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FILTRATIONS ON ALGEBRAIC CYCLES AND HOMOLOGY

BY ERIC M. FRIEDLANDER (1)

ABSTRACT. - As shown by the author and B. Mazur, Lawson homology theory determines natural filtrations
on algebraic equivalence classes of algebraic cycles and on the singular integral homology groups of complex
projective varieties. In this paper, the filtration on cycles is identified in terms of the images under correspondences
of cycles homologically equivalent to zero. This is closely related to a filtration recently introduced by M. Nori.
The author and B. Mazur conjectured that the filtration on (rational) homology groups was equal to the "geometric
(or level) filtration" introduced by A. Grothendieck. It is shown here that this conjecture is implied by the validity
of Grothendieck's Conjecture B. Both filtrations can be interpreted in terms of a spectral sequence whose various
terms have a motivic nature.

The two central constructions of the paper are the s-map (introduced by the author and B. Mazur) and the
graph mapping. Various equivalent descriptions of the s-map are presented and some of its basic properties are
verified. The graph mapping is an elementary construction on cycle spaces which enables one to extend classical
constructions involving correspondences to singular varieties.

In recent years, there has been a renewed interest in obtaining invariants for an algebraic
variety X using the Chow monoid Cr(X) of effective r-cycles on X. This began with
the fundamental paper of Blaine Lawson [L] which introduced in the context of complex
projective algebraic varieties the study of the homotopy groups of the group completion
Zr(X) of Cr(X). The resultant Lawson homology has numerous good properties, most
notably that reflected in the "Lawson suspension theorem." An algebraic version of
Lawson's analytic approach was developed by the author in [F], permitting a study of
projective varieties over arbitrary algebraically closed fields. Subsequent work has focussed
on complex varieties: the author and Barry Mazur introduced operations in Lawson
homology which led to interesting filtrations in (singular) homology [F-Mazur]; the author
and Blaine Lawson introduced a bivariant theory with the purpose of constructing a
cohomology theory associated to cycle spaces [F-Lawson]; Paulo Lima-Filho [Lima-Filho]
(see also [F-Gabber]) extended Lawson homology to quasi-projective varieties; and the
author and Ofer Gabber established an intersection theory in Lawson homology [F-Gabber].
A related theory, the "algebraic bivariant cycle complex" introduced in [F-Gabber], is
applicable to quasi-projective varieties over an arbitrary field and bears some resemblance
to certain candidates for motivic cohomology.

(^ Partially supported by the N.S.F. and NSA Grant # MDA904-90-H-4006.
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318 E. M. FRIEDLANDER

In this paper, we return to the study of filtrations for complex projective algebraic varieties
begun in [F-Mazur]. We consider the filtration on algebraic cycles given by kernels of
iterates of an operation (the so-called s-operation) in Lawson homology introduced in
[F-Mazur]. Theorem 3.2 gives an alternate description of this "S-filtration" in terms of
correspondences. We also consider the "topological filtration" on homology given by
images of iterates of the s-operation. For example. Proposition 4.2 demonstrates that the
equality of this filtration with a geometric filtration considered by A. Grothendieck is
implied by one of Grothendieck's "Standard Conjectures", Grothendieck's Conjecture B.

In order to pursue our analysis of these filtrations, we begin in section 1 with a detailed
investigation of alternate formulations of the s-operation. This discussion relies heavily
on the foundational work of [F-Gabberj. We continue this analysis in section 2 with the
introduction of a "graph mapping" on cycles associated to a "Chow correspondence".
The application of this mapping in later sections as well as its occurence in [F-Mazur2]
suggests that this construction codifies a fundamental aspect of the functoriality of algebraic
cycles. We anticipate that these somewhat foundational sections will prove useful in future
developments of Lawson homology.

Section 3 compares the S-filtration on cycles to filtrations considered by Madhav Nori
in [Nori] and by Spencer Bloch and Arthur Ogus in [Bloch-Ogus]. The S-filtration is
subordinate to the Bloch-Ogus filtration and dominates Nori's filtration. In fact, we show
that the S-filtration has a description in terms of correspondences exactly parallel to that
of Nori's, except that our correspondences are permitted to have singular domain.

In [F-Mazur], the topological filtration associated to images of the s-operation was
introduced, shown to be subordinate to Grothendieck's geometric filtration (for smooth
projective varieties), and equality of these filtrations was conjectured. In section 4, we
reconsider this conjecture. In particular, we present a proof of an unpublished result of
R. Hain [Hain] asserting the equality of these filtrations for "sufficiently general" abelian
varieties. Our proof, somewhat different from Hain's original proof, fits in the general
context of a study of the inverse of the Lefschetz operator whose algebraicity is the content
of Grothendieck's Conjecture B.

We conclude this paper by presenting in section 5 a spectral sequence which codifies
the relationship between algebraic cycles and homology as seen from the point of view of
iterates of the s-operation. In particular, both the S-filtration on cycles and the topological
filtration on homology appear in this spectral sequence.

Thoughout this paper, we restrict our attention to complex, quasi-projective algebraic
varieties.

This work is an outgrowth of numerous discussions. The influence of Ofer Gabber is
evident throughout. The example of abelian varieties is due to Dick Hain. Most importantly,
our understanding of operations and filtrations evolved through many discussions with Barry
Mazur. We gratefully thank the interest and support of each of these friends.

1. The s-operation revisited

In this section, we recall the s-operation in Lawson homology introduced in [F-Mazur]
and further considered in [F-Gabber]. As in the latter paper, we view this operation as
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FILTRATIONS ON ALGEBRAIC CYCLES AND HOMOLOGY 319

the map in homology associated to the "s-map", a map in the derived category of chain
complexes of abelian groups. The central result of this section is Theorem 1.3 which
establishes three alternate formulations of this operation. We point out in Proposition 1.6
that the cycle map is factorized by the s-operation not just for projective varieties but
also for quasi-projective varieties. Proposition 1.7 verifies expected naturality properties
of our s-operation.

We begin by recalling the cycle spaces Zr(U) and cycle complexes Zr{U) of r-cycles
on a quasi-projective variety U. The independence of Zr(U)^Zr(U) of the choice of
projective closure U C X C PN is verified in [Lima-Filho] and also [F-Gabber].

DEFINITION 1.1. - Let X be a complex projective variety and r a non-negative integer.
The Chow monoid Cr(X) is the disjoint union of the Chow varieties Cr,d{X) of effective
r-cycles on X of degree d for some non-negative integer d. The cycle space Zr{X)
is defined to be the topological abelian group given as the group completion of the
abelian monoid Cr(X) provided with the quotient topology associated to the surjective
map Cr{X)2 -> Zr{X), where Cr{X)2 is given the analytic topology. If Y C X is a
closed subvariety, we define

Z^U) = Z,(X)/Z,(V), U = X - Y.

The normalized chain complex of the simplicial abelian group Smg.{Zr{U)) of singular
chains on the topological group Zr(U) will be denoted by Zr{U). Finally, we define the
Lawson homology groups of U to be

LrHn{U) = 7T,-2r(^(^)) ^ H^r(Zr{U)).

The above definition of Lawson homology groups is that given in [F-Gabber]. In [F],
L.awson homology groups were defined for complex projective varieties as the homotopy
groups of the homotopy theoretic group completion ^tBCr{X) of the Chow monoid
Cr{X) viewed as a topological monoid. This was shown in [Lima-Filho], [F-Gabber] to
be naturally homotopy equivalent to Zr{X). In [F-Mazur], the Lawson homology groups
were viewed (using [F; 2.6]) as the homotopy groups of the direct limit L'imS'mg.Cr{X)
of copies of the simplicial abelian monoid Smg.C^(X) of singular simplices of the Chow
monoid, where the direct limit is indexed by a "base system" associated to 71-0 (Cr(X))-
We shall frequently reference [F], [F-Mazur] for properties of Zr(X), Zr{X) which have
been proved in [F], [F-Mazur] for either flBCr{X) or LimSmg.C^(X).

The localization theorem of [Lima-Filho], [F-Gabber] asserts that

Z,(V) - Zr{X) -. Zr{U)

is a distinguished triangle whenever Y is a closed subvariety of X with complement
U = X - Y. In other words, the short exact sequence of topological abelian groups
Z^(Y) -^ Zr{X) —^ Zr{X)/Zr(Y) yields a long exact seqeunce in homotopy groups.

