα =
∑

0<δ≤α−s
Uδ, with Uδ ∈ H δ∩(Ker d0)⊥

such that

(9) (Φα)∗(X) = S + N α + R>α,

where N α =
∑
s<δ≤αNδ, Nδ ∈ Ker �δ = Ker d∗0| H δ and R>α is of quasiorder > α.

R 4.5. – We emphasize that, in the expansions of N α and Uα in (b), Uδ = 0 and
Nδ = 0 for δ /∈ ‹∆ since H δ = {0}.

Proof. – First of all, we notice that (a) follows directly from (b). Let us prove (b). A basic
identification of the quasihomogeneous components in the conjugacy equation (9) leads to

(10)
{

N α + [S, Uα]
}
δ

=
{
R(Id + Uα)−D Uα.N α + S(Id + Uα)− S −DS.Uα

}
δ

where δ ∈ ‹∆ and s < δ ≤ α. Hence, using Proposition 3.4, Lemma 3.5 and (20), we get the
following “hierarchy” of cohomological equations in H δ for δ ∈ ‹∆ with s < δ ≤ α:

(11) Nδ + d0(Uδ−s) = Kδ

where Kδ depends only on R, S which are given and on Nβ and Uβ−s for s < β < δ (the
explicit formula ofKδ which is useless here is given in Section 6: see (25)). So the “hierarchy”
of equations (11) for s < δ ≤ α can be solved by induction starting with the smallest δ ∈ ∆̃

greater than s.

If δ − s 6∈ ∆̃, then H δ−s = {0}. Hence, d0| H δ−s ≡ 0 so that Kδ ∈ Ker d∗0| H δ = H δ.

Hence, if δ − s /∈ ‹∆, we set Uδ−s := 0 and Nδ := Kδ ∈ Ker d∗0.

If δ − s ∈ ∆̃ (and δ ∈ ∆̃), then let us decompose Hδ along the direct sum

H δ = Im d0| H δ−s

⊥⊕
Ker d∗0| H δ = Im �δ

⊥⊕
Ker �δ

where Im d0| H δ−s = Im �δ and Ker d∗0| H δ = Ker �δ. Let πδ denote the orthogonal
projection onto (Ker d∗0)⊥ = (Ker �δ)

⊥. Then, the cohomological equation (11) is
equivalent to

(12) Nδ = (Id− πδ)(Kδ) ∈ Ker d∗0| H δ , d0(Uδ−s) = πδ(Kδ) ∈ Im d0| H δ−s .

Then since d0 induces an isomorphism from Ker (d0| H δ−s)
⊥ onto Im d0| H δ−s , there exists a

unique Uδ−s ∈ (Ker (d0| H δ−s))
⊥ such that d0(Uδ−s) = πδ(Kδ) ∈ Im d0| H δ−s .
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E 4.6. – Let S =
n∑
i=1

λixi
∂
∂xi

be a linear diagonal vector field. It is

(1, . . . , 1)-quasihomogeneous of degree 0. An easy computation shows that (adS)∗ = adS̄

where S̄ =
n∑
i=1

λ̄ixi
∂
∂xi

. Hence, Ker(adS)∗ = Ker adS̄ . Moreover, the spectrum of �δ is the

set {|(Q,λ)− λi|2, Q ∈ Nn, |Q| = δ + 1, 1 ≤ i ≤ n}.

E 4.7. – Let S = y ∂
∂x in C2. It is (1, 1)-quasihomogeneous of degree 0. The

adjoint of the Lie derivative is L∗ = x ∂
∂y ; the adjoint of the Lie bracket with S is

(adS)∗v = −x∂v1

∂y

∂

∂x
+

Å
v1 − x

∂v2

∂y

ã
∂

∂y
.

Its formal kernel is the C[[x]]-module generated by the radial vector field R = x ∂
∂x + y ∂

∂y and
x ∂
∂y . According to [21, p. 36], the spectrum of �k−1 is composed of the following numbers (1)

0, k + 1, (α− 1)(β + 1), α(β + 2), α = 1, . . . , k, α+ β = k.

An easy computation shows that the non-zero eigenvalues of �k−1 are ≥ k − 1.

A similar definition of normal form of perturbation of homogeneous vector fields was
given by G. Belitskii [3, 4] using a renormalized scalar product. Another definition of normal
form of perturbation of quasihomogeneous vector fields was given by Kokubu and al. [22].
It is a general scheme that provides a unique abstract normal form. This scheme can also be
combined with our techniques to provide a unique normal form as well.

The perturbation of a nilpotent linear vector field has been treated by R. Cushman and
J.A Sanders [12] using sl2-triple representation. Computational aspects with another defi-
nition of normal forms in any dimension was done by L. Stolovitch [34]. Two dimensional
aspects were initiated by R. Bogdanov and [5] and F. Takens [41]. Analytic conjugacy of per-
turbations of a nilpotent 2-dimensional to such a normal form was obtained in [40]

For very particular examples of S in dimension 2, normal forms have been obtained
by V. Basov (see [2] and references therein) without using a general framework. When the
perturbation of S = y ∂

∂x + x2 ∂
∂y is tangent to the germ of 3x2 = 2y3 at the origin, then a

formal normal form of vector fields tangent to the cusp has been devised by F. Loray [24]. It
is described in terms of a basis of the local algebra of the function 3x2− 2y3. This work has
been improved by E. Paul [30].

4.3. Vector fields with symmetries

In this section, we show how to adapt our normal form scheme in order to study vector
fields that preserve a differential form or vector fields that are reversible. We shall show
that we need to consider restrictions of the cohomological operator d0 to some subspace
of the space of quasihomogeneous vector fields with range in another subspace of a space
of quasihomogeneous vector fields. On these subspaces, we shall consider the induced
Hermitian product.

(1) In fact, it is the spectrum of d∗0d0 that is computed there.
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Vector fields leaving a differential form invariant. – One may be interested in studying vector
fields leaving invariant a polynomial differential form ω (i.e. the Lie derivative LXω = 0)
such as a symplectic or a volume form, for instance. First of all, we have to check that ω is also
p-quasihomogeneous (with the same p as for the vector fields). This means that LRpω = dω

for some integer d. For instance, let ω =
∑n
i=1 dxi ∧ dyi be the standard symplectic form

of C2n. Let qi (resp. ri) be the weight of xi (resp. yi). If h0 denotes a p-quasihomogeneous
polynomial of C2n, in order that the associated Hamiltonian vector field

n∑
i=1

−∂h0

∂yi

∂

∂xi
+
∂h0

∂xi

∂

∂yi

be also p-quasihomogeneous, it is necessary and sufficient that qi + ri = qj + rj , for all i, j.

In this situation, it is sufficient to work on the space H δ,ω := {X ∈ H δ | LX(ω) = 0} of
quasihomogeneous vector fields preserving the formω instead of H δ. Indeed, the Lie bracket
of the two such vector fields still preserves ω since L [S,Y ](ω) = LS LY (ω)− LY LS(ω) = 0.
Moreover, the flow exp(tX) of a vector field X that preserves ω leaves ω invariant:
d exp(tX)∗ω

dt = exp(tX)∗( LXω) = 0. Hence, we can consider the restriction maps
d0 : H δ,ω → H δ+s,ω, d∗0 : H δ+s,ω → H δ,ω and the box operator �δ : H δ,ω → H δ,ω.
The scheme goes as follows: assume that X is normalized up to order δ − 1 and that
LXω = 0. Let us conjugate X by expUδ−s where LUδ−sω = 0 and Uδ−s is quasihomoge-
neous of order δ − s. As above, one has to solve the cohomological equation of the form
Nδ + d0(Uδ−s) = Kδ. Since ω is p-quasihomogeneous, it is easy to see that Kδ leaves ω
invariant (see [18] for a similar problem). Hence, we can apply our scheme on the spaces
H δ,ω. As a consequence, if S and its good perturbation X preserve ω, then there is a for-
mal transformation (fixing ω) into a normal form (an element of Ker d0∗) which leaves ω
invariant.

Reversible vector fields. – Let R : Cn → Cn be a linear map such that R2 = Id. A
vector field Z is said to be reversible if it satisfies to Z(Rx) = −RZ(x). Let U be a germ
of holomorphic (or formal) vector field such that R.U(x) = U(Rx) at the origin (a point at
which it vanishes). Then, one can show that the transformation y = x + U(x) conjugates
a reversible vector field to a reversible vector field. As for the case of differential form, we
require a compatibility condition onR with respect to the weight p. Namely, we assume that
the linear vector fieldRx is p-quasihomogeneous of quasidegree 0. This implies that a formal
vector field is reversible if and only if each of its quasihomogeneous components is reversible.
Let us consider the space of quasihomogeneous transformations

T δ := {U ∈ H δ | R.U(x) = U(Rx)}

and the spaces of quasihomogeneous reversible vector fields

Rδ := {U ∈ H δ | R.U(x) = −U(Rx)}.

If S is reversible, then d0 : T δ → Rs+δ. In fact, we have

R[S,U ](x) = RDS.U −RDU.S = −DS(Rx)RU −DU(Rx)R.S

= −DS(Rx)U(Rx) +DU(Rx)S(Rx) = −[S,U ](Rx).
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Hence, we will consider the operator d∗0 : Rs+δ → T δ as well as the box operator
�δ : T δ → T δ. The normal form scheme goes as in the general case except that in equation
(11), Nδ + d0(Uδ−s) = Kδ, we have Kδ, Nδ ∈ Rδ and Uδ−s ∈ T δ−s.

4.4. Spectral properties of �

L 4.8. – (a) Let fλ ∈ H s+α belong to the λ-eigenspace of the operator �s+α,
λ being a nonzero eigenvalue of �s+α. Let vλ be such that �s+αvλ = fλ (i.e. fλ = λvλ)
and let us set Uλ := d∗0vλ ∈ H α. Then, we have

(13) ‖Uλ‖
p,α

=
1√
λ
‖fλ‖

p,s+α
.

Moreover, if λ and λ′ are two different nonzero eigenvalues of �s+α, then Uλ and Uλ′
are orthogonal.

(b) Let f ∈ H α+s belong to Im d0| H α = Im �α and let U ∈ H α be such that
U ∈ Im d∗0|Hα+s

= (Ker d0| H α)⊥ and d0(U) = f . Then

‖U‖
p,α
≤ 1

min
λ∈ Sα+s\{0}

√
λ
‖f‖

p,α+s

where Sα+s = spec �α+s.

Proof. – (a): In fact, we have

〈Uλ, Uλ〉p,α = 〈d∗0vλ, d∗0vλ〉p,α = 〈d0d
∗
0vλ, vλ〉p,α+s

= 〈fλ, vλ〉p,α+s
=

1

λ
〈fλ, fλ〉p,α+s

since fλ = λvλ. About the second point, we have

〈Uλ, Uλ′〉p,α = 〈d∗0vλ, d∗0vλ′〉p,α = 〈vλ, d0d
∗
0vλ′〉p,α+s

= λ′ 〈vλ, vλ′〉p,α+s
= 0.

(b): Let f ∈ H α+s∩Im d0| H α and letU ∈ H α be such thatU ∈ Im d∗0|Hα+s
= (Ker d0| H α)⊥

and d0(U) = f . Then there exits v ∈ (Ker d∗0| H α+s
)⊥ such that d∗0(v) = U . Hence,

�α+sv = f . Since �α+s is a self adjoint operator, we have the spectral decomposition

H s+α =
⊕

λ∈ Sα+s

Ker (λId−�α+s).

Moreover, since f ∈ Im d0| H α = Im �α+s, v ∈ (Ker d∗0| H α+s
)⊥ and �α+sv = f , we also

have the spectral decompositions

f =
⊕

λ∈ Sα+s\{0}

fλ, v =
⊕

λ∈ Sα+s\{0}

vλ, �α+svλ = fλ.

Then, using (a) and setting Uλ = d∗0(vλ), we finally obtain

‖U‖2
p,α

=
∑

λ∈ Sα+s\{0}

‖Uλ‖2
p,α
≤

∑
λ∈ Sα+s\{0}

1
λ ‖Uλ‖

2

p,α
≤

Ö
1

min
λ∈ Sα+s\{0}

√
λ

è2

‖f‖2
p,α+s

.
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5. Rigidity of quasihomogeneous vector fields

Let I be a quasihomogeneous ideal of On generated by quasihomogeneous polynomials
h1, . . . , hr of p-quasidegree e1, . . . , er respectively. We shall denote by Î = I ⊗ Ôn its
formal completion, that is the ideal in the ring of formal power series Ôn generated by the
hi’s. Let us denote by Mi the operator of multiplication by hi in Ôn ( Mi will also denote
the multiplication operator, componentwise, on the space of formal vector field “Xn). Let us
denote by M = M1 Xn + · · · + Mr Xn (resp “M = M1

“Xn + · · · + Mr
“Xn) the submodule of

germs of holomorphic (resp. formal) vector fields at the origin whose components belong to
the ideal generated by the hi’s.
Let δ ∈ ∆̃, let us set Mδ := M ∩ H δ. Let V δ be the orthogonal complement of Mδ in H δ

and let π I⊥ be the projection onto V δ: H δ = V δ
⊥⊕

Mδ. We shall set “V :=
⊕
δ∈∆̃

V δ as well

as
Ŵ :=

{
U ∈ (Ker d0)⊥ | [S,U ] ∈ “V} .

L 5.1. – With the notation above, we have V δ =
r⋂
i=1

Ker M∗i| H δ+ei where M∗i| H δ+ei
denotes the adjoint operator of Mi| H δ : H δ → H δ+ei with respect to the family of Hermitian
products 〈., .〉

p,.
.

Proof. – Let v ∈ V δ. By definition, we have (v, M1wi + · · ·+ Mrwr) = 0,
for all wi ∈ H δ−ei . In particular, we may choose wi = M∗i v for all i. We obtain
0 = ‖M∗1v‖2 + · · ·+ ‖M∗rv‖2.

Let δ ∈ ∆̃ such that δ > s. Let us denote by σδ,\ I the set of nonzero eigenvalues of
�δ for which there exists an associated (quasihomogeneous of degree δ) eigenvector which is
orthogonal to Mδ. Let us set

aδ := min
λ∈σδ,\ I

√
λ,

as well as

δ∗ :=
min{δ + pi | δ + pi ∈ ∆}

p̄
and δ∗ :=

max{δ + pi | δ + pi ∈ ∆}
p

.

Let us set

∆̃− := ∆̃ ∩ (∆̃− s), ∆̃+ := ∆̃ ∩ (∆̃ + s), δ0 := max( min
δ∈∆̃−

δ, 1).

The integer δ0 is the smallest positive integer of ∆̃−. It might happen that δ0 > 1 for some p.
Let us define the sequence of positive real numbers {ηδ}δ∈∆̃−∩N∗∪{0} as follows: η0 = 1; for

any positive δ ∈ ∆̃− (i.e. δ ≥ δ0),

(14) as+δηδ = max
s≤µ≤s+δ, µ∈∆̃

∗
max

δ1+···+δr+µ=s+δ
µ∗≤r≤µ∗

ηδ1 · · · ηδr ,

where if µ = s then the maximum is taken over the r-tuples (δ1, . . . , δr) of nonnegative
integers such that at least, two of the δi’s are positive. Moreover, the maximum is taken over
the indices δi (resp. µ) which belong to (∆̃− ∩ N∗) ∪ {0} (resp. ∆̃).
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R 5.2. – The sequence ηδ is well defined by induction since the maxima only involve
terms ηd’s with d < δ.

D 5.3. – The quasihomogeneous vector field S will be called Diophantine with
respect to the ideal I if the formal power series

∑
δ>0, δ∈∆̃

ηδz
δ converges in a neighborhood of

the origin in C; that is to say that there exist c,M > 0 such that ηδ ≤Mcδ. We shall say that
S is Diophantine if it is Diophantine with respect to the zero ideal I = {0}.

E 5.4. – Let us consider Example 4.6 where S is linear and diagonal. It is known
[35, Lemma 2.3] that S is Diophantine in the above sense if and only if it satisfies Brjuno’s
condition:

(ω) −
∑
k≥0

ln(ωk+1)

2k
< +∞

where

ωk = inf
{
|(Q,λ)− λi| 6= 0, i = 1, . . . , n, Q ∈ Nn, 2 ≤ |Q| ≤ 2k

}
.

