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NONUNIFORM CENTER BUNCHING AND
THE GENERICITY OF ERGODICITY AMONG C1

PARTIALLY HYPERBOLIC SYMPLECTOMORPHISMS

ʙʏ Aʀ��ʀ AVILA, J�ɪʀ� BOCHI �ɴ� A�ɪ� WILKINSON

Aʙ��ʀ���. – We introduce the notion of nonuniform center bunching for partially hyperbolic dif-
feomorphims, and extend previous results by Burns–Wilkinson and Avila–Santamaria–Viana. Com-
bining this new technique with other constructions we prove that C1-generic partially hyperbolic sym-
plectomorphisms are ergodic. We also construct new examples of stably ergodic partially hyperbolic
diffeomorphisms.

R�����. – Nous introduisons une notion non-uniforme de resserrement central pour les dif-
féomorphismes partiellement hyperboliques qui nous permet de généraliser quelques résultats de
Burns–Wilkinson et Avila–Santamaria–Viana. Cette nouvelle technique est utilisée, en combinaison
avec d’autres constructions, pour démontrer la généricité de l’ergodicité parmi les difféomorphismes
symplectiques partiellement hyperboliques de classe C1. De plus, nous obtenons de nouveaux exemples
de dynamiques stablement ergodiques.

1. Introduction

1.1. Abundance of ergodicity

Let (M,ω) be a closed (i.e., compact without boundary) symplectic C∞ manifold of di-
mension 2N . Let Diff

1
ω
(M) be the space of ω-preserving C1 diffeomorphisms, endowed with

the C1 topology. Let m be the measure induced by the volume form ω∧N , normalized so that
m(M) = 1.

Let PH
1
ω
(M) be the set of diffeomorphisms f ∈ Diff

1
ω
(M) that are partially hyperbolic,

i.e., there exist an invariant splitting TxM = Eu
(x)⊕Ec

(x)⊕Es
(x), into nonzero bundles,

and a positive integer k such that for every x ∈ M ,

(1.1)
�(Dfk

|Eu
(x))

−1
�
−1 > 1 > �Dfk

|Es
(x)� ,

�(Dfk
|Eu

(x))
−1
�
−1 > �Dfk

|Ec
(x)� ≥ �(Dfk

|Ec
(x))

−1
�
−1 > �Dfk

|Es
(x)� .

Such a splitting is automatically continuous.
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932 A. AVILA, J. BOCHI AND A. WILKINSON

Tʜ��ʀ�� A. – The set of ergodic diffeomorphisms is residual in PH
1
ω
(M).

Our result is motivated by the following well-known conjecture of Pugh and Shub [26]:
There is a C2 open and dense subset of the space of C2 volume-preserving partially hyperbolic
diffeomorphisms formed by ergodic maps. Among the known results in this direction, we have:

– F. and M. A. Rodriguez-Hertz, and Ures [29] proved that Cr-stable ergodicity is
dense among Cr volume-preserving partially hyperbolic diffeomorphisms with one-
dimensional center bundle, for all r ≥ 2. (See also [14] for an earlier result.)

– F. and M. A. Rodriguez-Hertz, Tahzibi, and Ures [28] proved that ergodicity holds on
a C1 open and dense subset of the C2 volume-preserving partially hyperbolic diffeo-
morphisms with two-dimensional center bundle.

Together with the result from Avila [7], it follows that ergodicity is C1 generic among volume-
preserving partially hyperbolic diffeomorphisms with center dimension at most 2. On the
other hand, the techniques yielding the results above seem less effective for the understand-
ing of the case of symplectic maps, and indeed Theorem A is the first result on denseness
of ergodicity for non-Anosov partially hyperbolic symplectomorphisms, even allowing for
constraints on the center dimension. Our approach develops some new tools of independent
interest, as we explain next.

1.2. Center bunching properties

To support their conjecture, Pugh and Shub [26] provided a criterion for a volume-
preserving partially hyperbolic map to be ergodic, based on the property of accessibility,
together with some technical hypotheses. A significantly improved version of this criterion
was obtained by Burns and Wilkinson [18]: accessibility and center bunching imply ergod-
icity. Dolgopyat and Wilkinson [19] showed that accessibility is open and dense in the C1

topology, but center bunching is not a dense condition unless the center dimension is 1

(which cannot happen for symplectic maps). In this paper we introduce and exploit a weaker
condition, called nonuniform center bunching.

In the context of general (not necessarily volume-preserving) partially hyperbolic diffeo-
morphisms, the center bunching hypothesis in [18] is a global, uniform property, requiring
that at every point in the manifold, the nonconformality of the action on the center bundle
be dominated by the hyperbolicity in both the stable and unstable bundles. By contrast, the
nonuniform center bunching property introduced here is a property of asymptotic nature
about the orbit of a single point; it is the intersection of a forward bunching property of the
forward orbit and a backward bunching property of the backward orbit. The precise defini-
tions are slightly technical (see Section 2). However, for Lyapunov regular points (which by
Oseledets’ theorem have full probability), forward (resp. backward) center bunching means
that the biggest difference between the Lyapunov exponents in the center bundle is smaller
than the absolute value of the exponents in the stable (resp. unstable) bundle. The set CB+

of forward center bunched points for a partially hyperbolic diffeomorphism f has the useful
property of being Ws-saturated, meaning that it is a union of entire stable manifolds of f ;
similarly the set CB− of backward center bunched points is Wu-saturated, i.e. a union of
unstable manifolds.
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Our next main result, Theorem B, generalizes the core result of [18] (Theorem 5.1 of that
paper). It states that for any C2 partially hyperbolic diffeomorphism, the set of Lebesgue
density points of any bi essentially saturated set meets CB+ in a Ws-saturated set and CB−

in a Wu-saturated set. (A bi essentially saturated set is one that coincides mod 0 with a
Ws-saturated set and mod 0 with a Wu-saturated set.)

Burns and Wilkinson [18] obtain their ergodicity criterion as a simple consequence of their
technical core result. Indeed, assuming accessibility (or even essential accessibility), ergodic-
ity in [18] follows in one step from the core result, using a Hopf argument; it is not necessary
to establish local ergodicity first (as one does in proving ergodicity for hyperbolic systems).
It is unclear to us whether the Burns–Wilkinson criterion for ergodicity can be improved
by replacing uniform center bunching by almost everywhere nonuniform center bunching,
in part because the uniform version in [18] is by nature not a “local ergodicity” result. In
reality, it is possible to deduce a new ergodicity criterion (Corollary C) from Theorem B.
Namely, ergodicity follows from almost everywhere nonuniform center bunching together
with a stronger form of essential accessibility, where we only allow su-paths whose corners
are center-bunched points. While this accessibility condition is far from automatic, it can be
verified in some interesting classes of examples: see §1.4 below.

1.3. Outline of the proof of Theorem A

Let us explain how nonuniform center bunching combines with other ingredients to yield
Theorem A. Take a symplectomorphism with the following C1 generic properties:

(a) it is stably accessible, by Dolgopyat and Wilkinson [19];
(b) all central Lyapunov exponents vanish at almost every point, by Bochi [9].

Notice that property (b) implies almost every point is center bunched. But Theorem B re-
quires C2 regularity. This is achieved by taking a perturbation, which still has property (a),
but loses property (b). What happens is that each point in some set of measure close to 1 has
small center Lyapunov exponents and thus is center bunched.

Before getting useful consequences from Theorem B, we need to provide a local source
of ergodicity. This is achieved through a novel application of the Anosov–Katok [2] exam-
ples. (By comparison, [28] uses Bonatti–Díaz blenders.) We proceed as follows. By perturb-
ing, we find a periodic point whose center eigenvalues have unit modulus. Perturbing again,
we create a disk tangent to the center direction that is invariant by a power of the map. We
can choose any dynamics close to the identity on this disk, so we select an ergodic Anosov–
Katok map. Ergodicity is spread from the center disk to a ball around the periodic point
using Theorem B, and then to the whole manifold by accessibility. (In fact, since the set of
center bunched points is not of full measure, a Gδ argument is necessary to conclude ergod-
icity – see Section 3 for the precise procedure.)

1.4. Further applications of nonuniform center bunching

By means of our ergodicity criterion (Corollary C) we construct an example of a stably
ergodic partially hyperbolic diffeomorphism that is almost everywhere nonuniformly center
bunched (but not center bunched in the sense of [18]) in a robust way.

We also prove in this paper an extension of Theorem B to sections of bundles over par-
tially hyperbolic diffeomorphisms. This result, Theorem D, brings into the nonuniform
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934 A. AVILA, J. BOCHI AND A. WILKINSON

setting a recent result of Avila, Santamaria and Viana [8], which they use to show that the
generic bunched SL(n, R) cocycle over an accessible, center bunched, volume-preserving
partially hyperbolic diffeomorphism has a nonvanishing exponent. The result from [8] has
also been used in establishing measurable rigidity of solutions to the cohomological equa-
tion over center-bunched systems; see [33]. Theorem D has similar applications in the setting
where nonuniform center bunching holds, and we detail some of them in Section 6.

We conceive that our methods may be further extended to apply in certain “singular par-
tially hyperbolic” contexts where partial hyperbolicity holds on an open, noncompact subset
of the manifold M but decays in strength near the boundary. Such conditions hold, for exam-
ple, for geodesic flows on certain nonpositively curved manifolds. Under suitable accessibility
hypotheses, these systems should be ergodic with respect to volume.

1.5. Questions

Combining results of [19] and Brin [15], one obtains that topological transitivity holds for
a C1 open and dense set of partially hyperbolic symplectomorphisms. On the other hand,
the C1-interior of the ergodic symplectomorphisms is contained in the partially hyperbolic
diffeomorphisms [22, 30]. This suggests the following natural question.

Q����ɪ�ɴ 1. – Can Theorem A be improved to an open (and dense) instead of residual
set?

Notice that it is not known even whether the set of C1 Anosov ergodic maps has non-
empty interior.

Dropping partial hyperbolicity, recall that C1 generic symplectic and volume-preserving
diffeomorphisms are transitive by [5] and [11], while ergodicity is known to be C0-generic
among volume-preserving homeomorphisms by [24]. So the following well-known question
arises:

Q����ɪ�ɴ 2. – Is ergodicity generic among C1 symplectic and volume-preserving
diffeomorphisms?

1.6. Organization of the paper

In Section 2 we define nonuniform center bunching, state Theorem B, and derive
Corollary C from it.

In Section 3 we prove Theorem A following the outline given in §1.3. As we have explained,
the proof uses the existence (after perturbation) of a periodic point with elliptic central be-
havior. Such a result goes along the lines of [12, 22, 30], but we have not been able to find
a precise reference. In Section 4, which can be read independently from the rest of the pa-
per, we provide a proof of this result by reducing it to its ergodic counterpart and applying
the Ergodic Closing Lemma. This approach is different from the one taken in the literature.
For this reason, we included an appendix explaining how to use it to reobtain some results
from [12].

The proof of Theorem B, despite having much in common with [18], is given here in full
detail in Section 5. In Section 6 we formulate and prove the more general Theorem D. The
new examples of stably ergodic maps are constructed in Section 7.
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2. Nonuniform center bunching and consequences

Throughout this section, f denotes a fixed C2 partially hyperbolic diffeomorphism of a
closed manifold M of dimension d. (We do not require f to be symplectic or even volume-
preserving.) Using a result of Gourmelon [20], we take a Riemannian metric �·� on M for
which relations (1.1) hold with k = 1.

R���ʀ� 2.1. – The notion of partial hyperbolicity we use in this paper is called rela-
tive. There is a stronger form of partial hyperbolicity, called absolute, which asks for the ex-
istence of a Riemannian metric such that �(Df |Eu

(x))
−1�−1 > max(1, �Df |Ec

(y)�) and
min(1, �(Df |Ec

(y))
−1�−1

) > �Df |Es
(z)� for every x, y, z ∈ M ; see [1].

2.1. Saturated sets

IfF is a foliation with smooth leaves, a set X ⊆ M is said to beF-saturated if it is a union
of entire leaves of F . We say that a measurable set X is essentially F-saturated if it coincides
Lebesgue mod 0 with a F-saturated set.

We also say that a set X is F-saturated at a point x if there exist 0 < δ0 < δ1 such that
for any z ∈ X ∩ B(x, δ0), we have F(z, δ1) ⊂ X. (Here F(z, δ1) denotes the connected
component of F(z) ∩B(z, δ1) containing z.)

A measurable set X is called bi essentially saturated if it is both essentially Wu-saturated
and essentiallyWs-saturated. (HereWu andWs are the unstable and stable foliations of the
partially hyperbolic diffeomorphism f .)

2.2. Nonuniform center bunching

If A : V → W is a linear transformation between Banach spaces, we denote by m(A) the
conorm of A, defined by

m(A) = inf
v∈V, �v�=1

�A(v)�.

If A is invertible, then m(A) = �A−1�−1.
We say that a point p ∈ M is forward center bunched if there exist θ > 1 and a sequence

0 = i0 < i1 < · · · such that ik+1/ik → 1 and for every k ≥ 0,

�Df
ik (p)f

ik+1−ik |Es
�
−1
≥ θik+1−ik ·

�Df
ik (p)f

ik+1−ik |Ec�

m
�
Df

ik (p)f
ik+1−ik |Ec

� .

The point p is called backward center bunched if it is forward center bunched with respect to
f−1. The set of forward, resp. backward, center bunched points is denoted by CB

+, resp.
CB

−. Also set CB = CB
+
∩CB

−. It is easy to see that these sets are f -invariant. Moreover,
in Section 5 we show:

Pʀ����ɪ�ɪ�ɴ 2.2. – CB
+ is Ws-saturated and CB

− is Wu-saturated.
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A much deeper property is:

Tʜ��ʀ�� B. – Let f be a C2 partially hyperbolic diffeomorphism. Let X be a bi essentially
saturated set, and let X̂ denote the set of Lebesgue density points of X. Then X̂ ∩ CB

+ is
Ws-saturated and X̂ ∩ CB

− is Wu-saturated.

We remark that the hypotheses of Theorem B are weaker than the center bunching hypoth-
esis in [18]. In the setting of [18], CB

+
= CB

−
= M and one takes ik = k in the definition

of forward center bunching. (In fact, the center bunching hypothesis in [18] is equivalent to
the condition CB

+
= CB

−
= M , see Remark 2.5 below.)

Another remark is that, as in [18], it is essential that X is both essentially Wu-saturated
and essentially Ws-saturated in order to conclude anything.

2.3. Relation with Lyapunov spectrum

Let us formulate sufficient conditions for center bunching in terms of Lyapunov expo-
nents.

Oseledets’ Theorem asserts that there exists a set of full probability (that is, a Borel set
of full measure with respect to any f -invariant probability) where Lyapunov exponents and
Oseledets’ splitting are defined (see for example [6, Theorem 3.4.11 and Remark 4.2.8]). The
elements of this set are called Lyapunov regular points.

If p ∈ M is a Lyapunov regular point, we write the Lyapunov exponents (with multiplic-
ity) of f at p as:

λ1 ≥ · · · ≥ λk� �� �
Eu

> λk+1 ≥ · · · ≥ λ�� �� �
Ec

> λ�+1 ≥ · · · ≥ λd� �� �
Es

.

(The braces are shorthands meaning that dim Eu
= k, dim Ec

= �−k, dim Es
= d− �.) We

say the Lyapunov spectrum of f at p satisfies the forward center bunched condition if

λk+1 − λ� < −λ�+1 ,

and the backward center bunched condition in the case that

λk+1 − λ� < λk .

Notice that if f is symplectic then, by the symmetry between the exponents, the forward
and the backward center bunching conditions are equivalent to:

2λk+1 < λk .

Pʀ����ɪ�ɪ�ɴ 2.3. – A Lyapunov regular point is forward (resp. backward) center bunched
if and only if its spectrum satisfies the forward (resp. backward) center bunched condition.

Proof. – We only need to prove the forward part of the proposition, and the backward
part will follow by symmetry.

Fix a point p and define

(2.1) Θ(j, n) = �Dfj(p)f
n
|Es

�
−1
·m

�
Dfj(p)f

n
|Ec

�
· �Dfj(p)f

n
|Ec

�
−1 j, n ≥ 0.

Assume that p is forward center bunched. Let θ and ik be as in the definition of forward center
bunching; then Θ(ik, ik+1 − ik) > θik+1−ik . We have

Θ(0, ik) ≥ Θ(0, i1)Θ(i1, i2 − i1) · · ·Θ(ik−1, ik − ik−1) ≥ θik ,
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and in particular

(2.2) lim sup
n→+∞

1

n
log Θ(0, n) > 0.

If p is Lyapunov regular then the lim sup above equals−λ�+1 +λ�−λk+1. Thus p has center
bunched Lyapunov spectrum.

Conversely, assume that the point p is Lyapunov regular and has center bunched Lya-
punov spectrum. Fix some τ with 0 < τ < −λ�+1 − λk+1 + λ�. We claim that

(2.3) for every δ > 0 there exists cδ > 0 such that Θ(j, n) > cδe
−δjeτn for all j, n ≥ 0.

Before giving the proof, let us see how to conclude from here. Let i0 = 0. Inductively define
ik+1 as the least i > ik such that Θ(ik, i− ik) > e(τ/2)(i−ik). Let us see that this sequence of
times satisfies the requirements of the definition of forward center bunching, with θ = τ/2.
For any δ > 0, we have

cδe
−δikeτ(ik+1−ik−1) < Θ(ik, ik+1 − ik − 1) ≤ e(τ/2)(ik+1−ik−1) .

It follows that if ik is sufficiently large (depending on δ) then (ik+1 − ik)/ik < 3δ/τ . This
proves that ik+1/ik → 1 and hence that p ∈ CB

+.

We are left to prove (2.3). For 1 ≤ i ≤ d = dimM , let Ei
(p) be the Oseledets space

corresponding to the Lyapunov exponent λi(p). (This notation is not standard because those
spaces are not necessarily different.) A consequence of the Lyapunov regularity of p is that,
for each i = 1, . . . , d, the quotient n−1

log �Dpfn
(v)� converges to λi uniformly over unit

vectors v ∈ Ei
(p). Thus for every δ > 0 there exists Kδ > 1 such that

K−1
δ

e(λi−δ)n
≤ �Dpf

n
(v)� ≤ Kδe

(λi+δ)n , for all unit vectors v ∈ Ei
(p) and n ≥ 0.