In [F-Mazur], operations were introduced on the Lawson homology groups using the
geometric construction of the "join" of two cycles. Namely, if V C PM and W C P^
are closed subvarieties of disjoint projective spaces, then we may view pM+N+l as
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320 E. M. FR1EDLANDER

consisting of all points on (projective) lines from points on PM to points on P^ and
we define the join V#W c 'pM+N-^l to be the subvariety of those points lying on
lines between points of V and points of W. The initial formulation of the operations
for a ptojective variety X was in terms of the join pairings of effective algebraic cycles
C^X) x C^P*) -^ a+,+Me(.W) inducing

Zr{X) x ^(P*) -^ Z^^XW ^ Zr-t^X), r - t + j > 0

where the right-hand equivalence is that given by the Lawson suspension theorem. In
particular, the s-operation was defined to be the map in homotopy groups obtained from
the induced pairing on homotopy groups

7T,-2.(^(X)) (g) 7T2(Zo(P1)) ̂  7r,_2.+2(^r-lW), r > 0

by restricting to the canonical generator of 7r^(Zo{P1)):

s : LrHn(X) ̂  L^H^X).

Mapping P1 to Zo(P1) by sending a point p € P1 to p — {oo}, we obtain an "5-map"

Zr{X) AP1 ̂  Z.-i(X)

well defined up to homotopy which determines the s-operation.
Observe that ̂ (P1)^^ is quasi-isomorphic to 2[2], the chain complex whose only non-

zero term is a Z in in degree 2. Consequently, the above map P1 —^ Zo^P^dego C ^o(P1)
determines a map in the derived category Z[2] —^ Zo(P1) which depends only upon the
choice of quasi-isomorphism Z[2] ^ Zo(Pl)de50• Thus, with somewhat more precision,
we may view the s-map as a map (well defined in the derived category)

Zr{X)[2] = Z,(X) ® Z[2] ̂  Z.-i(X)

obtained by restricting the join pairing

s :

Z,(X) 0 Zo(P1) ̂  Z^lWP1) ̂  Zr-l{X)

via Z[2] -. Zo(P1).
The naturality of this construction permits one to extend the definition of the s-operation

to the Lawson homology of quasi-projective varieties. Namely, if Y C X is a closed
subvariety of the projective variety X, then the join operation determines pairings

ZrW/z^Y) x z,^) -. z^•+l(x^pt)/^^,+l(y#pt).
So defined, the s-map determines a map of distinguished triangles

Z,(V)[2] -. Z,(X)[2] -. Z,(£/)[2]

-Z^(Y} -. Z.-i(X) - Z,-i(£/)
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FILTRATIONS ON ALGEBRAIC CYCLES AND HOMOLOGY 321

PROPOSITION 1.2. - IfX is connected and smooth of dimension n > 0, then H^{Zn-i{X))
is naturally isomorphic to Z with canonical generator determined by any pencil of divisors
coming from a 2-dimensional space of sections of a line bundle on some smooth projective
closure of X. Similarly, if X is an irreducible, projective variety of dimension n > 0,
then TT'z^Div^X)'^) is naturally isomorphic to Z, where Div^X)^ denotes the homotopy
theoretic group completion of the abelian topological monoid of effective Cartier divisors.

Consequently, a choice of quasi-isomorphism Z[2] ^ ZQ{Pl)degO determines a natural
map Z[2] —> Zn-i(X) which induces an isomorphism in H^ in the first case. In the second
case, there is a natural homotopy class of maps P1 —> Dw{X)^~ inducing an isomorphism
in TTa which is independent of the choice of pencil of divisors.

Proof. - Assume X is connected and smooth of dimension n > 0. We choose a
projective closure X C ~K C P^ such that X is smooth. Since Zn-i(Y) is discrete where
Y = ~K - X, we conclude that Zn-i{X) —^ Zn-i{X) induces an isomorphism

H^-l(X)) ̂  7T2(Zn-l(X)) -^ 7T2(Zn-l(X)) ^ ̂ n-lW).

By [F; 4.5], if L is any line bundle on X and P1 C Proj{F{L)) is any pencil of
divisors, then

pi -^ Proj(r(£)) ̂  Z.-i(X)

determines a quasi-isomorphism Z c^ 7v'z{Zn-i{X)). We conclude that

Z[2] ̂  ̂ (P1)^ ̂  ̂ n-lW -^ ^n-l(^)

induces an isomorphism in H^ as a map in the derived category, this map is independent
of the choice of pencil of divisors.

If X projective and irreducible, the proof of [F;4.5] shows that Div^X)^ fits in a
fibration sequence

p<^ -, Div(X)^ -^ Pic{X)

so that ^(Dw^X)^) ^ Z. Once again, the generator of ^(JOw^)4-) ^ ^(P^) is
determined by any pencil of divisors.

In the following theorem, we present other formulations of the s-map involving
intersection products introduced in [F-Gabber]. As remarked in [F-Gabber], these alternate
formulations establish the non-obvious property that s : Zr(X)[2] —> Zr-i{X) (as a map
in the derived category) is independent of the projective embedding of X. We gratefully
thank 0. Gabber for suggesting the proof of 1.3.b) presented below, a simplification of
our original proof.

THEOREM 1.3. - Let X be a complex, quasi-projective variety and r a positive integer.
a. The s-map equals (in the derived category) the map defined by restricting the following

pairing
4 0 X : Zr{X) 0 Zo(P1) -^ Zr-l{X)
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322 E. M. FRIEDLANDER

to Zo(Pl)dego ̂  Z, where ix : X C X x P1 embeds X as the divisor X x oo, where i^ is
the Gysin map associated to this divisor, and where x : Zr(X) x ^o(P1) —^ Zr{X x P1)
sends (Z,p) to Z x {p}. In particular, as a map in the derived category, the s-map is
independent of choice ofprojective closure X C X and ofprojective embedding X C P71.

b. If X is connected and smooth of dimension n > 0, then the s-map equals (in the
derived category) the restriction of the intersection pairing

Zr{X) 0 Zn-i(X) -. Z,-i(X)

via the map Z[2] -^ Zn-i(X)) of (1.2).
c. If X is an irreducible, projective variety of dimension n > 0, then the homotopy class

of the s-map is determined by the restriction of the intersection pairing

Zr{X)) A DW(X)+ -^ Zr{X)

via the map P1 -> Dw(X)^~ of (1.2).

Proof. - For X projective, the equality of the s-operation with i^ o Cj is proved in
[F-Gabber; 2.6], which immediately implies for X projective that the s-map is independent
of projective embedding. The proof given applies equally well to X quasi-projective, once
one replaces cycles spaces Z^{X) by the appropriate quotient spaces Z ^ ( X ) / Z ^ ( Y ) , where
X C X is a projective closure with complement Y. Moreover, the proof that Zr(X) is
independent of a choice of compactification X C X (up to natural isomorphism in the
derived category) is achieved by dominating any two compactifications by a third; the
naturality of i^r o x easily enables one to extend this argument to show that the s-map is
likewise independent of a choice of compactification.

To prove b.), we consider the following diagram

Z,(X)0Zo(P1) ^ Z r ( X x P 1 ) ^ Zr-i(X)

k x l | ( ^ x l ) , L
•^ ^ •[.

Z^X x P1) ® Zo(P1) ^ ^ ( (XxP^xP 1 ) ^ Z,_i(XxP1)

1 x Pr*2 | (1 x pr^Y | =
' 1 - 4 - i

WxP^^Z^XxP1) ^ Zn+r({X x P1) x (X x P1)) ^p Z^{X x P1)

T i x p r r T(I xpn)* T=
Z^XxP^^Zn^X) ^ Zn+r-l{{X X P1) X X) ^ Zr-l(XxP1)

]i* x 1 ](i x 1). T^

Zr{X) ® Zn-l(X) ^ Z^-l(XxX) ^ Zr-lW

Since z* : Zr(X) —>• Zr(X x P1) admits a right inverse (namely, pr-i*), we conclude using
the naturality of the isomorphism H-i(Zn-i{X)} that it suffices to verify the commutativity
of this diagram (in the derived category). The commutativity of the left squares follow
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FILTRATIONS ON ALGEBRAIC CYCLES AND HOMOLOGY 323

from the naturality of the push-forward (for proper maps) and pull-back (for flat maps)
functoriality of Zr{X). The commutativity of the top and bottom right squares follows
from [F-Gabber; 3.4.d] applied to the proper maps 8p : X x P1 —^ X x P1 x P1 and
Ajc : X —^ X x X. Finally, the commutativity of the middle right squares follows from
[F-Gabber; 3.4.d] applied to the flat maps 1 x pr^ : {X x P1) x (X x P1) -^ X x P1 x P1

and 1 x pn : {X x P1) x (X x P1) -> X x P1 x X.
Part c.) is proved in [F-Gabber; 3.1]

The first part of the following corollary is a consequence of (1.3.b), the second of [F; 3.5]

COROLLARY 1.4. - Let Cr,<,d{X) denote the submonoid ofCr{X) of effective r-cycles on
X of degree ^ d "with respect to some locally closed embedding X C P^.

a. Assume X is smooth and connected of dimension n > 0. If P1 c^. P C
Proj(r(X,0(e)) is a sufficiently general pencil of effective divisors of degree e » d
with chosen base point E € P, then

Cr,<d{X) A P -. Z.-i(X)

sending (Z, D) to Z ' D — Z • E is homotopic to the restriction of the s-map via
C^<dW C Zr-l(X).

b. Assume X is projective of dimension n > 0. Then for any d > 0 and all e » d,
there exists a continuous algebraic map

Cr^d{X) X P1 ^ Cr-l^<de{X)

which fits in a homotopy commutative diagram

Cr^d{X) X P1 ^ Cr-l,<de{X)

Z,(X)AZo(P1) -^ Zr-i{X) ^ Zr-i{X)

whose vertical arrows are induced by the natural inclusions.