D 5.5. – Let S be quasihomogeneous and let X be a good holomorphic
perturbation of S at the origin. We shall say that X is formally (holomorphically)
conjugate to S along Î (resp. I ) if there exists a formal (resp. germ of holomorphic)
diffeomorphism Φ̂ (resp. Φ) such that Φ̂∗X − S ∈ “M (resp. Φ∗X − S ∈ M), i.e. in the new
formal (resp. holomorphic) coordinates, X is equal to the sum of S and a formal vector field
whose components belong to the ideal Î (resp. I ).

T 5.6. – Let us assume that the quasihomogeneous vector field S is Diophantine
with respect to I . Let X be a good holomorphic perturbation of S at the origin of Cn. We
assume that X is formally conjugated to S along Î (by the mean of a formal diffeomorphism
of the form Id + U , with U ∈ Ŵ ). Then, X is holomorphically conjugated to S along I .

C 5.7. – Under the assumptions of the theorem, there exists a good
holomorphic change of coordinates in which the germ at the origin of the zero locus
Σ := {x ∈ Cn, h1(x) = · · · = hr(x) = 0} at 0 is an invariant analytic set for X. Moreover,
in these new coordinates, the restriction X to Σ is equal to the restriction of S to Σ.

T 5.8. – If the quasihomogeneous vector field S is Diophantine and if the
holomorphic good perturbation X is formally conjugate to S, then X is holomorphically
conjugate to S.

Proof. – We apply Theorem 5.6 to the ideal I = {0}. Moreover, we can assume that the
normalizing diffeomorphism reads Φ := I + U with U ∈ (Ker d0)⊥. In fact, if Φ∗X = S,
then for any V commuting with S, we have

(expV )∗S = S + [V, S] +
1

2
[V, [V, S]] + · · · = S.
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The remainder of the section is devoted to the proof of Theorem 5.6.

First of all, let us write the conjugacy equations between the vector fields X = S + R

and X ′ := Φ̂∗X = S + R′ where the formal diffeomorphism is written as Φ̂−1 = Id + U

where U ∈ Ŵ stands for a formal vector field of positive quasiorder. Since we have
D(Φ̂)(Φ̂−1)X(Φ̂−1) = X ′, we have X(I + U) = D(I + U)X ′. Therefore, we obtain

(15) R′ + [S,U ] = R(Id + U)−DU.R′ + S(Id + U)− S −DS.U.

For any positive integer δ such that s+δ ∈ ∆̃, let us project this equation onto the orthogonal
space V s+δ to Ms+δ in H s+δ and let us denote by π I⊥ this projection. Assume that Φ̂

conjugates X to S along “M. This means that R′ belongs to “M. Therefore, we have

(16) [S,U ] = π I⊥([S,U ]) = π I⊥(R(Id + U) + S(Id + U)− S −DS.U).

The first equality is due to the fact that U ∈ Ŵ whereas the second is due to the fact that
DU.R′ ∈ “M. We recall that Uδ denotes the quasihomogeneous component of (the Taylor
expansion at the origin of) U of quasidegree δ of U . We emphasize that both side of the
equation are reduced to zero if δ 6∈ ∆̃. So, we will consider the case where s + δ ∈ ∆̃ and
δ ∈ ∆̃. We recall that

∆̃− := ∆̃ ∩ (∆̃− s), ∆̃+ := ∆̃ ∩ (∆̃ + s).

By assumption, Uδ has also a zero projection on the kernel of the operator d0. Since we have

H δ = Kerd0

⊥⊕
Imd∗0| H s+δ ,

then we can write Uδ = d∗0vs+δ for some v ∈ H s+δ. Moreover, we can assume that v
has a zero projection onto Kerd∗0. The latter is nothing but the kernel of � = d0d

∗
0. In

fact, if �vs+δ = 0 then 0 = 〈�v, v〉
p,s+δ

= |d∗0vs+δ|2, the converse being obvious. Let us
decompose vs+δ along the eigenspaces of �s+δ. Let λ be an eigenvalue of �s+δ and let πλ
be the projection on the associated eigenspace. We shall say that λ is quasihomogeneous of
quasidegree s+δ if � has a λ-eigenvector in H s+δ. We shall denote by πδ+s,\ I the projection
onto the subspace of H s+δ generated by the eigenvectors of �δ+s which are orthogonal to
Ms+δ. Since [S,Uδ] = d0d

∗
0vs+δ, then, we have

πs+δ,\ I ◦ π I⊥(d0d
∗
0vs+δ) = πs+δ,\ I ◦ π I⊥

Ñ ∑
λ∈σs+δ,\ I

λvλ

é
=

∑
λ∈σs+δ,\ I

λvλ,

where we have set vλ := πλ(v). We recall that σδ+s,\ I denotes the set of nonzero eigenvalues
of �δ+s for which there exists an associated (quasihomogeneous of degree δ+s) eigenvector
orthogonal Mδ+s. We can assume that v0 = 0. Therefore∑

λ∈σs+δ,\ I

λvλ = πs+δ,\ I ◦ π I⊥(R(Id + U) + S(Id + U)− S −DS.U).

Let us set Uλ := d∗0vλ and let us denote by Uδ the sum of the Uλ’s where λ ranges over
σs+δ,\ I . According to the first point of Lemma 4.8, we have ‖Uλ‖2 = λ‖vλ‖2. According to
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the second point,∥∥∥∥∥∥ ∑
λ∈σs+δ,\ I

λvλ

∥∥∥∥∥∥
2

p,s+δ

=
∑

λ∈σs+δ,\ I

λ2 ‖vλ‖2
p,s+δ

=
∑

λ∈σs+δ,\ I

λ ‖Uλ‖2
p,δ
≥

Ç
min

λ∈σs+δ,\ I

√
λ

å2

‖Uδ‖2
p,δ
.

Therefore, we obtain
(17)Ç

min
λ∈σs+δ,\ I

|
√
λ|
å
‖Uδ‖

p,δ
≤
∥∥πs+δ ◦ π I⊥(R(Id + U) + S(Id + U)− S −DS.U)

∥∥
p,s+δ

.

Let us estimate the right hand side of the last inequality. First of all, we have∥∥πs+δ ◦ π I⊥(R(Id + U) + S(Id + U)− S −DS.U)
∥∥
p,s+δ

≤ ‖{R(Id + U) + S(Id + U)− S −DS.U}p,s+δ‖
p,s+δ

.

Then, let us decompose R into quasihomogeneous components R =
∑
µ>s

Rµ. First of

all, for any d ∈ N, every quasihomogeneous polynomial of quasidegree d is either 0 or
a polynomial of degree ≤ d/p and of order ≥ d/p̄. In fact, if d ∈ ∆, then we have
d = α1p1 + · · · + αnpn for some α = (α1, . . . , αn) ∈ Nn. Hence, p̄|α| ≥ d ≥ p|α|. On
the other hand, if µ ∈ ∆, the i-th coordinate of the vector field Rµ is quasihomogeneous
of quasidegree µ + pi. Hence, it is 0 if µ + pi 6∈ ∆. Otherwise, it is a polynomial of
degree ≤ (µ + pi)/p and of order ≥ (µ + pi)/p̄. Therefore, Rµ can be written as a sum
of homogeneous vector fields

Rµ =
∑

µ∗≤r≤µ∗
Rµ,r

whereRµ,r is a homogeneous vector field of degree r (i.e. each component is a homogeneous
polynomial of degree r or 0). We recall that we have set

µ∗ :=
min{µ+ pi | µ+ pi ∈ ∆}

p̄
and µ∗ :=

max{µ+ pi | µ+ pi ∈ ∆}
p

.

Let R̃µ,r be the associated r-linear map. Therefore, the (s + δ)-quasihomogeneous compo-
nent of R(Id + U) in its Taylor expansion at 0 is

{R(Id + U)}s+δ =

{∑
µ>s

Rµ(Id + U)

}
s+δ

=

∑
µ>s

µ∗∑
r=µ∗

R̃µ,r(Id + U, . . . , Id + U︸ ︷︷ ︸
r times

)


s+δ

=
s+δ∑
µ>s

µ∗∑
r=µ∗

∑
δ1+···+δr+µ=s+δ

R̃µ,r(Uδ1 , . . . , Uδr )
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where the δi’s are nonnegative elements of ∆̃− = ∆̃ ∩ (∆̃ − s), µ ∈ ∆̃ is greater than s and
where we have set U0 := Id.

Moreover, according to Propositions 3.6 and 3.7, there exist positive constants M and ρ
such that, for all µ > s belonging to ∆̃, for all µ∗ ≤ r ≤ µ∗, we have∥∥∥R̃µ,r(Uδ1 , . . . , Uδr )∥∥∥

p,δ1+···+δr+µ

≤ M

ρr
‖Uδ1‖p,δ1 · · · ‖Uδr‖p,δr .

As a consequence, we obtain the following estimate:

(18) ‖{R(Id + U)}s+δ‖
p,s+δ

≤
s+δ∑
µ>s

µ∗∑
r=µ∗

∑
δ1+···+δr+µ=s+δ

M

ρr
‖Uδ1‖p,δ1 · · · ‖Uδr‖p,δr .

On the other hand, we have

S(x) =
∑

s∗≤r≤s∗
S̃•,r(x, . . . , x︸ ︷︷ ︸

r times

)

where S̃.,r is an r-linear map. Therefore, we have

DS(x)U =
∑

s∗≤r≤s∗
rS̃•,r(x, . . . , x︸ ︷︷ ︸

r − 1 times

, U).

Hence, the s+δ-quasihomogeneous term in the Taylor expansion of S(I+U)−S−DS(x)U

is

(19) {S(I + U)− S −DS(x)U}s+δ =
∑

s∗≤r≤s∗

∑
δ1+···+δr=δ
(δ1,...,δr)∈Ωr

S̃•,r(Uδ1 , . . . , Uδr )

where

(20) Ωr =
¶

(δ1, . . . , δr) ∈
Ä‹∆−är / at least, two of the indices are positive

©
.

Therefore, we obtain the following estimate∥∥{S(I + U)− S −DS(x)U}s+δ
∥∥
p,s+δ

≤M ′
∑

s∗≤r≤s∗

∑
δ1+···+δr=δ
(δ1,...,δr)∈Ωr

‖Uδ1‖p,δ1 · · · ‖Uδr‖p,δr

where M ′ denotes a constant depending only on S.

Let us define the sequence {σδ}δ∈∆̃−∩N∗∪{0} of positive numbers defined by σ0 := ‖Id‖p,0
and if δ ∈ ∆̃− is positive,

σδ :=
s+δ∑
µ>s

µ∗∑
r=µ∗

∑
δ1+···+δr+µ=s+δ

M

ρr
σδ1 · · ·σδr +M ′

∑
s∗≤r≤s∗

∑
δ1+···+δr=δ
(δ1,...,δr)∈Ωr

σδ1 · · ·σδr

where, in the first sum, the δi’s are nonnegative elements of ∆̃− and the µ’s are elements of ∆̃.
This sequence is well defined. In fact, since µ > s, then the δi’s are all less than δ in the sum.

L 5.9. – For all nonnegative δ ∈ ∆̃− ∩ N∗ ∪ {0}, we have ‖Uδ‖p,δ ≤ ηδσδ.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



680 E. LOMBARDI AND L. STOLOVITCH

Proof. – We prove it by induction on nonnegative elements of ∆̃− ∪ {0}. For δ = 0, this
is obviously true since η0 = 1 and σ0 = ‖Id‖p,0. Let us assume that the lemma is true for all
0 ≤ δ′ < δ in ∆̃−. According to estimates (17) and (18), we haveÇ

min
λ∈σs+δ,\ I

√
λ

å
‖Uδ‖

p,δ
≤

s+δ∑
µ>s

µ∗∑
r=µ∗

∑
δ1+···+δr+µ=s+δ

M

ρr
‖Uδ1‖p,δ1 · · · ‖Uδr‖p,δr

+M ′
∑

s∗≤r≤s∗

∑
δ1+···+δr=δ
(δ1,...,δr)∈Ωr

‖Uδ1‖p,δ1 · · · ‖Uδr‖p,δr

≤
s+δ∑
µ>s

µ∗∑
r=µ∗

∑
δ1+···+δr+µ=s+δ

M

ρr
ηδ1σδ1 · · · ηδrσδr

+M ′
∑

s∗≤r≤s∗

∑
δ1+···+δr=δ
(δ1,...,δr)∈Ωr

ηδ1σδ1 · · · ηδrσδr

≤

Ñ
max

s≤µ≤s+δ, µ∈∆̃

∗
max

δ1+···+δr+µ=s+δ
µ∗≤r≤µ∗

ηδ1 · · · ηδr

é
σδ.

The second inequality is a consequence of the induction assumption. The last one gives the
desired result.

L 5.10. – The formal power series σ(t) :=
∑

i∈∆̃−∪{0},i≥0

σit
i converges in a

neighborhood of the origin of C.

Proof. – First of all, we notice that we have

δ+s∑
µ>s

µ∗∑
r=µ∗

∑
δ1+···+δr+µ=s+δ

M

ρr
σδ1 · · ·σδr = M

δ+s∑
µ>s

®Å
σ(t)

ρ

ãµ∗
+ · · ·+

Å
σ(t)

ρ

ãµ∗´
δ+s−µ

.

Let us set

(21) Pµ(z) :=

µ∗∑
r=µ∗

Å
z

ρ

ãr
and F (z, t) = M

∑
µ∈∆̃,µ>s

Pµ(z)tµ−s.

The power seriesF defines a germ of holomorphic function at the origin of C2 which satisfies
F (z, 0) = 0. Then, the coefficient of tδ is the Taylor expansion of F (σ(t), t) at the origin of C
given by

{F (σ(t), t)}δ = M

{∑
µ>s

Pµ(σ(t))tµ−s

}
δ

= M

{∑
µ>s

{Pµ(σ(t))}δ−µ+st
δ−µ+stµ−s

}
δ

= M
δ+s∑
µ>s

{Pµ(σ(t))}δ−µ+s.

On the other hand, let us set

(22) P (z) :=
s∗∑
r=s∗

(
zr − σr0 − rσr−1

0 (z − σ0)
)
.
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We have P (σ0) = 0 and DP (σ0) = 0. We then notice that

{P (σ(t))}δ = M
∑

s∗≤r≤s∗

∑
δ1+···+δr=δ
(δ1,...,δr)∈Ωr

σδ1 · · ·σδr

where Ωr is given by (20). Let us set G(z, t) := F (z, t) + P (z). Therefore, we have
σδ = {F (σ(t), t) + P (σ(t))}δ.

As a consequence, the power series σ(t) is solution of the problem G(σ(t), t) = (σ(t) −
σ0) together with σ(0) = σ0. Since DzG(σ0, 0) = 0, then, according to the implicit
function theorem, this problem has a unique holomorphic solution satisfying the same initial
condition.

R 5.11. – The order of F (z, t) at t = 0 is δ0 := max(minδ∈∆̃− δ, 1).

Therefore, according to the Diophantine property of S, there exist M, c > 0 such that
ηδ ≤ Mcδ for all positive δ ∈ ∆̃. Moreover, according to the previous lemma and to
Proposition 3.7, there exist M ′, d > 0 such that σδ ≤ M ′dδ for all positive δ ∈ ∆̃−.
Hence, according to Lemma 5.9, we have, for all positive δ ∈ ∆̃−, ‖Uδ‖p,δ ≤ Mcδ for some
positive constants M and c. Therefore, according to Proposition 3.7, U is holomorphic in a
neighborhood of the origin in Cn. This concludes the proof of the main theorem.

6. Conjugacy to normal forms and approximation up to an exponentially small remainder

In this section we shall study the conjugacy problem to normal form. We shall show that if
the “small divisors” are actually big, then there is a convergent normalizing transformation.
On the other hand, we shall show that, if the “small divisors” are not too small then there
exists a formal normalizing transformation which is not worst than Gevrey. From this, we
will be able to obtain an optimal choice of the quasidegree α of normalization such that
discrepancy between the partial conjugate and the partial normal form of quasidegree α is
exponentially small in some twisted ball.