Hence, for each n, j ≥ 0, we have

(2.4) �Dfj(p)f
n
|Ei� ≤ �Dpf

n+j
|Ei�/m(Dpf

j
|Ei) ≤ K2

δ
e2δje(λi+δ)n .

Another consequence of Lyapunov regularity (see [6, Corollary 5.3.10]) is that the angles be-
tween (sums of different) Oseledets spaces along the orbit of p are subexponential. In partic-
ular, for each δ > 0 we can find K �

δ
> 1 such that

(K �

δ
)
−1e−δ(j+n)

≤
�Dfj(p)f

n|Es�

maxi∈[�+1,d] �Dfj(p)fn|Ei�
≤ K �

δ
eδ(j+n) , for each n, j ≥ 0.

It follows from (2.4) that there exists K ��

δ
> 1 such that

�Dfj(p)f
n
|Es� ≤ K ��

δ
e3δje(λ�+1+2δ)n , for each n, j ≥ 0.

This controls the first term in (2.1). The other two are dealt with in an analogous way, and
(2.3) follows.

R���ʀ� 2.4. – If p ∈ CB
+ then we have seen that (2.2) holds, where Θ is defined

by (2.1). Let us show that condition (2.2) alone does not imply forward center bunching.
First notice that if p ∈ CB

+ then

(2.5) lim inf
m→∞

1

nm

log Θ(jm, nm) > 0 for any sequences jm, nm with nm >
1

10
jm →∞.
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Now let

A =

�
e−2

0

0 e−1

�
, B =

�
e−1/2

0

0 e−1

�
, C =

�
1 0

0 e3/4

�
.

Assume that Dfj(p)f |Ec equals C for every j ≥ 0, while the sequence Dfj(p)f |Es , j ≥ 0 is
given by:

A, B, A,A, B, B,A (4 times), B (4 times), A (8 times), B (8 times), . . .

Notice that for every n ≥ 0, we have �Dpfn|Es� = e−n, m(Dpfn|Ec) = 1, and
�Dpfn|Ec� = e(3/4)n, so condition (2.2) is satisfied. On the other hand, if j = 2

m+1
+2

m−2

and n = 2
m then Dfj(p)f

n
= Bn and therefore Θ(j, n) = e(−1/4)n. Hence (2.5) does not

hold and so p is not forward center bunched.

R���ʀ� 2.5. – If CB
+

= CB
−

= M then f is center bunched in the sense of [18].
Indeed, let Θp(j, n) be as in (2.1), with a subscript to indicate dependence on the point. As-
suming CB

+
= M , compactness implies that there exist θ > 1 and m such that for every

p ∈ M there exists i with 1 ≤ i ≤ m such that Θp(0, i) > θ. It follows that there is c > 0

such that Θp(0, n) > cθn/m. We reason analogously for f−1. The conclusion follows from
an adapted metric argument along the lines of [20].

2.4. An ergodicity criterion

Let us extract a criterion for ergodicity from Theorem B. (It is not used in the proof of
Theorem A, so the reader can skip the rest of this section.)

C�ʀ�ʟʟ�ʀʏ C. – Let f be a C2 partially hyperbolic volume-preserving diffeomorphism.
Let CB = CB

+
∩ CB

− be the set of center bunched points. Assume that almost every pair
of points x, y ∈ CB can be connected by an su-path whose corners are in CB.

Let X be a bi essentially saturated set such that X ∩CB has positive measure. Then X has
full measure in CB. If CB has full measure, then f is ergodic, and in fact a K-system.

In Section 7 we give applications of Corollary C to prove stable ergodicity of certain par-
tially hyperbolic diffeomorphisms that are not center bunched.

Proof of Corollary C. – Let f and X satisfy the hypotheses of Corollary C and let X̂ be
the set of Lebesgue density points of X. Then for almost every x ∈ X̂∩CB and almost every
y ∈ CB, there is an su-path from x to y with corners x0 = x, x1, . . . , xk = y all lying in CB
(that is, so that xi lies in CB ∩ (Ws

(xi+1)∪W
u
(xi+1)), for i = 0, . . . , k− 1). Fix such an x

and y and such an su-path. Applying Theorem B inductively to each pair xi, xi+1, we obtain
that xi lies in X̂, for i = 1, . . . k, and so y ∈ X̂. This implies that almost every y ∈ CB lies
in X̂, and hence X has full measure in CB.

A standard argument shows that a volume-preserving partially hyperbolic diffeomor-
phism is ergodic if and only if every bi essentially saturated, invariant set has measure 0 or 1.
Moreover, f is a K-system if every bi essentially saturated set, invariant or not, has measure
0 or 1 (see [18], Section 5). If CB has full measure, then any bi essentially saturated set has
0 or full measure in CB, and hence has measure 0 or 1. It follows that f is ergodic, and in
fact a K-system.
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3. Proof of Theorem A

For ε > 0, let us call a diffeomorphism f ∈ PH
1
ω
(M) ε-nearly ergodic if for any bi essen-

tially saturated and mod 0 invariant set X, either m(X) < ε or m(X) > 1− ε. (1) The bulk
of the proof of Theorem A consists in showing the following:

Pʀ����ɪ�ɪ�ɴ 3.1. – For any ε > 0, the ε-nearly ergodic diffeomorphisms form a dense
subset of PH

1
ω
(M).

In §§3.1, 3.2, and 3.3 we review some results from the literature, which are used to prove
the proposition in §3.4. Then in §3.5 we explain how Proposition 3.1 implies Theorem A.

3.1. Zero center exponents

Given f ∈ PH
1
ω
(M), the partially hyperbolic splitting TM = Eu⊕Ec⊕Es is not neces-

sarily unique. We consider from now on only the unique splitting of minimal center dimension. If
this center dimension is constant on a C1-neighborhood of f , we say that f has unbreakable
center bundle. Such f ’s form an open dense subset of PH

1
ω
(M) (by upper-semicontinuity of

the center dimension).
To get center bunching, we will use the following:

Tʜ��ʀ�� 3.2 (Bochi [9], Theorem C). – There is a residual set R ⊂ PH
1
ω
(M) such that

if f ∈ R then all Lyapunov exponents in the center bundle vanish for a.e. point.

In other words, λc
(f) = 0 for generic f , where

λc
(f) = lim

n→+∞

1

n

�

M

log �Dfn
|Ec

f
� dm = inf

n

1

n

�

M

log �Dfn
|Ec

f
� dm.

Notice that λc
(f) is an upper semicontinuous function of f . Therefore, for any δ > 0, the set

of f ∈ PH
1
ω
(M) with λc

(f) < δ is open and dense (and thus, by [34], it contains C2 maps).

3.2. Accessibility

There are two results about accessibility that we will need: one says that it is frequent, and
the other gives a useful consequence.

Tʜ��ʀ�� 3.3 (Dolgopyat and Wilkinson [19]). – There is an open and dense subset of
PH

1
ω
(M) formed by accessible symplectomorphisms.

Tʜ��ʀ�� 3.4 (Brin [15]). – If f is a C2 volume-preserving partially hyperbolic diffeomor-
phism with the accessibility property then almost every point has a dense orbit.

In fact, Brin proved the result above for absolute (2) partially hyperbolic maps. Another
proof was given by Burns, Dolgopyat, and Pesin, see [16, Lemma 5]. Their proof applies
to relative partially hyperbolic maps (the weaker definition taken in this paper): the only
necessary modification is to use the property of absolute continuity of stable and unstable
foliations in the relative case, which is proven by Abdenur and Viana in [1].

(1) A related notion, ε-ergodicity, was considered by [32].
(2) See Remark 2.1
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3.3. Creating an ergodic center disk

The last ingredient we will need in the proof of Proposition 3.1 is Lemma 3.8 below, whose
proof needs its own preparations. We begin finding a suitable periodic point:

Tʜ��ʀ�� 3.5. – Let f have unbreakable center. There exists a C1-perturbation f̃ that has
a periodic point with dim Ec eigenvalues of modulus 1.

This result can be obtained along the lines of [30] or [22] (which prove symplectic versions
of the results of [12]). In Section 4 we give a different proof, relying on [9] and the Ergodic
Closing Lemma [23].

The following symplectic pasting lemma is established using generating functions, see [3]:

L���� 3.6. – Let f ∈ Diff
r

ω
(M). Given ε > 0 there is δ > 0 such that if U ⊂ M is an

open set of diameter less than δ, and g : U → M is a Cr-symplectic map that is δ-C1-close to
f |U , then g can be extended to some ĝ ∈ Diff

r

ω
(M) that is ε-C1-close to f .

The Anosov–Katok constructions enter here:

Tʜ��ʀ�� 3.7. – Let L : R2N → R2N be a symplectic linear map with all eigenvalues of
modulus 1. Then there exist an arbitrarily small neighborhood U of 0 in R2N and an ergodic
symplectic diffeomorphism g : U → U that is C∞-close to L|U .

Proof. – We may assume that L has only simple eigenvalues λ±1
1 , . . . ,λ±1

N
, all in the unit

circle. For 1 ≤ i ≤ N , let Ei be the L-invariant two-dimensional subspaces associated to the
eigenvalues λi, λ−1

i
. Let Ai : Ei → R2 be linear maps conjugating L|Ei to rigid rotations Ri.

Fix ε > 0. If gi : D → D are area-preserving maps of the unit disk D ⊂ R2 that are C∞-close
to Ri|D, then the formula

g(x) = εA−1
1 g1(ε

−1A1x1) + · · ·+ εA−1
N

gN (ε−1ANxN ), where x = x1 + · · ·+ xN with xi ∈ Ei,

defines, on a small neighborhood U of 0 in R2N , a symplectic map g : U → U that is
C∞-close to L|U . Now using a well-known result of Anosov and Katok [2], we choose
maps gi as above that are weakly mixing. It follows (see [25], Theorem 2.6.1) that g is weakly
mixing (and hence ergodic) as well.

L���� 3.8. – For all f in a C1 dense subset of PH1
ω
(M), the following properties hold:

The map f is C2, and there is an immersed closed disk Dc such that:

1) the tangent space TxDc coincides with Ec
(x) at each x ∈ Dc;

2) there is some � such that Dc is f �-invariant, and moreover Dc∩f i
(Dc

) = ∅ for 0 < i < �;
3) the restriction of f � to Dc is ergodic (with respect to the Riemannian volume mc);
4) the disk is center bunched in the sense that

�Df |Ec
(x)�

m(Df |Ec(x))
< min

�
m(Df |Eu

(x)), �Df |Es
(x)�

−1
�

for all x ∈ Dc
;

5) f is dynamically coherent in a box neighborhood B of Dc (that is, there are foliations
Wc, Wuc, Wcs in the box B that integrate the distributions Ec, Eu ⊕ Ec, Ec ⊕ Es).
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Proof. – We will explain how to perturb a given f in order to obtain the desired proper-
ties.

First use Theorem 3.5 to perturb f and find a periodic point p of period � such that all
eigenvalues of Df �|Ec

(p) have modulus 1. Also assume that these eigenvalues are distinct
and their arguments are rational mod 2π, so that Df �|Ec

(p) is diagonalizable and a power
of it is the identity.

Take a neighborhood U of p that is disjoint from f i
(U) for 1 ≤ i ≤ � − 1, and such

that there is a symplectic chart φ : U → R2N (that is, the form φ∗ω coincides with�
N

i=1 dpi ∧ dqi, where p1, . . . , pN , q1, . . . , qN are coordinates in R2N .) We can also assume
that φ(p) = 0 and Dφ(p) sends the spaces Eu

(p), Ec
(p), and Es

(p) to the planes p1 · · · pu,
pu+1 · · · pNqu+1 · · · qN , and q1 · · · qu, respectively (where u = dimEu.)

Using Lemma 3.6, we can perturb f so that φ ◦ f � ◦ φ−1 coincides with the linear map
Dφ(p) ◦Df �

(p) ◦Dφ−1
(0) on a neighborhood of p. For simplicity, we omit the chart in the

writing, thus
f �

(xu, xc, xs) = (Lu(xu), Lc(xc), Ls(xs)).

Recall that there is a power of Lc that is the identity. So, if necessary changing the point p
and the period �, we can assume Lc is the identity.

Next we use Theorem 3.7. Let g : Dc → Dc be an ergodic symplectic diffeomorphism,
where the disk Dc ⊂ Rdim E

c
is contained in the chart domain. Consider the (symplectic)

map

G(xu, xc, xs) = (Lu(xu), g(xc), Ls(xs)), defined in a neighborhood of (0, 0, 0).

Now use Lemma 3.6 again to find a global f̃ : M → M close to f , such that (still in charts)

f �
(xu, xc, xs) = G(xu, xc, xs) in a neighborhood of (0, 0, 0).

Rename f̃ to f . Then f has all the desired properties.

3.4. Getting near-ergodicity

Proof of Proposition 3.1. – Fix an open set U ⊆ PH
1
ω
(M) and ε > 0. Let δ > 0 be small.

Using Theorems 3.3 and 3.2, we can assume that the set U is composed of maps f that are
accessible and satisfy λc

(f) < δ. With a good choice of δ, the latter property implies that
for any f ∈ U , the measure of the set of Lyapunov regular points whose Lyapunov spectrum
satisfies the center bunching condition is at least 1− ε. Thus, by Proposition 2.3,

m(CB
+
) > 1− ε.

Now take f ∈ U given by Lemma 3.8. Thus we have a center bunched disk Dc that is
ergodic (w.r.t. the measure mc) by a power f �, disjoint from its first �− 1 iterates, and has a
dynamically coherent box neighborhood B.

We will prove that f is ε-nearly ergodic. So take any bi essentially saturated set mod 0 in-
variant set X. Let X1 be the (invariant) set of its Lebesgue density points, and
X0 = M � X1. By Proposition 2.2 and Theorem B, Xj ∩ CB

+ is Ws-saturated and
Xj ∩ CB

− is Wu-saturated for both j = 0, 1.
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The map f � has the invariant ergodic measure mc, supported on Dc. Thus, for some
i ∈ {0, 1} (that will be kept fixed in the sequel),

mc(Xi) = 0.

By Oseledets’ Theorem, mc-almost every point is Lyapunov regular for f �, and hence for
f as well. By Property 4 in Lemma 3.8, all these points have center bunched Lyapunov spec-
trum, and thus are (forward and backward) center bunched, by Proposition 2.3. Hence for
mc-almost every x ∈ Dc, the unstable manifoldWu

(x) is contained in X1−i. Dynamical co-
herence gives a foliationWuc in the box B (which integrates Eu⊕Ec); let Duc be the leaf that
contains Dc, with an induced Riemannian volume measure muc. It follows from the absolute
continuity of the Wu foliation that

muc(Xi ∩Duc
) = 0.

Since the set Yi = Xi∩CB
+ isWs-saturated and muc(Yi∩Duc

) = 0, absolute continuity
gives m(Yi ∩ B) = 0. It follows that m(Yi) = 0; indeed if the invariant set Yi had positive
measure then, by Theorem 3.4, it would have a positive measure intersection with every set
of nonempty interior, for example the box B. Recalling that m(CB

+
) > 1 − ε, we get that

m(Xi) < ε. This means that either m(X) < ε or m(X) > 1− ε, as we wanted to prove.

3.5. The Gδ argument

We now explain how Proposition 3.1 implies Theorem A.
Given f ∈ Diff

1
ω
(M) and a continuous function ϕ : M → R, define functions:

ϕf,n(x) =
1

n

n−1�

i=0

ϕ(f j
(x)) , ϕf (x) = lim

n→+∞
ϕf,n(x) (defined a.e.).

For ϕ ∈ C0
(M, R), a ∈ R, and ε > 0, let G(ϕ, a, ε) be the set of f such that

m[ϕf ≥ a] ≥ 1 − ε or m[ϕf ≤ a] ≥ 1 − ε. (Here [ϕf ≥ a] is a shorthand for the set
of x ∈ M where ϕf (x) exists and is greater than or equal to a.)

L���� 3.9. – G(ϕ, a, ε) is a Gδ subset of Diff
1
ω
(M).

Proof. – Define
F(ϕ, a,α) =

�
f ; m[ϕf ≥ a] ≥ α

�
.

So we have
G(ϕ, a, ε) = F(ϕ, a, 1− ε) ∪ F(−ϕ,−a, 1− ε),

We are going to prove that F(ϕ, a,α) is a Gδ. Since the finite union of Gδ’s is a Gδ, (3) the
lemma will follow.

Let ϕ, a, α be fixed. Given b < a, β < α, and n0, n1 ∈ N with n0 ≤ n1, let
U(b, β, n0, n1) be the set of f such that the set

�
maxn∈[n0,n1] ϕf,n > b

�
has measure > β.

Then U(b, β, n0, n1) is open.
We will check that:

(3.1) F(ϕ, a,α) =

�

b<a

�

β<α

�

n0

�

n1>n0

U(b, β, n0, n1) ,

(3) Proof:
�

An ∪
�

Bn =
�

(A1 ∩ · · · ∩An) ∪ (B1 ∩ · · · ∩Bn).
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where b and β take rational values. First, we have:

[ϕf ≥ a] = [lim supϕf,n ≥ a] =

�

b<a

�

n0

�

n≥n0

[ϕf,n > b] mod 0.

Then we have the following equivalences:

m[ϕf ≥ a] ≥ α ⇐⇒ ∀b < a, ∀n0, m

Ñ
�

n≥n0

[ϕf,n > b]

é
≥ α

⇐⇒ ∀b < a, ∀n0, ∀β < α, ∃n1 > n0 s.t. m

�
n1�

n=n0

[ϕf,n > b]

�
≥ α .

This proves (3.1), and hence that F(ϕ, a,α) is a Gδ.

Proof of Theorem A. – First, we claim that if f is a ε-nearly ergodic map, then
f ∈ G(ϕ, a, ε) for any ϕ ∈ C0

(M, R) and a ∈ R. Indeed, let X be the (invariant) set
of points x ∈ M where lim supϕf,n(x) ≥ a. This is a bi essentially saturated set, because it
isWs-saturated and it coincides mod 0 with theWu-saturated set [lim supϕf−1,n ≥ a]. Since
f is ε-nearly ergodic, m(X) is either less than ε or greater than 1 − ε. So either m[ϕf > a]

or m[ϕf ≤ a] is greater than 1− ε, showing that f ∈ G(ϕ, a, ε).

