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ON THE ARCHIMEDEAN THEORY OF
RANKIN-SELBERG CONVOLUTIONS FOR SOy/41xGL,,

By Davib SOUDRY

ABSTRACT. — In this paper, we study the local theory over an archimedean field F' of certain Rankin-Selberg
convolutions for pairs of generic representations (7, 7) of SOg;41 (F') and GL,, (F). The corresponding local
integrals involve Whittaker functions of m and sections of the representation p, s of SOz, (F'), induced from
T ® |det ~|S_1/ 2, viewed as a representation of the “Siegel” parabolic subgroup. The integrals converge absolutely
for Re(s) large enough and are shown to have a meromorphic continuation in s to the whole plane, to a continuous
bilinear form on 7 x p, ,, which satisfies certain equivariance properties. These properties determine such bilinear
forms in an essentially unique way. An important ingredient here is an application of Wallach’s results on
asymptotics of matrix coefficients (and variations). Using all this, we compute the corresponding gamma factors
which turn to be, by results of Shahidi, the Artin gamma factors.

0. Introduction

In this paper we study the local theory over an archimedean field of certain Rankin-
Selberg convolutions for SOqpy; X GL,. The initial steps were already taken in [S],
where the analogous theory over a nonarchimedean field is presented in great detail. Let
F be a local field, and let m and 7 be finitely generated admissible representations of
Gy = SOg¢41(F) and GL,(F) respectively, each assumed to be generic, i.e. with a

unique Whittaker model. Let s € C and p,, = Ind g" 7s, where H,, = SOy, (F), Qn

is the Siegel parabolic subgroup and 7 (73 7:*) = | det m|*~Y/27(m). (The induction
1
is unitary. Here m € GL,(F) and m* = J,'m~1J,, where J, = . )

1
In [S], we studied certain bilinear forms A(W, ¢, ), where W is in the Whittaker model

(') This research was supported by the Basic Research Foundation administered by the Israel
Academy of Sciences and Humanities.
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162 D. SOUDRY

of m and £, is a section in p,,. These are defined as certain absolutely convergent
integrals for Re(s) large enough (depending on 7 and 7 only) and appear as local factors
of global Rankin-Selberg convolutions in case 7 and 7 come from automorphic, cuspidal
representations. The definition of A(W, ¢, ;) depends on whether £ > n or £ < n. Let us
list some of the main results proved in [S], in case F' is nonarchimedean. The integrals
defining A(W, &, ) have a meromorphic continuation to the whole plane, and actually are
rational functions in ¢~—*, where ¢ is the number of elements in the residual field. These
bilinear forms satisfy a functional equation

(0.1) D(x x 7,8, ) AW, &) = AW, &)

where A is essentially obtained from A(W, &, ;) by applying an intertwining operator to
&-,s (see [S]), 1 is a nontrivial additive character of F', and W lies in W (w, 1)) — the
standard Whittaker model of 7 with respect to ¢. I'(r X 7,s,) is a rational function in

G
g 5. In case 7 = IndTD_z o, and ¢ < n, we proved that
[4

(02) (1, A% 25 = Ly)T(m x 7,5,9) = wr(=1)"y(0 x 7,5,9)7(6 X 7,5,9) .

P, is the opposite to the standard parabolic subgroup of G,, which has GL(F)
as Levi part. o is a generic representation of GL,(F). v(7,A% 2s — 1,%) is the
Shahidi local coefficient, obtained from p,, ([Sh1]). Its precise definition is given in
Section 6. (o x T,8,9),v(6 x 7, s,1) are the gamma factors for GL, x GL,, of Jacquet,
Piatetski-Shapiro and Shalika. w, is the central character of 7. (In [S] we proved a
more general multiplicativity property than (0.2).) Our purpose here is to prove the
meromorphic continuation of A(W, &, ;) and K(VV, &:.5), the functional equation (0.1) and
the multiplicativity (0.2), in case F' is archimedean and for any ¢,n. (If £ > n, (0.2)
is slightly modified. In [S] we have already seen that in case ¢ > n, A(W,&, ) and

A(W,¢,.,) admit a meromorphic continuation to the whole plane.) Note that, by (0.2),
y(r, A%, 25 — 1,9)T(7 X 7,5,1) equals up to a sign which depends on w,(—1),%,n and
1), the local coefficient associated by Shahidi, [Sh1], to # ® 7 which, by Shahidi’s work
[Sh2], is, up to a power of ¢, which depends on ¢, n, ), the Artin gamma factor of 7 @ 7,
i.e. the gamma factor defined on the Weil group side. The methods that we use here
are essentially the same as those in the nonarchimedean case. However, in order to have
the same technique work for us in the archimedean case, we have to overcome several
technical obstacles which are not present in the nonarchimedean case, in particular the
asymptotic expansion of Whittaker functions of a given representation along the center of
the Levi part of an arbitrary parabolic subgroup, with continuous coefficients, with respect
to the Fréchet topology of the space of the given representation. I owe this to the results of
Wallach [W3, chapter 15], where all the ideas and ingredients are present for the results of
section 4 of this paper, results which are crucial for the proof of continuity (meromorphic
continuation, meromorphic dependence on parameters of representations) of the bilinear

forms A(W,&, s) and Z(W, &:.s). I take this opportunity to express my gratitude to Nolan
Wallach for his patient explanations over several telephone conversations, and for sending
me chapters of his new book “Real Reductive Groups II” [W3], before it appeared in press.
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RANKIN-SELBERG CONVOLUTIONS 163