Proof. - A proof that the generic divisor of degree e » 0 meets every cycle of
Cr,<d{X) properly is given in [Lawson; 5.11]. Consequently, a.) follows from Theorem
1.3.b and [F-Gabber; 3.5.a] (which asserts that the restriction of the intersection pairing to
cycles which intersect properly is homotopic to the ususal intersection product).

As defined in [F-Mazur] (for X projective), the s-map is induced by the composition
Zr(X) x P1 -^ Zr+i{X#P1) -^ Zr-i{X). By its very definition, the first map
when restricted to Cr,d{X) is given by a continuous algebraic map Cr,d{X) x P1 —^
Cr-{-i,d{X#P1). As shown in [F; 3.5] for any projective variety Y, every sufficiently
large multiple M of the inverse of the Lawson suspension isomorphism -jr^Zs^Y)) —^
7r*(Zs+i(Sy)) when restricted to Cs+i^SV) is represented by a continuous algebraic
map Cs4-i,d(Ey) —^ Cs,dM{Y) in the sense that when composed with the inclusion
Cs,dM{Y) —^ Zs(Y) the map is homotopic to the restriction to Cs+i^(Sy) of
M-E-1 : Z^i(X) -^ Zs{X) -^ Zs{X). This implies the second assertion of the corollary.
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324 E. M. FRIEDLANDER

In each of the maps of Corollary 1.5 below, one obtains s3 by additively extending
the domain of the indicated composition from Zr{X) x P to Zr{X) x Zo{P) and then
restricting to the appropriate factor of the Eilenberg-MacLane space Zo{P).

COROLLARY 1.5. - Let X be a complex, quasi-projective variety of positive dimension and
let r > j > 0. Then the s-map is induced by each of the following compositions:

(i) Z^X) x (P1)^ ^ Zr(X x (P1)^') ^ Zr-,{X).
(ii) Zr{X) x P3 -^ Zr(X x P3) -^ Zr-j(X).

(ill) Zr{X) x P3 -^ Zr^i{X#P3) -^ Zr-j(X), provided that X is projective.
(iv) Z^X) x (P1)^' ̂  Z^(X#{P1)*3) ̂  Z,-,(X), provided that X is projective.
In (i) and (ii), the left maps are given by product and the right maps are Gysin maps for

the appropriate regular immersion; in (iii) and (iv), the left maps are given by the algebraic
join and the right maps by the Lawson suspension theorem.

Proof. - The fact that s3 is given by (iv) follows directly from its (original) definition
of the s-map in terms of the join pairing and the inverse of Lawson suspension. That (i)
also determines s3 follows from (1.3.a.).

To prove (ii), we proceed as follows. Let P C P3x (P^3 be the closure of the graph of
the birational map relating P3 to (P1)'0. We employ the following diagram, commutative
in the derived category, to equate the maps given by (i) and (ii):

Zr{X) 0 ̂ ((P1)^') ^ Z,(Xx(P1)^) -. Z^(X)

- I- . T I
Zr(X)^Zo{P) -^ Z r ( X x P ) -^ Z r - j ( X )

Zr(X)(^Zo(P3) -^ Z r ( X x P 3 ) -. Z r - j { X )

Finally, we show that (iii) also determines the s-map. Iterating the argument of
[F-Gabber; 2.6] j times, we see that the composition of the maps

Z.(X) 0 ZoOP1)^) ̂  W x (P1)^) -. Z^(X x (P1)^-) ̂  Z^(X)

is trivial for i < j when restricted to Zr{X) 0 Zo^-P1)^)^. Using common blow-ups
Pi —^ (P1)^"',?! -> P3~^ as for (ii), we conclude that the composition

Zr(X) 0 Zo(P') -> Zr{X X P3) -^ Zr-i{X X P3-^ -^ Zr-i{X)

is also trivial for i < j when restricted to the summand of Zr(X) 0 Zo(P3) given by the
natural splitting of the projection Zr{X)^Zo(P3) -^ ^(X)0Zo(PJ)/%(PJ~l). In other
words, if we abuse notation and denote this summand by Zr(X) 0 ̂ (P^/^P^"1),
then we conclude that Zr(X) x ^(P^/^P^1) -^ Zr{X x P3) is homotopic to its
composition with pr^ o %' : Zr{X x P3) -^ Zr-j(X) -^ Zr(X x P3). Now consider the
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FILTRATIONS ON ALGEBRAIC CYCLES AND HOMOLOGY 325

following diagram

Z^(X)xZ^) ^ Z^{X#P^) s^1 ^-,(X)x! }p'
Zr{X x P^) ^ Z^i{W)

i^pr^

Zr-W

where X C P^ is a projective embedding and W is the closed subset of X x P3 x P^-^1

consisting of triples [ x ^ y ^ z ) with z lying on the line from x to y. The maps
TT : W -^ X x P 3 md p : W ^ X#P3 c P^-^1 are the projections; the square
is easily seen to commute. We easily verify that

p. o 7T* opr-i* - E^1 : Z.-,(X) -. Z,+i(X#P^).

This, together with the preceding verification, implies the equality of the compositions in
(ii) and (iii) when restricted to Zr(X) x ^(P^/^P-7"1).

One important property of the s-map is that it factors the cycle map to homology. For X
projective, this is one of the basic properties proved in [F-Mazur]; for X quasi-projective,
this is a conseqeunce of naturality as we make explicit in the following proposition.

PROPOSITION 1.6. - Let X be a quasi-projective variety. Then the cycle map

7 : Zr(X) -^ H^W

sending an algebraic r-cycle Z to its class ^{Z) in the 2r-th Borel-Moore homology group
of X is given by the following composition

Zr(X) -^ 7To(^(X)) ̂  7T2.(ZoW) ^ H^(X)

induced by the adjoint Zr{X) -^ ^Z^X) of ̂  : Zr{X) A (P1)^ ̂  Zo(X).

Proof. - Let X C X be a projective closure with complement Y. Then X/Y is a one-
point compactification ofX and ZQ{X)/ZQ(Y) ̂  Zo{X/Y)/ZQ{{oo}). Consequently, the
Dold-Thom theorem applied to X/Y implies the natural isomorphisms

Tfo^ZoW) ^ 7T2.(Zo(X)) ^ TT^WX/Y)) ̂  H ^ ( X / Y ) ̂  H^W.

Thus, the proposition follows from the commutative square

^(^(P^ ^ Zo(X)
I I

^(^(PT7' ^ Zo{x)
and the surjectivity of Zr(X) -^ Zr{X).
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326 E. M. FRIEDLANDER

We conclude this section by verifying some basic naturality properties of the s-map.

PROPOSITION 1.7. - Let X be a quasi-projective complex variety and r a positive integer.
a. If f : X —> Y is a proper map of varieties, then the following square commutes (in

the derived category):

W) ^ Z,-i(X)[-2]A! V
Z,(Y) A z.-i(y)[-2]

b. If g : Xf —f X is aflat map of varieties of pure relative dimension c, then the following
square commutes (in the derived category):

Z,(X) A Z,-i(Z)[-2]

9^\ 9"

Z^c{X1} ^ Z^-i(^)[-2]

c.IfX is smooth of pure dimension n and ifr' is a positive integer with r + r ' > n, then
the following square commutes (in the derived category):

Z,(X)®Z,/(X) ^s Z,(X)®Z,/-i(X)

Zr+r'-n(X) —>- Zr-^-r'-n-l [ X )

where • denotes the intersection product of [F-Gabber].