6.1. Normalization and cohomological equations

Let S be a p-quasihomogeneous vector field of Cn. Let X := S + R be a good
holomorphic perturbation of S in a neighborhood of the origin of Cn (i.e. the quasiorder
of R at the origin is greater than s). Proposition 4.4 ensures that for every α ∈ ‹∆ with
α > s, there exists a polynomial diffeomorphism tangent to identity Φ−1

α = Id + Uα
where Uα =

∑
0<δ≤α−s

Uδ, with Uδ ∈ H δ such that (Φα)∗(X) = S + N α + R>α, where

N α =
∑

s<δ≤α
Nδ, Nδ ∈ Ker �δ, and where R>α is of quasiorder > α. We recall that in

the expansions of N α and Uα, Uδ = 0 and Nδ = 0 for δ /∈ ‹∆ since H δ = {0}. A basic
identification of the quasihomogeneous components for δ ∈ ‹∆ with s < δ ≤ α leads to

(23)
{

N α + [S, Uα]
}
δ

=
{
R(Id + Uα)−D Uα.N α + S(Id + Uα)− S −DS.Uα

}
δ
.
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Hence, using Proposition 3.4, Lemma 3.5 and (20), we get the following hierarchy of coho-
mological equations in H δ for δ ∈ ‹∆ with s < δ ≤ α:

(24) Nδ + d0(Uδ−s) = Kδ

with

(25)

Kδ =
∑

µ>s, µ∈∆̃

µ∗∑
r=µ∗

∑
δ1+···+δr+µ=δ

δi≥0

R̃µ,r(Uδ1 , . . . , Uδr )−
∑

δ1+δ2=δ
δ1>0, δ2>s,δ2∈∆̃

DUδ1 .Nδ2

+
s∗∑
r=s∗

∑
δ1+···+δr+s=δ
(δ1,...,δr)∈Ωr

S̃•,r(Uδ1 , . . . , Uδr )

where by convention U0 = Id and where Ωr is given by (20). Moreover, if not specified, the
δi’s belong to ‹∆− = ‹∆ ∩ (∆̃− s) in the previous sums.

Then, we observe that (25) ensures thatKδ depends only onR and S which are given and
on Nβ and Uβ−s for s < β < δ. So the “hierarchy” of Equation (24) for s < δ ≤ α can be
solved by induction starting with the smallest δ ∈ ∆̃ greater than s.

Let us denote by πδ the orthogonal projection on (Ker �δ)
⊥ = (Ker d∗0| H δ)

⊥ = Im d0| H δ−s .
Since Nδ ∈ Ker �δ, (24) is equivalent to

(26) Nδ = (Id− πδ)(Kδ), d0(Uδ−s) = πδ(Kδ).

R 6.1. – We shall point out that if δ − s /∈ ‹∆, Uδ−s = 0 and Nδ = Kδ since
H δ−s = {0}.

To compute by induction upper bounds of Nδ and Uδ−s, we use the norms

νs = 0, νδ = ‖Nδ‖
p,δ

for δ ∈ ‹∆, δ > s,

u0 = ‖U0‖
p,0

= ‖Id‖
p,0

=
»

1
(p1)! + · · ·+ 1

(pn)! , uδ = ‖Uδ‖
p,δ

for δ ∈ ‹∆, δ > 0.

We set uδ = 0 if δ + s 6∈ ∆̃ and νs = 0. Then, since πδ is orthogonal and using Lemma 4.8,
we deduce from (26) that, for all δ ∈ ∆̃,

(27) νδ = ‖Nδ‖
p,δ
≤ ‖Kδ‖

p,δ
, uδ−s ≤

1

min
λ∈spec �δ\{0}

√
λ
‖Kδ‖

p,δ
.

Finally, the submultiplicativity of the norms given by Proposition 3.6 implies that there exists
M > 0 such that for every δ ∈ ‹∆ with δ > s,

(28) ‖Kδ‖
p,δ
≤ kδ

with
(29)

kδ = M

( ∑
µ>s, µ∈∆̃

∑
µ∗≤r≤µ∗

δ1+···+δr+µ=δ

uδ1 · · ·uδr
ρr

+
∑

1≤δ1≤δ−s−1

δ1∈∆̃−, δ−δ1∈∆̃

δ
max(1, p2 )
1 uδ1νδ−δ1 +

∑
s∗≤r≤s∗

δ1+···+δr+s=δ
(δ1,...,δr)∈Ωr

uδ1 . . . uδr

)

where in the first and the last sums, the δi’s belong to ∆̃− and where Ωr is defined by (20).
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6.2. Convergent conjugacy to a normal form

Let us set
ν := max

(
1, p̄2

)
.

T 6.2. – Assume that there exists a constant c > 0 such that for all δ ∈ ∆̃+,

min
λ∈spec �δ\{0}

√
λ > c−1(δ − s)ν .

Then, any good holomorphic perturbation X of S is holomorphically conjugate to a normal
form.

Proof. – Let us set γ0 = 1 and if δ ∈ ∆̃+ with δ > s

γδ−s := M̃

( ∑
µ>s, µ∈∆̃

∑
µ∗≤r≤µ∗

δ1+···+δr+µ=δ

Ç
u0

ρ

år

γδ1 · · · γδr +
∑

1≤δ1≤δ−s−1

δ1∈∆̃−, δ−δ1∈∆̃

γδ1γδ−δ1−s +
∑

s∗≤r≤s∗
δ1+···+δr+s=δ
(δ1,...,δr)∈Ωr

γδ1 . . . γδr

)
.

Here, we have set M̃ := max
Ä
Mcu0,

Mc
u0
,Mcus

∗−1
0 ,Mcus∗−1

0

ä
. We claim that

(30) νδ ≤ u0 γδ−s, (δ − s)νuδ−s ≤ u0 γδ−s.

Let us prove these inequalities by induction on δ ≥ s. This is obviously true for δ = s.
According to Equations (29) and (28), we have for δ > s

(δ − s)νuδ−s ≤M

( ∑
µ>s, µ∈∆̃

∑
µ∗≤r≤µ∗

δ1+···+δr+µ=δ

Ç
u0

ρ

år

γδ1 · · · γδr +
∑

1≤δ1≤δ−s−1

δ1∈∆̃−, δ−δ1∈∆̃

γδ1γδ−δ1−s +
∑

s∗≤r≤s∗
δ1+···+δr+s=δ
(δ1,...,δr)∈Ωr

γδ1 . . . γδr

)
,

where, in the first and the last sum, we have used the fact that, if δi > s, then
uδi−s ≤ (δi − s)νuδi−s ≤ u0 γδi−s as well as u0 ≤ u0γ0. Therefore, we obtain
(δ − s)νuδ−s ≤ γδ−s. In the same way, we have νδ ≤ γδ−s. Let us define the formal
power series

γ(t) :=
∑

i∈∆̃∩(∆̃−s),i≥0

γit
i,

Let G(z, t) := F (z, t) + P (z) be the function defined by Equations (21) and (22) where, in
these formulas, ρ is replaced by ρ/u0, M by M ′ and σ0 by 1.

Let δ ∈ ∆̃ such that δ > s. As we have seen above, we have
δ∑

µ>s

µ∗∑
r=µ∗

∑
δ1+···+δr+µ=δ

M ′
Å
u0

ρ

ãr
γδ1 · · · γδr+M ′

∑
s∗≤r≤s∗

δ1+···+δr+s=δ
(δ1,...,δr)∈Ωr

γδ1 · · · γδr = {G(γ(t), t)}δ−s

where, in the first sum, the δi’s are nonnegative elements of ∆̃− and the µ’s are elements of ∆̃.
We recall that {G(γ(t), t)}δ−s denotes the coefficient of tδ−s in the Taylor expansion at the
origin of the formal power series G(γ(t), t). Furthermore, we have,∑

1≤δ1≤δ−s−1

δ1∈∆̃−, δ−δ1∈∆̃

γδ1γδ−δ1−s = {(γ(t)− 1)2}δ−s.
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Hence, γ(t) is solution of the holomorphic implicit function problem:

G(γ(t), t) + (γ(t)− 1)2 = γ(t)− 1

with initial condition γ(0) = 1. Since G(1, 0) = 0 and DzG(1, 0) = 0, γ is the unique
holomorphic solution of this problem. Therefore, for all positive δ ∈ ∆̃+, we have
uδ ≤ γδ ≤ Cδ. Hence, the formal power series

∑
Uδ converges in a neighborhood of

the origin, that is to say the normalizing transformation Φ−1 is holomorphic in a neighbor-
hood of the origin of Cn.

R 6.3. – If S is a diagonal linear vector field, then the situation described by the
previous theorem corresponds to the Poincaré domain [1]. In fact, by definition, the closed
convex hull of the eigenvalues λi in the complex plane does not contain the origin. Hence, if
Q ∈ Nn is such that |Q| = q1 + · · ·+qn is large enough, then |q1λ1 + · · ·+qnλn−λi| ≥ m|Q|.

6.3. Formal Gevrey conjugacy to a normal form

Assume that S satisfies the following Siegel type condition: there exist c ≥ 1 and τ ≥ 0

such that for every δ ∈ ‹∆ with δ ≥ s, we have

(31)
1

(δ − s)τ
≤ c min

λ∈spec �δ\{0}

√
λ.

Our aim is to show that both νδ and uδ−s admit Gevrey estimates. Namely we prove in this
section the following result:

T 6.4. – Assume that S satisfies (31). Any good holomorphic perturbation of S
admits a formal transformation to a formal normal form both of which are p̄( aδ0 + τ)-Gevrey

power series where δ0 := max(minδ∈∆̃− δ, 1) and a := max
Ä
1,
î

(p̄+1)
2

óä
.

The following lemma gives such an estimate using a common majorant power series.

L 6.5. – Let {βδ−s}δ∈∆̃∩(∆̃+s), δ≥s be the sequence defined by induction with β0 = 1

and for δ ∈ ‹∆+, δ > s,

βδ−s = M ′

( ∑
µ>s, µ∈∆̃

∑
µ∗≤r≤µ∗

δ1+···+δr+µ=δ

Ä
u0

ρ

är
βδ1 · · ·βδr

+
∑

1≤δ1≤δ−s−1

δ1∈∆̃∩(∆̃−s), δ−δ1∈∆̃

δ1(δ1 − 1) · · · (δ1 − a+ 1)βδ1βδ−s−δ1 +
∑

s∗≤r≤s∗
δ1+···+δr+s=δ
(δ1,...,δr)∈Ωr

βδ1 . . . βδr

)

where a is the smallest integer larger than or equal to ν = max(1, p2 ) and where in the first and
last sums the δi’s belong to ‹∆−, Ωr is given by (20) and s∗ is defined by (3). Here, we have
set M ′ := max

Ä
Mcu0m,

Mc
u0
,Mcus

∗−1
0 ,Mcus∗−1

0

ä
with m = sup

δ∈∆̃

δa

(δ−1)···(δ−a+1) . Then for

every δ ∈ ‹∆+ with δ ≥ s,

(32) νδ ≤ u0 ((δ − s)!)τβδ−s, uδ−s ≤ u0 ((δ − s)!)τβδ−s.

R 6.6. – δ ∈ ∆̃+ if and only if δ − s ∈ ∆̃−.
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Proof. – The proof is made by induction. We first observe that (32) holds for δ = s since
β0 = 1 and νs = 0.

Then, let δ > s and assume that (32) holds for every α ∈ ‹∆+ satisfying s ≤ α < δ. Our
aim is now to prove that (32) holds for δ. We proceed in several steps.

Step 1.
We start with uδ−s. Using (28) and (29), we get

(33)
uδ−s

u0((δ − s)!)τ
≤Mc(δ−s)τ
u0((δ−s)!)τ

∑
1≤δ1≤δ−s−1

u2
0 δ

a
1βδ1βδ−s−δ1

(
(δ1)! (δ − δ1 − s)!

)τ
+ Mc(δ−s)τ
u0((δ−s)!)τ

∑
µ>s, µ∈∆̃

∑
µ∗≤r≤µ∗

δ1+···+δr+µ=δ

Ä
u0

ρ

är
βδ1 · · ·βδr (δ1!)τ · · · (δr!)τ

+ Mc(δ−s)τ
u0((δ−s)!)τ

∑
s∗≤r≤s∗

δ1+···+δr+s=δ
(δ1,...,δr)∈Ωr

(u0)r βδ1 . . . βδr (δ1!)τ · · · (δr!)τ

≤Mcu0 m
∑

1≤δ1≤δ−s−1
δ1(δ1 − 1) · · · (δ − a+ 1)βδ1βδ−s−δ1(Dδ−s,δ1,δ−s−δ1)τ

+Mc
u0

∑
µ>s, µ∈∆̃

∑
µ∗≤r≤µ∗

δ1+···+δr+µ=δ

Ä
u0

ρ

är
βδ1 · · ·βδr (Dδ−s,δ1,...,δr )

τ

+Mcmax((u0)s
∗−1, us∗−1

0 )
∑

s∗≤r≤s∗
δ1+···+δr+s=δ
(δ1,...,δr)∈Ωr

βδ1 . . . βδr (Dδ−s,δ1,...,δr )
τ

where Dδ−s,δ1,...,δr = δ1!···δr!
(δ−s−1)! .

Step 1.1
We observe that setting M ′ = max

Ä
Mcu0m,

Mc
u0
,Mcus

∗−1
0 ,Mcus∗−1

0

ä
, we get

Mcu0m ≤M ′, Mc
u0
≤M ′ and Mcmax((u0)s

∗−1, us∗−1
0 ) ≤M ′.

Step 1.2
Then, in the first sum of (33), Dδ−s,δ1,δ−s−δ1 = δ1!(δ−s−δ1)!

(δ−s−1)! = δ−s
C
δ1
δ−s
≤ 1 holds since

1 ≤ δ1 ≤ δ − s− 1.

Step 1.3
Our aim is now to prove that for every index in the second sum of (33), Dδ−s,δ1,...,δr ≤ 1.

For that purpose we need to distinguish three cases.

Case 1: r ≥ 2 and δj ≥ 1, 1 ≤ j ≤ r. It is proved in [21], p. 20, that for r ≥ 2, δj ≥ 1, and
δ1 + · · ·+ δr = d Dd,δ1,...,δr ≤ 1. So, in the second sum of (33) for r ≥ 2 and δj ≥ 1, we have

Dδ−s,δ1,...,δr = Dδ−µ,δ1,...,δr
(δ − µ− 1)!

(δ − s− 1)!
≤ 1

since δ1 + · · ·+ δr = δ − µ and s < µ ≤ δ.

Case 2. In the second sum of (33), if r = 1 (which implies δ1 = δ − µ) or if all the indices
vanish except one, then

Dδ−s,δ1,...,δr =
(δ − µ)!

(δ − s− 1)!
≤ 1
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since µ > s.

Case 3. Finally, if some indices δj vanish in the second sum of (33), then the computation
of the corresponding Dδ−s,δ1,...,δr can be made by removing these indices, i.e. by decreas-
ing r.

So, for every index in the second sum of (33), Dδ−s,δ1,...,δr ≤ 1.

Step 1.4

Finally, in the third sum of (33),Dδ−s,δ1,...,δr ≤ 1 still holds for the same reasons as above,
observing that in this case there are at least two positive indices δj , i.e. Case 2 is not possible
in the third sum.

Gathering the results of substeps 1.1,· · · ,1.4, we can conclude that

uδ−s

u0((δ − s)!)τ
≤M ′βδ−s

where M ′ = max
Ä
Mcu0,

Mc
u0
,Mcus

∗−1
0 ,Mcus∗−1

0

ä
does not depend on δ.

Step 2

The computation of the upper bound for νδ is performed exactly in the same way.

R 6.7. – If the good perturbation is a formal α-Gevrey power series, then the
estimate 1

ρr of |R̃µ,r| has to be changed to 1
ρr (r!)α. Then, the inequality (28) is changed to

‖Kδ‖
p,δ
≤ (δ∗!)αkδ. Since δ∗ ≤ δ+p̄

p , then according to the proof in Section A.4, we have

(δ∗!)α ≤ (δ + p̄)!
α
p . Hence, using Lemma 6.8, we obtain estimates of the form

νδ, uδ−s ≤MCδ((δ − s)!)
α
p+τ+ a

δ0

for some positive constants M,C. According to Lemma 3.8, the formal normalizing
transformation and the normal form are both p̄(αp + τ + a

δ0
)-Gevrey.

In the homogeneous case, p = (1, . . . , 1), the formal normalizing transformation and the
normal form are both (α+ τ + 1)-Gevrey.

6.3.1. Gevrey estimates for the βi’s. – Let us define the formal power series

β(t) :=
∑

i∈∆̃∩(∆̃−s),i≥0

βit
i.

We recall that β0 = 1. Let δ0 be the order of β − β0 at the origin. We recall that
δ0 := max(minδ∈∆̃− δ, 1) from Remark 5.11 and a := max

Ä
1,
î

(p̄+1)
2

óä
.