It follows from Proposition 3.1 that the sets G(ϕ, a, ε) are dense in PH
1
ω
(M), while

Lemma 3.9 says they are Gδ. Thus to complete the proof of the theorem, we need only to
see that the set of ergodic diffeomorphisms is precisely

�

ϕ,a,ε

G(ϕ, a, ε) ,

where ϕ varies on a dense subsetD of C0
(M, R), and a and ε take rational values. Indeed, if f

is not ergodic then we can find ϕ ∈ D, a < b and 0 < ε < 1/2 such that [ϕf < a] and [ϕf > b]
both have measure greater than ε. Then f cannot belong to G(ϕ, a, ε) ∩ G(ϕ, b, ε).

4. A proof of Theorem 3.5

The following is the symplectic version of Mañé’s Ergodic Closing Lemma [23], proved
by Arnaud [4]. If f ∈ Diff

1
ω
(M) and x ∈ M , we say that x is f -closable if for every

ε > 0 there exist a ε-perturbation f̃ ∈ Diff
1
ω
(M) such that x is periodic for f̃ and moreover

d(f̃ ix, f ix) < ε for every i between 0 and the f̃ -period of x.

Tʜ��ʀ�� 4.1 ([4]). – For every f ∈ Diff
1
ω
(M), m-almost every point is f -closable.

The first step to obtain Theorem 3.5 is to find an “almost elliptic” periodic point, that is
a periodic point whose center eigenvalues are close to the unit circle:

L���� 4.2. – Let f ∈ PH
1
ω
(M) have unbreakable center. Then for every ε > 0 there

exist an ε-perturbation f̃ and a periodic point x of period p for f̃ such that all eigenvalues µi of
Df̃p|Ec

(x) satisfy |log |µi|| ≤ εp.
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Proof. – Let f and ε be given. Write Dcf = Df |Ec. Since the eigenvalues of a symplectic
map are symmetric, to prove the lemma it suffices to find an ε-perturbation f̃ with a periodic
point x of period p such that:

(4.1) �Dcf̃mp
(x)� < eεmp for some m ≥ 1.

Due to Theorem 3.2, we can assume that λc
(f) = 0. Therefore there exists k such that

1
k

�
M

log �Dcfk� dm < ε. Hence, for all x in a set of positive measure,

(4.2) lim
m→∞

1

km

m−1�

i=0

log �Dcfk
(f ik

(x))� < ε.

By Theorem 4.1, we can take an f -closable point x such that (4.2) holds. If x is periodic then
(4.2) follows with f̃ = f . Otherwise, let fj ∈ PH

1
ω
(M) be a sequence converging to f in the

C1 topology such that x is periodic (of period pj) for fj . Then pj → ∞. Let mj = �pj/k�.
We estimate:

1

pj

log �Dcf
pj

j
(x)� ≤

1

kmj

mj−1�

i=0

log �Dcfk

j
(f ik

j
(x))�+

1

mj

log �Dcfj�∞.

As j →∞, the right hand side converges to the left hand side of (4.2). Thus the result follows
with f̃ = fj for j sufficiently large.

Next we see how the eigenvalues can be adjusted:

L���� 4.3. – Let ε > 0. Let A1, . . . , An be symplectic matrices and let 2d be the number
of eigenvalues µi of An · · ·A1 (counted with multiplicity) such that 1

n
log |µi| ≤ ε. Then there

exist symplectic matrices B1, . . . , Bn such that �Bi − Id� ≤ eε − 1 and AnBn · · ·A1B1 has
exactly 2d eigenvalues (counted with multiplicity) in the unit circle.

Proof. – Assume the matrices have size 2N × 2N . Let {p1, . . . , pN , q1, . . . , qN} be the
canonical symplectic and orthonormal basis of R2N .

Write Ai
= Ai · · ·A1. Let λ1 > · · · > λt be the Lyapunov exponents of An and let {0} =

F0 � F1 � · · · � Ft = R2N be the Lyapunov filtration of An, that is, An
(Fi) = Fi and the

action of An on Fi/Fi−1 has eigenvalues of modulus eλi . Let r(i) be the dimension of Fi.
Let m ≥ 0 be maximal with λm > 0, and let 0 ≤ u ≤ m be maximal with λu ≥ ε. Notice
that dim Ft−u/Fu = 2d.

Let F k

i
= Ak

(Fi), 0 ≤ k ≤ n − 1. There exist symplectic orthogonal matrices
C0, . . . , Cn−1 such that if i ≤ m then CkF k

i
is spanned by p1, . . . , pr(i). It follows that

if i > m then CkF k

i
is spanned by p1, . . . , pd, qd, . . . , qr(i)−d.

Let us consider a symplectic matrix Λ such that Λpk = pk and Λqk = qk, unless
r(i − 1) < k ≤ r(i) for some u < i ≤ m, in which case we let Λpk = e−λi/npk,
Λqk = eλi/nqk.

Let Bk = C−1
k

ΛCk. Then T = AnBn · · ·A1B1 preserves the spaces Fi, 0 ≤ i ≤ t, and T
acts on Fi/Fi−1 as An, unless u < i ≤ m or k − m < i ≤ k − u, in which case T acts as
e−λiAn. It follows that the action of T on Fk−u/Fu has only zero Lyapunov exponents. The
result follows.
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Proof of Theorem 3.5. – By Lemma 4.2 we can perturb f and create an “almost elliptic”
periodic point. Lemma 4.3 says that the derivatives along this orbit can be perturbed to be-
come completely elliptic. Using Lemma 3.6 we can realize this by a further perturbation of
the diffeomorphism.

The argument above could have been carried out by appealing to the easier cocycle version
of [9] obtained in [10]: see the appendix of this paper.

5. Proof of Theorem B

We adopt as much as possible notation that is consistent with the notation in [18], as the
proof of Theorem B has many parallels with the proof of Theorem 3.1 there. A few statements
are also adapted bearing in mind the needs of the proof of Theorem D given in the appendix.

5.1. Density

If ν is a measure and A and B are ν-measurable sets with ν(B) > 0, we define the density
of A in B by:

ν(A : B) =
ν(A ∩B)

ν(B)
.

A point x ∈ M is a Lebesgue density point of a measurable set X ⊆ M if

lim
r→0

m(X : Br(x)) = 1.

The Lebesgue Density Theorem implies that if X is a measurable set and “X is the set of
Lebesgue density points of X, then m(X � “X) = 0.

Lebesgue density points can be characterized using nested sequences of measurable sets.
We say that a sequence of measurable sets Yn nests at point x if Y0 ⊃ Y1 ⊃ Y2 ⊃ · · · ⊃ {x},
and �

n

Yn = {x}.

A nested sequence of measurable sets Yn is regular if there exists δ > 0 such that, for all n ≥ 0,
we have m(Yn) > 0, and

m(Yn+1) ≥ δm(Yn).

Two nested sequences of sets Yn and Zn are internested if there exists a k ≥ 1 such that,
for all n ≥ 0, we have

Yn+k ⊆ Zn, and Zn+k ⊆ Yn.

The following lemma is a straightforward consequence of the definitions.

L���� 5.1 ([18], Lemma 2.1). – Let Yn and Zn be internested sequences of measurable
sets, with Yn regular. Then Zn is also regular. If the sets Yn have positive measure, then so do
the Zn, and, for any measurable set X,

lim
n→∞

m(X : Yn) = 1 ⇐⇒ lim
n→∞

m(X : Zn) = 1.
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5.2. Foliations and absolute continuity

Let F be a foliation with smooth d-dimensional leaves. An open set U ⊂ M is a foliation
box for F if it is the image of Rn−d × Rd under a homeomorphism that sends each vertical
Rd-slice into a leaf ofF . The images of the vertical Rd-slices are called local leaves ofF in U .

A smooth transversal to F in U is a smooth codimension-d disk in U that intersects each
local leaf in U exactly once and whose tangent bundle is uniformly transverse to TF . If τ1

and τ2 are two smooth transversals to F in U , we have the holonomy map hF : τ1 → τ2,
which takes a point in τ1 to the intersection of its local leaf in U with τ2.

If S ⊆ M is a smooth submanifold, we denote by mS the volume of the induced Rieman-
nian metric on S. If F is a foliation with smooth leaves, and A is contained in a single leaf of
F and is measurable in that leaf, then we denote by mF (A) the induced Riemannian volume
of A in that leaf.

A foliation F with smooth leaves is transversely absolutely continuous with bounded Jaco-
bians if for every angle α ∈ (0, π/2], there exist C ≥ 1 and R0 > 0 such that, for every
foliation box U of diameter less than R0, any two smooth transversals τ1, τ2 to F in U of
angle at least α with F , and any mτ1–measurable set A contained in τ1:

(5.1) C−1mτ1(A) ≤ mτ2(hF (A)) ≤ Cmτ1(A).

The foliationsWs andWu for a partially hyperbolic diffeomorphism are transversely ab-
solutely continuous with bounded Jacobians (see [1]).

Let F be an absolutely continuous foliation and let U be a foliation box for F . Let τ be
a smooth transversal to F in U . Let Y ⊆ U be a measurable set. For a point q ∈ τ , we
define the fiber Y (q) of Y over q to be the intersection of Y with the local leaf of F in U
containing q. The base τY of Y is the set of all q ∈ τ such that the fiber Y (q) is mF -measurable
and mF (Y (q)) > 0. The absolute continuity of F implies that τY is mτ -measurable. We say
that “Y fibers over Z” to indicate that Z = τY .

If, for some c ≥ 1, the inequalities

c−1
≤

mF (Y (q))

mF (Y (q�))
≤ c

hold for all q, q� ∈ τY , then we say that Y has c-uniform fibers. A sequence of measurable sets
Yn contained in U has c-uniform fibers if each set in the sequence has c-uniform fibers, with
c independent of n.

Pʀ����ɪ�ɪ�ɴ 5.2 ([18], § 2.3). – Suppose that the foliationF is absolutely continuous with
bounded Jacobians. Let U be a foliation box forF , and let τ be a smooth transversal toF in U .
Let Yn and Zn be sequences of measurable subsets of U with c-uniform fibers.

1) Suppose that there exists δ > 0 such that:
(a) for all n ≥ 0,

mτ (τYn+1) ≥ δmτ (τYn);

(b) for all n ≥ 0, there are points z ∈ τYn+1 , z
� ∈ τYn with

mF (Yn+1(z)) ≥ δmF (Yn(z�)).

Then Yn is regular.
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2) Suppose that τYn = τZn , for all n and that Yn and Zn both nest at a common point x.
Then, for any set X ⊆ U that is essentially F-saturated at x, we have the equivalence:

lim
n→∞

m(X : Yn) = 1 ⇐⇒ lim
n→∞

m(X : Zn) = 1.

3) For every measurable set X that is F-saturated at x, we have the equivalence:

lim
n→∞

m(X : Yn) = 1 ⇐⇒ lim
n→∞

mτ (τX : τYn) = 1.

5.3. Construction of an adapted metric

We begin with some notation. Again fix the diffeomorphism f : M → M . For x ∈ M and
j ∈ Z we denote by xj the j-th iterate f j

(x). If α, β are positive functions defined on the
forward orbit O+

(p) = {pj ; j ≥ 0} of some p ∈ M , we write α ≺ β if there exists a positive
constant λ < 1 such that for all y ∈ O+

(p):

α(y)

β(y)
< λ.

Notice that if α,β happen to extend from O+
(p) to continuous functions on M satisfying

the pointwise inequality α < β, then compactness of M implies that α ≺ β.
If α is a positive function, and j ≥ 1 is an integer, let

αj(x) = α(x)α(x1) · · ·α(xj−1),

and
α−j(x) = α(x−j)

−1α(x−j+1)
−1
· · ·α(x−1)

−1.

We set α0(x) = 1. Observe that αj is a multiplicative cocycle; in particular, we have
α−j(x)

−1
= αj(x−j).

L���� 5.3. – Let f : M → M be C1 and partially hyperbolic, and let p ∈ CB+. Then
there exist functions B, ν, ν̂, γ, γ̂ : O+

(p) → R+, bounded from below, and a Riemannian
metric �·�� defined on TO+(p)M with the following properties:

1) ν ≺ γγ̂ ≤ 1 and ν̂ ≺ 1;
2) for y in O+

(p),

�Dyf |Es�� ≺ ν(y) ≺ γ(y) ≺ m�(Dyf |Ec) ≤ �Dyf |Ec�� ≺ γ̂(y)
−1
≺ ν̂(y)

−1
≺ m�(Dyf |Eu);

3) lim sup
j→∞B(pj)

1/j
= 1;

4) for all v ∈ Tpj M and j ≥ 0:

(5.2) �v� ≤ �v�� ≤ B(pj)�v�.

Proof. – Let �·�1 be a Riemannian metric on TO+(p)M that coincides with �·� on each
of the three spaces Es

(pj), Ec
(pj), and Eu

(pj), but with respect to which those three spaces
are orthogonal. Notice that there exists a constant C ≥ 1 such that C−1�v� ≤ �v�1 ≤ C�v�
for every v ∈ TO+(p)M .

Let us define another Riemannian metric �·�2 on TO+(p)M as follows. Let ik be as in
the definition of forward center bunching. With respect to the inner product induced by
�·�1, the linear map Dpik

f ik+1−ik can be written in a unique way as OkP
ik+1−ik

k
where

Pk : Tpik
M → Tpik

M is selfadjoint positive and Ok : Tpik
M → Tpik+1

M is an isometry:
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indeed P
2(ik+1−ik)
k

= (Dpik
f ik+1−ik)

∗ · Dpik
f ik+1−ik . Notice that Pk preserves the spaces

Es
(pik), Ec

(pik), and Eu
(pik). Define �·�2 on TO+(p)M so that for ik ≤ j < ik+1, the map

Dpik
f j−ik · P−(j−ik)

k
: (Tpik

M, �·�1) → (Tpj M, �·�2)

is an isometry. By construction, for each ik ≤ j < ik+1, and for each subbundle F = Eu,
Ec, Es, we have �Dpj f |F �

ik+1−ik

2 = �Dpik
f ik+1−ik |F � and m2(Dpj f |F )

ik+1−ik =

m(Dpik
f ik+1−ik |F ). The definitions of partial hyperbolicity and forward center bunch-

ing then immediately imply that there exists ρ < 1 such that

�Dyf |Es�2 ≤ ρ2m2(Dyf |Ec) min{1, �Dyf |Ec�
−1
2 }, and

max{1, �Dyf |Ec�2} ≤ ρ2m2(Dyf |Eu)

for every y ∈ O+
(p).

Notice that �·�2 and �·�1 coincide for Tpik
M for each k. Let Cj ≥ 1 be minimal such that

C−1
j
�v� ≤ �v�2 ≤ Cj�v� for every v ∈ Tpj M . The condition ik+1/ik → 1 then implies

that C1/j

j
→ 1. Let Dj ≥ Cj be a sequence such that Dj ≤ Dj+1 ≤ ρ−1Dj and D1/j

j
→ 1.

For every j ≥ 0, let �·�� = Dj�·�2 over Tpj M , and B(pj) = DjCj . For y ∈ O+
(p), we

define ν(y) = ρ−1/4�Dyf |Es��, γ(y) = ρ1/4m�(Dyf |Ec), γ̂(y) = (ρ1/4�Dyf |Ec��)
−1, and

ν̂(y) = (ρ−1/4m�(Dyf |Eu))
−1. All desired properties are straightforward to check.

We next show that the sets CB
+ and CB

− are respectively Ws and Wu-saturated.

Proof of Proposition 2.2. – We will use the previous lemma and its proof. Let p ∈ CB
+

and q ∈Ws
(p), and let pj = f j

(p), qj = f j
(q). Choose invertible linear maps

Aj : Tpj M → Tqj M , bounded and with bounded inverses with respect to �·�, that preserve
the bundles Es and Ec, and such that A−1

j+1Dqj fAj is exponentially close to Dpj f (here we
use that Df and the bundles Es and Ec are Hölder). This implies that A−1

j+1Dqj fAj is also
exponentially close to Dpj f with respect to �·��. It follows that there exists δ > 0 such that

�A−1
j+1Dqj fAj |Es�� ·m�(A

−1
ij+1

Dqj fAj |Ec)
−1
· �A−1

j+1Dqj fAj |Ec�� ≤ 1− δ

for every sufficiently large j. Let ik be as in the definition of forward center bunching for p.
By the proof of the previous lemma, �·�� and �·� coincide modulo a constant factor over
Es

(pik) and Ec
(pik), so

�A−1
ik+1

Dqik
f ik+1−ikAik |Es� ·m(A−1

ik+1
Dqik

f ik+1−ikAik |Ec)
−1
· �A−1

ik+1
Dqik

f ik+1−ikAik |Ec� ≤ (1− δ)ik+1−ik

for every k sufficiently large. Since the maps Aj , A−1
j

are uniformly bounded with respect to
�·�, and preserve Es and Ec, we see that there exists n ≥ 1 such that for every k ≥ 0,

�Dqink
f ink+n−ink |Es�

−1
≥ (1 + δ)ink+n−ink

�Dqink
f ink+n−ink |Ec�

m(Dqink
f ink+n−ink |Ec)

.

Since ink+n/ink → 1, we conclude that q ∈ CB
+.

It follows by symmetry that CB
− is Wu-saturated.
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Fix R0 > 0 less than injectivity radius of M in the original �·�metric. Let exp denote the
exponential map for the �·� metric. Consider the neighborhood NR0 of O+

(p) defined by

NR0 =

�

j≥0

B(pj , R0),

where B(x, r) denotes the ball of radius r centered at x in the original Riemannian metric.
The manifoldNR0 carries the restriction of the original Riemannian metric. When we speak
of volumes and induced Riemannian volumes on submanifolds ofNR0 , it will always be with
respect to this metric.

We introduce two other metrics onNR0 that will be used in this proof, one of them closely
related (and comparable) to the original metric. The first metric is the flat �·�metric, denoted
�·��, which is the (locally) flat Riemannian metric defined as follows. For x ∈ B(pj , R0), and
v, w ∈ TxM , we set

�v, w�� = �Dx exp
−1
pj

(v), Dx exp
−1
pj

(w)�pj ,

where we make the standard identification Tu(TpM) � (TpM). In the distance d� induced
by this metric, we have, for q, q� ∈ B(pj , R0), d�(q, q

�
) = � exp

−1
pj

(q) − exp
−1
pj

(q�)�pj . Com-
pactness of M implies that �·� and �·�� are comparable.