In Section 2, we state the main results of this paper and say some words about
the proofs. In Section 3, we prove certain uniqueness theorems (in analogy with [S,
Section 8]) which imply the proportionality of A(W,¢, ) and A(W,&, ), once their
meromorphic continuations and continuity are established. The results of Section 4 on
the asymptotic expansion of Whittaker functions are used in SectionsN5,6,7, in order to
prove the meromorphic continuation and continuity of A(W,¢&, ;) and A(W,¢&, ), and the
multiplicativity property of the gamma factors.

Apart from proving the results above, another goal of this paper is to highlight the
“passage” from the nonarchimedean theory (as presented in [S]) to the archimedean theory.
This passage is based on considerations of a general nature, and in this sense, we hope
that this paper will be useful.

This work was done during the academic year 1991-1992, while I was a guest of the
Department of Mathematics of The Ohio-State University, Columbus, Ohio. I thank the
department for its hospitability. Special thanks are due to Steve Rallis for his encouragement
and many helpful conversations, full of inspiration, ideas, answers and information.

Finally, I remind the reader that this work is part of a large scale project, whose architect
is Ilya Piatetski-Shapiro. The goal of the project is to prove the existence of lifting of
automorphic forms on SOg.y; to automorphic forms on GLg,, by use of the converse
theorem. I thank Ilya for inviting me to participate in this wonderful program, together
with Jim Cogdell, Steve Gelbart, David Ginzburg and Steve Rallis, to whom I am indebted
for fruitful discussions and happy times spent together on this project.

1. Notation

We mainly use the notation in [S].

F =R,C.
1
1 .
Im = . ,  (mxm matrix).
1
SO, ={g € SLm‘thmg = Jn}
Gl - SO2Z+1(F)7 - SOZn(F)

P, = standard parabohc subgroup of G, which preserves an ¢-dimensional isotropic
subspace. Its Levi decomposition is

Pg = Mgb(Y} s
a
My=<a= 1 a € GL@(F) , (a* = Jeta—ljz),
a*
Ig r
Yo = ylz,2) = 1 2| €Gep, (2=-=J'zy),
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164 D. SOUDRY

P, = the opposite to P. Its Levi decomposition is

?g = Mgb(?g .
Yo=q9z,2)= |z 1 € Gy
z o I

For a subgroup B C GL,(F), we denote
- {Z| be GLg(F)}.
Ay = the diagonal subgroup of GL,(F').
Z, = the standard maximal unipotent subgroup of GL,(F’).
N, = the standard maximal unipotent subgroup of Gy,

Ng = 2@ . ng .

Q. = the Siegel parabolic subgroup of H,,. Its Levi decomposition is
Qn = LnKUn 3

L, = {m(a) - (“ o+ Jla€GLy F)}

=}

F), we denote

)
e fen=(+ 7 )io-v)
R

For a subgroup B C GL
m(B) = {m(b) | b € B}.
V,, = the standard maximal unipotent subgroup of H,,.

Vo =m(Z,) U, .

1 denotes a nontrivial additive character of F'. We also denote by ) the standard
nondegenerate character it defines on Z,,, Ny, V,,. Given a representation = which admits
a unique Whittaker model, we denote its standard Whittaker model with respect to 1,

by W(m, ).
For £ < m, 14, denotes the embedding of G, in H,, given by

A B A4 B
C D €0 = €9 )

il,n(GZ) = I2r S -Hn
C D
where 7 = n — £ — 1 and ey is the column vector in F?¢*2 with 1 at its £ + 1 coordinate,
—1 at its £ + 2 coordinate and zero elsewhere.
For £ > n, jn . denotes the embedding of H, in G, given by

wl(& B))- (] meom
n,l = 2(£—n)+1
C D c D
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RANKIN-SELBERG CONVOLUTIONS 165

Kg,,Kg,, Ky, denote the standard maximal compact subgroups of GL,(F),Gy, H,
respectively.

Induction of representations is always assumed to be in normalized form. For a
representation 7, we denote by V. a vector space realization of the action of 7. If 7
has a central character, we denote it by w,. If V and W are two continuous modules over
a topological group L, we denote by Bil,(V, W) the space of all separately continuous
bilinear forms on V x W, which are L-invariant.