Proof. - To prove a.), it suffices to observe that /* induces a commutative diagram
of cycle spaces

Z,(X)XZ()(P1) -^ Z r { X x P 1 ) ^- Zr-lW

A x i l uxl^[ [^ •
Z,(V)xZo(P1) ^ Zr{YxP1) ^ Zr-i{Y)

The proof of b.) is similar. By [F-Gabber; 3.5], the diagram

Z,(X)0Z,/(X)®Z,-i(X) 1^ Z,(X)0Z,/_i(X)

•01 •

' ^ ~ -
Zr^T'-n{X} ® Zn-l{X) —^ Zr-^r'-n-l(X)

commutes in the derived category. Thus, c.) follows by applying Theorem 1.3.b).
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2. Graph mappings associated to Chow correspondences

A "Chow correspondence" from Y to X of relative dimension r is a continuous algebraic
map f '.Y —^ Cr{X). Such a map determines a cycle Zf on Y x X equidimensional over
V of relative dimension r (cf. [F-Mazur2] for an extensive discussion). In this section,
we investigate the "graph mapping"

Tf : Zk{Y) -> Z^k{X)

induced by a Chow correspondence/ : Y —>• Cr(X). The key ingredient in the definition
of Ff is the "trace map"

tr : Ck{W)) -. C^k{X)

introduced in [F-Lawson; 7.1]. This is defined to send an irreducible subvariety W C Cr{X)
of dimension k to prx^ {Zw), where Zw is the cycle on W x X given as the correspondence
equidimensional over W associated to the inclusion morphism W C Cr(X). We also
consider composition of Chow correspondences, associating to continuous algebraic maps
/ : V -^ Cr{X), g : X -^ Cs{T) a continuous algebraic map g • / : Y -^ C^(T).

In more detail, the section begins with a definition of the graph mapping and presents an
intersection-theoretic interpretation for smooth varieties. This interpretation encompasses
intersection with correspondences not necessarily equidimensional over their domain. The
result of most interest in this section is Theorem 2.4, a corollary of which exhibits for a
given cycle a cycle which is algebraically equivalent to a multiple of the original cycle
and which is equidimensional over a projective space. The section ends with a verification
that the graph mapping construction commutes with compositions.

DEFINITION 2.1. - Let y, X be projective algebraic varieties and let / : Y —> Cr{X) be
a Chow correspondence. We define the graph mapping associated to /

Yf : Zk(Y) -^ Zr+k{X)

to be the group completion of the composition

tr o /, : Ck{Y) -^ Ck{Cr{X)) -^ C^kW

where f^ is the map functorially induced by / (cf. [F; 2.9]) and where tr is the trace
map of [F-Lawson; 7.1] described above.

Let Vf C X denote prx*{\ Zf |), the projection to X of the support of Zf on Y x X,
the cycle associated to /. Then tr o f^ factors through a map

{trof^:Cr{Y)-.C^k{Vf)

whose group completion

Ff : Zk{Y) - Z^(Vf)

we call the refined graph mapping.
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An explicit description of Tf{W) for W irreducible of dimension k on Y is as follows.
Let ^ denote the generic point of TV. If f{uj) has dimension < k as a scheme-theoretic
point of Cr(X), then Ff(W) = 0. Otherwise, let ^A, denote the cycle with Chow
point /(^), where each irreducible A, is a subvariety of X^f^. If the generic point of
Ai maps to a scheme-theoretic point of X of dimension fc + r, let B, denote the closure
of this point in X\ otherwise, take B, to be empty. Then Tf(W) = V^B,. Using this
description, we immediately conclude that

(2•L1) rywo = pr^{Zf^ = r^(w)
where i : W -> Y is the closed immersion of W in V.

Our first proposition concerning Fy provides an intersection-theoretic interpretation in
the special case in which both Y and X are smooth.

We are much indebted to Ofer Gabber for pointing out an error in an earlier version of
the second assertion of Proposition 2.2 and guiding us to the following formulation.

PROPOSITION 2.2. - Consider a Chow correspondence f : Y -^ Cr(X) with both X and
Y projective and smooth. The graph mapping

Ff : Zk{Y) -. Zr+kW

sends an irreducible subvariety W of dimension k on Y to

Tf(W)=prx.(prW)'Zf^

where Zf is the cycle on Y x X associated to f and where pr^(W) - Zf denotes intersection
of cycles (meeting properly) on the smooth variety Y x X.

Conversely, consider some m + r-cycle Z on Y x X, where m denotes the dimension
ofY. There exist smooth projective varieties V, of dimension m - c,, maps gi : Yi —^ Y,
and Chow correspondences fi : Yi -> Cr+aW suc^ that for any irreducible subvariety
W of Y of dimension k

S^W), prx^y{W) . Z)

are rationally equivalent, where W, = g,(W} is a {k - Ci)-cycle on Yi representing the
Gysin pullback of W.

Proof. - Let i : W c Y be an irreducible subvariety of dimension k and let j : V —^ Y
be a (Zariski) open immersion with the property that i' : T ^ W r\V —^ V i sa regular
immersion. Since Ff^W) = prx^Zf^), to prove the first assertion it suffices to prove that
Zfojor (which equals the restriction of Z/ai to T x X C W x X) equals pr^(T) • Zfoj.
The Gysin pullback (i' x l)'(Z^oj) equals (essentially by definition) the intersection
pr^(T}' Zfoj. Thus, the equality Tf{W) = prx^pr^W)' Zf} follows from the fact that

Z^oi' = ̂  x l)'(^)

(cf [F-Mazur; 3.1]).
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To prove the converse, we immediately reduce to the case that Z is irreducible, so
that pr\ : Z —> Y has image some subvariety V C Y of dimension m — c. Then
Z -^ V is generically of relative dimension r + c, thereby determining a rational map
gv : V - - > Cr-^-cW. Let V C V x Cr-^c{X) be the graph of this rational map;
thus, V is the closure of the graph of a morphism gu : U —> Cr+c(X) with domain
some dense open subset of V. Let g : Y ' —> Y denote the composition of some smooth
resolution h : Y ' —^ V (i.e., a proper, birational map with Y ' smooth) and the projection
pri : V —^ V and let // : Y ' -> Cr-^c{X) denote the composition pr^ o h. If U ' C Y ' is
an open subset lying in V\ then Zji restricted to U ' x X maps via g x 1 isomorphically
onto some dense open subset of Z, so that (g x l ) ^ ( Z f ' ) == Z.

By the first half of the proposition,
^f^g[W)=prx.{pr^^WVZ^.

On the other hand, since prx ' ' Y ' x X —> X equals prx ° (g x 1) '• Y 1 x X —^ Y x X —> X,
prx.{pr^{9-W) . Zf.) = prx. o (g x lUpr^'W) . Z^.

Applying the projection formula ([Fulton; S.l.l.c]) and the equality pr^(g'W) =
{g x lY'{pr^W), we conclude that

(9 x lUpr^-W) . ̂ /), pr^{W) . (g x 1),(^)
are rationally equivalent. Thus, the proof is completed by applying the equality
{g x l)^(Zy/) = Z verified above.

In the next proposition, we verify that the graph mapping commutes with the s-operation
considered in detail in section 1.

PROPOSITION 2.3. — Let y, X be projective algebraic varieties and consider a continuous
algebraic map f : Y -^ Cr{X). Let Vf C X denote prx*(\ Zf \), the projection to X of
the support of the cycle Zf on Y x X associated to f. For any pair of positive integers
r, k, the following diagram commutes (in the derived category)

Zk(Y) ^ Zk-i(Y)[-2]

M h
W) ^ z,_i(^)[-2]

where Ff : Z^.(Y) —>• Z^r(Vf} is the refined graph mapping.

Proof. - Let ix : X -^ X x P1 , zc '' Cr{X) -^ Cr{X) x P1 denote the fibre inclusions
above oo G P1. We consider the following diagram of cycle spaces

Z k ( Y ) x Z o ( P 1 ) ^ Z k ( Y x P 1 ) ^ Zk-i(Y)

f. x 11 A x 11 | /,
^ s^ ^

Zk{Cr{X}} X Zo(P1) -^ Zk(Cr(X)xP1) ^ Zk^{Cr(X))

tr x 1 (tr x 1) o x tr\
4- 4' •\<

Zr+kW x Zo(P1) -^ Zr+k{XxP1) ^ Z^k-iW
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where x : Zj(V) x Zo(W) -^ Zj{V x W) sends (Z, w) to Z x w. By (1.3.a), the horizontal
rows induce the s-map, whereas the left and right columns induce iy Consequently, to
prove the weak form of the proposition with the refined graph mapping fy replaced by
the graph mapping F^, it suffices to prove the commutativity (up to homotopies through
group homomorphisms) of the above diagram. The upper and lower left squares commute
as can be seen by inspection; the upper right square commutes by .[F-Gabber; 3.4.d].