Next we extend the �·�� metric, which is defined on TO+(p)M , to a flat metric �·�� onNR0

using the same type of construction. For x ∈ B(pj , R0), and v, w ∈ Tpj M , we set

�v, w�� = �Dx exp
−1
pj

(v), Dx exp
−1
pj

(w)��,pj .

Denote by d� the distance induced by this Riemannian metric, so that, for q, q� ∈ B(pj , R0),
we have d�(q, q�) = � exp

−1
pj

(q)− exp
−1
pj

(q�)��.

The results of this section imply that on B(pj , R0), we have Kd� ≤ d� ≤ B(pj)d�. Thus
on any component B(pj , R0), the � and � metrics are uniformly comparable. The degree of
comparability decays subexponentially as j →∞. For q ∈ NR0 and r > 0 sufficiently small,
we denote by B�(q, r) the d�-ball of radius r centered at q.

By uniformly rescaling the �·�� and �·�� metrics by the same constant factor, we may as-
sume that for some R > 1, and any x ∈ M , the Riemannian balls B�(x,R) and B(x,R)

are contained in foliation boxes for both Ws and Wu. We assume both R and R0 are large
enough so that all the objects considered in the sequel are small compared with R and R0.

5.4. Fake invariant foliations

Let r : O+
(p) → R+ be any positive function such that sup

j≥0 r(pj) ≤ R0. Denote by
Nr the following neighborhood of O+

(p):

Nr =

�

j≥0

B(pj , r(j)).

If F is a foliation of Nr, and B�(x, r) is contained in a foliation box U for F , then we
will denote by F�(x, r) the intersection of the local leaf of F at x with B�(x, r). Notice that
F�(x, r) ⊆ F(x,K−1r).
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Pʀ����ɪ�ɪ�ɴ 5.4. – For every ε > 0, there exist functions r, R : O+
(p) → R satisfying:

r ≺ R, sup

y∈O+(p)
R(y) < R0, inf

j≥0

r(pj+1)

r(pj)
> e−ε, and inf

j≥0

R(pj+1)

R(pj)
> e−ε,

and such that the neighborhood NR is foliated by foliations �Wu, �Ws, �Wc, �Wcu and �Wcs with
the following properties, for each β ∈ {u, s, c, cu, cs}:

1) Almost tangency to invariant distributions: For each q ∈ NR, the leaf �Wβ
(q) is C1 and

the tangent space Tq
�Wβ

(q) lies in a cone of �·��-angle ε about Eβ
(q) and also within a

cone of �·�-angle ε about Eβ
(q).

2) Local invariance: for each y ∈ O+
(p) and q ∈ B(y, r(y)),

f(�Wβ
(q, r(y))) ⊂ �Wβ

(q1), and f−1
(�Wβ

(q1, r(y1))) ⊂
�Wβ

(q).

3) Exponential growth bounds at local scales: The following hold for all n ≥ 0 and
y ∈ O+

(p).
(a) Suppose that qj ∈ B�(yj , r(yj)) for 0 ≤ j ≤ n− 1.

If q� ∈ �Ws
(q, r(y)), then q�

n
∈ �Ws

(qn, r(yn)), and

d�(qn, q�
n
) ≤ νn(y)d�(q, q

�
).

If q�
j
∈ �Wcs

(qj , r(yj)) for 0 ≤ j ≤ n− 1, then q�
n
∈ �Wcs

(qn), and

d�(qn, q�
n
) ≤ γ̂n(y)

−1d�(q, q
�
).

(b) Suppose that q−j ∈ B�(yn−j , r) for 0 ≤ j ≤ n− 1.
If q� ∈ �Wu

(q, r(yn)), then q�−n
∈ �Wu

(q−n, r(y)), and

d�(q−n, q�−n
) ≤ ν̂n(y)d�(q, q

�
).

If q�
−j
∈ �Wcu

(q−j , r(yn−j)) for 0 ≤ j ≤ n− 1, then q�−n
∈ �Wcu

(q−n), and

d�(q−n, q�−n
) ≤ γn(y)

−1d�(q, q
�
).

4) Coherence: �Ws and �Wc subfoliate �Wcs; �Wu and �Wc subfoliate �Wcu.
5) Uniqueness: �Ws

(p) = Ws
(p,R(p)), and �Wu

(p) = Wu
(p,R(p)).

6) Regularity: The foliations �Wu, �Ws, �Wc, �Wcu and �Wcs and their tangent distributions
are uniformly Hölder continuous, in both the d� and d metrics.

7) Regularity of the strong foliation inside weak leaves: the restriction of the foliation �Ws

to each leaf of �Wcs is absolutely continuous with bounded jacobians, and the restriction
of the foliation �Wu to each leaf of �Wcu is absolutely continuous with bounded jacobians
(with respect to the standard Riemannian metric and volume).

There exists a constant L > 0 such that for any p� ∈ Ws
(p), the �Ws-holonomy map

hs
: �Wc

(p) → �Wc
(p�) is L-bi-Lipschitz at p. That is, for all q ∈ �Wc

(p), we have:

L−1d�(p, q) ≤ d�(h
s
(p), hs

(q)) ≤ Ld�(p, q).

Proof of Proposition 5.4.. – The proof follows closely the proof of Proposition 3.1 in [18].
Our construction will be performed in two steps. In the first, we construct foliations of each
tangent space TyM , y ∈ O(p). In the second step, we use the exponential map exp

y
to project

these foliations from a neighborhood of the origin in TyM to a neighborhood of y.
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The argument diverges slightly from the argument in [18] in that, because we are in the
nonuniform setting, the Hölder continuity of Df (in this case Lipschitz continuity) must be
used explicitly in the construction of the fake foliations.

Step 1. We extend the �·��-metric on TO+(p)M to a metric on TO(p)M , which we also denote
by �·��, by setting it equal to �·� on

�
j≤0 Tpj M . Extend the function B to O(p) by setting

B(pj) = 1 for j ≤ 0.
Fix a constant R1 < R0 such that the diameter of f(B(x,R1)) is less than R0, for all

x ∈ M . For v ∈ Tpj M , �v� ≤ R1, let f̃j(v) = exp
−1
pj+1

◦f ◦ exp
pj

(v). Then D0f̃j = Dpj f

and so, since f is C2:

(5.3) f̃j(v) = Dpj f(v) + O(�v�2), and �Dv f̃j −Dpj f� ≤ O(�v�),

uniformly in j. Fix a family of smooth bump functions {βr : R → [0, 1], r > 0} with the
properties that |β�

r
| ≤ 3r−1, βr(t) = 1 for |t| ≤ r2, and βr(t) = 0 for |t| ≥ 4r2.

For r ∈ (0, R1), define Fj,r : Tpj M → Tpj+1(M) by:

Fj,r(v) = βr(�v�
2
)f̃j(v) + (1− βr(�v�

2
))Dpj f(v).

One easily checks using (5.3) that dC1(Fj,r, Dpj f) ≤ O(r), uniformly in j and that
Fj,r(v) = f̃(v) for �v� ≤ r, and Fj,r(v) = Dpj f(v) for �v� ≥ 2r.

For any function r : O(p) → R+ with sup
y∈O(p) r(y) < R1, define a C2 bundle map

Fr : TO(p)M → TO(p)M , by setting Fr = Fr(pj),j on Tpj M . Then Fr covers
f : O(p) → O(p), and has the following properties:

1) Fr coincides with exp
−1
pj+1

◦f ◦ exp
pj

on the �·�-ball of radius r(pj) in Tpj M and with
Dpj f outside the ball of radius 2r(pj);

2) The C1 distance from Fr to Df on approaches 0 uniformly as |r|∞ → 0. In particular,
on Tpj M , we have dC1(Fr, Dpj f) ≤ O(r(pj)).

When measured in the �·��-metric, the C1 distance between two functions on Tpj (M) is mul-
tiplied by B(pj). It follows that:

3) On Tpj M , we have dC1(Fr, Dpj f)� ≤ O(B(pj)r(pj)), uniformly in j; that is,
dC1(Fr, Df)� ≤ O(Br).

Let ε > 0 be given. Fix ε1 < ε such that

(5.4) e−2ε > sup

y∈O+(p)
max

ß
ν(y), ν̂(y),

ν(y)

γ(y)
,

ν(y)

γ(y)
,

ν̂(y)

γ̂(y)
,

ν(y)

γγ̂(y)

™
.

For c > 0, define a function Rc : O(p) → R+ by

Rc(pj) =

�
c, if j ≤ 0

ce−jε
�
, if j > 0.

Since lim sup
j→∞B(pj)Rc(pj) = 0, the argument above shows that dC1(Frc , Df)� tends

to 0 uniformly as c → 0. This also implies that the C1 distance in the original Riemannian
metric �·� tends to 0 uniformly in c.

Since Df is uniformly partially hyperbolic in both metrics, we may choose c sufficiently
small so that F = FRc is uniformly partially hyperbolic in both �·� and �·�� metrics. Note
that F is C1+Lip in the �·�� metric, with Lipschitz constant of DF , DF−1 on Tpj M bounded
by a constant L(pj) > 0 with the property lim sup

j→∞ L(pj)
1/j

= 1. F is uniformly C2 in
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�·�metric. Note also that F is C1−ε in the �·�� metric, with Hölder constant of DF , DF on
Tpj M bounded by a constant. If c is small enough, the equivalents of inequalities (3)–(6) will
hold for TF .

If c is sufficiently small, standard graph transform arguments give stable, unstable, center-
stable, and center-unstable foliations for Fr inside each TpM . These foliations are uniquely
determined by the extension F and the requirement that their leaves be graphs of bounded
functions. We obtain a center foliation by intersecting the leaves of the center-unstable and
center-stable foliations. While TM is not compact, all of the relevant estimates for F are uni-
form, and it is this, not compactness, that counts.

The uniqueness of the stable and unstable foliations imply, via a standard argument (see,
e.g. [21], Theorem 6.1 (e)), that the stable foliation subfoliates the center-stable, and the un-
stable subfoliates the center-unstable.

We now discuss the regularity properties of these foliations of TM . Our foliations of TM
have been constructed as the unique fixed points of graph transform maps. We can apply
the above results to the F -invariant splittings of TTM as the sum of the stable and center-
unstable bundles for F and as the sum of the center-stable and unstable bundles for F . It fol-
lows from the pointwise Hölder section theorem (see [27], Theorem A) that both the center-
unstable and unstable bundles and the corresponding foliations are Hölder continuous as
long as F is C1+δ for some δ > 0. Since F is C1+δ uniformly in both �·� and �·�� metrics, it
follows that the bundles are uniformly Hölder in both metrics.

We obtain the Hölder continuity of the center-stable and stable bundles for Fr and the cor-
responding foliations by thinking of the same splittings as F−1

r
-invariant. Hölder regularity

of the center bundle and foliation is obtained by noticing the the center is the intersection of
the center-stable and center-unstable.

The absolute continuity with bounded Jacobians of the unstable foliation inside of the
center-unstable foliation is a standard result, using only partial hyperbolicity, dynamical co-
herence, the fact that F is uniformly C1+δ, and the Hölder continuity of the bundles in the
partially hyperbolic splitting. Similarly, the stable foliation for F is absolutely continuous
with bounded Jacobians when considered as a subfoliation of the center-stable.

The Lipschitz continuity of the stable inside of the center-stable is proved in Lemma 5.5
below.

Step 2. We now have foliations of TyM , for each y ∈ O(p). We obtain the foliations
�Wu, �Wc, �Ws, �Wcu, and �Wcs by applying the exponential map exp

y
to the corresponding

foliations of TyM inside the ball around the origin of radius Rc(y).

If c is sufficiently small, then the distribution Eβ

q
lies within the angular ε/2-cone about the

parallel translate of Eβ

y
, for every β ∈ {u, s, c, cu, cs}, y ∈ O+

(p), and all q ∈ B(y,Rc(y)).
Combining this fact with the preceding discussion, we obtain that property (1) holds if c is
sufficiently small.

Property (2) — local invariance — follows from invariance under Fr of the foliations of
TM and the fact that exp

f(y)(F (y, v)) = f(exp
y
(y, v)) provided �v� ≤ Rc(y).

Having chosen c, we now choose c1 small enough so that, for all y ∈ O+
(p),

f(B(y, 2Rc1(y))) ⊂ B(f(y),Rc(y)) and f−1
(B(y, 2Rc1(y))) ⊂ B(f−1

(y),Rc(y)), and so
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that, for all q ∈ f(B(y,Rc1(y))),

q� ∈ �Ws

p
(q,Rc1(y))) =⇒ d�(f(q), f(q�)) ≤ ν(y) d�(q, q

�
),

q� ∈ �Wu

p
(q,Rc1(y))) =⇒ d�(f

−1
(q), f−1

(q�)) ≤ ν̂(f−1
(y)) d�(q, q

�
),

q� ∈ �Wcs

p
(q,Rc1(y))) =⇒ d�(f(q), f(q�)) ≤ γ̂(y)

−1 d�(q, q
�
),

q� ∈ �Wcu
(q,Rc1(y))) =⇒ d�(f

−1
(q), f−1

(q�)) ≤ γ(f−1
(y))

−1 d�(q, q
�
).

We set R = Rc and r = Rc1 .
Property (3) — exponential growth bounds at local scales — is now proved by a simple

inductive argument.
Properties (4)–(7) — coherence, uniqueness, regularity and regularity of the strong folia-

tion inside weak leaves — follow immediately from the corresponding properties of the foli-
ations of TM discussed above, except for the Lipschitz continuity statement, which we now
prove:

L���� 5.5. – The �Ws holonomy maps between �Wc manifolds are Lipschitz at p.

Proof of Lemma 5.5. – Fix a function ρ satisfying νγ−1 ≺ ρ ≺ min{1, γ̂}, and such that
κ < e−ε1 , where

κ = sup

y∈O+(p)
max{(νγ−1ρ−1

)(y), (ργ̂−1
)(y)}.

Note that this is possible because (5.4) implies that

sup

y∈O+(p)
max{νγ−1

(y), νγ−1γ̂−1
(y)} < e−2ε1 .

Fix a constant λ ∈ (κ, e−ε1). Observe that

(5.5) sup

y∈O+(p)
(νγ−1γ̂−1

(y)) < κ,

since ρ ≺ min{1, γ̂}.
Since B(pj)

1/j → 1 as j →∞, there exists a constant C > 0 such that

sup
j≥0

B(pj)(κλ−1
)
j < C.

Let θ be the Hölder exponent of the partially hyperbolic splitting, in the �-metric, and
let H be the θ-Hölder norm. Choose δ > 0 and N > 0 such that:

• H
�
(δνj(p))

θ
) + (ρnγ̂j(p)

−1
)
θ
�

< 1/2− ε for all n ≥ N and j = 0, . . . , n,
• ρN (p) < δ/3, and
• 1− λ− 4δC sup

y∈O+(p) γ(y) > 0.

Finally, choose K > 2δ satisfying:

K > sup
j∈N

8δB(pj+1)(κλ−1
)
j+1

1− λ− 4δB(pj+1)κj+1γ(pj+1)
,

and let L = 3 + 2K.
We will show that for each p� ∈ �Ws

�
(p, δ/3), and for every q ∈ �Wc

loc
(p):

d�(p, q) ≤ ρN (p) =⇒ L−1d�(p, q) ≤ d�(h
s
(p), hs

(q)) ≤ L−1d�(p, q),
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where hs
: �Wc

loc
(p) → �Wc

(p�) is the �Ws-holonomy map. We prove the righthand inequality;
the proof of the lefthand inequality is given by switching the roles of p and p�.

Let p� ∈ �Ws

�
(p, δ/3) be given, and let q ∈ �Wc

�
(p, ρN (p)). Denote by q� the image of q under

hs (by definition hs
(p) = p�). Fix n ≥ N such that ρn(p) ≤ d�(p, q) < ρn−1(p). Note that

d�(p, p�) < δ/3 < δ and d�(q, q�) < δ, by the triangle inequality.

L���� 5.6. – For j = 0, . . . , n, we have {pj , p�j , qj , q�j} ⊂ Nr. Moreover:

1) ρn(p)γj(p) ≤ d�(pj , qj) ≤ ρn−1(p)γ̂j(p)
−1, and

2) max{d�(pj , p�j), d�(qj , q�j)} < δνj(p).

Proof. – The proof is a simple inductive argument using Part 3 of Proposition 5.4.

We will work in �·�-exponential coordinates in Nr. For j ∈ N and x ∈ B�((pj), r),
denote by x̃ the point exp

−1
pj

(x). Note that p̃j = 0. Let vj = q̃j − p̃j , let v�
j

= q̃�
j
− p̃�

j
, and let

wj = v�
j
− vj . Lemma 5.6 implies that for j = 0, . . . , n, we have (ρnγj)(p) ≤ �vj��

≤ (ρn−1γ̂
−1
j

)(p) and �wj�� ≤ d�(pj , p�j) + d�(qj , q�j) ≤ 2δνj(p). Let πc

j
: Tpj M → Ec

pj
be

the linear projection with kernel (Eu ⊕ Es
)
pj

, and let πus

j
: Tpj M → (Eu ⊕ Es

)
pj

be the
linear projection with kernel Ec

pj
.

The vectors vj and v�
j

lie in uniform cones about Ec

pj
with respect to the splitting

Tpj M = Ec

pj
⊕ (Eu ⊕ Es

)
pj

:

L���� 5.7. – For j = 0, . . . n, we have �πus

j
(vj)�� ≤

1
2�vj��, �πus

j
(v�

j
)�� ≤

1
2�v

�
j
��,

�vj�� ≤
3
2�π

c

j
(vj)�� and �v�

j
�� ≤

3
2�π

c

j
(v�

j
)��.