2. Statement of the Main Results and Sketch of Proofs

Let m and 7 be representations of G, and GL,(F') respectively, on Fréchet spaces
V=, V:, both assumed to be smooth (differentiable), of moderate growth, and so that the
subspace of K, -finite vectors (K¢, -finite vectors resp.) is a Harish-Chandra module
(¢.e. admissible and finitely generated). We also assume that 7 and 7 are generic. Let
s€C.Putp,, =1Ind Z“ 75 — the smooth induced representation acting in the space V,,_

n

of smooth functions &, ; on H,, which take values in the Whittaker model W (7, ~!) and
(regarding ¢, , as a function of two variables) satisfy

& s(m(a)u(b)h, z) = |deta|*Y ™7 &, y(h,za) , h € Hn, z € GL,(F) .

Let fe. ,(h) = & s(h, I,,). The integrals defined in [S], for W € W (r,¢) and §,, €V, _,
which are absolutely convergent in a right half plane are as follows.

THE CASE £ < n

AW = [ W) [ e @Brica(o)) @y
N\Ge X
Here
( (L1
I
I , r=n—4{—1even
Ipiq
1
,Bf,n = £ 1
o ., rodd
1
\ IZ

—tn) [ _ (v =z
X —{m—u(\o v,>€Hn

Va(T) = PY(Vreq1) -

v E er(@+1)(F)} 3
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166 D. SOUDRY

THE CASE £ > n

AWe) = [

Va\Hn

_ I, A
X(",[) - {(y Ié—n)
I,
(In ) , n even

1
( In ) Ign_z s n odd
I, 1

and consider the intertwining operator M (w,, &, s) of p, ; corresponding to w,,. In [S] we
also considered E(W, &:.5), obtained (roughly) from A(W, &, ) by applying the intertwining
operator to &, .. These are defined as follows.

/_ W (@jne(h)) .., (h)dzdh .
X(n,0)

Here

Y€ M(Z—n)xn(F)} .

Let

wn =

THE CASE £ < n, n EVEN

AW = [ W) [ M) #81itn() b))y

1
Here b,, = -1

-1
THE CcASE £ < m, n ODD

AW = [ W) [ s @nmlecinnlo) Ly @dzdy

0n
N\Ge (€,n)

I n—1
Here the notation is a bit complicated. Put w = and h* = w™thw.
In—l
Then

f:*,l—s(hv C) = M(wnv ET,S)(hw7 b;,nc*) ?
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where
1
-1
! 1
= -1 e+
™ )
-1
1
4 &}-l
1 ,r>2
€tm = 3 Ir—l
\ In ’ T = 07 1 £
Ipyo
Ir——l
, rodd, r>3
Ir—l
Ioyo
I,
1
nl,n = < 1
I I , reven, T >2
r—1
1
1
I,
L IZn T = O, 1 .
THE CASE ¢ 2 m, n EVEN
AW = [ [ Wb M) B dadh
Vi\Hn J X (1)

THE CASE ¢ > n, n ODD

AW,6) = / [ W iTine(h)S) M (wn, &) (b by ddh
Va\Hn I X (n.0)

Here

I 1 I
66 — -1 ) jn,ﬂ(w)a bn = -1 y Cnye = ( n _I )
IZ . l—n

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE
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168 D. SOUDRY

Now we are ready to state the main results of our paper. For Theorem A, write in
what appears above, W, instead of W (v € V) so that v — W,(I) is a Whittaker
functional on V.

THEOREM A. — The integrals A(W,,&; ) and K(Wv,fﬂs) admit a meromorphic

continuation to the whole plane. As such, A(W,,¢&. ) and Z(Wv, &:,5) are continuous on
Vz X V,_ .. Moreover, if m is a quotient of the representation I1(o1,...,0k;0;581,...,Sk),
induced from GLy, (F),...,GL;, (F), Ge—(t,4..+t,) respectively, then A(W,, &, ) and

AW,, & s) are meromorphic in (s1,...,sx), if Wy = Wy, s is the analytic
continuation of the Jacquet integral on I1(o1,...,0%;0';81,...,Sk)-

THEOREM B. — There is a meromorphic function I'(wx, T, s,), such that

I‘(ﬂ' X T, Sad})A(Wa §T,S) = A(W, gr,s) s
for all W € W(r,2), &, €V, ..

. G . . .
TueoreM C. — Let w be a quotient of Ind ; 0, wWhere o is a generic representation of
4

GL(F). Then

oo X7,8,9)v(@ X 7,5,9)
PY(T’ A2a23 - 17&)

I(rx7,8,%) =w(—1)

Here a = £ or a = £+ n, according to whether £ < n or £ > n respectively, Y(o X, T, $,)
and (6 x 1, s,) are the GL, x GL,,-gamma factors of Jacquet, Piatetski-Shapiro, Shalika.