L 6.8. – The formal power series β is a
Ä
a
δ0

ä
-Gevrey power series. More precisely,

there exist positive constants Mβ and C such that βi ≤ MβC
i[(i − δ0)!]a/δ0 , for all integers

i ≥ δ0 that belong to ∆̃−.

R 6.9. – With no loss of generality we can assume that Mβ is large enough so that
Mβ ≥ 1 and 2Mβu0

ρ ≥ 1 hold.
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Let G(z, t) := F (z, t) + P (z) as defined by Equations (21) and (22) where, in these
formulas, ρ is replaced by ρ/u0, M by M ′ and σ0 by 1.

Let δ ∈ ∆̃ such that δ > s. As we have seen above, we can write

δ∑
µ>s

µ∗∑
r=µ∗

∑
δ1+···+δr+µ=δ

M ′
Å
u0

ρ

ãr
βδ1 · · ·βδr +M ′

∑
s∗≤r≤s∗

δ1+···+δr+s=δ
(δ1,...,δr)∈Ωr

βδ1 · · ·βδr = {G(β(t), t)}δ−s

where, in the first sum, the δi’s (resp. µ) are nonnegative elements of ∆̃− (resp. ∆̃). We recall
that {G(β(t), t)}δ−s denotes the coefficient of tδ−s in the Taylor expansion at the origin of
the formal power series G(β(t), t). On the other hand, we have∑

1≤δ1≤δ−s
δ1∈∆̃∩(∆̃−s), δ−δ1∈∆̃

δ1(δ1 − 1) · · · (δ1 − a+ 1)βδ1βδ−s−δ1 =

ß
βta

daβ

dta

™
δ−s

.

Hence, according to the definition of the sequence {βδ−s}δ∈∆̃+,δ≥s in Lemma 6.5, the formal
power series β(t) satisfies the following differential equation

(34) β(t)− β0 = M(β(t)− β0)ta
daβ

dta
+G(β(t), t).

Let us set

β(t) = β0 + tδ0B(t).

We have B(0) = βδ0 6= 0 and β0 = 1. We have

da(tδ0B(t))

dta
=

min(a,δ0)∑
l=0

Claδ0(δ0 − 1) · · · (δ0 − l + 1)tδ0−l
da−l(B(t))

dta−l
.

Then, B satisfies the following differential equation

tδ0B = MBtδ0+a

min(a,δ0)∑
l=0

Claδ0(δ0 − 1) · · · (δ0 − l + 1)tδ0−l
da−l(B(t))

dta−l

+G(β(t), t).

Dividing by MB leads to the equation

tδ0+a

min(a,δ0)∑
l=0

Claδ0(δ0 − 1) · · · (δ0 − l + 1)tδ0−l
da−l(B(t))

dta−l

 =

G̃(B(t), t) :=
tδ0B −G(1 + tδ0B(t), t)

MB

and G̃(z, t) is holomorphic in a neighborhood of (βδ0 , 0). We have

G(1 + tδ0B(t), t) = F (1, t) + tδ0BDzF (1, t) +O(t2δ0)

since G(z, t) = F (z, t) + P (z) and DzP (1) = 0. We recall that the order of F (1, t) at t = 0

is δ0 according to Remark 5.11. Let us set

G̃′(z, t) :=
tδ0z −G(1 + tδ0z, t)

tδ0Mz
.
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This function is holomorphic in a neighborhood of (βδ0 , 0). Moreover, by construction, we
have limt→0

F (1,t)
tδ0

= βδδ0 . Hence, we have G̃′(βδ0 , 0) = 0. Furthermore, we have

−tδ0M ∂G̃′

∂z
(z, t) =

1

z2

Å
tδ0
∂G

∂z
(1 + tδ0z, t)z −G(1 + tδ0z, t)

ã
=

1

z2

(
tδ0z(DzF (1 + tδ0z, t) +DzP (1 + tδ0z))−G(1 + tδ0z, t)

)
∂G̃′

∂z
(βδ0 , 0) = (Mβ2

δ0)−1. lim
t→0

F (1, t)

tδ0
= (Mβδ0)−1 6= 0.

Hence, B(t) is solution of the following differential equation

(35) ta

min(a,δ0)∑
l=0

Claδ0(δ0 − 1) · · · (δ0 − l + 1)tδ0−l
da−l(B(t))

dta−l

 = G̃′(B(t), t).

Let us consider the Newton polygon of the linearized differential operator (35) at B:

Lψ := ta

min(a,δ0)∑
l=0

Claδ0(δ0 − 1) · · · (δ0 − l + 1)tδ0−l
da−l(ψ)

dta−l

− ∂G̃′

∂z
(B(t), t)ψ.

It is the convex hull of {0} ∪ {(u, v) ∈ R2|u ≤ a, v = a+ δ0 − l− (a− l) = δ0}. It contains
only one positive (not infinite) slope: δ0a .

According to the main theorem of [26] (or Theorem A.2.4.2 of [33, p. 209], which are
both nonlinear versions of Theorem 1.5.17 of [31]), then eitherB is holomorphic in a neigh-
borhood of the origin or B is a

Ä
a
δ0

ä
-Gevrey power series. Therefore, Bk ≤ Mck(k!)a/δ0

for some constants. The shift in the factorial in the bound of βi is only due to the formula
β(t) = 1 + tδ0B(t).

Therefore, we obtain an estimate of the form ‖Uδ‖p,δ ≤ Cδ(δ!)τ+ a
δ0 and

‖Nδ‖p,δ ≤ Cδ(δ!)τ+ a
δ0 for some constant C > 0. We just conclude using Lemma 3.8.

6.4. Optimal partial normal form with exponentially small remainder

This section is devoted to the proof of Theorem 6.11 below which ensures that an optimal
choice of the quasiorder α of the partial normal form given by Proposition 4.4 enables
to conjugate the perturbation to the partial normal form up to an exponentially small
remainder.

To state a precise theorem, we need to introduce the following “quasinorms”: for x ∈ Cn,
let us define

dp(x) :=

(
n∑
i=1

pi|xi|2/pi
)1/2

.

For a complex-valued function f defined in a neighborhood of the “twisted ball” dp(x) < ε

we shall set
|f |qh,ε := sup

dp(x)<ε

|f(x)|.

If X is a vector field defined in a neighborhood of the “twisted ball” dp(x) < ε, we shall set

‖X‖2qh,ε :=
n∑
i=1

1

ε2pi
|Xi|2qh,ε.
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The subscript qh stands for quasihomogeneous as these norms are adapted to quasihomo-
geneous objects.

R 6.10. – We recall that Lemma 3.3-(a),(b) ensures that ‹∆ contains all sufficiently
large integers. In other words, there exists δ∗ such that for every α ∈ N, if α ≥ δ∗, then α
belongs to ‹∆.

T 6.11. – Let S be a p-quasihomogeneous vector field of Cn. Let X := S + R

be a good holomorphic perturbation of S in a neighborhood of the origin of Cn (i.e. the
quasiorder of R at the origin is greater than s). Proposition 4.4 ensures that for every
α ∈ ‹∆, there exists a polynomial diffeomorphism tangent to identity Φ−1

α = Id + Uα where
Uα =

∑
0<δ≤α−s

Uδ, with Uδ ∈ H δ such that

(Φα)∗(X) = S + N α + R>α,

where N α =
∑

s<δ≤α
Nδ, Nδ ∈ Ker �δ, and where R>α is of quasiorder > α.

Assume that there exist c ≥ 1 and τ ≥ 0 such that for every δ ∈ ‹∆ with δ ≥ s, we have

(36)
1

min
λ∈spec �δ\{0}

√
λ
≤ c(δ − s)τ .

Then, there exist θ ≥ 4, Mopt > 0, wopt > 0 and ε0 > 0 such that for every ε ∈]0, ε0[, the
number αopt :=

î
1

(θCε)b

ó
+ s− 2 satisfies

(37) αopt > s and αopt ≥ δ∗,

and

(38) ‖R>αopt
‖qh,ε ≤Mopte

−
wopt

εb

where 1
b = τ + a

δ0
and δ∗ is defined in Remark 6.10.

Proof. – The proof of this theorem is based on the following proposition which is proved
in Appendix B .

P 6.12. – Let K ≥ 2 and γ ≥ 2 be fixed such that

ρ1(K) < 1 where ρ1(K) :=
u0MβMp

Kδ0

+∞∑
k=0

(k + δ0)a
(

1
2

)k
and

χ

γC
< 1 where χ :=

Å
2Mβu0

ρ

ã 1
p

.

The numbers a, δ0, C and Mβ are defined in Lemma 6.8.
Then there exists MR > 0, such that for every ε ∈]0, 1[ and every α ∈ ‹∆ with α > s

satisfying

(39) Cε ≤ 1

γK(α− s) 1
b

,

we have

(40) ‖R>α‖qh,ε ≤MR

Ä
(Cε)α+1((α− s+ 2)!)

1
b ∆α +

(
1
K

)α+1
ä

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



690 E. LOMBARDI AND L. STOLOVITCH

where ∆α = 1 if 1
b ≥ a and ∆α = (α− s)1−a− 2

b otherwise.

Let us prove Theorem 6.11 in the case 1
b ≥ a. The other case can be deduced from

this one by an appropriate change of the value of MR and C. The key idea is to choose an
appropriate value αopt for α using Stirling’s formula, which makes the right hand side of (40)
exponentially small.

Let us choose αopt such that

(41) αopt − s+ 2 =

ï
1

(γKCε)b

ò
.

We haveαopt−s ≤ 1
(γKCε)b

, so (39) is satisfied. Moreover, let us observe that for ε sufficiently
small, (37) is satisfied. Then we compute the upper bound given by the right hand side of (40)
with this choice of α. For that purpose, let us set

D1 := (Cε)αopt+1((αopt − s+ 2)!)
1
b , D2 :=

(
1
K

)αopt+1
.

Let us set x := (Cε)b andMS := sup
k∈N

ek!

kk+
1
2 e−k

. According to Stirling’s formula, we have that

MS <∞ holds. Using (41), we have the following inequalities:

(D1)b

MS
≤ e−1x

î
1

x(γK)b

ó
+s−1

exp
Ä¶î

1
x(γK)b

ó
+ 1

2

©
ln

î
1

x(γK)b

ó
−

î
1

x(γK)b

óä
=
xs−1

e
exp

Ä¶î
1

x(γK)b

ó
+ 1

2

©
ln
î

1
x(γK)b

ó
+

î
1

x(γK)b

ó
ln x

e

ä
≤
xs−1

e
exp

Ä¶î
1

x(γK)b

ó
+ 1

2

©
ln
Ä

1
x(γK)b

ä
+
î

1
x(γK)b

ó
ln x

e

ä
=
xs−1

e
exp

(
−
î

1
x(γK)b

ó(
1 + ln(γK)b

))
exp

Ä
1
2 ln

Ä
1

x(γK)b

ää
=

xs−
3
2

e(γK)
b
2

exp
(
−
î

1
x(γK)b

ó(
1 + ln(γK)b

))
= xs−

3
2 (γK)

b
2 exp

Å
−
Äî

1
x(γK)b

ó
+ 1

ä(
1 + ln(γK)b

)ã
≤ xs− 3

2 (γK)
b
2 exp

Å
− 1+ln(γK)b

x(γK)b

ã
.

Hence

(42) D1 ≤M1/b
S (Cε)s−

3
2

√
γK e−

w1
εb with w1 =

1 + ln(γK)b

b(γKC)b
.

On the other hand, we check that

∆2 =

Å
1

K

ãî 1

(γKCε)b

ó
+s−1

≤ 1

Ks−2
exp

Å
− lnK

(γKCε)b

ã
.

Hence, we obtain

(43) D2 ≤
1

Ks−2
e−

w2
εb with w2 =

lnK

(γKC)b
.
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Observing that w1 > w2, we can conclude that (38) holds with wopt = w2 and

Mopt = MR max

Ç
1

Ks−2
,M

1/b
S

√
γK sup

ε∈]0,1]

{
(Cε)s−

3
2 e

w2−w1
εb

}å
.

In some problems, it might be useful to consider parameters as variables to which one
prescribes a weight. This has been done implicitly in [20] for instance.

7. Computations and examples

Let p = (p1, . . . , pn) ∈ (N∗)n. Let S be a quasihomogeneous vector field of quasidegree s
and let H δ be the space of quasihomogeneous vector fields of quasidegree δ > s. We recall
that for each positive quasidegree k, the map d0 : H δ → H δ+s is defined to be d0(U) = [S,U ]

where [., .] denotes the Lie bracket of vector fields.

7.1. Computation of d∗0 and �

Let U ∈ H δ and V ∈ H δ+s. We write U =
∑n
i=1 Ui

∂
∂xi

. We have

(44) d0(U) =
n∑
i=1

(S(Ui)− U(Si))
∂

∂xi

where S(Ui) :=
∑n
j=1 Sj

∂Ui
∂xj

denotes the Lie derivative of Ui along S. We have

〈d0(U), V 〉
p,δ+s

=
n∑
i=1

〈S(Ui)− U(Si), Vi〉p,δ+s+pi

=
n∑
i=1

〈Ui, S∗(Vi)〉p,δ+pi − 〈U(Si), Vi〉p,δ+s+pi

=
n∑
i=1

〈Ui, S∗(Vi)〉p,δ+pi −
n∑
j=1

≠
Uj ,

Å
∂Si
∂xj

ã∗
Vi

∑
p,δ+pj

=
n∑
i=1

〈
Ui, S

∗(Vi)−
n∑
j=1

Å
∂Sj
∂xi

ã∗
Vj

〉
p,δ+pi

.

Hence, we can write d∗0 in a matrix form as

d∗0(V ) =

â
S∗ −

Ä
∂S1

∂x1

ä∗
−
Ä
∂S2

∂x1

ä∗
· · · −

Ä
∂Sn
∂x1

ä∗
−
Ä
∂S1

∂x2

ä∗
S∗ −

Ä
∂S2

∂x2

ä∗
· · · −

Ä
∂Sn
∂x2

ä∗
...

. . .
...

−
Ä
∂S1

∂xn

ä∗
· · · −

Ä
∂Sn−1

∂xn

ä∗
S∗ −

Ä
∂Sn
∂xn

ä∗
ìâ

V1

...

...

Vn

ì
.

Let us set Ai := S − ∂Si
∂xi

. The operator d0d
∗
0 can be viewed as a matrix (Pi,j)1≤i,j≤n of

differential operators defined as follows:

Pi,j = δi,jSS
∗ − S

Å
∂Sj
∂xi

ã∗
− ∂Si
∂xj

S∗ +
n∑
k=1

∂Si
∂xk

Å
∂Sj
∂xk

ã∗
,

where δi,j = 1 if i = j and 0 otherwise.
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In the homogeneous case, that is p = (1, . . . , 1), the adjoint operator, with respect to the
Hermitian product 〈., .〉

H
(see Section A.2), of the multiplication by xi is ∂

∂xi
. Hence, the

adjoint operator with respect to 〈., .〉
p,δ

is equal to x∗i|Hδ = 1
δ
∂
∂xi

. Hence, the adjoint operator
S∗ of the Lie derivative along S is defined as S∗ : Pk+s → Pk with

S∗(f) :=
k!

(k + s)!

n∑
i=1

xiS̄i

Å
∂

∂x

ã
(f).

Here, if Si(x) =
∑
|Q|=s+1 si,Qx

Q, then S̄i( ∂
∂x ) :=

∑
|Q|=s+1 s̄i,Q

∂|Q|

∂xQ
.

7.2. A first example

In this section we shall completely treat the case where S = x2 ∂
∂x + xy ∂

∂y , p = (1, 1)

and s = 1. Since p = (1, 1) we work with standard homogeneous vector fields. Observe that
Hd(CN ) the space of standard homogeneous vector fields of degree d in CN is equal to H d−1

which is the space of quasihomogeneous vector fields of quasidegree d− 1. More precisely,
in this section we prove the following proposition:

P 7.1. – Let S be given by S = x2 ∂
∂x + xy ∂

∂y , and let us set p = (1, 1) and
s = 1.Then,

(a) any good perturbation of S admits a formal normal form of the type (46).
(b) There exists a positive constant M such that the spectrum of �|Hn satisfies

min
λ∈Spec(�|Hn )\{0}

√
λ ≥M

√
n

for any large enough n.
(c) If a third order holomorphic perturbation of S is formally conjugate to S, then it is

holomorphically conjugate to it.