Proof. – Tpj
�Wc and Tqj

�Wc both lie in the ε-cone about Ec
(pj), and the tangent dis-

tribution to �Wc is Hölder continuous. Hence tan��(Tpj
�Wc, Tp

�
j

�Wc
) ≤ Hd�(pj , p�j)

θ

≤ H(δνi(p))
θ, and tan��(Tqj

�Wc, Tq
�
j

�Wc
) ≤ Hd�(qj , q�j)

θ ≤ H(δνi(p))
θ. Furthermore

tan��(Tpj
�Wc, Tqj

�Wc
) ≤ Hd�(pj , qj)

θ ≤ H(ρn(p)γ̂j(p)
−1

)
θ. This implies that

tan��(Tp
�
j

�Wc, Tq
�
j

�Wc
) ≤ H

�
(δνj(p))

θ
) + (ρn(p)γ̂j(p)

−1
)
θ
�

< 1/2− ε

for j = 0, . . . , n, by our choice of δ.

Since the points {pj , p�j , qj , q�j} all lie inNr, in which F coincides with f̃ = exp
−1
◦f ◦ exp,

we have that x̃j = F j
(x̃), for x ∈ {p, p�, q, q�}. The Mean Value Theorem implies that

vj−1 =
� 1

0 Dp̃j+tvj F (vj) dt and v�
j−1 =

� 1

0 D
p̃
�
j+tv

�
j
F (v�

j
) dt; subtracting these expressions,

we obtain:

wj−1 =

� 1

0

�
Dp̃j+tvj F

−1
(vj)−D

p̃
�
j+tv

�
j
F−1

(v�
j
)

�
dt

and

πc

j
(wj−1) =

� 1

0
πc

j

�
Dp̃j+tvj F

−1
(vj)−D

p̃
�
j+tv

�
j
F−1

(v�
j
)

�
dt.
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Then �πc

j−1(wj−1)�� ≤ (I) + (II) where

(I) =

� 1

0

��πc

j−1Dp̃j+tvj F
−1

�
vj − v�

j

���
�

dt,

(II) =

� 1

0

���
�
πc

j−1Dp̃j+tvj F
−1
− πc

j−1Dp̃
�
j+tv

�
j
F−1

�
(v�

j
)

���
�

dt.

We have

(II) ≤

� 1

0
B(pj)�vj − v�

j
���v

�

j
�� dt ≤ B(pj)�wj���v

�

j
��,

since DF−1 is Lipschitz with norm B(pj) on Tpj M .
We next estimate the expression (I). Since Dpj F

−1
= Dpj f

−1, which sends the split-
ting (Eu ⊕ Ec ⊕ Es

)
pj

to (Eu ⊕ Ec ⊕ Es
)
pj−1

and has norm on Ec bounded by γ(pj)
−1,

we have that: � 1

0

��πc

j−1Dp̃j F
−1

(wj)
��

�
dt ≤ γ(pj)

−1
�πc

j
wj��.

Hence

(I) =

� 1

0

��πc

j−1Dp̃j+tvj F
−1

(wj)
��

�
dt

≤

� 1

0

��πc

j−1

�
Dp̃j F

−1
−Dp̃j+tvj F

−1
�
(wj)

��
�

dt +

� 1

0

��πc

j−1Dp̃j F
−1

(wj)
��

�
dt

≤

� 1

0

��πc

j−1

�
Dp̃j F

−1
−Dp̃j+tvj F

−1
�
(wj)

��
�

dt + γ(pj)
−1
�πc

j
wj��

≤ B(pj)�vj���wj�� + γ(pj)
−1
�πc

j
wj��,

again using the Lipschitz continuity of DF−1. We conclude that

(5.6)
�πc

j−1(wj−1)�� ≤ γ(pj)
−1
�πc

j
wj�� + B(pj)

�
�vj���wj�� + �wj���v

�

j
��

�

≤ γ(pj)
−1
�πc

j
wj�� + 2δB(pj)νj(p)

�
�vj�� + �v�

j
��

�
,

using the bound �wj�� ≤ 2δνj(p).

Cʟ�ɪ�. – For j = 0, . . . , n, we have �πc

j
wj�� ≤ Kλjγj(p)�v0�� and

�v�
j
�� ≤ (3 + 2Kλj

)�vj��

Proof. – We prove it by backward induction on n. The base case is j = n. Observe that:

�πc

n
wn�� ≤ �wn�� ≤ 2δνn(p) = 2δ

νn(p)

(ργ)n(p)
γn(p)ρn(p) < 2δλnγn(p)�v0�� < Kλnγn(p)�v0��.

Since �wn�∗ ≤ 2δνn(p) ≤ 2δλn
(ργ)n(p) ≤ 2δλn�vn��, we also obtain that

�v�
n
�� ≤ �vn�� + �vn − v�

n
�� = �vn�� + �wn�� ≤ �vn��(1 + 2δλn

) ≤ �vn��(3 + 2Kλn
).

Now suppose that the claim holds for some (j + 1) ≤ n. Then, by (5.6):

�πc

j
(wj)�� ≤ γ(pj+1)

−1
�πc

j+1wj+1�� + 2δB(pj+1)νj+1(p)
�
�vj+1�� + �v�

j+1��

�

≤ γ(pj+1)
−1Kλj+1γj+1(p)�v0�� + 2δB(pj+1)νj+1(p)(4 + 2Kλj+1

)�vj+1��

≤ Kλj+1γj(p)�v0�� + 2δB(pj+1)�v0��(νγ̂−1
)j+1(p)(4 + 2Kλj+1

)

≤ Kηλjγj(p)�v0��,
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where

η = λ + 8δB(pj+1)
(νγ−1γ̂−1

)j+1(p)

Kλj+1
γ(pj+1) + 4δB(pj+1)(νγ−1γ̂−1

)j+1(p)γ(pj+1)

≤ λ + 8δB(pj+1)
κj+1

Kλj+1
γ(pj+1) + 4δB(pj+1)κ

j+1γ(pj+1),

by (5.5). Then η < 1, since

K >
8δB(pj+1)(κλ−1

)
j+1

1− λ− 4δB(pj+1)κj+1γ(pj+1)
.

This implies that �πc

j
(wj)�� ≤ Kλjγj(p)�v0��, completing the inductive step for the first

assertion of the claim.
Finally, to prove the inductive step for the second part of the claim, we have:

�v�
j
�� ≤ �vj�� + �vj − v�

j
��

≤ �vj�� + �πc

j
(vj − v�

j
)�� + �πus

j
(vj − v�

j
)��

≤ �vj�� + �πc

j
(wj)�� + �πus

j
(vj)�� + �πus

j
(v�

j
)��

≤ �vj�� + Kλjγj(p)�v0�� + .5�vj�� + .5�v�
j
��

≤ �vj�� + Kλj
�vj�� + .5�vj�� + .5�v�

j
��.

Solving for �v�
j
��, we obtain that �v�

j
�� ≤ (3 + 2Kλj

)�vj��, as desired.

The claim finishes the proof of Lemma 5.5; setting, j = 0 we see that

d�(h
s
(p), hs

(q)) = �v�0�� ≤ (3 + 2K)�v0�� = Ld�(p, q).

Given this proposition, the proof now proceeds as the proof of Theorem 5.1 in [18], with
a few modifications, which we will describe in the sequel.

5.5. Distortion estimates in thin neighborhoods

Fix p ∈ M satisfying the bunching hypotheses of Theorem B. Henceforth the entire
analysis will take place in a neighborhood of the forward orbit of p.

We choose ε > 0:

– much smaller than π/2, which is the �-angle between the bundles of the partially hy-
perbolic splitting over O+

(p).
– small enough so that

(5.7) e−ε > sup

y∈O+(p)
max

ß
ν(y), ν̂(y),

ν(y)

γ(y)
,

ν̂(y)

γ̂(y)
,

ν(y)

γγ̂(y)

™
.

Let r, R : O+
(p) → R+ and foliations �Wu, �Ws, �Wc, �Wcu and �Wcs be given by Proposi-

tion 5.4, using this value of ε. By uniformly rescaling the �·�� metric onNR, we may assume
that

inf
y∈O+(p)

r(y) � 1.

We may also assume that if x, y ∈ B�(pj , r), then �Wcs
(x) ∩ �Wu

(y), �Wcs
(x) ∩ Wu

loc
(y),

�Wcu
(x) ∩ �Ws

(y) and �Wcu
(x) ∩ Ws

loc
(y) are single points. We denote by “ma the measure

m“Wa induced by the volume form �·�.
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We next choose functions σ, τ : O+
(p) → R+ satisfying

(5.8) σ ≺ min{1, γ̂}, and ν ≺ τ ≺ σγ,

and such that κ = sup
y∈O+(p) σγ̂−1

(y) < e−ε (this is possible because of (5.7)). Note that
these inequalities also imply that

τ ν̂ ≺ σγν̂ ≺ σγγ̂ ≤ σ.

For the rest of the proof, except where we indicate otherwise, cocycles will be evaluated at
the point p. We will also drop the dependence on p from the notation; thus, if α is a cocycle,
then αn(p) will be abbreviated to αn.

Using these functions and the fake foliations, we next define a sequence of thin neighbor-
hoods Tn of Ws

�
(p, 1). We first define a neighborhood Sn in �Wcs

(p) by:

Sn =

�

x∈Ws
�(p,1)

�Wc

�
(x,σn),

and then define the neighborhood Tn by:

(5.9) Tn = f−n

Ñ
�

z∈fn(Sn)

�Wu

�
(z, τn) ∪W

u

�
(z, τn)

é
.

L���� 5.8 (cf. [18], Lemma 4.3). – The set Tn is well-defined. There exist C > 0 and
0 < κ < 1 such that, for every n ≥ 0,

f j
(Tn) ⊂ B�(pj , Cκj

),

for j = 0, . . . , n.

Proof. – Suppose first that x ∈ Ws

�
(p, 1) and y ∈ �Wc

(x,σn). By part 3(a) of Proposi-
tion 5.4, we then have

yj ∈
�Wc

�
(xj , γ̂

−1
j

σn) ⊂ �Wc

�
(xj , 1) ⊂ B�(pj , 2),

for 0 ≤ j ≤ n. In fact, since σ ≺ min{γ̂, 1}, the quantity γ̂−1
j

σn < γ̂−1
j

σj ≤ κj is exponen-
tially small in j, as is the �-diameter of f j

(Ws
(p, 1)). This implies that for some C > 0 and

for every n ≥ 0,

(5.10) f j
(Sn) ⊂ B�(pj , Cκj

), for j = 0, . . . , n.

For every x ∈ Sn, we have that B�(xn, τn) ⊂ B�(pn, r(pn)), and so the set Tn is well-
defined by (5.9). Proposition 5.4 implies that the leaves of �Wu

pj
and Wu

loc
are uniformly con-

tracted by f−1 as long as they stay near the orbit of p. Because κ < e−ε, the image of fn
(Tn),

for n sufficiently large, remains in the neighborhoodNr ofO+
(p) in which the fake foliations

are defined and the expansion and contraction estimates hold.
Combining these facts with (5.10), we obtain the conclusion.

L���� 5.9 (cf. [18], Lemma 4.4). – Let α : M → R be a positive, uniformly Hölder con-
tinuous function. Then there is a constant C ≥ 1 such that, for all n ≥ 0 and all x, y ∈ Tn,

C−1
≤

αn(y)

αn(x)
≤ C.
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Proof. – Since d ≤ K−1d�, Lemma 5.8 implies that the diameter of f j
(Tn) remains ex-

ponentially small in the d metric, for j = 0, . . . , n. Since f is C1+δ, the lemma follows from
the following elementary distortion estimate:

L���� 5.10 ([18], Lemma 4.1). – Let α : M → R be a positive Hölder continuous func-
tion, with exponent θ > 0. Then there exists a constant H > 0 such that the following hold, for
all p, q ∈ M , B > 0 and n ≥ 1:

n−1�

i=0

d(pi, qi)
θ
≤ B =⇒ e−HB

≤
αn(p)

αn(q)
≤ eHB ,

and
n�

i=1

d(p−i, q−i)
θ
≤ B =⇒ e−HB

≤
α−n(p)

α−n(q)
≤ eHB .

5.6. Juliennes

The next step is to define juliennes. For each x ∈ Ws

�
(p, 1) one defines a sequence

{ �Jcu

n
(x)}n≥0 of center-unstable juliennes, which lie in the fake center-unstable mani-

fold �Wcu
(x) and shrink exponentially as n →∞ while becoming increasingly thin in the

�Wu-direction.
Define, for all x ∈Ws

(p, 1),

“Bc

n
(x) = �Wc

�
(x,σn).

Note that
Sn =

�

x∈Ws(p,1)

“Bc

n
(x).

For y ∈ Sn, we may then define two types of unstable juliennes:

�Ju

n
(y) = f−n

(�Wu

�
(yn, τn))

and
Ju

n
(y) = f−n

(W
u

�
(yn, τn)).

Observe that for all y ∈ Sn, the sets �Ju

n
(y) and Ju

n
(y) are contained in Tn.

For each x ∈ Ws
(p, 1) and n ≥ 0, we then define the center-unstable julienne centered at

x of order n:
�Jcu

n
(x) =

�

q∈�Bc
n(x)

�Ju

n
(q).

Note that, by their construction, the sets �Jcu

n
(x) are contained in Tn, for all n ≥ 0 and

x ∈Ws
(p, 1).

The crucial properties of center unstable juliennes are summarized in the next three propo-
sitions. We state them in a slightly more general form than we will need for the proof of The-
orem B; the more general formulation will be used in the proof of Theorem D.

Pʀ����ɪ�ɪ�ɴ 5.11 (cf. [18], Proposition 5.3). – Let x, x� ∈Ws
(p, 1), and let

hs
: �Wcu

(x) → �Wcu
(x�) be the holonomy map induced by the stable foliation Ws. Then

the sequences hs
( �Jcu

n
(x)) and �Jcu

n
(x�) are internested.
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Pʀ����ɪ�ɪ�ɴ 5.12 (cf. [18], Proposition 5.4). – There exist δ > 0 and c ≥ 1 such that,
for all x ∈Ws

(p, 1), and all q, q� ∈ Sn, the following hold, for all n ≥ 0:

c−1
≤

“mu( �Ju

n
(q))

“mu( �Ju
n
(q�))

≤ c,

c−1
≤

mu(Ju

n
(q))

mu(Ju
n
(q�))

≤ c,

“mu( �Ju

n+1(q)) ≥ δ“mu( �Ju

n
(q)),

and
“mcu( �Jcu

n+1(x)) ≥ δ“mcu( �Jcu

n
(x)).

Pʀ����ɪ�ɪ�ɴ 5.13 (cf. [18], Proposition 5.5). – Let X be a measurable set that is both
Ws-saturated and essentially Wu-saturated at some point x ∈ Ws

(p). Then x is a Lebesgue
density point of X if and only if:

lim
n→∞

“mcu(X : �Jcu

n
(x)) = 1.

Assuming these propositions, we conclude the:

Proof of Theorem B. – Let X be a bi essentially saturated set, and let Xs be an essential
Ws-saturate of X. Since m(X � Xs

) = 0, the Lebesgue density points of X are precisely the
same as those of Xs. Suppose that x ∈ Ws

(p, 1) is a Lebesgue density point of Xs. Propo-
sition 5.13 implies that x is a cu-julienne density point of Xs.

To finish the proof, we show that every x� ∈ Ws
(p, 1) is a cu-julienne density point of

Xs. Then by Proposition 5.13, every x� ∈ Ws
(p, 1) is a Lebesgue density point of Xs, and

so Ws
(p, 1) ⊂ X̂. Notice that if p satisfies the hypotheses of Theorem B, then so does every

p� ∈Ws
(p). Hence if Ws

(p) ∩ X̂ �= ∅, then Ws
(p) ⊂ X̂, completing the proof.

Let hs
: �Wcu

(x) → �Wcu
(x�) be the holonomy map induced by the stable foliation Ws.

The sequence hs
( �Jcu

n
(x)) ⊂ �Wcu

(x�) nests at x�.
Transverse absolute continuity of hs with bounded Jacobians implies that

lim
n→∞

“mcu(Xs
: �Jcu

n
(x)) = 1 ⇐⇒ lim

n→∞
“mcu(hs

(Xs
) : hs

( �Jcu

n
(x))) = 1.

Since Xs is s-saturated, we then have:

lim
n→∞

“mcu(Xs
: �Jcu

n
(x)) = 1 ⇐⇒ lim

n→∞
“mcu(Xs

: hs
( �Jcu

n
(x))) = 1.

Since we are assuming that x is a cu-julienne density point of Xs, we thus have

lim
n→∞

“mcu(Xs
: hs

( �Jcu

n
(x))) = 1.

Working inside of �Wcu
(x�), we will apply Lemma 5.1 to the sequences hs

( �Jcu

n
(x)) and

�Jcu

n
(x�), which both nest at x�. Proposition 5.11 implies that these sequences are internested.

Proposition 5.12 implies that �Jcu

n
(x�) is regular with respect to the induced Riemannian mea-

sure “mcu on �Wcu
(x�). Lemma 5.1 now implies that

lim
n→∞

“mcu(Xs
: hs

( �Jcu

n
(x))) = 1 ⇐⇒ lim

n→∞
“mcu(Xs

: �Jcu

n
(x�)) = 1,

and so x� is a cu-julienne density point of Xs. It follows from Proposition 5.13 that x� is a
Lebesgue density point of Xs, and thus of X.
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We extract from this proof a proposition that will be used in the proof of Theorem D:

Pʀ����ɪ�ɪ�ɴ 5.14. – Let Y ⊂ �Wcu
(p) be a measurable subset, let x ∈Ws

(p, 1), and let
Y � be the image of Y underWs-holonomy. Then p is a cu-julienne density point of Y if and only
if x is a cu-julienne density point of Y �.

5.7. Julienne quasiconformality

Here we prove Proposition 5.11. The proof is taken mutatis mutandis from [18].
By a simple argument reversing the roles of x and x�, it will suffice to show that k can be

chosen so that

(5.11) hs
( �Jcu

n
(x)) ⊆ �Jcu

n−k
(x�),

for all n ≥ k, whenever x and x� satisfy the hypotheses of the proposition.
In order to prove that k can be chosen so that (5.11) holds, we need two lemmas.

L���� 5.15. – There exists a positive integer k1 such that, for all x, x� ∈Ws
(p),

ĥs
(“Bc

n
(x)) ⊆ “Bc

n−k1
(x�),

for all n ≥ k1, where ĥs
: �Wcu

loc
(x) → �Wcu

(x�) is the local �Ws holonomy.