To verify the (homotopy) commutativity of the lower right square, we employ the
projective bundle theorem of [F-Gabber; 2.5] which implies that

ic. e^i*: Wr(x)) e Zk-i{W)) -^ ^(c,(x) x p1)
is a quasi-isomprphism with quasi-inverse prc^ x i^. Observe that i^ vanishes on the
summand ic^{Zk(Cr{X))) and that this summand maps via (tr x 1) o x to the summand
ix*(Zk{X)) of Zk{X x P1) on which ̂  vanishes. Since pr^ is left inverse to i^ and pr^
is left inverse to v^ in the derived category, we may verify the homotopy commutativity
of the lower right square by showing the commutativity of the square obtain by replacing
^c' ^x ^V P^c^ P^x' The commutativity of this latter square is easily seen by inspection.

We now consider the corresponding diagram for the refined graph mapping (where V
denotes Vf):

^(r)xZo(P1) ^ Zk(Yxp1) ^ ^-i(v)
r , x i | | |r/-i- ^ •[•

Z^(V)xZo(P1) ^ Z^(VxP1) ^ Z^-^V)
whose middle row is induced by the middle column of the preceding diagram. The
commutativity of the left square of the above diagram follows from the commutativity of
the left squares of the preceding diagram. To prove the homotopy commutativity of the
right square, we proceed as above using the projective bundle theorem to verify homotopy
commutativity on each summand of Zk(Y x P1), where

iy. epr^: Zk{Y) e^-i(y) ̂ w x P')
is a quasi-isomorphism. On the summand %y^(Zfc(^)), iy vanishes as does iy ofy On the
summand pr^{Zk-i (Y)), the required commutativity follows by replacing the maps %y,
iy by their left inverses pr^.pr^ (in the derived category) and verifying commutativity
by inspection.

For a given Chow variety Cr-^i,d(X#P3) of some suspension X#P3 of a projective
variety X, there exists some positive integer E (depending upon X,r,j) such that for all
e > E there exists some continuous algebraic map

^e: C^d(X#P^) -^ Cr-j^X)

with the property that ^e o S^ is algebraically homotopic to multiplication by e. Hence,
(1.5.iii) implies that the following diagram commutes up to homotopy

C^d{X) X P3 ^ a+l,dWP^) ^ Cr-^de{X)

Z.WA^P^) ^ Z^(X) ^ Zr-j{X)
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thereby generalizing (1.4.b).

THEOREM 2.4. - Let X be a projective algebraic variety, f : Y —^ Cr,d(X) be a Chow
correspondence, and i : W C Y an irreducible subvariety ofY of dimension k. For any j
with 0 < j < r, let #(f) : Y x P3 ^ Cr+i,d(X#P3) denote the Chow correspondence
given by the composition the composition

# 0 f X 1 : V X P3 -. Cr^X) X P3 ^ Cr^d(X#P3).

We consider the graph mappings Ff : Zjc(Y) —^ Zr-^-k{X) and F^(^) : Zk-^-j(Y x P3) —>
Zr-^k^-j-^i(X^P3). These are related as follows.

a) r^{w x p3) = E^iyw)).
b) e • S^r^lY), SJ+l^^o#(^)(^ x P3) are effectively rationally equivalent, where

Ve '- Cr+i,d{X#P3) —^ Cr-j,de{X) is as discussed above.
c) e • Ff(W) = prx^e ' Zf\ r^#{f)(W x P3) = prx^{Z^#{f)) are rationally

equivalent.

Proof. - Using (2.1.1), we immediately reduce to the case that W = Y. Assertion a.)
follows from the observation that the generic point of W x P3 is mapped via / x 1 to
the Chow point of the cycle on X#P3 whose closure is E^^F^l^)), since Ff(W) is
the cycle on X which is the closure of the cycle whose Chow point is the image under
/ of the generic point of W.

For any Chow corespondence g : Y —> Cs ,c{X) the composition of g with
E : C^c{X) -> Cs+i,c(SX) has the effect of sending the cycle Zg on Y x X
equidimensional over Y to its fibre-wise suspension Sy(Z^) on Y x S(X). These cycles
satisfy E(j?rj^(Z^)) = pr^x*[Z^og}. Moreover, an algebraic homotopy F : WxP3 xC —^
Cr^d(X#P3) relating two Chow correspondences /i,/2 : W x P3' ^ Cr^i^(X#P3)
has associated cycle Zp which provides an effective rational equivalence between the
associated cycles Zf^Zf^ (as verified, for example, in [F-Mazur2]). Since S-7^1 o Ve ''
Cr-^-i,d{X#P3) —^ C'y.+i^e^^P'O is algebraically homotopy equivalent to multiplication
by e, we conclude that

y+lr^^(Wxy),e.Y#(^WxP^=e.^l(^f(W))

are rationally equivalent.
The Lawson suspension theorem remains valid for algebraic bivariant cycle complexes

[F-Gabber; 4.6.c], so that the rational equivalence classes of r 4- fc-cycles on X
(i.e., 7To(Ar+fc(*,X))) map isomorphically via S-7"^1 to rational equivalence classes of
r + k + j + 1-cycles on S^+^X). Thus, c) follows from b).

We specialize Theorem 2.4 to the special case in which W is simply a point. One can
interpret the assertion of Corollary 2.5 as providing a method of moving a cycle Z to a
rationally equivalent cycle which is equidimensional over a projective space.

COROLLARY 2.5. - Let Z be an effective r-cycle of degree dona projective variety X and
let C : P3 -^ Cr+i,d(X#P3) send t e P3 to Z#tfor some j with 0 < j ^ r.

a) r^(P3) = S^Z).
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b) e ' S^^Z), S^r^o^P-Q are effectively rationally equivalent.
c) e • Z, r^ocCP'Q ar^ rationally equivalent
d) The image of(^)^[P3]) C H^{Cr-j,de(X)) in H^{Zr-j(X)) equals the Hurewicz

image of s^e ' {Z}) € ^-(^r-jW).

Proof. - Specializing Theorem 2.4 to the case in which Y == W is a point, we obtain the
first three assertions. To determine the Hurewicz image of ^(e • {Z}), we use (1.5.ii) and
observe that the Hurewicz image of {Z} A 5'2-' G ̂ {Z^X} A ^(P^)) is the image of
{Z} 0 [P3] 6 H^j(Cr,d{X) x P3). Applying H^ to the diagram preceding Theorem 2.4,
we conclude the last assertion.

We now consider the composition of Chow correspondences.

DEFINITION 2.6. - Let Y,X,T be projective varieties and consider continuous algebraic
maps

/: Y^CrW^ g : X^C^T).

Then the composition product

g . / : V -. C^s{T)

is defined as the composition

tr o ̂  o / : Y ̂  Cr(X) ̂  C,(C,(T)) -. C^(T).

One application of the following proposition is a proof (in [F-Mazur2]) that
"correspondence homomorphisms" behave well with respect to the correspondence product.

PROPOSITION 2.7. - Let Y,X,T be projective varieties and consider Chow correspondences

f: y-^c,(x), g : X^C,(T).
Then the graph mapping associated to the composition product is given as the composition
of graph mappings:

r^-r,or^:z.(y)-z.+^(r).

Proof. - We consider an irreducible subvariety W of Y of dimension k and proceed
to prove that Tg.f(W} = Tg(T f(W)). We interpret Ff(W) in terms of generic points as
follows. Let a; € W C Y be the generic point of W and let % = /(a;) e Cr(X). Then
^ is the Chow point of an effective cycle ]>• Ai with each Ai an irreducible subvariety
of Xk{^). (k(x) denotes the residue field of the scheme-theoretic point % G Cr(X)). Let
\i e X be the scheme-theoretic point defined as the image of the generic point of Ai
under the composition Ai C Xk^ -^ X. Then Tf{W) is the sum of those subvarieties
{Xi}~ C X which are of dimension k + r.

Consider now 7^ = ^(^), a scheme-theoretic point of Cs{T). Then 7^ is the Chow point
of a cycle T^C^j, where each Cij is an irreducible subvariety of T^). Let 7^ € T
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be the scheme-theoretic point defined as the image of the generic point of Qj under
the composition C^y c T^) —> T. Then rg{Tf{W)) is the sum of those subvarieties
{^ij}~ C T which are of dimension k+r+s.