Proof. – (c): We first show that statement (c) directly follows from statement (b). Indeed,
(c) ensures that the small divisors are in fact not small. More precisely, there exists n0 such
that, for every n ≥ n0,

(45) an := min
λ∈Spec(�|Hn+1

)\{0}

√
λ ≥ 1.

Let us now consider the sequence of numbers ηn given by (14) et let us set K = max
1≤n≤n0

ηn.

Then (14) ensures that for every n ≥ n0, ηn ≤ Kn+2 and thus S is Diophantine (see
Definition 5.3) and so Theorem 5.8 ensures that (b) holds.

(a) The resonances.

We have S∗|Hn = 1
n

Ä
x ∂2

∂x2 + y ∂2

∂x∂y

ä
=: 1

nA. If v ∈ H n−1 then,

nd∗0(v1
∂
∂x + v2

∂
∂y ) =

(
A− 2 ∂

∂x − ∂
∂y

0 A− ∂
∂x

)(
v1

v2

)
.
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Let us compute the kernel of d∗0. Let (v1, v2) be a couple of formal power series of
order ≥ 3 such that d∗0(v1, v2) = 0. Then,{

(A− ∂
∂x )v2 = 0

(A− 2 ∂
∂x )v1 = ∂v2

∂y .

First of all, for any (p, q) ∈ N2 with p + q ≥ 3, we have A(xpyq) = p(p + q − 1)xp−1yq.
Hence, a formal power series f of order ≥ 3 such that A(f) = 0 is of the form f(y). Since
(A − ∂

∂x )(xpyq) = p(p + q − 2)xp−1yq, any formal power series f of order ≥ 3 such that
(A− ∂

∂x )(f) = 0 is of the form f(y).

As a consequence, we have v2 = f(y) for some power series f =
∑
k≥3 fky

k and
(A− 2 ∂

∂x )v1 = ∂f
∂y . Let us write v1 =

∑
p+q≥3 v1,p,qx

pyq. Then, we have∑
p+q≥3

v1,p,qp(p+ q − 3)xp−1yq =
∑
q≥2

fq+1(q + 1)yq.

This means that v1,1,q = q+1
q−2fq+1 if q > 2, v1,p,q with p+ q = 3 or p = 0 is unspecified and

f3 = 0.

Finally, any holomorphic perturbation X = S + R of S of quasiorder > 1 (i.e the
components of R are of order > 2) admits a formal normal form of the type:

dx

dt
= x2 + P3(x, y) + x

∑
k≥3

k+1
k−2fk+1y

k + ĥ4(y)(46)

dy

dt
= xy +

∑
k≥3

fk+1y
k+1

for some power series ĥ4 of order ≥ 4, for some numbers fk and some homogeneous
polynomial P3 of degree 3.

(b) “The small divisors”.

Let us consider the differential operators A1(f) := S(f)− 2xf and A2(f) := S(f)− xf .
If fn ∈ Hn, we have nA∗1(fn) := A(fn) − 2∂fn∂x and nA∗2(fn) := A(fn) − ∂fn

∂x . Then, if
V ∈ H n−1 then

nd0d
∗
0(V ) =

(
A1A

∗
1 −A1 ◦ ∂

∂y

−yA∗1 A2A
∗
2 + y ∂

∂y

)(
V1

V2

)
.

For each n ≥ 3, the 1-dimensional vector space generated by xn ∂
∂y is left invariant by d0d

∗
0

and we have

nd0d
∗
0(xn ∂

∂y ) = n(n− 2)(n− 3)xn ∂
∂y .

For each Q = (p, q) ∈ N2 with p ≥ 1, the vector subspace EQ generated by e1,Q = xpyq ∂∂x
and e2,Q = xp−1yq+1 ∂

∂y is invariant by d0d
∗
0. Its restriction to it is given, in the basis

{e1,Q, e2,Q}, by

nd0d
∗
0|EQ(v, w) =

(
p(p− 3 + q)2 −(q + 1)(p− 3 + q)

−p(p− 3 + q) (p− 1)(p+ q − 2)2 + (q + 1)

)(
v

w

)
.
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Its smallest eigenvalue for Q = (p, n− p) is

nλ−(n, p) := (p− 1
2 )n2 + 5

2n(1− 2p) + (6p− 3
2 )

−(1/2)
»

9 + 72p+ (31 + 12p)n2 − 30n(1− 2p)− 10n3 + n4.

Since 1 ≤ p ≤ n, then for n large enough, we have

9 + 72p+ (31 + 12p)n2 − 30n(1− 2p)− 10n3 + n4

≤ 9 + 72n+ (31 + 12n)n2 − 30n+ 60n2 − 10n3 + n4 ≤ 9
4n

4.

Hence, we have

nλ−(n, p) ≥ n2
(
p− 1

2

(
1 + 3

2

))
+ 5

2n(1− 2p) + (6p− 3
2 ) =: g(p).

Let us find the smallest value of this lower bound g(p) when p ranges from to 2 to n, n being
a large enough fixed integer. We have g′(p) = n2− 5n+ 6 = (n− 2)(n− 3) which is positive
if n > 3. Hence, g is an increasing function of p. Finally, we have for n large enough and
n ≥ p ≥ 2,

(47) nλ−(n, p) ≥ n2
(
2− 5

4

)
− 15

2 n+ (12− 3
2 )

and

(48) nλ−(n, 1) = −5n+ 9 + n2.

Moreover, we have Hn = ⊕np=1Ep,n−p ⊕ Cxn ∂
∂y ⊕ Cyn ∂

∂x and d0d
∗
0(yn ∂

∂x ) = 0.
As a consequence, there exists a positive constant M such that, if n is large enough, then
minλ∈Spec(�n)\{0}

√
λ ≥M

√
n.

7.3. A second example: the 03 resonance

In this section we shall completely treat the case where S is the linear vector field of C3

given by

(49) S(x, y, z) =

Ü
0 1 0

0 0 1

0 0 0

ê
.

Ü
x

y

z

ê
.

Setting p = (1, 1, 1), S is quasihomogeneous of degree s = 0. We prove the following result

P 7.2. – Let S be the linear vector field of C3 given by (49). Then, we have

(a) For every n, the spectrum of �|Hn contains only non negative integers. So for every
n ∈ N,

min
λ∈Spec(�|Hn )\{0}

√
λ ≥ 1.

(b) Any nonlinear holomorphic perturbation of the linear vector field S has a formal normal
form of the type Ü

y + xP1(x, u)

z + yP1(x, u) + xP2(x, u)

zP1(x, u) + yP2(x, u) + P3(x, u)

ê
where u = y2 − 2xz. The Pi’s are formal power series.

4 e SÉRIE – TOME 43 – 2010 – No 4



NORMAL FORMS OF ANALYTIC PERTURBATIONS 695

(c) If a nonlinear holomorphic perturbation of S is formally conjugate to S, then it is
holomorphically conjugated to it. If it is not the case, then there is a 1-Gevrey formal
transformation to a formal 1-Gevrey normal form.

(d) If Pi = uP̃i(x, u) for all i, then in good holomorphic coordinates, the analytic set
{y2 − 2xz = 0, z = 0} = {y = z = 0} is invariant under the flow of the nonlinear
perturbation.

Proof. – Statements (a) and (b) are respectively proved in [21, Lemma 2.24] and [16,
Section 2.4.2].

Moreover as in the previous example, statement (a) and Theorem 5.8 ensure that if a non-
linear holomorphic perturbation of S is formally conjugate to S, then it is holomorphically
conjugated to it. The second half of statement (c) directly follows from Theorem 6.4.

Finally, statement (d) is a direct consequence of Theorem 5.6 and Corollary 5.7 with I
the ideal generated by z and u.

Appendix A

Inner products and analyticity

A.1. Decomposition as sum of quasihomogeneous components

This subsection is devoted to the computations of homogeneous and quasihomogeneous
components of products, derivatives and composition of functions and vector fields.

L A.1 (Components of the product). – Let f, g ∈ C[[x1, · · ·xn]] and U, S in
(C[[x1, · · ·xn]])n. Then,

(a) {fg}•,r =
∑

r1+r2=r
f•,r1g•,r2 , {fV }•,r =

∑
r1+r2=r

f•,r1V•,r2 ;

(b) {fg}δ =
∑

δ1+δ2=δ
fδ1gδ2 , {fV }δ =

∑
δ1+δ2=δ

fδ1Vδ2 .

L A.2 (Components of the derivatives). – Let f ∈ C[[x1, · · ·xn]] and U, S in
(C[[x1, · · ·xn]])n. Let us denote by S(f) the Lie derivative of f along S and by [S,U ]

the Lie brackets of S and U . Then,

(a) {S(f)}•,r =
∑

r1+r2=r+1
S•,r1(f•,r2), {DS.U}•,r =

∑
r1+r2=r+1

DS•,r1 .U•,r2 ,

{[U, S]}•,r =
∑

r1+r2=r+1
[S•,r1 , U•,r2 ];

(b) {S(f)}δ =
∑

δ1+δ2=δ
Sδ1(fδ1), {DS.U}δ =

∑
δ1+δ2=δ

DSδ1 .Uδ2 , {[U, S]}δ =
∑

δ1+δ2=δ
[Sδ1 , Uδ2 ].

Proof. – The proofs of the above three lemmas follow directly from the definition and
from Proposition 3.4.

The following lemma gives a characterization of quasihomogeneous polynomial and vec-
tor fields of given quasidegree. This characterization happens to be very convenient to com-
pute the quasihomogeneous components of compositions.
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L A.3. – Let us define tp.x := (tp1x1, . . . , t
pnxn). Then, a polynomial P is p-quasi-

homogeneous of degree δ if and only if P (tp.x) = tδP (x). Furthermore, a vector field is
p-quasihomogeneous of degree δ if and only if X(tp.x) = tδ(tp.X(x)).

Proof. – The proof is immediate.

L A.4 (Components of the composition). – Let f ∈ C[[x1, · · ·xn]] and U, V in
(C[[x1, · · ·xn]])n. Then,

(a) {f ◦ U}δ′ =
∑

δ≤δ′, δ
p
≤r≤ δp

δ+δ1+···+δr=δ′

f̃δ,r(Uδ1 , · · ·Uδr ),

(b) {V ◦ U}δ′ =
∑

δ≤δ′, δ∗≤r≤δ∗
δ+δ1+···+δr=δ′

‹Vδ,r(Uδ1 , · · ·Uδr ), where δ∗ and δ∗ are defined in (3).

Proof. – The proof is based on the characterization of the δ-quasihomogeneous compo-
nents given by Lemma A.3. Indeed, using that fδ is quasihomogeneous of quasidegree δ and
that f̃δ,r is r-linear, we have

f(U)(tp.x) =
∑
δ∈∆

fδ

((∑
d∈∆̃

Ud(t
p.x)

))
=
∑
δ∈∆

fδ

(
tp.
(∑
d∈∆̃

tdUd(x)
))

=
∑
δ∈∆

tδfδ

(∑
d∈∆̃

tdUd(x)
)

=
∑
δ∈∆

tδ
∑

δ
p
≤r≤ δp

f̃δ,r

(∑
δ1∈∆̃

tδ1Uδ1(x), . . . ,
∑
δr∈∆̃

tδrUδr (x)
)

=
∑
δ∈∆

∑
δ
p
≤r≤ δp

∑
δ1,...,δr∈∆̃

tδ+δ1+···+δr f̃δ,r
(
Uδ1(x), . . . , Uδr (x)

)
.

Hence,
{f ◦ U}δ′ =

∑
δ≤δ′, δ

p
≤r≤ δp

δ+δ1+···+δr=δ′

f̃δ,r(Uδ1 , · · ·Uδr ).

For vector fields the proof is the same.

A.2. Inner products for quasihomogeneous polynomials and vector fields

Let us denote by Pδ(Cn) the space of p-quasihomogeneous polynomials from Cn to C
of quasidegree δ and by H δ(Cn) the space of p-quasihomogeneous vector fields of quasi-
degree δ in Cn.

In a similar way, let us denote byPd(CN ) the space of standard homogeneous polynomials
from CN to C of degree d and by Hd(CN ) the space of standard homogeneous vector fields
of degree d in CN .

The aim of this subsection is to build on Pδ(Cn) and H δ(Cn) inner products which lead
to norms such that the norm of the product is less than or equal to the product of the norms.
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In the homogeneous case for Pδ(CN ) and Hδ(CN ), the Fisher inner product 〈·, ·〉
H

is given
by

(50)
〈
xR, xQ

〉
H

:=

{
R! if R = Q where R! = r1! · · · rn! if R = (r1, . . . , rn)

0 otherwise

for monomials and by

(51) 〈U, V 〉
H

:=
n∑
j=1

〈Uj , Vj〉H

for polynomial vector fields U =
n∑
j=1

Uj
∂
∂xj

and V =
n∑
j=1

Vj
∂
∂xj

. This inner product leads to

multiplicative norms given by

|φ|H,δ =

 
〈φ, φ〉

H

δ!
.

One can check that ≠
∂

∂xj
f(x), g(x)

∑
H

= 〈f(x), xjg(x)〉
H
.

In the homogeneous case, p = (1, . . . , 1). Let f ∈ Hδ−1, g ∈ Hδ, then we have

〈xif, g〉p,δ =
1

δ!
〈xif, g〉H =

1

δ!

≠
f,
∂g

∂xi

∑
H

=
(δ − 1)!

δ!

≠
f,
∂g

∂xi

∑
p,δ−1

.

In the quasihomogeneous case, a natural idea to build inner products which lead to
multiplicative norms is based on the following proposition:

P A.5. – Let N be an integer and let s be a morphism of algebra from
C[x1, . . . , xn] to C[x1, . . . , xN ] which is injective (i.e. Ker s = 0) and which maps Pδ(Cn)

into Pδ(CN ) for every δ ∈ ∆. Then,

(a) the bilinear form 〈f, g〉
p

= 〈s(f), s(g)〉
H

is an inner product on Pδ(Cn);

(b) for every f ∈ Pδ and g ∈ Pδ′ , the renormalized norm |f |
p,δ

=

√
〈f,f〉

p
δ! satisfies

(52) |fg|
p,δ+δ′

≤ |f |
p,δ
|g|
p,δ′

.

(c) Let fδ,r : Cn → C be simultaneously quasihomogeneous of degree δ and homogeneous
of degree r. Denote by f̃δ,r the unique r-linear, symmetric form such that
f̃δr(x, . . . , x︸ ︷︷ ︸

r times

) = fδ,r(x) where x = (x1, . . . , xn). For 1 ≤ ` ≤ r, let Uδ` be

a p-quasihomogeneous vector field of quasidegree δ`. Then, f̃δ,r(Uδ1 , . . . , Uδr ) is
p-quasihomogeneous of degree δ + δ1 + · · ·+ δr and we have

(53)
∣∣∣f̃δ,r(Uδ1 , . . . , Uδr )∣∣∣

p,δ+δ1+···+δr
≤ N1(f̃δ,r) ‖Uδ1‖p,δ1 · · · ‖Uδr‖p,δr

with

‖U‖2
p,δ

=

∥∥∥∥∥ n∑
i=1

Ui
∂

∂xi

∥∥∥∥∥
2

p,δ

:=
n∑
i=1

|Ui|2
p,δ+pi
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and

N1(f̃δ,r) :=
∑

1≤i`≤n
1≤`≤r

∣∣∣f̃δ,r(ei1 , . . . , eir )∣∣∣
where (e1, . . . , en) is the canonical basis of Cn.

(d) Let Rδ,r be a vector field of Cn. We assume that Rδ,r is simultaneously quasihomo-
geneous of degree δ and homogeneous of degree r. Denote by R̃δ,r the unique r-linear,
symmetric operator of Cn such that R̃δ,r(x, . . . , x︸ ︷︷ ︸

r times

) = Rδr(x) where x = (x1, . . . , xn).

For 1 ≤ ` ≤ r, let Uδ` be a p-quasihomogeneous vector field of degree δ`. Then,
R̃δ,r(Uδ1 , . . . , Uδr ) is p-quasihomogeneous of degree δ + δ1 + · · ·+ δr and we have

(54)
∥∥∥R̃δ,r(Uδ1 , . . . , Uδr )∥∥∥

p,δ+δ1+···+δr
≤ N2,1(R̃δ,r) ‖Uδ1‖p,δ1 · · · ‖Uδr‖p,δr

with

N2,1(R̃δ,r) :=

Ã
n∑
j=1

N2
1 (R̃δ,r,j)

where R̃δ,r,j is the j-th components of R̃δ,r in the canonical basis of Cn.