Proof. – Proposition 5.4 implies that ĥs is L-Lipschitz at x, for some L ≥ 1. Therefore
the image of �Wc

�
(x,σn) under ĥs is contained in �Wc

�
(x�, Lσn) ⊆ �Wc

�
(x�, σn−k1), for any k1

large enough so that σ−k1 > L.

L���� 5.16. – There exists a positive integer k2 such that the following holds for every
integer n ≥ k2. Suppose q, q� ∈ Sn, with q� ∈ �Ws

(q). Let y ∈ �Ju

n
(q), and let y� be the image

of y under Ws holonomy from �Wcu

loc
(q) to �Wcu

(q�). Then

y� ∈ �Ju

n−k2
(z�),

for some z� ∈ �Wc

�
(q�, σn−k2).

Proof. – Let z� be the unique point in �Wu
(y�)∩�Wc

(q�). It is not hard to see that z�
j
∈ Nr,

for j = 0, . . . , n − 1 and that z�
n

is the unique point in �Wu
(y�

n
) ∩ �Wc

(q�
n
). It will suffice to

prove that d�(y�n, z�
n
) = O(τn) and d�(q�, z�) = O(σn).

We have d�(qn, yn) ≤ τn because y ∈ f−n
(Wu

�
(qn, τn)). By Proposition 5.4, 3(a), we also

have that d�(qn, q�
n
) = O(νn) and d�(yn, y�

n
) = O(νn), since d�(q, q�) and d�(y, y�) are both

O(1). Note that qn and z�
n

are, respectively, the images of yn and y�
n

under �Wu-hononomy be-
tween �Wcs

loc
(yn) and �Wcs

(qn). Uniform transversality of the foliations �Wu and �Wcs implies
that

d�(y
�

n
, z�

n
) = O(max{d�(qn, yn), d�(yn, y�

n
)}) = O(τn),

since ν < τ .
We next show that d�(q�, z�) = O(σn). By the triangle inequality,

d�(q
�

n
, z�

n
) ≤ d�(q

�

n
, qn) + d�(qn, yn) + d�(yn, y�

n
) + d�(y

�

n
, z�

n
).

All four of the quantities on the right-hand side are easily seen to be O(τn). Since q�
n

and z�
n

lie in the same �Wc-leaf at d�-distance O(τn), Proposition 5.4 now implies that
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d�(q�, z�) = O((γn)
−1τn). But τ and σ were chosen so that τ ≺ γσ. Hence (γn)

−1τn < σn

and d�(q�, z�) = O(σn), as desired.

Proof of Proposition 5.11. – As noted above, it suffices to prove the inclusion (5.11). For
q ∈ B̂c

n
(x), let q� = ĥs

(q). Then q� ∈ B̂c

n−k1
(x�) by Lemma 5.15. Hence q, q� ∈ Sn−k1 and

we can apply Lemma 5.16 to obtain

hs
(Ĵcu

n
(x)) ⊆

�

z∈Q

Ĵu

n−k2
(z),

where
Q =

�

q�∈B̂
c
n−k1

(x�)

B̂c

n−k2
(q�).

For k ≥ k2, we have: �

z∈Q

Ĵu

n−k2
(z) ⊆

�

z∈Q

Ĵu

n−k
(z).

It therefore suffices to find k ≥ k2 such that Q ⊆ B̂c

n−k
(x�). This latter inclusion holds if:

σn−k1 + σn−k2 ≤ σn−k,

which is obviously true for all n ≥ k, if k is sufficiently large.

5.8. Julienne measure

Next we give the:

Proof of Proposition 5.12. – Recall that we are using the standard Riemannian volumes
and induced Riemannian volumes on submanfiolds (not the �·��-volumes).

L���� 5.17 (cf. inequalities (21), [18]). – There exists a constant C1 > 1 such that, for
all n ≥ 0:

(5.12) C−1
1 ≤

“mu

��Wu

�
(qn, τn(p))

�

“mu

��Wu
�
(q�

n
, τn(p))

� ≤ C1,

for all q, q� ∈ Sn, where �Wu

�
(x, r) = �Wu

(x) ∩ B�(x, r), and “mu is the induced Riemannian
metric on �Wu-leaves.

Proof. – Recall that the flat �·�� metric on TpnM and the Riemannian metric in a neigh-
borhood of pn (viewed in exponential coordinates at pn) are uniformly comparable. We will
estimate the ratio in (5.12) using the volume on TpnM induced by �·��.

On TpnM , the �·��-metric is also flat: the ball of radius τn at qn is just a translate by
qn − q�

n
of a �·��-ball of radius τn at q�

n
. Viewed in the �·�� metric, a �-ball of radius τn in

TpnM is an ellipsoid with eccentricity bounded by K−1Bn. The intersection of such a ball
centered at qn of radius τn(p) with �Wu

(qn) gives the set �Wu
(qn, τn(p)). Since the leaves of

�Wu
(qn) are tangent to a uniformly Hölder continuous distribution, the volumes of these sets

are uniformly comparable to the intersection of Tqn
�Wu

(qn) with B�(qn, τn(p)). This is also a
(u-dimensional) ellipsoid, call it E(qn). Similarly we have an ellipsoid E(q�

n
) centered at q�

n
.

The distance between the spaces Tqn
�Wu

(qn) and Tq�n
�Wu

(qn) (translated by qn− q�
n

) is of
the order of d(qn, q�

n
)
θ, for some θ ∈ (0, 1], and so is bounded by cβn, where β = κθ < 1. The
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bound on the eccentricity of B�(qn, τn) then implies that the ratio between the u-dimensional
volumes of E(qn) and E(q�

n
) is bounded above by Dn = C �

(1 + cK−1Bnβn
)
u and below by

D−1
n

, for some constant C �. Since lim sup
n→∞B1/n

n = 1, there exists a constant D such that
Dn ≤ D for all n. We conclude that there exists a constant C satisfying (5.12), for all n and
all q, q� ∈ Sn.

Let “Es, “Ec, and “Eu be the tangent distributions to the leaves of �Ws, �Wc, and �Wu, respec-
tively. They are Hölder continuous by Proposition 5.4, part 6. Furthermore, the restrictions
of these distributions to Tn are invariant under Df j , for j = 1, . . . n. We next observe that
the Jacobian Jac(Dfn|�Eu) is nearly constant when restricted to the set Tn. More precisely,
we have:

L���� 5.18. – There exists C2 ≥ 1 such that, for all n ≥ 1, and all y, y� ∈ Tn,

C−1
2 ≤

Jac(Dfn|�Eu)(y)

Jac(Dfn|�Eu)(y�)
≤ C2.

Proof. – By the Chain Rule, these inequalities follow from Lemma 5.9 with
α = Jac(Df |�Eu).

Let q ∈ Sn, and let X ⊆ �Ju

n
(q) be a measurable set (such as �Ju

n
(q) itself). Then:

“mu(fn
(X)) =

�

X

Jac(Tfn
|�Eu)(x) d“mu(x).

From this and Lemma 5.18 we then obtain:

L���� 5.19. – There exists C3 > 0 such that, for all n ≥ 0, for any q, q� ∈ Sn, and any
measurable sets X ⊂ �Ju

n
(q), X � ⊂ �Ju

n
(q�), we have:

C−1
3

“mu(fn
(X))

“mu(fn(X �))
≤

“mu(X)

“mu(X �)
≤ C3

“mu(fn
(X))

“mu(fn(X �))
.

Recall that fn
( �Ju

n
(q)) = �Wu

�
(qn, τn), for q ∈ Sn. The first conclusion of Proposition 5.12

now follows from (5.12) and Lemma 5.19 with X = �Ju

n
(q) and X �

= �Ju

n
(q�).

The second conclusion is proved similarly.
We next show that there exists δ > 0 such that

(5.13)
“mu( �Ju

n+1(q))

“mu( �Ju
n
(q))

≥ δ,

for all n ≥ 0 and all q ∈ Sn. To obtain (5.13), we will apply Lemma 5.19 with q = q�,
X = �Ju

n+1(q), and X �
= �Ju

n
(q). This gives us:

“mu( �Ju

n+1(q))

“mu( �Ju
n
(q))

≥ C−1
3

“mu(fn
( �Ju

n+1(q)))

“mu(fn( �Ju
n
(q)))

.

But fn
( �Ju

n+1(q)) = f−1
(�Wu

�
(qn+1, τn+1)) and fn

( �Ju

n
(q)) = �Wu

�
(qn, τn), and hence:

“mu(fn
( �Ju

n+1(q)))

“mu(fn( �Ju
n
(q)))

=
“mu(f−1

(�Wu

�
(qn+1, τn+1)))

“mu(�Wu
�
(qn, τn))

.
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We show that this ratio is uniformly bounded below away from 0. Since τn+1/τn is uniformly
bounded, and f is uniformly C1 in the �-metric on Nr, there exists a constant µ < 1 (inde-
pendent of n) such that f−1

(�Wu

�
(qn+1, τn+1)) contains the set �Wu

�
(qn, µτn). Since �·�� is a

locally flat metric, the set B�(qn, µτn) is just the set B�(qn, τn) dilated (in exponential coor-
dinates at pj) from qn by a factor of µ. Since the leaves of the Wu foliation are uniformly
smooth, the volumes of �Wu

�
(qn, Cτn) and �Wu

�
(qn, τn) in the �·�-metric are therefore uni-

formly comparable. This implies that their Riemannian volumes are comparable.

To prove the final claim, we begin by observing that, considered as a subset of �Wcu
(x),

the set �Jcu

n
(x) fibers over “Bc

n
(x) with �Wu-fibers �Ju

n
(q). We have just proved that these fibers

are c-uniform. Since σn+1/σn = σ(pn) is uniformly bounded away from 0, the ratio

“mc(
“Bc

n+1(x))

“mc(
“Bc

n
(x))

=
“mc(

�Wc
(x,σn+1))

“mc(
�Wc(x,σn))

is bounded away from 0, uniformly in x and n. Thus the sequence of bases “Bc

n
(x) of �Jcu

n
(x)

is regular in the induced Riemannian volume “mc. Proposition 5.4, part (7) implies that, con-
sidered as a subfoliation of �Wcu

(x), �Wu is absolutely continuous with bounded Jacobians.
Proposition 5.2 implies that the sequence �Jcu

n
(x) is regular, with respect to the induced Rie-

mannian measure “mcu. This proves the final claim of Proposition 5.12.

5.9. Julienne density

We now come to the:

Proof of Proposition 5.13. – We must show that if a measurable set X is both
Ws-saturated and essentially Wu-saturated at a point x ∈ Ws

�
(p, 1), then x is a Lebesgue

density point of X if and only if

lim
n→∞

“mcu(X : �Jcu

n
(x)) = 1.

As in [18], we will establish the following chain of equivalences:

x is a Lebesgue density point of X ⇐⇒ lim
n→∞

m(X : Bn(x)) = 1

⇐⇒ lim
n→∞

m(X : Cn(x)) = 1

⇐⇒ lim
n→∞

m(X : Dn(x)) = 1

⇐⇒ lim
n→∞

m(X : En(x)) = 1

⇐⇒ lim
n→∞

m(X : Fn(x)) = 1

⇐⇒ lim
n→∞

m(X : Gn(x)) = 1

⇐⇒ lim
n→∞

“mcu(X : �Jcu

n
(x)) = 1.

The sets Bn(x) through Gn(x) are defined as follows. The set Bn(x) is a �-Riemannian ball
in M :

Bn(x) = B�(x,σn).
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The sets Cn(x), Dn(x) and En(x) will fiber over the same base Dcs

n
(x), where

Dcs

n
(x) =

�

x�∈“Ws
�(x,σn)

“Bc

n
(x�).

Proposition 5.4, part (4) implies that Dcs

n
(x) is contained in the C1 submanifold �Wcs

(x); the
sequences Dcs

n
(x) and �Wcs

�
(x,σn) are internested. Let

Cn(x) =

�

q∈Dcs
n (x)

W
u

�
(q,σn),

and let
Dn(x) =

�

q∈Dcs
n (x)

Ju

n
(q).

The set En(x) is nearly identical to Dn(x), with the difference that the Ju

n
-fibers are replaced

with �Ju

n
-fibers:

En(x) =

�

q∈Dcs
n (x)

�Ju

n
(q) =

�

x�∈“Ws
�(x,σn)

�Jcu

n
(x�) =

�

x�∈Ws
�(x,σn)

�Jcu

n
(x�).

The rightmost equality follows from the fact that �Ws

�
(x,σn) = Ws

�
(x,σn), for all

x ∈Ws
(p, 1) (Proposition 5.4, part (5)).

We define Fn(x) to be the foliation product of �Jcu

n
(x) and Ws

�
(x,σn):

Fn(x) =

�

q∈�Jcu
n (x), q�∈Ws

�(x,σn)

W
s
(q) ∩ �Wcu

(q�).

This definition makes sense since the foliations �Wcu and Ws are transverse. Finally, let

Gn(x) =

�

q∈�Jcu
n (x)

W
s

�
(q,σn).

We now prove these equivalences, following the outline described above.
First, recall that Bn(x) is a round d�-ball about x of radius σn. The forward implication

in the first equivalence is obvious from the definition of Bn(x). The backward implication
follows from this definition and the fact that the ratio σn+1/σn = σ(pn) of successive radii
is less than 1, and is bounded away from both 0 and 1 independently of n. From this we also
see that Bn(x) is regular.

The set Cn(x) fibers over Dcs

n
(x), with fiber Wu

�
(x�, σn) over x� ∈ Dcs

n
(x). The sequence

Dcs

n
(x) internests with the sequence of disks �Wcs

�
(x,σn), by continuity and transversality of

the foliations �Wc and �Ws. Continuity and transversality of the foliations Wu and �Wcs then
imply that Cn(x) and Bn(x) are internested.

To prove the equivalence

lim
n→∞

m(X : Cn(x)) = 1 ⇐⇒ lim
n→∞

m(X : Dn(x)) = 1,

we note that Cn(x) and Dn(x) both fiber over Dcs

n
(x), withWu-fibers. Since X is essentially

Wu-saturated at x, Proposition 5.2 implies that it suffices to show that the fibers of Cn(x)

and Dn(x) are both c-uniform. The fibers of of Cn(x) are easily seen to be uniform, because
they are all comparable to balls inWu of fixed radius σn. The fibers of Dn(x) are the unstable
juliennes Ju

n
(x�), for x� ∈ Dcs

n
(x). Uniformity of these fibers follows from Proposition 5.12.
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We next prove:

L���� 5.20. – The sequences Dn(x) and En(x) are internested.

Proof. – Recall that

Dn(x) =

�

q∈Dcs
n (x)

Ju

n
(q), and En(x) =

�

q∈Dcs
n (x)

�Ju

n
(q).

Internesting of the sequences Dn(x) and En(x) means that there is a k ≥ 0 such that, for all
n ≥ k,

Dn(x) ⊆ En−k(x) and En(x) ⊆ Dn−k(x).

We will show that there is a k for which the first inclusion holds. Reversing the roles of Wu

and �Wu in the proof gives the second inclusion.
Suppose y ∈ Dn(x). Then y ∈ Ju

n
(q) = f−n

(Wu

�
(qn, τn)), for some q ∈ Dcs

n
(x); in

particular,

(5.14) d�(yn, qn) = O(τn).

Let q̂ be the unique point of intersection of �Wu
(y) with �Wcs

(x). We will show that
y ∈ En−k(x), for some k that is independent of n. In order to do this, it suffices to show that
q̂ ∈ Dcs

n−k
(x) and y ∈ �Ju

n−k
(q̂) = f−(n−k)

(�Wu

�
(q̂n−k, τn−k)).

In order to prove that q̂ ∈ Dcs

n−k
(x) it will suffice to show that

(5.15) d�(q, q̂) = o(σn)

(in fact, O(σn) would suffice, but the argument gives o(σn)). In order to prove that
y ∈ �Ju

n−k
(q̂) it will suffice to show that

(5.16) d�(yn, q̂n) = O(τn).

Equation (5.15) follows easily from (5.16). Since yn and q̂n lie in the same �Wu leaf, Propo-
sition 5.4 and (5.16) imply that

(5.17) d�(y, q̂) = O(ν̂nτn) = o(σn),

since ν̂τ ≺ σ. Similarly, Proposition 5.4 and (5.14) imply that

(5.18) d�(y, q) = o(σn).

Applying the triangle inequality to (5.17) and (5.18) gives (5.15).
It remains to prove (5.16). Recall from the construction of the fake foliations in Proposi-

tion 5.4 that, at any point z in the neighborhood Nr of the orbit of p in which the fake folia-
tions are defined, the tangent space Tz

�Wu
(z) lies in the ε-cone about TzW

u
(z) = Eu

(z).
Furthermore, the angle between Tz

�Wcs
(z) and either Tz

�Wu
(z) or TzW

u
(z) is uniformly

bounded away from 0. Note that q̂n is the unique point in �Wu
(yn) ∩ �Wcs

(xn) and qn is the
unique point in Wu

(yn) ∩ �Wcs
(xn); combining this with (5.14) gives:

d�(yn, q̂n) = O(d�(yn, qn)) = O(τn).

This completes the proof.

We next show:

L���� 5.21. – En(x) and Fn(x) are internested, as are Fn(x) and Gn(x).
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Proof. – The sets En(x) and Fn(x) both fiber over the same base �Ws

�
(x,σn). The fibers

of En(x) are the cu-juliennes �Jcu

n
(x�), for x� ∈ �Ws

(x,σn). The fibers of Fn(x) are images
of �Jcu

n
(x) under Ws-holonomy from �Wcu

(x) to �Wcu
(x�), for x� ∈ �Ws

�
(x,σn). It follows

immediately from Proposition 5.11 that the sequences En(x) and Fn(x) are internested.
To see that Fn(x) and Gn(x) are internested, suppose that q� lies in the boundary of the

fiber of Fn(x) that lies in Ws
(q) for some q ∈ �Jcu

n
(x). Then q� ∈ �Jcu

n
(x�) for a point x� that

lies in the boundary ofWs

�
(x,σn). The diameters of �Jcu

n
(x) and �Jcu

n
(x�) are both O(σn), and

d�(x, x�) = σn. Hence, if k is large enough, we will have

σn+k ≤ d�(q, q
�
) ≤ σn−k.

Thus all points on the boundary of the fiber of Fn(x) inWs

loc
(q) lie outsideWs

�
(q,σn+k) and

inside Ws

�
(q,σn−k).