On the other hand, let r = g^{\), a scheme-theoretic point of Cr{Cs(T)). Then r is
the Chow point of an effective r-cycle Y^ Ri with each Rz an irreducible subvariety of
Cs{T)k(r)' (In fact, Ri = ̂ (A,), A, C X^). Let pi € Cs(T) denote the generic point of
Ri, Then pi is the Chow point of a cycle V^ P,j with each Aj an irreducible subvariety
of Tup,). Let 6ij 6 T (respectively, ^^ e TA^)) be the scheme-theoretic point defined as
the image of the generic point of Dij under the composition Dij C 7fe(p,) —> T (resp.,
Dij C Tfe(^) -^ Tfc(^)). Essentially by definition, ^ • /(o;) = ^(r) € C^(T)^) is the
Chow point of the cycle defined as the sum of those subvarieties {<^,}~ C T^) which
are of dimension r+s. Thus, Tg.f(W) is the sum of those subvarieties {Sij}^ C T which
are of dimension k+r+s.

Finally, we verify by inspection the equality of the set (with possibly repeated elements)
of those 7 -̂ € T of dimension k+r+s and the set of those Sij e T of dimension k+r+s.

3. Filtrations on Cycles

As observed in [F-Mazur; 1.4], considering kernels of iterates of the s-operation on
7TQ{Zr{X)) provides an increasing filtration on algebraic r-cycles beginning with the
subgroup of those cycles algebraically equivalent to 0 and ending with those homologically
equivalent to 0. In Theorem 3.2, we identify this "S-filtration" in terms of images under
graph mappings of cycles homologically equivalent to 0. This identification is closely
related to a filtration introduced by Nori [Nori] and is readily verified to dominate NorTs
filtration whenever the latter is defined. In fact, we show that one can view the S-filtration
as merely the extension of Nori's filtration to include possible contribution from singular
varieties. We also show that our S-filtration is dominated by a filtration considered by
Bloch and Ogus [Bloch-Ogus], thereby strengthening an observation of Nori's that his
filtration is dominated by that of Bloch and Ogus.

DEFINITION 3.1 (cf, [F-Mazur; 1.4]). - Let X be a quasi-projective algebraic variety and
r a non-negative integer. Two r-cycles Zi, Z^ are said to be r^ equivalent for some k with
0 < k < r if Zi - ̂ 2 € Zr{X) lies in the kernel of

Zr{X) ̂  7To(Z.(X)) ̂  TT^Zr-kW).

We call the resulting filtration

{SkZr{X)} = [Z e Zr{X) : Z Tfc-eqmvalent to 0}

the 5'-filtration.

In particular, two algebraic r-cycles are TO -equivalent if and only if they are algebraically
equivalent and are Tr-equivalent if and only if they are homologically equivalent (with
respect to singular Borel-Moore homology).
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In what follows, we shall often abuse notation by applying the s-operation to elements of
Zr(X) (viewed as a discrete group) rather than to their equivalence classes in 71-0 (Zr(X)).

In the following theorem, we use the properties of the s-operation developed in section 1
to provide an interpretation of Tk equivalence inspired by an equivalence relation introduced
by Nori in [Nori].

THEOREM 3.2. - For any projective algebraic variety X, SkZr(X) C Zr(X) is the
subgroup generated by cycles Z of the following form: there exists a projective variety Y
of dimension 2k + 1, a Cho\v correspondence f : Y —^ Cr-k(X), and a k-cycle W on Y
homologically equivalent to 0 such that Z is rationally equivalent to Y f(W).

Proof. - To verify the theorem in the special case k = 0, we recall (cf. [Fulton]) that
the subgroup of r-cycles algebraically equivalent to 0 is generated by cycles Z = Z ' — Z"
of the following form: there exists a smooth connected curve (7, an effective cycle V on
X x C, and points i//, w" on C such that Z'\ Z" are the fibres of V over w', w". We readily
verify that this is equivalent to the assertion that Z = Ff(W), where f : C —> Cr,d(X)
sends w ' . w " to the Chow points of Z ' , Z " and W = [w'} - [w"}.

We now assume that k > 0. Consider an algebraic r-cycle Z given as a difference of
two effective r-cycles Z == Z ' — Z" and assume that sk{Z') = 0 (which is equivalent to
s ^ Z ' ) = ^(Z7')). Consider

C',0': P' - C^WP^

sending ^ C P^ to Z'#t, Z"#t. By (1.5.iii), the square

C ^ W X P ^ ^ C^WP^
I ^ ^ I

^(X)AZo(P') sfc4-w Z.+i^W)
commutes up to homotopy. Since

{Z}^^], { Z ' } ^ ^ } e H^C^d(X) x P")

map to the Hurewicz images of

{Z}^S2\ { Z I } ^ S 2 k G 7T2^(X) A Zo(P'))

we conclude that

C:([P'D, €;([?']) e H^C^WP^
have images in H^Zr^^X^P^} ̂  H'zk{Zr-k{X)) equal to the Hurewicz images of
.^(Z'), sk{Zff) and thus are equal. Since the homology of Zy+^X^P^) is the direct
limit (with respect to translation by elements in ^(^-^(X^P^))) of the homology of
C^+^X^P^), we conclude that

CA*([P']) = C^([P'D e H^C^^X^))
where CA^C^ denote the compositions of C^C" wlt!1 translation by some A €
Cr-\-i,a (X#Pk) of sufficiently high degree a.
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Choose E sufficiently large that there exists for all e' >_ E some continuous algebraic map
Ye' '- Cr-}-l,d-\-a(X#Pk) —> Cr-k^d+a^e'(X) representing e1 times a homotopy inverse to
Lawson suspension E^"^1 : Zr-k{X) —^ Zr-^-k-\-i(X) and let C^ C/ denote the compositions
Ye' o CA^ o C^. Then

C^OP']) = C/,*([P'D ^ ̂ (0_,,(^/(x)).
By taking successive hyperplane sections which contain the images of (^ ? C^ anc!
the singular locus of the preceding hyperplane section, we may apply the Lefschetz
hyperplane theorem for singular varieties [Andreotti-Frankel] to obtain some closed
subvariety Ye' C Cr-k {d-{-a)e'{X) of dimension 2k + 1 such that C^?C^ factor through
g^g^ : Pk -^ Ye' and

^([p'D-^ap'D ^ H^W).
(A similar application of [Andreotti-Frankel] is presented in detail in [F-Mazur2; 3.2].) We
define fe' '. Ye' —> Cr-k(X) to be the inclusion and we define the cycle We' € Zk(Ye') as

^'-^([p'D-^ap'])
so that We' is homologically equivalent to 0 on Vg/.

We claim that Z is rationally equivalent to Fy^ (We+i) - Tfe (We). Namely, E^Z' is
rationally equivalent to ^/([P^]) by (2.5.a), whereas the latter equals r^QP^]) because
the graph mapping is unaffected by the addition of a constant family. Consequently,
(2.5.c) implies that F^/ ([P^]) is rationally equivalent to e ' ' Z ' \ On the other hand,
r^OP^D = r^O^ai^])). Similarly, e ' Z " is rationally equivalent to ^/(^([P'])),
thereby proving that e ' Z is rationally equivalent to Tf^(We').

To prove the converse statement of the theorem, suppose Z is rationally equivalent to
Ff(W), for some projective variety Y of dimension 2k + 1, continuous algebraic map
f : Y —> Cr-k{X), and k-cycle W on Y homologically equivalent to 0. We must show
.^(Z) = 0. Clearly, we may assume Z = Ff(W). The hypothesis that W is homologically
equivalent to 0 is equivalent to the condition that ^(W) = 0. Consequently, sk(Z) = 0
by Proposition 2.3.

In the proof above of the converse statement, we did not require any constraint on the
dimension of Y. Thus, Theorem 3.2 remains valid if the assertion is changed by dropping
the condition that Y be of dimension 2k + 1.

Nori's filtration {AkCHr{X)} on the (discrete) group of algebraic r-cycles on a
projective, smooth variety X is defined as follows: AkCHr{X) C Zr(X) is the subgroup
generated by those cycles rationally equivalent to cycles of the form

p r x ^ ( p r ^ W ' Z ) ^ W ^ Z k ( Y ) ^ Z e Z^c-k{Y x X)

where Y is a projective smooth variety of some dimension c, W e Zk(Y) is homologically
equivalent to 0, and pry : Y x X —> Y^prx '. Y x X —> X are the projections.
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Using Proposition 2.2, we re-interpret Nori's filtration using our graph mapping in terms
exactly parallel to the condition of Thereom 3.2. We see for X smooth that the Tfc-filtration
differs from Nori's only in that one permits not necessarily smooth domains Y for the
graph mapping Fy associated to a Chow correspondence / : Y —^ Cr-k{X). One can view
the graph mapping as a useful formalism which permits consideration of singular varieties
(which do not readily fit into a formalism involving intersection pairings).

COROLLARY 3.3. - Let X be a smooth, projective algebraic variety. Then

AkCHr{X) C SkZr{X).