Proof. – (a) Property (a) directly follows from the fact that s is linear and injective.

(b) Using that s is a morphism of algebra and that the renormalized norm for homogeneous

polynomials |φ|H,δ =

√
〈φ,φ〉

H
δ! is multiplicative we get

|fg|
p,δ+δ′

= |s(fg)|
H,δ+δ′

= |s(f)s(g)|
H,δ+δ′

≤ |s(f)|
H,δ
|s(g)|

H,δ′
= |f |

p,δ
|g|
p,δ′

.

Hence the renormalized norm for a quasihomogeneous polynomial is multiplicative.

(c) The proof is made in three steps.

Step c-1: Explicit formula for f̃δ,r. For 1 ≤ ` ≤ n, let x(`) be a vector of Cn with
x(`) = (x

(`)
1 , · · · , x(`)

n ). Then denoting by (ei)1≤i≤n the canonical basis of Cn, we get

f̃δ,r(x
(1), . . . , x(r)) =

∑
1≤i`≤n
1≤`≤r

x
(1)
i1
· · ·x(r)

ir
f̃δ,r(ei1 , · · · , eir ).

since f̃δ,r is r-linear. Hence, for x = (x1, . . . , xn),

fδ,r(x) = f̃δ,r(x, . . . , x) =
∑

1≤i`≤n
1≤`≤r

xi1 · · ·xir f̃δ,r(ei1 , · · · , eir ).

Then since the quasidegree of xi1 · · ·xir is pi1 + · · · + pir and since fδ,r is of quasidegree δ
we get that for every x(`) ∈ Cn, we have

f̃δ,r(x
(1), . . . , x(r)) =

∑
1≤i`≤n, 1≤`≤r
pi1+···+pir=δ

x
(1)
i1
· · ·x(r)

ir
f̃δ,r(ei1 , · · · , eir ).
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Step c-2: Quasidegree of fδ,r(Uδ1 , . . . , Uδr ). For 1 ≤ ` ≤ r, let Uδ` be in H δ` . Denote by
Uδ`,i the i-th coordinate of Uδ` in the canonical basis of Cn. Then, Uδ`,i belongs to Pδ`+pi
and Uδ1,i1 · · ·Uδr,ir belongs to Pδ1+···+δr+pi1+···+pir . Hence since

(55) f̃δ,r(Uδ1 , . . . , Uδr ) =
∑

1≤i`≤n, 1≤`≤r
pi1+···+pir=δ

Uδ1,i1 · · ·Uδr,ir f̃δ,r(ei1 , · · · , eir ),

f̃δ,r(Uδ1 , . . . , Uδr ) belongs to Pδ′ with δ′ := δ1 + · · ·+ δr + δ.

Step c-3: Upper bound for
∣∣∣f̃δ,r(Uδ1 , . . . , Uδr )∣∣∣

p,δ′
. Using (55), (52) and observing that for a

polynomial vector field U =
n∑
j=1

Uj
∂
∂xj
∈ H δ we have |Uj |

p,δ+pj
≤ ‖U‖

p,δ
, we get

∣∣∣f̃δ,r(Uδ1 , . . . , Uδr )∣∣∣
p,δ′
≤

∑
1≤i`≤n, 1≤`≤r
pi1+···+pir=δ

|f̃δ,r(ei1 , . . . , eir )| |Uδ1,i1 |p,δ1+p1
· · · |Uδr,ir |p,δr+pr

≤
∑

1≤i`≤n, 1≤`≤r
pi1+···+pir=δ

|f̃δ,r(ei1 , . . . , eir )| ‖Uδ1‖p,δ1 · · · ‖Uδr‖p,δr

= N1(f̃δ,r) ‖Uδ1‖p,δ1 · · · ‖Uδr‖p,δr .

(d): For a polynomial vector fieldRδ,r :=
n∑
j=1

Rδ,r,j
∂
∂xj

, (d) ensures that for every 1 ≤ j ≤ n,

R̃δ,r,j(Uδ1 , . . . , Uδr ) belongs to Pδ1+···+δr+δ+pj and that∣∣∣R̃δ,r,j(Uδ1 , . . . , Uδr )∣∣∣
p,δ′+pj

≤ N1(R̃δ,r,j) ‖Uδ1‖p,δ1 · · · ‖Uδr‖p,δr

where δ′ = δ1 + · · ·+ δr + δ. Hence, R̃δ,r(Uδ1 , . . . , Uδr ) belongs to H δ′ and we have

∥∥∥R̃δ,r(Uδ1 , . . . , Uδr )∥∥∥2

p,δ′
=

n∑
j=1

∣∣∣R̃δ,r,j(Uδ1 , . . . , Uδr )∣∣∣2
p,δ′+pj

≤
n∑
j=1

N2
1 (R̃δ,r,j) ‖Uδ1‖p,δ1 · · · ‖Uδr‖p,δr

= N2,1(R̃δ,r) ‖Uδ1‖p,δ1 · · · ‖Uδr‖p,δr .

The following lemma and corollary give four examples of morphism of algebra from
Pδ(Cn) intoPδ(CN ) which lead to four different inner products onPδ(Cn). The first example
is the one used throughout this paper (see (4), Lemma A.5 and (56)).
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L A.6. – Let us define

s1 : Pδ(Cn)→ Pδ(C|p|)
f 7→ s1(f)(x1,1, . . . , x1,p1 , . . . , xn,1, · · ·xn,pn)

:= f
(

(x1,1 · · ·x1,p1), . . . , (xn,1 · · ·xn,pn)
)

;

s2 : Pδ(Cn)→ Pδ(Cn)

f 7→ s2(f)(x1, . . . , xn) := f(xp11 , . . . , x
pn
n );

s3 : Pδ(Cn)→ Pδ(C2n)

f 7→ s3(f)(x1, . . . , xn, η1, . . . , ηn) := f(x1η
p1−1
1 , . . . , xnη

pn−1
n );

s4 : Pδ(Cn)→ Pδ(Cn+1)

f 7→ s4(f)(x1, . . . , xn, ε) := f(x1ε
p1−1
1 , . . . , xnε

pn−1
n ).

Then,

(a) for 1 ≤ k ≤ 4, sk is an injective morphism of algebra. So it induces on Pδ an inner
product given by 〈f, g〉k,p := 〈s(f), s(g)〉

H
;

(b) for every Q = (q1, . . . , qn) and R = (r1, . . . , rn),〈
xQ, xR

〉
1,p

:= δQ,R (q1!)p1 · · · (qn!)pn(56) 〈
xQ, xR

〉
2,p

:= δQ,R (p1q1)! · · · (pnqn)!〈
xQ, xR

〉
3,p

:= δQ,R (q1)! · · · (qn)! ((p1 − 1)q1)! · · · ((pn − 1)qn)!〈
xQ, xR

〉
4,p

:= δQ,R (q1)! · · · (qn)! ((Q, p)− |Q|)

where δQ,R := 1 if Q = R and δQ,R := 0 otherwise.

The proof of this lemma follows directly from Proposition A.5. The details are left to the
reader.

L A.7. – Assume that Pδ is endowed with the scalar product 〈·, ·〉 := 〈·, ·〉1,p defined
in Lemma A.6 and that Pδ and H δ are normed with the two corresponding norms.

(a) Let f be in Pδ and N in H α. Then Df.N belongs to Pδ+α and

|Df.U |
p,δ+d

≤ mp δmax(1, p2 ) ‖f‖
p,δ
‖U‖

p,d
where mp = n.

(b) Let U be in H δ and N in H α. Then DU.N lie in H δ+α and

‖DU.N‖
p,δ+α

≤ mp (δ + p)max(1, p2 ) ‖U‖
p,δ
‖N‖

p,α
.

Proof. – (a) Proposition 3.4 ensures that Df.N lie in H δ+d. Moreover denoting by
Nj := πj(N) the j-th component of U in Cn, we have

|Df.N |
p,δ+α

=

∣∣∣∣∣∣
n∑
j=1

∂f

∂xj
Nj

∣∣∣∣∣∣
p,δ+α

≤
n∑
j=1

∣∣∣∣ ∂f∂xj
∣∣∣∣
p,δ−pj

|Nj |
p,α+pj

≤

Ã
n∑
j=1

∣∣∣∣ ∂f∂xj
∣∣∣∣2
p,δ−pj

‖N‖
p,α

.
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Then setting f =
∑

(α,p)=δ

fQx
Q, we have

n∑
j=1

∣∣∣∣ ∂f∂xj
∣∣∣∣2
p,δ−pj

=
n∑
j=1

∑
(Q,p)=δ

|fQ|2|qj |2
(Q!)p

(qj)pj (δ − pj)!
=

∑
(α,p)=δ

|fQ|2(Q!)p

δ!

n∑
j=1

|qj |2δ!
(qj)pj (δ − pj)!

.

Moreover, we check that
n∑
j=1

|qj |2δ!
(qj)pj (δ − pj)!

≤
n∑
j=1

Å
δ

qj

ãpj
|qj |2.

Then, using that for (Q, p) = δ, we have p qj ≤ p|Q| ≤ δ ≤ |Q|p, we get that

for pj = 1,
Ä
δ
qj

äpj|qj |2 = δ |qj | ≤ δ2

p ≤ δ
2,

for pj = 2,
Ä
δ
qj

äpj|qj |2 = δ2,

for pj ≥ 3,
Ä
δ
qj

äpj|qj |2 ≤ δp 1

q
pj−2

j

≤ δp.

Hence, we get

|Df.N |
p,δ+α

≤ n δmax(1, p2 ) ‖f‖
p,δ
‖U‖

p,α
.

(b) Proposition 3.4 ensures that Df.N lie in H δ+α. Moreover denoting by Sj := πj(S) the
j-th component of S in Cn and using (b), we get

‖DU.N‖2
p,δ+α

=
n∑
j=1

|DUj .N |2
p,δ+α+pj

≤
n∑
j=1

n2 (δ + pj)
2 max(1, p2 ) |Uj |2

p,δ+pj
‖N‖2

p,α

≤ n2 (δ + p)2 max(1, p2 ) ‖U‖2
p,δ
‖N‖2

p,α
.

Hence
‖DN.U‖

p,δ+α
≤ n (δ + p)max(1, p2 ) ‖U‖

p,δ
‖N‖

p,α
.

A.3. Quasihomogeneous decomposition and analyticity

In Subsection 3.2 we introduced several decompositions of a formal power series
f ∈ C[[x1, . . . , xn]] as the sum of homogeneous and quasihomogeneous components. We
now prove that f converges uniformly in a neighborhood of the origin if and only if its ho-
mogeneous or quasihomogeneous components grow at most geometrically. In this subsec-

tion, we use the normalized norm |f |
p,δ

:=

√
〈s1(f),s1(f)〉

H
δ! (see Proposition A.5 and Lemma

A.6). More precisely we have

P A.8. – For a formal power series , f =
∑

Q∈Nn
fQx

Q ∈ C[[x1, . . . , xn]], the

following properties are equivalent:

(a) f is uniformly convergent in a neighborhood of the origin;
(b) there exist M,R > 0 such that for every Q ∈ Nn, |fQ| ≤ M

R|Q|
;

(c) there exist M,R > 0 such that for every Q ∈ Nn, |f•,r|
0,r

:= sup
x∈Cn

|f•,r(x)|
|x|r ≤ M

Rr ;
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(d) there exist M,R > 0 such that for every Q ∈ Nn, ‖|f̃•,r‖| :=sup
x(`)∈Cn

|f̃•,r(x(1),...,x(r))|
|x(1)|···|x(r)| ≤ M

Rr ;

(e) there exist M,R > 0 such that for every δ ∈ ∆, |fδ|
p,δ
≤ M

Rδ
;

(f) there exist M,R > 0 such that for every δ ∈ ∆ and r ≥ 0, N1(f̃δ,r) ≤ M
Rr .

We have a similar proposition for vector fields. Statements (a), (b), (c), (d) are still
equivalent for vector fields. Statements (e) and (f) should be modified with appropriate
norms for vector fields. More precisely we have

P A.9. – For a formal vector field V ∈ (C[[x1, . . . , xn]])n, the following
properties are equivalent:

(a) V is uniformly convergent in a neighborhood of the origin;
(b) there exist M,R > 0 such that for every δ ∈ ‹∆, ‖Vδ‖

p,δ
≤ M

Rδ
;

(c) there exist M,R > 0 such that for every δ ∈ ‹∆ and r ≥ 0, N21(‹Vδ,r) ≤ M
Rr .

A.3.1. Proof of Proposition A.8. – The proof of the equivalence of statements (a),(b),(c),(d)
of Proposition A.8 which correspond to the homogeneous decompositions is due to
H. Shapiro [32, Lemma 1]. The equivalence of (c) and (d) relies on the equivalence of
the norms |·|

0,r
and ‖| · ‖| which can be found in the book of Cartan [10]. More precisely we

have

L A.10. – For a homogeneous polynomial ψ of degree r, let us denote by ψ̃ the
unique r-linear symmetric form such that for every x ∈ Cn, ψ̃(x, . . . , x) = ψ(x). Then there
exists M > 0 such that for every r ≥ 0 and every homogeneous polynomial ψ of degree r

|ψ|
0,r
≤ ‖|ψ̃‖| ≤M(2e)r |ψ|

0,r
.

The prof of the equivalence of statements (a) and (e) of Proposition A.8 is based on the
following lemma:

L A.11. – Let f be in C[[x1, . . . , xn]]. The following properties are equivalent

(a) f is uniformly convergent in a neighborhood of the origin;
(b) F := s1(f) ∈ C[[x1,1, · · · , x1,p1 , . . . , xn,1, . . . , xn,pn]] is uniformly convergent in a

neighborhood of the origin;
(c) There exist M,R > 0 such that for every δ ∈ ∆, |fδ|

p,δ
≤ M

Rδ
.

Proof. – The proof is performed in three steps.

Step 1. We prove that (a)⇔ (b).

Let us decompose f and F = s1(f) as a sum of monomials. We have

f =
∑
Q∈Nn

fQ x
Q, F =

∑
Q∈Nn

fQ(x1,1)q1 · · · (x1,p1)q1 · · · (xn,1)qn · · · (x1,pn)qn =
∑

FAX
A
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with

X = (x1,1, . . . , x1,p1 , . . . , xn,1, . . . , x1,pn),

A = (q1, · · · · · · , q1︸ ︷︷ ︸
p1times

, · · · · · · , qn, · · · · · · , qn︸ ︷︷ ︸
pntimes

),

FA = fQ.

Hence, we have |A| = p1q1 + · · · pnqn = (Q, p). Thus p |Q| ≤ |A| ≤ p |Q|.

Thus, on one hand if f is uniformly convergent in a neighborhood of the origin, then there
exist M,R > 0 such that for every Q ∈ Nn

|FA| = |fQ| ≤M
1

R|Q|
≤M

Ç
1

R
1
p

å|A|
.

Hence, F is uniformly convergent in a neighborhood of the origin.

On the other hand, if F is uniformly convergent in a neighborhood of the origin, then
there exist M ′, R′ > 0 such that for every A ∈ Nn

|FQ| = |fA| ≤M ′
Å

1

R′

ã|A|
≤M ′

Å
1

(R′)p

ã|Q|
.

Hence, f is uniformly convergent in a neighborhood of the origin.

Step 2. We prove that (b)⇒ (c). Proposition A.8-(b) applied to F = s1(f) ensures that if F
is uniformly convergent in a neighborhood of the origin, then there exist M0, R0 > 0 such
that for every δ,

|F•δ|
0,δ
≤ M0

Rδ0
,

where F•δ is the homogeneous component of F of degree δ. Moreover it is proved in [21,
Lemma A.5] that

|F•δ|
H,δ

=

 
〈F•δ, F•δ〉H

δ!
≤

»
Cn−1
δ+n−1 |F•δ|0,δ

where

Cn−1
δ+n−1 =

(δ + n− 1)!

(n− 1)! δ!
=

(δ + n− 1) · · · (δ + 1)

(n− 1)!
.

Hence, there exists M ′ > 0 such that for every δ,

|F•δ|
H,δ
≤M ′δ n2 M0

Rδ0
≤M 1

Rδ
,

where R is any number in ]0, R0[ and where M = M ′M0 sup
δ≥0

[
δ
n
2

Ä
R
R0

äδ]
. So we can

conclude that if F is uniformly convergent in a neighborhood of the origin, then there exist
M,R > 0 such that for every δ,

|fδ|
p,δ

=

 
〈s1(fδ), s1(fδ)〉H

δ!
= |F•δ|

H,δ
=≤M 1

Rδ
.