We now know that any two of Dn(x), En(x), Fn(x) and Gn(x) are internested. As dis-
cussed above, to prove the fourth through sixth equivalences, it now suffices to show:

L���� 5.22. – The sequence Gn(x) is regular for each x ∈Ws
(p, 1).

Proof. – The set
Gn(x) =

�

q∈�Jcu
n (x)

W
s

�
(q,σn)

fibers over �Jcu

n
(x), with Ws-fibers Ws

�
(q,σn). Since Ws is absolutely continuous, Proposi-

tion 5.2 implies that regularity of Gn(x) follows from regularity of the base sequence and
fiber sequence. Proposition 5.12 implies that the sequence �Jcu

n
(x) is regular in the induced

measure “mcu. As we remarked above, the ratio σn+1/σn = σ(pn) is uniformly bounded be-
low away from 0. Consequently, the ratio

ms(W
s

�
(q,σn+1))

ms(W
s
�
(q,σn))

is bounded away 0, uniformly in x, q, and n. The regularity of Gn(x) now follows from Propo-
sition 5.2.

To prove the final equivalence, we use the fact that Gn(x) fibers over �Jcu

n
(x) with

c-uniform fibers and apply Proposition 5.2. Here we use the fact that X is Ws-saturated.
This completes the proof of Proposition 5.13.

6. Cocycle saturation

We now explain a generalization of Theorem B involving saturation properties of sections.
This brings the results of [8] into the nonuniform setting. We review the notations from [8].
In this discussion M denotes a closed manifold and f : M → M a partially hyperbolic dif-
feomorphism.

A Hausdorff topological space P is refinable if there exists an increasing sequence of
countable partitions Q1 ≺ Q2 ≺ · · · ≺ Qn ≺ · · · into measurable sets such that any
sequence (Qn)n∈N with Qn ∈ Qn and

�
Qn �= ∅ converges to a point η ∈ P in the sense
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that every neighborhood of η contains all Qn for n sufficiently large. Every separable metric
space is refinable.

We shall consider continuous fiber bundles X over M with fiber a Hausdorff topological
space P . Such a fiber bundle is refinable if P is refinable.

A fiber bundle π : X → M has stable and unstable holonomies if, for every x, y ∈ M with
y ∈W∗

(x) and ∗ ∈ {u, s}, there exists a homeomorphism h∗
x,y

: π−1
(x) → π−1

(y) with the
following properties:

1) h∗
x,x

= Idπ−1(x), and h∗
y,z
◦ h∗

x,y
= h∗

x,z
;

2) the map (x, y, η, d∗(x, y)) �→ h∗
x,y

(η) is continuous on its domain (a subset of
M × M × X × [0,∞)), where d∗(x, y) stands for the distance between x and y
in W∗

(x). (4)

Our main result concerns the saturation properties of sections of refinable bundles with stable
and unstable holonomies. In analogy with the definition of stable saturated set, we say that
a section Ψ : M → X is hs-saturated if, for every x ∈ M and y ∈Ws

(x):

Ψ(y) = hs

x,y
(Ψ(x)).

We similarly define hu-saturated sections (the terms s-invariant and u-invariant are used in
[8]). A section is bisaturated if it is both hs- and hu-saturated. A section Ψ is bi essentially
saturated if there exist an hs-saturated section Ψ

s and a hu-saturated section Ψ
u such that

Ψ = Ψ
s

= Ψ
u almost everywhere with respect to volume on M .

Examples:

1) Let X = M × {0, 1} and set h∗
x,y

(η) = η. In this trivial example, if A ⊂ M is a
(Ws/Wu/bi) - saturated set, then x �→ (x, 1A(x)) is an (hs/hu/bi) - saturated section. If
A is bi essentially saturated, then so is the associated section.

2) (cf. [33], Proposition 4.7) Every Hölder-continuous function ψ : M → R determines
stable and unstable holonomy maps on the bundle M × R, invariant under the skew
product (x, η) �→ (f(x), η + ψ(x)).

If Ψ : M → R is a continuous solution to the cohomological equation

ψ = Ψ ◦ f −Ψ,(6.1)

then Ψ is a bisaturated section. Moreover, if f is C2, volume-preserving and ergodic,
Ψ : M → R is measurable, and the equation (6.1) holds almost everywhere with respect
to volume, then Ψ is a bi essentially saturated section.

3) (cf. [8]) Let A : M → SL(n, R) be a Hölder-continuous matrix-valued cocycle. If this
cocycle is dominated (in the sense of [8]), then it determines in a natural way stable
and unstable holonomies on the refinable fiber bundle X = M ×M(RPn−1

), where
M(RPn−1

) is the space of probability measures on the projective space RPn−1.
Suppose that the Lyapunov exponents of An(f) = (A◦fn−1

)(A◦fn−1
) · · ·A vanish

almost everywhere. Then A determines a bi essentially saturated section of the bundle
X . These results are proved in [8] and used to show that the generic such cocycle over

(4) This can be reformulated, in view of (1), as requiring that (x, y, η) �→ h∗x,y(η) is continuous when we restrict x

and y to belong to local W∗ leaves.
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an accessible, center-bunched partially hyperbolic diffeomorphism has a nonvanishing
exponent.

Our main result expands Theorem B to include bi esentially saturated sections. Follow-
ing [8], we introduce an analogue for measurable sections of the notion of density point for
measurable sets.

Let π : X → M be a refinable bundle. We say that p ∈ M is a point of measurable continuity
for a section Ψ : M → X , if there exists η ∈ X such that p is a Lebesgue density point of
Ψ
−1

(V ), for every open neighborhood V of η in X . If such an η exists, it is unique, and is
called the density value of Ψ at p.

Let MC(Ψ) be the set of points of measurable continuity of Ψ. We define a measurable
section Ψ̃ : MC(Ψ) → X by setting Ψ̃(p) to be the density value of Ψ at p. Then MC(Ψ) has
full volume in M , and Ψ̃ = Ψ almost everywhere, with respect to volume (see Lemma 7.10,
[8]).

Tʜ��ʀ�� D (cf. Theorem 7.6, [8]). – Let f be C2 and partially hyperbolic, and let X be a
refinable fiber bundle with stable and unstable holonomies.

Then, for any bi essentially saturated section Ψ : M → X :

1) MC(Ψ) ∩ CB
+ is Ws-saturated, and the restriction of Ψ̃ to MC(Ψ) ∩ CB+ is

hs-saturated;
2) MC(Ψ) ∩ CB

− is Wu-saturated, and the restriction of Ψ̃ to MC(Ψ) ∩ CB
− is

hu-saturated.

Proof. – The proof follows the same lines as Theorem 7.6 in [8]. The proof there adapts
the proof of the main result in [18], and we correspondingly adapt the proof of Theorem B
here.

We first prove the theorem under the assumption that the bundleX has stable and unstable
holonomies. We prove the first part of the theorem; the second part follows from the first, re-
placing f by f−1. Let π : X → M be a refinable bundle with stable and unstable holonomies.
The holonomy maps hs and hu define foliations Fs and Fu of X ; the leaf of F∗ through a
point η ∈ X is:

F
∗
(η) = {h∗

π(η),y(η) : y ∈W∗
(π(η))}.

We similarly define for r > 0 the local leaf:

F
∗
(η, r) = {h∗

π(η),y(η) : y ∈W∗
(π(η), r)}.

Observe that a section Φ is ∗-saturated if and only if its image Φ(M) ⊂ X is a union of whole
leaves of F∗.

Fix a bi essentially saturated section Ψ : M → X . Recall that bi essential saturation of Ψ

means that there exist an hs-saturated section Ψ
s and a hu-saturated section Ψ

u such that
Ψ

s
= Ψ

u
= Ψ almost everywhere.

Fix x ∈ MC(Ψ) ∩ CB+, and let η = Ψ̃(x) be the density value of Ψ at x. Note that η
is also a density value for Ψ

s and Ψ
u. We will show that for every y ∈ Ws

(x, 1), hs

x,y
(η) is

a (the) density value of Ψ at y. Since CB+ is Ws-saturated, this will simultaneously estab-
lish that MC(Ψ) ∩CB+ is Ws-saturated and that the restriction of Ψ̃ to MC(Ψ) ∩CB+ is
hs-saturated.
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To this end, fix y ∈ Ws
(x, 1), and let V be a neighborhood of hs

x,y
(η) in X . Note that

hs

x,y
(η) lies on the local leaf Fs

(η, 1). To show that hs

x,y
(η) is a density value for Ψ at y, we

must show that y is a density point of Ψ
−1

(V ).

Continuity of the stable holonomy maps in X and stable saturation of Ψ
s together imply

that (Ψ
s
)
−1

(V ) is Ws-saturated at y; recall this means that there exist 0 < δ0 < δ1 such that
for any z ∈ B(y, δ0) ∩ (Ψ

s
)
−1

(V ), we have Ws
(z, δ1) ⊂ Ψ

−1
s

(V ). Similarly, (Ψ
u
)
−1

(V ) is
Wu-saturated at y, and so Ψ

−1
(V ) is bi essentially saturated at y.

Fix ε > 0 and δ > 0 such that π−1
(B(y, ε)) ∩Nδ ⊂ V , where

Nδ =

�

z∈B(η,δ)

F
s
(z, 1)

is the union of the localFs leaves through B(η, δ) inX . Since Nδ is saturated by localFs
(·, 1)

leaves, and the section Ψ
s is hs-saturated, it follows that the set (Ψ

s
)
−1

(Nδ) is saturated by
localWs

(·, 1)-leaves. The set Ψ
−1

(B(η, δ)) is bi essentially saturated at x and coincides mod 0

with the set (Ψ
s
)
−1

(B(η, δ)), which is hs-saturated at x. Since x ∈ MD(Ψ), it is a Lebesgue
density point of Ψ

−1
(B(η, δ)). But x is also an element of CB+, and so Proposition 5.13

implies that x is a cu-julienne density point of (Ψ
s
)
−1

(B(η, δ)), and hence of (Ψ
s
)
−1

(Nδ) as
well.

Now, since (Ψ
s
)
−1

(Nδ) is saturated by local Ws
(·, 1)-leaves, and x ∈ CB+

(f), Propo-
sition 5.14 implies that y is also a cu-julienne density point of (Ψ

s
)
−1

(Nδ). Thus y is a
cu-julienne density point of B(y, ε) ∩ (Ψ

s
)
−1

(Nδ). But

B(y, ε) ∩ (Ψ
s
)
−1

(Nδ) = (Ψ
s
)
−1

(π−1
(B(y, ε)) ∩Nδ) ⊂ (Ψ

s
)
−1

(V );

since the latter set isWs-saturated and essentiallyWu-saturated at y, and since y ∈ CB+
(f),

Proposition 5.13 implies that y is a Lebesgue density point of (Ψ
s
)
−1

(V ). Finally, since
(Ψ

s
)
−1

(V ) = Ψ
−1

(V ) mod 0, we obtain that y is a Lebesgue density point of Ψ
−1

(V ).
This completes the proof of Theorem D.

7. Examples

Here we will be interested first in the construction of a C2-open class of maps which are
not uniformly center bunched, but display nonuniform center bunching in the sense that the set
CB of center bunched points has full Lebesgue measure. We then show, using Corollary C,
that this class contains C2-stably ergodic maps, and describe an application of Theorem D
to the cohomological equation.

All of the following constructions can be carried out in the volume-preserving setting. We
do it in the symplectic setting, as the arguments are slightly more subtle.

7.1. A nonuniformly, but not uniformly, center bunched example

Let P , Q and S be compact symplectic manifolds, and let F : P → P , G : Q → Q and
H : S → S be symplectic C2 diffeomorphisms with the following properties:

1) F and G are Anosov diffeomorphisms.
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2) We have

sup
Q

�DG|Es
G
� < inf

S

m(DH)
2
≤ sup

S

�DH�2 < inf
Q

m
�
DG|Eu

G

�
,

so that G×H : Q×S → Q×S is partially hyperbolic and center bunched, with center
bundle tangent to the S factor.

3) We have

sup
P

�DF |Es
F
� < inf

S

m(DH) ≤ sup
S

�DH� < inf
P

m
�
DF |Eu

F

�
,

so that F × G × H is partially hyperbolic on M = P × Q × S, with center bundle
tangent to the S factor.

4) Indicating by mP the normalized volume measure induced by the symplectic form
on P , we have

�
log �DF |Es

F
� dmP < 2 inf

S

log m(DH) ≤ 2 sup
S

log �DH� <

�
log m(DF |Eu

F
) dmP .

5) There exists a point p ∈ P of period k under F such that:

�DpF
k
|Es

F
� < m(DG|Es

G
)
k < �DG|Eu

G
�

k < m(DpF
k
|Eu

F
) ,

which implies that
�

k−1
j=0{F

j
(p)}×Q×S is normally hyperbolic and contained in CB .

Let ω be the symplectic form in M = P × Q × S given by the sum of the forms on P , Q
and S. Then f0 = F ×G×H : M → M is symplectic.

L���� 7.1. – If f is a C2 volume-preserving (C2-small) perturbation of f0, then f is
nonuniformly center bunched.

Proof. – To show that almost every orbit is forward center bunched, it is enough to prove
that for any f -invariant set W of positive Lebesgue measure, we have

1

m(W )

�

W

log �Df |Es
f
� dm < 2 inf

M

log m(Df |Ec
f
).

We notice that Es

f
is close to Es

F
⊕Es

G
and Ec

f
is close to TS everywhere. Thus the right hand

side is close to 2 infS log m(DH), while the left hand side is bounded, up to small error, by the
maximum of sup

Q
�DG|Es

G
� and

�
log �DF |Es

F
� dπ∗µ, where µ is the normalized restriction

of the Lebesgue measure m to W and π : M → P is the coordinate projection. By (2) and
(4), we are reduced to showing that π∗µ is weak-∗ close to mP .

An f -invariant probability measure which is absolutely continuous with respect to the un-
stable foliationWu

f
will be called an u-state for f . One defines s-states analogously. Let U(f)

be the set of u-states for f and S(f) be the set of s-states for f . An u-state that is also an
s-state will be called an su-state. Since f is C2, theWu

f
andWs

f
foliations are absolutely con-

tinuous, thus µ is an su-state. We are going to show that this already implies that π∗µ is close
to mP .

The uniform expansion in the unstable direction as we iterate forward has a regularization
effect which implies that there is an a priori bound on the densities of the disintegration of
an u-state for f along Wu

f
: the quotient between the densities at different points in the same

unstable leaf is bounded by Kd where K is a constant (uniform in a C2 neighborhood of f0)
and d is the distance between the points inside the leaf. (Recall that the density is defined, in
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each leaf, only up to scaling but the quotient is well defined and given by the Anosov-Sinai
cocycle; see formula (11.4) in [13].)

This bound has the important consequence that U(f) is closed (and hence compact) in
the weak-∗ topology. Moreover, in a C2 neighborhood V of f0, the set

�
f∈V{f} × U(f) is

also closed. We call this fact the upper-semicontinuity in f of the set of u-states, see [17] for
a detailed proof.

Analogous considerations show that the set of s-states is upper-semicontinuous in f .
Thus

�
f∈V{f} × (S(f) ∩ U(f)) is closed as well, so the set of su-states also depends

upper-semicontinuously on f .
The product structure of the foliations implies that an su-state for f0 projects onto an

su-state for F × G, which is C2 Anosov, and the absence of a central direction for F × G
implies that the projection is absolutely continuous. Since F × G is Anosov, it is ergodic so
the projection is Lebesgue on P×Q. Projecting again, we conclude that π∗ν = mP whenever
ν is an su-state for f0 (in fact, an su-state for f0 is just the product of Lebesgue on P × Q
by an arbitrary invariant probability measure on S). By upper-semicontinuity, if f is close to
f0, the projection of any su-state for f is weak-∗ close to mP . The result follows.

Notice also that we may construct the map f0 so that no f nearby is center bunched. For
example, one can arrange that the conditions above hold and in addition there are hyperbolic
periodic points p� = F �

(p�), q = Hm
(q) such that

ρ(Dp�F
�
|Es

F
)
1/� > ρ(DqH

m
)
−2/m ,

where ρ denotes spectral radius. Note that the main theorem in [18] does not apply to such
an example, nor to its perturbations.

7.2. Stable ergodicity

Condition (5) implies that for any C1 perturbation f of f0, there exists a normally hyper-
bolic manifold Nf , C1-close to

�
k−1
j=0{F

j
(p)} × Q × S, whose connected components are

permuted under f .
Let us say that Nf is accessible if for any x and y in the same connected component of

Nf , there is an su-path in Nf connecting x and y. We say that Nf is stably accessible if Ng

is accessible for every g in a neighborhood of f in Diff
1
ω
(M ×N × P ). These properties are

non-void:

L���� 7.2. – For any neighborhood Z of f0 in Diff
∞

ω
(M) there exists f ∈ Z such that

Nf is stably accessible.

Proof. – In [31] it is shown that for every neighborhood V of the identity in
Diff

∞

ωQ×S
(Q × S) there exists Φ ∈ V such that Φ ◦ (G × H) is stably accessible. For

such a Φ, define φ ∈ Diff
∞

ω
(M × N × P ) by φ = IdM × Φ. Then φ ◦ f0 is close to f0 and

satisfies the desired properties.

L���� 7.3. – If f is C1 near f0 and Nf is accessible, then we can join any two points in
CB by an su-path with corners in CB .
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Proof. – Fix x ∈ Nf . Obviously Wc
(x) ⊂ Nf ⊂ CB , and since Nf is stably accessible,

any two points in Wc
(x) can be joined by an su-path with corners in Nf and hence in CB .

Thus it is enough to show that any y ∈ CB can be joined to some point in Wc
(x) through

an su-path with corners in CB . The action of f on M/Wc

f
is topologically conjugated to

the Anosov map F ×G, and under this identification, the projection of any unstable or sta-
ble leaf of f is an unstable or stable leaf of F × G. Obviously, for F × G any two points
can be connected by an su-path with 2 legs. We conclude that for every y ∈ M there exists
z ∈ Wc

(x) such that Wu
(y) ∩Ws

(z) �= ∅. When y ∈ CB , Wu
(y) ∩Ws

(z) ⊂ CB (since
y, z ∈ CB and CB

+ is Ws-saturated while CB
− is Wu-saturated), showing that y is con-

nected to Wc
(x) by a 2-legged su-path with corners in CB .