Moreover, AkCHr{X) is the subgroup of Zr{X) generated by those r-cycles Z rationally
equivalent to Tf{W) for some smooth projective variety Y, continuous algebraic map
f :Y —> Cr-k(X), and k-cycle W on Y homologically equivalent to 0.

Proof. - To prove the containment AkCHr(X) c SkZ^{X\ we consider an element
^ = 7ri*((7r^ - v)) of AkCHr(X), with u E Zk(Y) homologically equivalent to 0 so that
s^u) = 0. By (1.7.b), s^^u) = 0; by (1.7.c), ̂ ((^ . v)) == 0; by (L7.a), ^(^ == 0.
Hence, ^ G SkZr{X).

By Proposition 2.2, Fy(W) = pr^^pr^W-Zf) whenever X, Y are smooth, so that if the
fc-cycle W on Y is homologically equivalent to 0 then r^(W) lies in AkCHr(X) for any
f :Y -> Cr-k{X). (This also follows from Theorem 3.2.) Let A^CH^X) C AkCHr{X)
denote the subgroup generated by cycles rationally equivalent to such cycles Tf(W) as /
varies. We proceed to show that this inclusion is the identity.

Consider an arbitrary generator of AkCHr(X)

p r x ^ p r ^ W ' Z ) , W E Z k { Y ) , Z e Z^c-k(Y x X)

as in the definition of Nori's filtration. Applying Proposition 2.2 once again, we conclude
that prx^{pr"yW ' Z) is rationally equivalent to Vr^(V^) where ^ : V, ^ Y is a
map from a smooth projective variety Yi of dimension dim(Y)-c^ for some Ci > 0,
fi : Yi -» Cr-k+a{X) is a Chow correspondence, and Wi == g\{W} is a k - c,-cycle on V,.
Let Ue '' ^-fc+c,+l(^#PC^) -> Cr-k{X) be as in Theorem 2.4 so that ^oS01 is homotopic
to multiplication by e. By part c.) of Theorem 2.4, T^(Wi) is rationally equivalent to

r^o^)W x p01) - r^ow)W x P'Q.
The fact that W is homologically equivalent to 0 on Y implies that Wi == g\(W)
is homologically equivalent to 0 on V, (cf. [Fulton; 19.2]). Thus, each Wi x P01

is homologically equivalent to 0 on Yi x P01, so that each F^(W,) and thus also
prx^pr^W • Z) is in A^CH^X).

Nori constructs examples of algebraic r-cycles homologically equivalent to 0 but
not in Ar^iCHr(X). His examples are of the form of the restriction ^'(W) of some
W € Zr^h(V) with dy(W) ^ 0 € H^+2h(V) to a sufficiently general complete
intersection i : X = V D Di D ... H Dh C V of a projective, smooth variety V, Nori
shows that these cycles can not be in the (r-l)^ stage of his filtration, whereas they can
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indeed be homologically equivalent to 0. It seems likely that NorTs examples are examples
of cycles Z ^ r(W) € Zr{X) with s^Z) == O^-^Z) ^ 0.

We next turn to the filtration of Bloch and Ogus [Bloch-Ogus]. The fc-th stage of their
filtration,

BkCHr(X) C ZrW

is the subgroup generated by those algebraic r-cycles Z for which their exists an r 4- k +1'
dimensional subvariety V of X suppporting Z such that Z is homologically equivalent to
0 on V. BoCHr{X) is the subgroup of r-cycles algebraically equivalent to 0 [B-0; 7.3],
hence equal to AoCHr(X) = SoCHr{X).

In the following proposition, we prove that the S-filtration is dominated by that of
Bloch-Ogus. This result was first proved by 0. Gabber by different methods.

PROPOSITION 3.4. - Let X be a complex projective algebraic variety and r a non-negative
integer. Then for all k < r,

SkZr{X) C BkCHr{X).

Proof. - By Theorem 3.2, it suffices to consider a cycle Z € Zr(X) of the form
Tf(W), for some projective variety Y of dimension 2k + 1, continuous algebraic map
f : Y -^ Cr-k{X), and k-cycle W on Y homologically equivalent to 0. To prove the
proposition, it suffices to exhibit some g : V —> X with V a projective variety of dimension
r + k + 1 and a cycle Z ' € Zr(V) with g ^ Z ' ) == Z and with ^Z'} = 0 G H^(V).

We take V equal to Vf, where fy : Z^(Y) -^ Z^r-k(Vf) is the refined graph mapping,
and take Z ' equal to tf(W). Since W is homologically equivalent to 0,

s\W) = 0 € ̂ (W));

by Proposition 2.3, this implies that

^(W)) = 0 € ff2^-^))

which implies that

^tf(W}} == S^tf^)) - 0 E H,rWV)) = H2r{V).

4, Homology filtrations and the Grothendieck^s Conjecture B

If X is a projective, smooth variety of dimension n, then the Strong Lefschetz Theorem
asserts that

h^: ^2n-i(X,Q)^Jf.(X,Q)

is an isomorphism, where h denotes intersection with the homology class of a hyperplane
section. A. Grothendieck has conjectured (in a conjecture referred to as Grothendieck's
Conjecture B; cf. [Grothendieck] and [Kleiman]) that the inverse of this isomorphism

A^: IWQ)-^2n-z(X,Q)
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is an "algebraic correspondence". In other words, there exists some homology class
^T" G H^n-2i{X x X) in the linear span of the set of fundamental classes of 2n - i-
dimensional subvarieties o f X x X such that for any u € Hi(X, Q) with Poincare dual
u e H^-^X.Q)

A^-^u) = pr^pr^u H ̂ -i) = u^-1.

As we see below, this conjecture is closely related to a conjecture of [F-Mazur] that the
"topological filtration" on Hm{X^Q) with r-th term

TrHm{X, Q) = image^ : 7r^-2r(^rPO) 0 Q ̂  Tr^(ZoW) 0 Q}

equals the "geometric" (or "niveau") filtration on Hm{X^ Q) whose r-th term is

GrHm{X, Q) = span{z,(^(r)); i : Y C X with dim(V) < m - r}.

More specifically, we prove in Proposition 4.2 that if a resolution of singularities Y
of each subvariety Y C X satisfies Grothendieck's Conjecture B then we do indeed
have the equality of topological and geometric filtrations on H^(X^ Q). More generally, in
Proposition 4.3 we verify that ifX satisfies Grothendieck's Conjecture B then the "primitive
filtration" is subordinate to the topological filtration. As a corollary, we conclude a result
of R. Hain [Hain] that the topological and geometric filtrations are equal for a sufficiently
general abelian variety.

In [F-Mazur2], a Chow correspondence f :Y —> Cr(X) with Y,X projective is shown
to determine a correspondence homomorphism

^: H^Y)-.H^(X)

which can be described as the following composition:

H^(Y) ̂  7T*(Zo(^)) r-̂  7T,(Z,(X)) ̂  7T,+2r(^oW) ^ ^*+2rW.

The following proposition is the homological analogue of the second half of Proposition
2.2.

PROPOSITION 4.1. - Let X be a projective, smooth variety of dimension n and lei Z be
an n + r-cycle on X x X for some r >_ 0. Then there exist projective smooth varieties Xi
of dimension n — Ci, maps gi : Xi —> X, and Chow correspondences fi : Xi —^ Cr-^a(X)
such that for any a E Hm{X, Q) with Poincare dual a G H^-^^X, Q)

^ <^(a,) = pr^pr^a H [Z]) = a\[Z]

where (^^ is the correspondence homomorphism associated to the Chow correspondence
fi and oil == f-t(^J) ^le Gysin pullback of a via fi.

Proof. - Clearly, we may assume that Z is irreducible. As argued in the proof of
Proposition 2.2, pr^ : Z C X x X —^ X has image some irreducible subvariety V of X
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of dimension n — c and thus determines a rational map V — — > Cr+c(X). This in turn
determines a Chow correspondence /// : V —> Cr+c(^0 where V is the graph of this
rational map. We define g = pr\ o h : Xf —^ X, given by a resolution of singularities
h : X' —> V'\ we define f = f" oh '. X' —^ Cr-{-c{X). As seen in the proof of Proposition
2.2, {g x 1),(Z^) = Z.

Let a' = f'*{o^. Applying the projection formula, we conclude that

&'\[Zf'\ = rW\[Zf-} = a\(f x 1),([Z/-]) = a\[Z\.

By [F-Mazur2], the left-hand side of the above equality equals the image of a'
under the correspondence homomorphism ^>fi associated to the Chow correspondence
f : X' -. C^(X).