Step 3. We prove that (c)⇒ (b). Assume that there exist M,R > 0 such that for every δ,

|fδ|
p,δ
≤M 1

Rδ
.
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Then, F = s1(f) satisfies

|F•δ|
H,δ

= |fδ|
p,δ
≤M 1

Rδ
.

Moreover it is proved in [21, Lemma A.3] that |F•δ|
0,δ
≤ |F•δ|

H,δ
. Hence, Proposition A.8-(b)

applied to F ensures that F is uniformly convergent in a neighborhood of the origin.

To prove statement (f) of Proposition A.8, we first need a technical lemma giving the
equivalence of the norms ‖| · ‖| and N1(·).

L A.12. –

(a) For every r-linear form ϕ̃ : Cn → C, we have ‖|ϕ̃‖| ≤ N1(ϕ̃) ≤ nr‖|ϕ̃‖|.
(b) For every r-linear operator R̃ : Cn → Cn, we have ‖|R̃‖| ≤ N1(R̃) ≤ nr‖|R̃‖|.

Proof. – (a) For x(`) =
n∑
i=1

x
(`)
i ei where (ei)1≤i≤n is the canonical basis of Rn we have

ϕ̃(x(1), . . . , x(r)) =
∑

1≤`≤r
1≤i`≤n

ϕ̃(ei1 , . . . , eir ) x
(1)
i1
· · ·x(r)

ir
.

Using that |x(`)
i | ≤ |x(`)| we get that |ϕ̃(x(1), . . . , x(r))| ≤ |x(1)| · · · |x(r)| N1(ϕ̃). Hence

‖|ϕ̃‖| ≤ N1(ϕ̃).

Reciprocally,

N1(ϕ̃) :=
∑

1≤`≤r
1≤i`≤n

|ϕ̃(ei1 , . . . , eir )| ≤
∑

1≤`≤r
1≤i`≤n

‖|ϕ̃‖|1 · · · 1 = nr‖|ϕ̃‖|.

(b) Let us set R̃(x(1), . . . , x(r)) :=
n∑
i=1

R̃i(x
(1), . . . , x(r)) ei. Then using (a) we have

|R̃(x(1), . . . , x(r))|2 =
n∑
i=1

|R̃i(x(1), . . . , x(r))|2 ≤
n∑
i=1

‖|R̃i‖|2 |x(1)|2 · · · |x(r)|2

≤ |x(1)|2 · · · |x(r)|2
n∑
i=1

N2
1 (R̃i).

Hence ‖|R̃‖| ≤ N21(R̃). Conversely, using the Cauchy-Schwartz inequality we get

N2
21(R̃) =

n∑
j=1

N2
1 (R̃j) =

n∑
j=1

Å ∑
1≤`≤r
1≤i`≤n

|R̃j(ei1 , . . . , eir )|
ã2

≤
n∑
j=1

Å ∑
1≤`≤r
1≤i`≤n

1

ã Å ∑
1≤`≤r
1≤i`≤n

|R̃j(ei1 , . . . , eir )|2
ã
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= nr
n∑
j=1

∑
1≤`≤r
1≤i`≤n

|R̃j(ei1 , . . . , eir )|2

= nr
∑

1≤`≤r
1≤i`≤n

|R̃(ei1 , . . . , eir )|2

≤ n2r ‖|R̃‖|2.

Hence, N21(R̃) ≤ nr ‖|R̃‖|.

Finally, the equivalence of statements (a) and (f) of Proposition A.8 directly follows from

L A.13. – Let f =
∑

Q∈Nn
fQx

Q ∈ C[[x1, . . . , xn]].Then,

(a) for every Q ∈ Nn, |fQ| ≤ n
r
2 N1(f̃δ,r) where r = |Q| and δ = (Q, p);

(b) there exist M,R > 0 such that for every r ≥ 0 and δ ∈ ∆,

N1(f̃δ,r) ≤Mrn(2en
3
2 )r |f•,r|

0,r
.

Proof. – (a) Using Cauchy’s formula, for Q = (q1, · · · , qn), we get

fQ =
1

2πn

∫ 2π

0

. . .

∫ 2π

0

fδ,r(e
iθ1 , . . . , eiθn) e−iq1θ1 · · · e−iqnθn dθ1 · · · dθn .

Hence, using that |fδ,r(x1, . . . , xn)| ≤ |fδ,r|
0,r

(
x2

1 + · · ·+x2
n

) r
2

and using Lemmas A.10 and

A.12, we get

|fQ| ≤
1

2πn

∫ 2π

0

. . .

∫ 2π

0

|fδ,r|
0,r

(»
|eiθ1 |2 + · · ·+ |eiθn |2

)r
dθ1 · · · dθn

≤ n r2 |fδ,r|
0,r
≤ n r2 ‖|f̃δ,r‖| ≤ n

r
2N1(f̃δ,r).

(b) Using Lemmas A.10 and A.12, we get that for every δ, r ≥ 0

N1(f̃δ,r) ≤ nr‖|f̃δ,r‖| ≤Mnr(2e)r |fδ,r|
0,r
.

Moreover we have,

|fδ,r|
0,r

= sup
x∈Cn

|fδ,r(x)|
|x|r

≤ sup
x∈Cn

∑
|Q|=r

(Q,p)=r

|fQ|
|x1|q1 · · · |xr|qr

|x|r
≤

∑
|Q|=r

(Q,p)=r

|fQ| ≤
∑
|Q|=r

|fQ|.

Since using Cauchy’s formula we get for any Q such that |Q| = r, |fQ| ≤ nr |f•,r|
0,r

, and

since #{Q/|Q| = r} = Cn−1
r+n−1 (see [21, Lemma A.2], we obtain that there exists M ′ > 0

such that for every r ≥ 0

|fδ,r|
0,r
≤ Cn−1

r+n−1n
r
2 |f•,r|

0,r
≤M ′rnn r2 |f•,r|

0,r
.

So, we finally obtain that for every δ, r ≥ 0, N1(f̃δ,r) ≤Mrn(2en
3
2 )r| |f•,r|

0,r
.
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A.3.2. Proof of Proposition A.9. – The proof of the equivalence of statements (a), (c) is
exactly the same as for functions. The equivalence of statements (a) and (b) directly follows
from the case of functions. Indeed,

V =
n∑
j=1

πj(V )
∂

∂xj
is uniformly convergent in a neighborhood of the origin,

⇔ for all 1 ≤ j ≤ n, πj(V ) is uniformly convergent in a neighborhood of the origin,

⇔ for all 1 ≤ j ≤ n, there exist Mj , Rj > 0, such that ∀δ,
∣∣{πj(V )}δ+pj

∣∣
p,δ+pj

≤ Mj

R
δ+pj
j

,

⇔ there exist M,R > 0, such that for every δ and all 1 ≤ j ≤ n,
∣∣{πj(V )}δ+pj

∣∣
p,δ+pj

≤ M

Rδ
,

⇔ there exist M,R > 0, such that for every δ and all 1 ≤ j ≤ n, ‖Vδ‖
p,δ
≤ M

Rδ
,

since {πj(V )}δ+pj = πj(Vδ) and ‖Vδ‖
p,δ

=
n∑
j=1
|πj(Vδ)|2

p,δ+pj
.

A.4. Proof of Lemma 3.8

First of all, using Stirling’s formula, it is easy to show that there exists a positive constantC
(depending on p) such that, for all multiindices Q ∈ Nn,

(p|Q|)! ≤ C |Q|(|Q|!)p.

Hence, we have
(Q, p)!

Q!p
≤ C |Q| (Q, p)!

(p1q1)! · · · (pnqn)!
.

Furthermore, since 2k = (1 + 1)k =
k∑

m=0
Cmk , we have (a+b)!

a!b! ≤ 2a+b. We have

(Q, p)!

(p1q1)! · · · (pnqn)!
=
q1p1 + (q2p2 + · · ·+ qnpn)!

(p1q1)!(q2p2 + · · ·+ qnpn)!

(q2p2 + · · ·+ qnpn)!

(p2q2)! · · · (pnqn)!

≤ 2(Q,p) (q2p2 + · · ·+ qnpn)!

(p2q2)! · · · (pnqn)!
.

Hence, by applying the same argument by induction, we obtain that there exists a constantC
such that for all multiindices Q ∈ Nn, (Q,p)!

(Q!)p ≤ C |Q|. Let f =
∑
δ∈∆ fδ be a formal power

series. Let δ ∈ ∆ and let Q ∈ Nn such that (Q, p) = δ. By definition of the norm and using
the previous argument, we have

|fQ| ≤ |fδ|p,δ

 
δ!

Q!p
≤ C |Q||fδ|p,δ.

Hence, if |fδ|p,δ ≤ Dδ(δ!)b then

|fQ| ≤ C̃ |Q|(δ!)b ≤ D̃|Q|(Q!p)b ≤ E|Q||Q|!p̄b

for some constants C̃, D̃, E.
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Appendix B

Proof of Proposition 6.12

Let S be a p-quasihomogeneous vector field of Cn. Let X := S +R be a good holomor-
phic perturbation of S in a neighborhood of the origin of Cn (i.e. the quasiorder of R at the
origin is greater than s). Proposition 4.4 ensures that for every α ∈ ‹∆, there exists a poly-
nomial diffeomorphism tangent to identity Φ−1

α = Id + Uα where Uα =
∑

0<δ≤α−s
Uδ, with

Uδ ∈ H δ such that
(Φα)∗(X) = S + N α + R>α,

where N α =
∑

s<δ≤α
Nδ, Nδ ∈ Ker �δ, and where R>α is of quasiorder > α. The aim of

this appendix is to prove Proposition 6.12 which gives a kind of “Gevrey estimates” of the
remainder R>α. We first check that the remainder is explicitly given by

L B.1. – We have

Lα R>α = Q1
>α + Q2

>α + Q3
>α,

with
Lα = Id +D Uα = Id +

∑
0<δ≤α−s

DUδ,

and

Q1
>α =

∑
δ1+δ2>α

0<δ1≤α−s, δ1∈∆̃−

s<δ2≤α, δ2∈∆̃

DUδ1 .Nδ2 ,(57)

Q2
>α =

∑
µ>s, µ∈∆̃

µ∗∑
r=µ∗

∑
δ1+···+δr+µ>α

0≤δi≤α−s, δi∈∆̃−

R̃µ,r(Uδ1 , . . . , Uδr ),(58)

Q3
>α =

s∗∑
r=s∗

∑
δ1+···+δr+s>α

0≤δi≤α−s
(δ1,...,δr)∈Ωr

S̃•,r(Uδ1 , . . . , Uδr ).(59)

Then to compute upper bounds of L−1
α Qj>α we introduce the following family of norms

and Banach spaces:

D B.2. – For ε > 0, let us denote by Bε the Banach space of all formal vector
fields V =

∑
δ∈∆̃ Vδ of Cn such that

Nε(V ) :=
∑
δ∈∆̃

εδ ‖Vδ‖
p,δ

< +∞.

R B.3. – Statement (c) of Proposition A.9 ensures that any analytic vector field of
Cn belongs to Bε for ε sufficiently small.

We first prove the following lemma which compares the different norms
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L B.4. – Let ε be fixed in ]0, 1[.

(a) Let f(x1, . . . , xn) ∈ Pδ be a quasihomogeneous polynomial of degree δ. Let
F ∈ Pδ(C|p|) be given by F (X1,1, · · · , X1,p1 , . . . , Xn,1, . . . , Xn,pn) := s1(f) as defined
in Lemma A.6. Then, we have

(60) |f |qh,ε := sup
dp(x)<ε

|f(x)| ≤ sup
‖X‖<ε

|F (X)| .

(b) For every f ∈ Pδ, |f |qh,ε ≤ εδ |f |
p,δ

holds.

(c) For every V ∈ H δ,

(61) ‖V ‖2qh,ε :=
n∑
i=1

1

ε2pi
|Vi|2qh,ε ≤ εδ ‖V ‖p,δ

holds.
(d) For every V ∈ Bε,

(62) ‖V ‖2qh,ε ≤ Nε(V )

holds.

R B.5. – In fact it is possible to prove more accurate results for statements (a), (b),
(c). Indeed, for f ∈ Pδ and V ∈ H δ, we have

|f |qh,ε = sup
‖X‖<ε

|F (X)| ,

|f |qh,ε ≤ εδ |f |
p,δ
≤
√
C
|p|
δ+|p|+1 |f |qh,ε,

‖V ‖qh,ε ≤ εδ ‖V ‖
p,δ
≤
√
C
|p|
p+δ+|p|+1 ‖V ‖qh,ε.

Proof of Lemma B.4. – Let f(x1, . . . , xn) ∈ Pδ be a quasihomogeneous polynomial of
degree δ. Let F ∈ Pδ(C|p|) be given by F (X1,1, · · · , X1,p1 , . . . , Xn,1, . . . , Xn,pn) := s1(f) as
defined in Lemma A.6.

Proof of (a). — Let x = (x1, . . . , xn) be in Cn and let us set xk = rke
iθk where rk, θk ∈ R.

Then, setting Xk,j = (rk)
1
pk e

i
θk
pk , we get

f(x1, . . . , xn) = F (X1,1, . . . , X1,p1 , . . . , Xn,1, . . . , Xn,pn).

Moreover,

(dp(x))2 :=
n∑
k=1

pk|xk|
2
pk =

n∑
k=1

pn∑
j=1

|Xk,j |2 = ‖X‖2.

Thus, if dp(x) < ε, then ‖X‖ < ε and

|f(x1, . . . , xn)| = |F (X1,1, . . . , X1,p1 , . . . , Xn,1, . . . , Xn,pn)| ≤ sup
‖X‖<ε

|F (X)|.

Hence,

|f |qh,ε = sup
dp(x)<ε

|f(x)| ≤ sup
‖X‖<ε

|F (X)| .
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Proof of (b). — Let f be in Pδ and let us set F := s1(f). The homogeneous polynomial
F ∈ Pδ(C|p|) is a homogeneous polynomial of degree δ. It is proved in [21]-Lemma A.3 that

‖F‖0,δ := sup
X 6=0

|F (X)|
‖X‖δ

≤ ‖F‖H,δ.

Then since ‖F‖H,δ := ‖s1(f)‖H,δ :=

√
〈s1(f),s1(f)〉

H
δ! = |f |

p,δ
, using (a) we finally get

|f |qh,ε ≤ sup
‖X‖<ε

|F (X)| ≤ ‖F‖0,δ εδ ≤ ‖F‖H,δ εδ = |f |
p,δ

εδ.

Proof of (c). — Let V be in H δ. Using the previous result, we directly get

‖V ‖2qh,ε :=
n∑
i=1

1

ε2pi
|Vi|2qh,ε ≤

n∑
i=1

ε2(δ+pi)

ε2pi
|Vi|2

p,δ+pi
= ε2δ ‖V ‖2

p,δ
.

Proof of (d). — Let V be in Bε. Writing V as the sum of its quasihomogeneous
components, V =

∑
δ∈∆̃

Vδ, we get

‖V ‖qh,ε ≤
∑
δ∈∆̃

‖Vδ‖qh,ε ≤
∑
δ∈∆̃

εδ ‖V ‖
p,δ

= Nε(V ).

Then we prove that Lα is invertible and we compute the operator norm of its inverse.

P B.6. – Let K ≥ 2 be fixed such that

(63) ρ1(K) < 1 with ρ1(K) :=
u0MβMp

Kδ0

+∞∑
k=0

(k + δ0)a
(

1
2

)k
where a, δ0 and Mβ are defined in Lemma 6.8.

Then for every ε ∈]0, 1[ and every α ∈ ‹∆ with α > s satisfying

(64) Cε ≤ 1

K(α− s) 1
b

,

we have:

(a) The operator T α given by T α.V = D Uα.V maps Bε into Bε and for every V ∈ Bε we
have

Nε( T α.V ) ≤ ρ1(K) Nε(V );

(b) the operator Lα = Id + T α is invertible and for every V ∈ Bε,

‖ L−1
α V ‖qh,ε ≤ Nε( L−1

α V ) ≤ 1
1−ρ1(K)Nε(V ).