Putting together Lemmas 7.2, 7.3 and Corollary C we conclude:

Tʜ��ʀ�� E. – If f is C2-close to f0 and Nf is accessible then f is ergodic (and in fact, a
K-system).

7.3. Continuity of bi saturated sections and the cohomological equation

L���� 7.4. – Let f : M → M be a C2 volume-preserving partially hyperbolic dif-
feomorphism and let Z be a bi essentially saturated set of positive Lebesgue measure. If
x ∈ supp(m|Z) then any su-path starting at x can be approximated by an su-path with
corners in Z.

Proof. – Let us say that z ∈ Z is k-pretty if almost every w ∈Wu
(z) ∪Ws

(z) is
k − 1-pretty, where all points of Z are declared to be 0-pretty. Since Wu and Ws are
absolutely continuous, it follows by induction that almost every z ∈ Z is k-pretty for
every k.

Consider an su-path connecting x0 to xn through x1, . . . , xn−1. Now just approximate x0

by an n-pretty point z0, and then successively xi by an n− i-pretty point zi ∈W
∗
(zi−1).

Tʜ��ʀ�� F. – Let f be C2-close to f0 and let X and Ψ be as in Theorem D. If Nf is ac-
cessible then Ψ coincides almost everywhere with a continuous bi invariant section.

Proof. – Since any two points of CB can be joined by an su-path with corners in CB ,
and CB has positive Lebesgue measure, it follows that MC(Ψ) contains CB .

Let us show that we can define a bi saturated section that coincides with Ψ̃ on CB . By the
argument of Section 8.2 of [8] (where center bunching does not play a role), the accessibility
of f implies that such a section is necessarily continuous, and since m(CB) = 1, Ψ must
coincide almost everywhere with it.

We notice that, restricting the above considerations to Nf ⊂ CB , and using that Nf is
accessible, we can already conclude that Ψ̃|Nf is continuous.

Let x ∈ Nf . We are going to show that, for any su-path starting and ending at x, the
composition of holonomies along the su-path fixes Ψ̃(x). Since f is accessible, this allows us
to define a bi saturated section: join x to any y ∈ M by any su-path and apply the holonomy
to Ψ̃(x). If well defined, this new section automatically will coincide with Ψ̃(x) on CB by
Theorem D (since, by Lemma 7.3, x can be joined to any y ∈ CB through an su-path with
corners in CB ).
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Let us consider thus an su-path starting and ending in x0, and its composed holonomy
map h. Assume that h(Ψ̃(x)) �= Ψ̃(x). By the previous lemma, it is approximated by an su-
path with corners in CB . A priori, the extremes of the latter path do not belong to Nf , but by
adding at most 4 short legs to the latter (two at the beginning and two at the end), we obtain
an su-path starting and ending at points y, z ∈ Nf . Since the corners of this path all belong
to CB , the corresponding composed holonomy map h̃ takes Ψ̃(y) to Ψ̃(z). Since y, z ∈ Nf

are close to x, we can use the continuity of holonomy maps, and of Ψ̃|Nf , to conclude that
h̃(Ψ̃(y)) is close to h(Ψ̃(x)) and Ψ̃(z) is close to Ψ̃(x). Since we assumed that h(Ψ̃(x)) �=

Ψ̃(x), this implies that h(Ψ̃(y)) �= Ψ̃(z), contradiction.

One particular interesting application is the case of the cohomological equation (see Ex-
ample 2 in Section 6): if ψ : M → R is a Hölder continuous function then a measurable
solution of the cohomological equation ψ = Ψ ◦ f −Ψ coincides almost everywhere with a
continuous one.

One can also deduce non-degeneracy of the Lyapunov spectrum of generic bunched
cocycles over f (see Example 3 of Section 6). However, the application of those ideas to the
analysis of the central Lyapunov exponents of f themselves is more subtle since this cocycle
is not bunched (but only nonuniformly bunched), and will be carried out elsewhere: we will
show for instance that in the case that S is a surface then stably Bernoulli, nonuniformly
hyperbolic examples like above can be obtained.

7.4. Further examples

The mechanism for ergodicity implemented above can be abstracted somewhat to a crite-
rion for ergodicity, which we quickly describe.

Let f : M → M be a C2 accessible partially hyperbolic volume preserving diffeomor-
phism. Let N ⊂ M be a normally hyperbolic compact (not necessarily connected) subman-
ifold. (5) It is easy to see that TxN = (Es

(x) ∩ TxN)⊕ (Ec
(x) ∩ TxN)⊕ (Eu

(x) ∩ TxN) at
every x ∈ N . If those three subbundles are non-trivial, then this splitting is partially hyper-
bolic. We are interested on the case that N is c-saturated in the sense that TxN ⊃ Ec

(x) for
every x ∈ N . Assume that f |N is center bunched and has some open accessibility class. We
will show that the restriction of Lebesgue measure to the set CB is either null or ergodic.

Let us first note that, since N is normally hyperbolic, the condition that f |N is center
bunched implies that N ⊂ CB .

For a set U ⊂ N , let Ũ be the set of all x ∈ M such that there exists y ∈ U such that
Wu

(x) ∩Ws
(y) �= ∅. Notice that since N is c-saturated, it is clear that int Ũ ⊃ intU .

We claim that if CB is dense, and if U is an open accessibility class for f |N , then any two
points in CB ∩

�
k∈Z fk

(int Ũ) can be joined by an su-path with all corners in CB .

Since f is accessible, almost every orbit is dense (by Theorem 3.4); hence the claim implies
that almost every pair in CB can be joined by an su-path with corners in CB , which gives
the conclusion, by Corollary C; that is, if CB has positive measure (which, by Theorem 3.4,
implies that it is dense), then the restriction of f to CB is ergodic.

(5) Our arguments would also work by taking N as a (non-compact) leaf of a normally hyperbolic lamination.
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To prove the claim, note first that if x ∈ CB , then Wu
(x) ∩ Ws

(y) ⊂ CB , for any
y ∈ N . Since U is an accessibility class of f |N , and N ⊂ CB, it follows that any two points in
CB ∩ Ũ can be connected by an su-path with all corners in CB .

Since f is accessible, so is f × f ; Theorem 3.4 implies that f × f is topologically transi-
tive. This implies that for any three open sets V1, V2, V ⊂ M there exists n ∈ Z such that
Vj ∩ fn

(V ) �= ∅, for j = 1, 2. In particular, for any pair of integers k1, k2, there exists n ∈ Z
such that fkj (int Ũ) ∩ fn

(int Ũ) �= ∅, for j = 1, 2. Since CB is dense, we can find points
x�

j
∈ CB ∩ fn

(int Ũ) ∩ fkj (int Ũ). Then we can join x1 to x2 by an su-path with corners in
CB by going through x�1 and x�2: xj and x�

j
can be joined since f−kj (xj), f−kj (x�

j
) ∈ CB∩Ũ ,

while x�1 and x�2 can be joined since f−n
(x�1), f

−n
(x�2) ∈ CB ∩ Ũ . This proves the claim.

One can also apply the argument of the previous section to conclude, for instance, that
if ψ : M → R is a Hölder continuous function then any measurable solution of the coho-
mological equation ψ = Ψ ◦ f − Ψ defined over CB coincides almost everywhere with a
continuous solution defined in the whole M . We notice that here it is only needed to assume
that m(CB) > 0, and a priori the system could even be non-ergodic as far as the current
theory goes.

Appendix

Reobtaining some results from [12]

A variation of the method presented in Section 4 allows one to obtain various [12]-like
(topological) conclusions from [10]-like (ergodic) results. To illustrate, we will reobtain the
following:

Tʜ��ʀ�� A.1 ([12]). – A diffeomorphism that has a non-dominated homoclinic class can
be perturbed to display a nearby periodic orbit with all eigenvalues of the same modulus.

Let us explain the result from [10] that we need. Let (X,µ) be a non-atomic probability
space, and let f be an ergodic automorphism of it. Fix a positive integer d and let L∞ be the
set of measurable maps (called cocycles) A : X → GL(d, R) such that �A±1� are µ-essentially
bounded, where maps that differ on zero sets are identified. Notice L∞ is a Baire space.

Given a cocycle A ∈ L∞, asymptotic information about the products

An

f
(x) = A(fn−1

(x)) · · ·A(x)

is given by Oseledets’ Theorem. So let Rd
= E1

(x)⊕ · · ·⊕Ek
(x) be the Oseledets’ splitting,

defined for µ-a.e. x ∈ X, and let λ1(A) ≥ · · · ≥ λd(A) the Lyapunov exponents repeated
according to multiplicity. (Notice that k and the Lyapunov exponents are constant µ-almost
everywhere by ergodicity.) We also write Li(A) =

�
i

j=1 λj(A). We have

Li(A) = inf
n≥1

1

n

�
log �∧

iAn

f
(x)� dµ(x) .

As a consequence of this formula, the function A ∈ L∞ �→ Li(A) is upper-semicontinuous,
and hence its points of continuity form a residual set. Another semi-continuity property that
follows easily from the formula is:
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L���� A.2. – Given A ∈ L∞, C > �A±1�∞, and ε > 0, there exists δ > 0 such that if
B ∈ L∞ is such that if �B±1�∞ < C and µ[B �= A] < δ then Li(B) < Li(A) + ε.

Let Rd
= E(x) ⊕ F (x) be a splitting defined for µ-a.e. x and invariant under a cocycle

A ∈ L∞. Also assume that dim E is constant (called the index of the splitting). We say that
the splitting is dominated (or, more precisely, that E dominates F ) in the case that there exists
m ∈ N such that

(A.1)

��Am
(x)|F (x)

��

m
�
Am(x)|E(x)

� ≤ 1

2
for µ-a.e. x ∈ X.

It is not hard to check the following elementary properties (6):

1) The angle between E and F is essentially bounded from below.
2) For a fixed index, the dominated splitting is unique over the points where it exists.
3) In the case that the space X is compact Hausdorff and A is a continuous map, then

the splitting can be defined over each point of supp µ, and varies continuously.

We say that the Oseledets’ splitting of A is trivial if k = 1, and dominated if k > 1 and
E1 ⊕ · · ·⊕ Ei dominates Ei+1 ⊕ · · ·⊕ Ek for all i ∈ {1, . . . , k − 1}.

Tʜ��ʀ�� A.3 ([10]). – A cocycle A ∈ L∞ is a point of continuity of all Li’s if and only if
the Oseledets’ splitting is trivial or dominated.

R���ʀ� A.4. – As shown in [10], the statement of Theorem A.3 remains true if
GL(d, R) is replaced by any Lie group of matrices that acts transitively on the projective
space, for example the symplectic group.

We will deduce from Theorem A.3 the following:

Pʀ����ɪ�ɪ�ɴ A.5. – If A ∈ L∞ has no dominated splitting then there exists B ∈ L∞

arbitrarily close to A whose Oseledets’ splitting is trivial.

The proof of the proposition requires a few preliminaries.
Given a cocycle A ∈ L∞, we define µA as a probability measure on GL(d, R)

Z by
taking the push-forward of µ under the map x �→ (A(fn

(x)))n. Notice µA is invariant
under the shift. Let Hull(A) = suppµA; this is a compact Hausdorff space. Let
Â : Hull(A) → GL(d, R) be the projection on the zeroth coordinate, considered as a co-
cycle over the shift on Hull(A). This new cocycle has the advantage of being continuous.
Using the elementary properties listed above, it is easy to see that a cocycle A ∈ L∞ has a
dominated splitting if and only if Â has one. This means that the existence of a dominated
splitting for A depends only on Hull(A); in particular, if B has a dominated splitting and
Hull(A) ⊂ Hull(B), then A has a dominated splitting.

Let N indicate the set of cocycles A ∈ L∞ that have no dominated splitting. Then N is a
Gδ subset (7) of L∞, and thus a Baire space. Indeed, the set of A ∈ L∞ that have a dominated
splitting with fixed index and fixed m as in (A.1) is easily seen to be a closed set.

(6) Or see e.g. [13, Appendix B].
(7) More precisely, N is a closed set, but we will not need this.
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L���� A.6. – If A ∈ N is a point of continuity of Li|N then A is a point of continuity
of Li.

Proof. – Assume that Li is not continuous at some A ∈ N ; we will show that neither is
Li|N .

Let ak
= (ak

n
)n, k ≥ 0 be a dense sequence in Hull(A). For j ≥ 0, let Uk,j ⊂ GL(d, R)

Z be
the set of all sequences (xn)n with �xn−ak

n
� < 2

−j for every |n| ≤ j. Then each Uk,j is open
in GL(d, R)

Z and for each k ≥ 0, {Uk,j}j≥0 is a fundamental system of neighborhoods of ak.
Let Dk,j ⊂ X be the set of all x such that (A(fn

(x)))n ∈ Uk,j . Since ak ∈ supp µA, we have
µ(Dk,j) > 0, and since µ is non-atomic, for every l ≥ 0 we can choose a subset Dk,j,l ⊂ Dk,j

with 0 < µ(Dk,j,l) < 2
−k−j−l. Let Zl =

�
k,j≥0

�
|n|≤j

fn
(Dk,j,l). Then µ(Zl) → 0 as

l →∞. Moreover, if B ∈ L∞ is any cocycle that coincides with A on some Zl, then for every
x ∈ Dk,j,l, and every |n| ≤ j, we have B(fn

(x)) = A(fn
(x)); the definition of Uk,j then

gives that (B(fn
(x)))n ∈ Uk,j . This implies successively that µB(Uk,j) ≥ µ(Dk,j,l) > 0 for

every k, j ≥ 0, ak ∈ Hull(B) for every k ≥ 0, Hull(B) ⊃ Hull(A), and B ∈ N .
Since Li is upper-semicontinuous and not continuous at A, there exist a sequence

An ∈ L∞ converging to A and ε > 0 such that Li(An) < Li(A) − ε for each n. Let Bn,l

be the cocycle equal to A on Zl and equal to An elsewhere. By Lemma A.2, for each n there
exists ln such that Li(Bn,ln) < Li(An) + ε/2. Thus the sequence Bn,ln is in N , converges to
A, and satisfies Li(Bn,ln) < Li(A) − ε/2. This shows that Li|N is not continuous at A, as
desired.

Now we can give the:

Proof of Proposition A.5. – Let A be an element of N , that is, a cocycle without domi-
nated splitting. Since N is a Baire space and the functions Li are upper-semicontinuous, we
can find a point B of continuity of all functions Li|N that is as close to A as desired. By
Lemma A.6, B is a point of continuity of all Li’s, and thus, by Theorem A.3, its Oseledets’
splitting is either dominated or trivial. Since B ∈ N , the former alternative is forbidden and
thus all Lyapunov exponents of B are equal.

Now let us use these results to prove Theorem A.1. Our approach needs a suitable measure
to start with:

L���� A.7. – For every homoclinic class H , there exists an ergodic invariant probability
measure whose support is H .

Proof. – This is a simple consequence of the fact that any non-trivial homoclinic class H
is contained in the closure of a countable union of horseshoes H1 ⊂ H2 ⊂ · · · (by a horseshoe
we mean an invariant compact set restricted to which the dynamics is topologically conjugate
to a transitive subshift of finite type).This allows one to construct a wealth of invariant mea-
sures with support H (for instance, with positive entropy), as suitable “infinite Markovian”
measures, but below we will proceed by a somewhat less direct argument.

Given a compact invariant set X ⊂ M , letM(X) be the set of invariant probability mea-
sures µ with supp µ ⊂ X, endowed with the weak-star topology. Let Me(X) ⊂ M(X) be
the set of ergodic measures, and for any compact subset Y ⊂ X, let M(X,Y ) be the set of
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invariant measures whose support contains Y . It is easy to see that Me(X) and M(X,Y )

are always Gδ subsets of M(X).
Since Hi is a horseshoe, both Me(Hi) and M(Hi, Hi) are dense (and hence residual) in

M(Hi). Let Gi = Me(Hi) ∩M(Hi, Hi). Let W ⊂ M(H) be the closure of the union of
the M(Hi). Let Wi = W ∩Me(H) ∩M(H,Hi), which is a Gδ-subset of W . Notice that
Wi contains Gj for each j ≥ i. Since Gj is a Gδ-dense subset of M(Hj), it follows that Wi

is dense in W =
�

j≥i
M(Hj) for every i. Now, W is a compact Hausdorff and hence Baire

space, and we conclude that
�

Wi is a dense subset of W . Since H =
�

Hi, the set
�

Wi

is precisely W ∩Me(H) ∩M(H,H). In particular, Me(H) ∩M(H,H) is non-empty, as
desired.

Proof of Theorem A.1. – Let f be a diffeomorphism and let H be a homoclinic class that
has no dominated splitting. Choose an ergodic probability measure µ whose support is H ,
using Lemma A.7.

We will consider L∞-perturbations A of the derivative of f restricted to H . Such an object
A is the assignment for µ-a.e. x ∈ H of a linear map A(x) : TxM → Tf(x)M that is close to
Df(x), and varies measurably. Now, using Proposition A.5 we can find such a perturbation
A of the derivative whose Lyapunov exponents coincide µ-almost everywhere. Using Lusin’s
Theorem, we may alter A on a set of arbitrarily small µ-measure, while keeping it uniformly
close to Df , to obtain a continuous perturbation B. It follows from Lemma A.2 that the Lya-
punov exponents of B are all close to each other µ-almost everywhere. In other words, there
is a small number ε > 0 such that

lim
n→∞

1

n
log

�Bn

f
(x)�

m(Bn

f
(x))

≤
ε

2
for µ-a.e. x ∈ H ,

where we indicate Bn

f
(x) = B(fn−1

(x)) · · ·B(x). Next we apply the Ergodic Closing
Lemma (imitating the proof of Lemma 4.2) and find a C1-perturbation f̃ of f that has a
periodic point x of period p such that

�Bmp

f̃
(x)�

m(Bmp

f̃
(x))

< eεmp for some m ≥ 1.

This implies that the moduli of the eigenvalues of Bp

f̃
(x) are all close to each other. By means

of an (easier) dissipative analogue of Lemma 4.3, we can perturb B along the f̃ -orbit of x to
make the eigenvalues of Bp

f̃
(x) of the same moduli. By Franks’ Lemma one can perturb the

diffeomorphism again, keeping the periodic orbit and inserting the desired derivatives. This
concludes the proof.
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