Proposition 4.1 enables us to easily conclude that Grothendieck's Conjecture B implies
the equality of the topological and geometric filtrations.

PROPOSITION 4.2. - Let X be a projective, smooth variety of dimension n. Assume that
Grothendieck's Conjecture B is valid for a resolution of singularities of each irreducible
subvariety Y C X of dimension m — r. Then

TrHm{X,Q)=GrHm{X,Q).

Proof. - As shown in [F-Mazur], TrH^(X,Q) C GrHm(X,Q) for any projective,
smooth X. To prove the reverse inclusion, consider a class a G Hm(X^Q,) lying in the
image of Hm(Y,Q) with Y C X of dimension m - r. Let Y —^ Y be a resolution
of singularities (i.e., a proper birational map with Y smooth) satisfying Grothendieck's
Conjecture B. We recall that the theory of weights of Mixed Hodge Structures developed by
P. Deligne implies that there exists some 7 G Hm(Y, Q) mapping to a (cf. [F-Mazur; A.I]).
Since the connected components of Y are resolutions of the irreducible components of V,
we may assume that Y is irreducible and thus Y is connected.

The Strong Lefschetz Theorem for Y implies that there exists some 6 € Hm-2r(Y\ Q)
with A^ (6) = 7. By hypothesis, there exists an m + r-cycle Z on Y x Y such that

pr2.{prW . [Z]) = c • 7 G H^(Y\ Q), c / 0 G Q.

By Proposition 4.1, there exist projective smooth varieties Yi of dimension m - r - c^,
maps Qi \Yi —> y, and Chow correspondences fi : Yi —> Cr-^-a {Y) such that

^fA6i)=pr2.{prW'[Z})

where 6, = g^S^E ^-2rW, Q) is the Gysin pullback of 8. Let q, :Y, -^ Cr-^c,{X) be
the composition of fi and the map Cr-^a(Y) —^ Cr+a{X) induced by Y —^ Y —^ X. Then

^^(^)=c.ae^(Z,Q)
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thereby showing that a lies in CrHm{X,Q), the r-th stage of the "correspondence
filtration" on Hm{X,Q) (which contains C7r+c^mpC,Q) for any c ^ 0). Since
CrHm{X, Q) has been shown in [F-Mazur; 7.3] to equal TrHm{X, Q), we conclude that

GA(X,Q)CT^(X,Q)

as required.

If X is a projective, smooth variety of dimension n, we define the "primitive filtration"
on Hm(X, Q) as follows. For i <, n, the primitive subspace Prim(ff,(Z, Q)) c Hi{X, Q)
is the kernel of h : Hi{X,Q) -^ Hi^{X,Q) whereas Prim^n-z^ Q)) =
A^Prim^^Q)). For % < n, we define

P^2n-z(X, Q) - ̂  ̂ (Prim(^2n+2,-z(^ Q)))

j>r

and
PrHi{X^ Q) - ̂  ft71^ o A^-^PrimW.^ Q))).

j>r

The following proposition provides a useful lower bound for the topological filtration
of a variety satisfying Grothendieck's Conjecture B.

PROPOSITION 4.3. - Let X be a projective, smooth variety of dimension n satisfying
Grothendieck's Conjecture B. Then

PrH^(X,Q)cTrH^X^Q).

Proof. - Observe that h : H^{X,Q) —> H^^X.Q) is an algebraic correspondence,
for h{u} == pr^{pr^(u) ' ^(A^)) , where H is a hyperplane section of X and Ajf is its
image in X x X under the diagonal map. Since composition of algebraic correspondences
are again algebraic [Kleiman], we conclude that if X satisfies Grothendieck's Conjecture
B, then h3 and An+3~^ are also algebraic correspondences for any j.

Consequently, Proposition 4.1 implies that

P,TU^Q)CCA(X,Q)

where CrHm{X,Q) ( == T^(X,Q) by [F-Mazur;7.3]) is the r-th stage of the
correspondence filtration on Hm(X,Q).

As proved by D. Lieberman [Lieberman], an abelian variety satisfies Grothendieck's
Conjecture B. Thus, Proposition 4.3 implies the following result, first proved by R, Hain
by more explicit means.

PROPOSITION 4.4 (cf. [Hain]). - IfX is a sufficiently general abelian variety, then

TA(X,Q)^(?A(Z,Q).

For example, the latter equality is valid whenever the special Mumford-Tate group of X
equals the full symplectic group on Jfi(X,Q).
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Proof. - We observe that the primitive filtration is the filtration by irreducible
summands of the symplectic group Sp(H^{X, Q)) acting on H^(X, Q) = A*{H^X, Q)).
If X is "sufficiently general", the special Mumford-Tate group (cf. [Mumford]) equals
Sp{H^{X, Q)). Since the filtration of H^{X, C) by sub-Hodge structures is stabilized by
the special Mumford-Tate group, the filtration by sub-Hodge structures is also a filtration
of symplectic modules. Since the associated quotients of this filtration are non-trivial at
those stages for which the associated quotients of the primitive filtration are non-trivial,
we conclude that the primitive filtration (complexified) equals the filtration by sub-Hodge
structures whenever the special Mumford-Tate group equals the symplectic group. On the
other hand, the topological filtration contains the primitive filtration and is subordinate
to this Hodge filtration. Thus, all three filtrations must be equal whenever the special
Mumford-Tate group equals the symplectic group.

5. The spectral sequence

The purpose of this final section is to present a spectral sequence incorporating both
the S-filtration (in the guise of rjc -equivalence) and the topological filtration. The reader
inclined towards a motivic point of view could envision the various terms of the spectral
sequence as candidates for new "motives."

We recall that the join operation determines a pairing of abelian topological groups

Z,(X) x Zo(P1) ̂  Z^i{X#P1)-

and thus a map of normalized chain complexes

Z,(X)[2] -^ Z^i{X#P1) ̂  Z.-i(X).

Our spectral sequence arises from consideration of the sequence of chain complexes

Zn(X)[2n} -. Zn-i{X)[2n - 2] ̂  ... ̂  Zi(X)[2] ̂  ZoW

PROPOSITION 5.1. - For any projective variety X, there exists a (strongly convergent)
second quadrant spectral sequence of homological type

E2^ = H^{Q.^) => H^i(X)

whose differentials d^ have bidegree ( — f c , f c — 1), where Qs/2 = 0 unless s is an even
integer with 0 < s < 2n.

Moreover, the abutment ^^ E^ is the associated graded group ofHm (X) with respect
s+t=m

to the topological filtration (as considered in section 4). Furthermore, E21^2^ is naturally
isomorphic to the group of algebraic r-cycles on X modulo r^ equivalence.

Proof. - For 0 < r < n, we define Qr to be the mapping cone of the following
composition

Z^i{X)[2r + 2] ̂  Z^i(X)[2r] 0 ̂ (P^o -^ Z^WP1)^]
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whose first map is induced by the quasi-isomorphism Z[2] ^ ^(P^de^o and whose second
is induced by the join pairing. Since Zr^X^P1)^} is quasi-isomorphic to Zr{X)[2r],
we have a family of distinguished triangles

Z,+i(X)[2r + 2] ̂  Zr{X)[2r] -^ Qr.

Using the above sequence of chain complexes, we obtain an exact couple in homology

... - ®^+.(^+iW[2r+2]) - ©^+.(W)[2r]) - ®^^(Q,) -. .,
f,s r,s r,s

determining our spectral sequence. The convergence follows from the fact that Qr = 0
unless 0 ^ r < n.

To identify the filtration on the abutment H^{Zo{X)), we observe that a class in H^{Qr)
is a permanent cycle if it lifts to a class in H^{Zr{X)[2r\)\ such a permanent cycle in
H^(Qr) modulo boundaries is the image of H^(Zr{X)[2r}) in H^{Zo{X)) modulo the
image of H^Z^i{X)[2r + 2]) in H^{Zo{X)).

Finally, to identify E^Q, we observe that all classes in E^Q = H^Qr) are
permanent cycles, thus lifting to classes in H^r(Zr{X)[2r}) = 7To(Zr(X)). The image in
H'zr{Qr) of d2 is the image of

ker{^2.(^(X)[2r]) ̂  H^-i{X)[2r - 2])},

which is the group of algebraic r-cycles r\ -equivalent to 0 modulo algebraic equivalence.
Thus, the quotient E^^Q is the group of algebraic r-cycles modulo TI -equivalence. We
argue similarly for any k <, r: the image in E^ g of d^ is the image of

ker(H^{Zr(X)[2r}) -^ H^{Z^{X)[2r - 2fc])),

which is the group of algebraic r-cycles r^ -equivalent to 0 modulo algebraic equivalence.
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