Proof. – Statement (b) directly follows from (a) since it ensures that ‖| T α‖| L( Bε) <

ρ1(K) < 1 and so L−1
α = (Id + T α)−1 =

∞∑
n=0

(− T α)n holds. We now prove statement

(a). Observing that
T α.V =

∑
0<δ1≤α−s, δ1∈∆̃−

δ2∈∆̃

DUδ1 .Vδ2 ,

recalling that a := max
Ä
1,
î

(p̄+1)
2

óä
and using Proposition 3.6-(d) we get

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



710 E. LOMBARDI AND L. STOLOVITCH

Nε( T α.V ) =
∑

0<δ1≤α−s, δ1∈∆̃−

δ2∈∆̃

∥∥∥∥∥∥ ∑
δ1+δ2=δ

DUδ1 .Vδ2

∥∥∥∥∥∥
p,δ

εδ,

≤Mp

∑
0<δ1≤α−s, δ1∈∆̃−

δ2∈∆̃

δa1 ‖Uδ1‖p,δ1 ε
δ1 ‖Vδ2‖p,δ2 ε

δ2

≤ η Nε(V )(65)

where
η =Mp

∑
0<δ1≤α−s, δ1∈∆̃−

δa1 ‖Uδ1‖p,δ1 ε
δ1 .

Using (32) and Lemma 6.8 and recalling that 1
b = τ + a

δ0
we get

η ≤ MpMβu0

∑
δ0≤δ1≤α−s, δ1∈∆̃−

δa1 (Cε)δ1(δ1!)τ
(
(δ1 − δ0)!

) a
δ0 ≤ MpMβu0

∑
δ0≤δ1≤α−s, δ1∈∆̃−

δa1 (Cε)δ1(δ1!)
1
b .

Then for every K ≥ 2 and every ε, α satisfying (64), we obtain

η ≤ MpMβu0

∑
δ0≤δ1≤α−s, δ1∈∆̃−

δa1

Å
1

K

ãδ1 Å δ1!

(α− s)δ1

ã 1
b

≤ MpMβu0

∑
δ0≤δ1≤α−s, δ1∈∆̃−

δa1

Å
1

K

ãδ1
≤ MpMβu0

Kδ0

+∞∑
δ1=δ0

δa1

Å
1

K

ãδ1−δ0
≤ MpMβu0

Kδ0

+∞∑
k=0

(k + δ0)a
Å

1

2

ãk
= ρ1(K).(66)

In conclusion, gathering (65) and (66) we get that for every V ∈ Bε, every K ≥ 2 and
every ε, α satisfying (64),

Nε( T α.V ) ≤ ρ1(K) Nε(V ).

Before computing upper bounds of L−1
α Q>α, we prove a last lemma giving an estimate of

the norm of Id + Uα:

L B.7. – Let K ≥ 2 be fixed such that (63) is satisfied. Then for every ε ∈]0, 1[ and
every α ∈ ‹∆ such that α > s satisfying (64), we have

Nε(Id + Uα) =
∑

0≤δ≤α−s, δ∈∆̃−

εδuδ ≤ 2Mβu0.

R B.8. – The key point in the above estimate is that the upper bound does not
depend on α nor on ε.
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Proof. – Using (32) and Lemma 6.8 and recalling that 1
b = τ + a

δ0
and that Mβ ≥ 1, we

get that for every K ≥ 2, every ε ∈]0, 1[ and every α ∈ ‹∆ with α > s satisfying (64), we have

Nε(Id + Uα) =
∑

0≤δ≤α−s, δ∈∆̃−

εδuδ

≤ u0 +Mβu0

∑
δ0≤δ≤α−s, δ∈∆̃−

(Cε)δ(δ!)τ
(
(δ − δ0)!

) a
δ0

≤Mβu0

∑
0≤δ≤α−s, δ∈∆̃−

(Cε)δ(δ!)
1
b .

≤Mβu0

∑
0≤δ≤α−s, δ∈∆̃−

(
1
K

)δ Å δ!

(α− s)δ

ã 1
b

≤Mβu0

∑
0≤δ≤α−s, δ∈∆̃−

(
1
K

)δ
≤Mβu0

∞∑
δ=0

(
1
2

)δ
= 2Mβu0.

We have now enough material to be able to compute an upper bound for L−1
α Qj>α. We

estimate each of them separately in the three following lemmas.

L B.9. – Let K ≥ 2 be fixed such that (63) is satisfied. Then, there exists M1 > 0

such that for every ε ∈]0, 1[ and every α ∈ ‹∆ with α > s, satisfying (64), we have

(a) when 1
b = τ + a

δ0
≥ a,

‖ L−1
α Q1

>α‖qh,ε ≤M1(Cε)α+1((α+ 2− s)!) 1
b ;

(b) when 1
b = τ + a

δ0
≤ a,

‖ L−1
α Q1

>α‖qh,ε ≤M1(Cε)α+1((α+ 2− s)!) 1
b (α− s)1+a− 2

b .

Proof. – Proposition B.6-(b) ensures that

(67) ‖ L−1
α Q1

>α‖qh,ε ≤ 1
1−ρ1(K)Nε( Q1

>α).

So to get the desired result we only need to compute an upper bound of Nε( Q1
>α).
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Recalling that a := max
Ä
1,
î

(p̄+1)
2

óä
and using Proposition 3.6-(d), (32) and Lemma 6.8

we get

Nε( Q1
>α) ≤MpM

2
βu

2
0

∑
δ1+δ2>α

0<δ1≤α−s, δ1∈∆̃−

s<δ2≤α, δ2∈∆̃

δa1 (Cε)δ1+δ2(δ1!)τ
(
(δ1 − δ0)!

) a
δ0 ((δ2 − s)!)τ

(
(δ2 − s− δ0)!

) a
δ0

≤MpM
2
βu

2
0

∑
δ1+δ2>α

0<δ1≤α−s, δ1∈∆̃−

s<δ2≤α, δ2∈∆̃

δa1 (Cε)δ1+δ2(δ1!(δ2 − s)!)τ
(
(δ1)!(δ2 − s)!

) a
δ0

≤MpM
2
βu

2
0

∑
δ1+δ2≥α+1
1≤δ1≤α−s
s+1≤δ2≤α

δa1 (Cε)δ1+δ2(δ1!(δ2 − s)!)
1
b .

In the above estimate, one can obtain a sharper result using a smaller set of indices in the
last sum, i.e. {(δ1, δ2) ∈ N2/δ1 + δ2 ≥ α+, 0+ ≤ δ1 ≤ α− s, s+ ≤ δ2 ≤ α} (α+ is the small
integer of ∆̃ greater than α). However, it leads to far more intricate computations, for a not
so better estimate. This is why we have chosen this more rough estimate corresponding to a
larger set of indices.

So now, performing the change of indices (δ1, δ2) 7→ (δ1, δ = δ1 +δ2) we get that for every
K ≥ 2, every ε ∈]0, 1[ and every α ∈ ‹∆ with α > s satisfying (64), we have

Nε( Q1
>α)

MpM
2
βu

2
0

≤
α−s∑
δ1=1

δ1+α∑
δ=α+1

δa1 (Cε)δ(δ1!(δ − δ1 − s)!)
1
b

≤ (Cε)α+1

α−s∑
δ1=1

δa1 (δ1!)
1
b

δ1+α∑
δ=α+1

(Cε)δ−(α+1)((δ − δ1 − s)!)
1
b

≤ (Cε)α+1

α−s∑
δ1=1

δa1 (δ1!)
1
b

δ1+α∑
δ=α+1

( 1
K )δ−(α+1)

Å
(δ − δ1 − s)!

(α− s)δ−(α+1)

ã 1
b

.

Then observing that for 0 ≤ δ1 ≤ α− s , α+ 1 ≤ δ ≤ δ1 +α, we have δ− δ1− s ≤ α− s and

(δ − δ1 − s)!
(α− s)δ−(α+1)

= (α+ 1− δ1 − s)!
(α+ 2− δ1 − s) · · · (δ − δ1 − s)

(α− s)δ−(α+1)
≤ (α+ 1− δ1 − s)!

we get

Nε( Q1
>α)

MpM
2
βu

2
0

≤ ≤ (Cε)α+1

α−s∑
δ1=1

δa1

(
δ1!(α+ 1− δ1 − s)!

) 1
b
δ1+α∑
δ=α+1

(
1

2
)δ−(α+1)

≤ 2(Cε)α+1

α−s∑
δ1=1

δa1

(
δ1!(α+ 1− δ1 − s)!

) 1
b

.
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When 1
b ≥ a, we obtain

Nε( Q1
>α)

MpM
2
βu

2
0

≤ 2(Cε)α+1

α−s∑
δ1=1

(
(δ1 + 1)!(α+ 1− δ1 − s)!

) 1
b

≤ 2(Cε)α+1
(

(α+ 2− s)!
) 1
b
α−s∑
δ1=1

Ç
1

Cδ1+1
α+2−s

å 1
b

≤ 2(Cε)α+1
(

(α+ 2− s)!
) 1
b
α−s∑
δ1=1

Ç
1

α+ 2− s

å 1
b

= 2(Cε)α+1
(

(α+ 2− s)!
) 1
b α− s

(α+ 2− s) 1
b

≤ 2(Cε)α+1
(

(α+ 2− s)!
) 1
b

,

since 1
b ≥ a ≥ 1. Hence, when 1

b ≥ a,

Nε( Q1
>α) ≤ 2MpM

2
βu

2
0 (Cε)α+1

(
(α+ 2− s)!

) 1
b

.

On the other hand, when 1
b ≤ a we get

Nε( Q1
>α)

MpM
2
βu

2
0

= 2(Cε)α+1
(

(α+ 2− s)!
) 1
b

(α− s)a− 1
b

α− s
(α+ 2− s) 1

b

≤ 2(Cε)α+1
(

(α+ 2− s)!
) 1
b

(α− s)a+1− 2
b .

This achieves the proof of Lemma B.9 with

M1 =
2MpM

2
βu

2
0

1− ρ1(K)
.

L B.10. – Let K ≥ 2 be fixed such that (63) holds. Let γ ≥ 2 be fixed such that

(68) q =
χ

γC
< 1 with χ =

Å
2Mβu0

ρ

ã 1
p

where C and Mβ are defined in Lemma 6.8.

Then there exists M2 > 0, such that for every ε ∈]0, 1[ and every α ∈ ‹∆ with α > s

satisfying

(69) Cε ≤ 1

γK(α− s) 1
b

,

we have
‖ L−1

α Q2
>α‖qh,ε ≤M2

(
1
K

)α+1
.

Proof. – Like for L−1
α Q1

>α, Proposition B.6-(b) ensures that

(70) ‖ L−1
α Q2

>α‖qh,ε ≤ 1
1−ρ1(K)Nε( Q2

>α).

So, to get the desired result we only need to compute an upper bound of Nε( Q2
>α).
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According to Proposition 3.6 and Proposition 3.7, there exist positive constantsMR and ρ
such that, for all µ > s belonging to ∆̃, for all µ∗ ≤ r ≤ µ∗, we have

(71)
∥∥∥R̃µ,r(Uδ1 , . . . , Uδr )∥∥∥

p,δ1+···+δr+µ

≤ MR

ρr
‖Uδ1‖p,δ1 · · · ‖Uδr‖p,δr =

MR

ρr
uδ1 · · ·uδr .

Hence, using (32), we get

Nε( Q2
>α) ≤

∑
s<µ µ∈∆̃

µ∗∑
r=µ∗

∑
δ1+···+δr+µ>α

0≤δj≤α−s, δj∈∆̃−

MR

ρr
uδ1 · · ·uδrεδ1+···+δr+µ

≤
∑

s<µ, µ∈∆̃

µ∗∑
r=µ∗

∑
δ1+···+δr+µ>α

0≤δj≤α−s, δj∈∆̃−

MR u
r
0

ρr
εδ1+···+δr+µ

r∏
j=1

(δj !)
τβδj .

Then Lemma 6.8 and Remark 6.9 ensure that for every δ ≥ 0 lying in δ ∈ ‹∆−, we have

βδ ≤MβC
δ(δ!)

a
δ0 .

Thus, for every ε ∈]0, 1[ and every α ∈ ‹∆ with α > s satisfying (69), we have

Nε( Q2
>α) ≤

∑
s<µ, µ∈∆̃

µ∗∑
r=µ∗

∑
δ1+···+δr+µ>α

0≤δj≤α−s, δj∈∆̃−

MR

Å
Mβu0

ρ

ãr (Cε)δ1+···+δr+µ

Cµ

r∏
j=1

(δj !)
1
b

≤ MR

∑
s<µ, µ∈∆̃

1
Cµ

µ∗∑
r=µ∗

Ä
Mβu0

ρ

är ∑
δ1+···+δr+µ>α

0≤δj≤α−s, δj∈∆̃−

Å
1

γK(α−s)
1
b

ãδ1+···+δr+µ r∏
j=1

(δj !)
1
b

≤ MR

Kα+1

∑
s<µ, µ∈∆̃

Å
1

γC(α−s)
1
b

ãµ µ∗∑
r=µ∗

Ä
Mβu0

ρ

är ∑
(δ1,...,δr)∈Nr
0≤δj≤α−s

r∏
j=1

(δj !)
1
b

Å
1

γ(α−s)
1
b

ãδj
≤ MR

Kα+1

∑
s<µ, µ∈∆̃

Å
1

γC(α−s)
1
b

ãµ µ∗∑
r=µ∗

Ä
Mβu0

ρ

är (α−s∑
δ=0

(δ!)
1
b

Å
1

γ(α−s)
1
b

ãδ)r
.

Then, we observe that, γ ≥ 2,

α−s∑
δ=0

(δ!)
1
b

Å
1

γ(α−s)
1
b

ãδ
=
α−s∑
δ=0

Ä
δ!

(α−s)δ
ä 1
b 1
γδ
≤ 1 +

α−s∑
δ=1

1
γδ
≤ 1

1− 1
γ

≤ 2.

So, we can conclude

Nε( Q2
>α) ≤ MR

Kα+1

∑
s<µ, µ∈∆̃

Å
1

γC(α−s)
1
b

ãµ µ∗∑
r=µ∗

Ä
2Mβu0

ρ

är
≤ MR

Kα+1

∑
s<µ, µ∈∆̃

Ä
1
γC

äµ µ∗∑
r=µ∗

Ä
2Mβu0

ρ

är
.(72)
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Now, observe that (3) ensures that

µ

p
+
p

p
≤ µ∗ and µ∗ ≤ µ

p
+
p

p
.

Then, since according to Remark 6.9, we can assume that 2Mβu0

ρ ≥ 1, we get

(73)
µ∗∑
r=µ∗

Ä
2Mβu0

ρ

är
≤ (µ∗ − µ∗ + 1)

Ä
2Mβu0

ρ

äµ∗
≤ (Aµ+B)χµ

where χ is given by (68) and where

A =

Ç
1

p
− 1

p

å
χp and B =

Ç
p

p
−
p

p
+ 1

å
χp.

Finally, (68), (72) and (73) ensure that for every ε ∈]0, 1[ and every α ∈ ‹∆ with α > s

satisfying (69), we have

Nε( Q2
>α) ≤ MR

Kα+1

∑
s<µ, µ∈∆̃

Ä
χ
γC

äµ
(Aµ+B)

≤ MR

Kα+1

∞∑
µ=s+1

Ä
χ
γC

äµ
(Aµ+B)

= MR q
s+1

Ä
B

1−q + qA
(1−q)2

ä 1

Kα+1
.(74)

This achieves the proof of Lemma B.10 with

M2 =
1

1− ρ1(K)
MR q

s+1
Ä
B

1−q + qA
(1−q)2

ä
.

L B.11. – Let K ≥ 2 and γ ≥ 2 be fixed such that (63) and (68) hold.

Then there exists M3 > 0, such that for every ε ∈]0, 1[ and every α ∈ ‹∆ with α > s

satisfying (69), we have

‖ L−1
α Q3

>α‖qh,ε ≤M3

(
1
K

)α+1
.

Proof. – The proof is very similar to the one of Lemma B.10 and we get an estimate
analogous to (72) which reads

Nε( Q3
>α) ≤ MS

Kα+1

Ä
1
γC

äs s∗∑
r=s∗

Ä
2Mβu0

ρS

är
≤MS

(
1
C

)s s∗∑
r=s∗

Ä
2Mβu0

ρS

är 1

Kα+1
.

The details are left to the reader. This achieves the proof of Lemma B.11 with

M3 = MS

(
1
C

)s s∗∑
r=s∗

Ä
2Mβu0

ρS

är
.

Considering Lemma B.1, Proposition 6.12 directly follows from Lemmas B.9, B.10, B.11.
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