(1, A% 25 — 1,%)) is the Shahidi local coefficient. Its precise definition (together with that
of 1) is given in Section 6 (£ < n) and Section 7 (£ > n).

On the Proofs. — In [S] we proved Theorem B by noting that both A(W, ¢, ) and
K(W, &, s) satisfy the following equivariance property.

IN cASE £ < n,
(2.1) A(m(9IW, prs(ien(9)Y)érs) = Ya(y) AW, &) -
Here g € Gy, y € Y& = Zly'(tm), -

Ig+1 0 $/2 0
T IT b )

1(en) _ /
Y Y I 0o eEH,;,
) I
Ioyq
/ / z
Z,=¢7 = . Z2€Z o,
z
Ipyy
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RANKIN-SELBERG CONVOLUTIONS 169

Ya(y') = (=) ((#1)re1 — (2)r1))
Yo(2') =Y(z12 + 225+ + 2021,) -

IN case £ > n,

(22) A(ﬂ.(]n,l(h’)y)w/; pr,s(h)gr,s) = ¢a(y)A(Wa f’r,s) .

Here h € H,, y € Y(ny) = Z:’?—nY(In,e)»

( I, 0 0 4z, 0
z1 I, = b 19
Y(/n,o =qy = 1 2 0 |eGey,
Ip_, O
\ 1"’1 I,
r I,
z
Zy =172 = 1 2€Z—nyp,
Z*
\ In

Ya(y') = V(@) ,
Yo(2') =P(z12+ 203+ + 2e—n_1,6-n) -

The theorems in [S, Section §] state (in case F' is nonarchimedean) that except for a finite
set of values of ¢~*, the space of bilinear forms on V. x V,,_ satisfying the equivariance
property (2.1), in case £ < n, or (2.2) in case £ > n, is at most one dimensional. We
prove here the analogous theorem, further requiring that our bilinear forms are continuous.
(Note that since V. and V, _ are Fréchet spaces, the notions of continuity and separate
continuity coincide.) In Section 3, we prove, using Bruhat theory,

UNIQUENESS THEOREM. — Except for a discrete set of values of s, the space of continuous
bilinear forms on Vx x V,_ which satisfy the equivariance property (2.1), in case { < n
(resp. (2.2), in case (£ > n)), is at most one dimensional.

In order to prove the functional equation of Theorem B, we have to prove that A(W, & ;)

and Z(W, &:,s) are bilinear forms as in the Uniqueness Theorem. Thus Theorem B follows
from this theorem and Theorem A. The continuity assertion in Theorem A is not so easy
to prove, and it is a very crucial point in the “passage” of proofs from the nonarchimedean
case in [S] to the archimedean case. Fortunately, we can now benefit from the results
of Wallach on the asymptotic expansion of Whittaker functions [W3, Sec. 15.2]. In
Section 4, we write the asymptotic expansion of W, (a) for v € V; and a =@,

o/ = diag(aiaz-...-ag, a2 ... ak,...,ak_10k,ak, 1,...,1), as (ai,...,ax) tends to
zero. We show that the coefficients of the expansion are continuous in v, and we control
their growth. Similar properties hold for the difference of W, (a) and a finite sum taken from

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



170 D. SOUDRY

the asymptotic expansion. The methods and proofs are contained in [W3, Section 15.2],
although not stated in the form suitable to us. In particular, we have to generalize the
asymptotic expansion given there for k¥ = 1 to any k£ > 1. The details are given in
Section 4, where the treatment clearly generalizes to any real reductive group.

The results on the asymptotic expansion of the Whittaker functions imply the proof of
Theorem A in case £ > n (Section 5). The proof of Theorem A, in this case, can be
reduced to proving the same assertions for integrals similar to A(W, ¢, ,), but without the

unipotent integration dz, i.e. V,,\ H, is replaced by A,,. This is done in Section 5. We note
that in [S,5.4], we already obtained the meromorphic continuation of A(W, ¢, ) in case
£ > n, but the proof gave no information on the questions of continuity or holomorphic
dependence on parameters. The case £ < n is quite intricate and involved. Here we do
not know how to obtain for Theorem A a reduction similar to the previous case (i.e. “get
rid” of the unipotent integration in A(W, &, ,)). It is interesting to note that the proofs of
Theorem A and Theorem C are related. As a matter of fact, the proofs of these theorems
are tied together, and we prove them both at the same time, using in a crucial way the
Uniqueness Theorem. It may seem odd, but we prove Theorem B as a result of Theorem C.

The main ingredient of the proof is the following. Assume that 7 = 7, = [ nd;"’ o_¢
£

where 0_ = o - |det-|™¢ and o is a generic representation of GLy(F). Let ¢, ¢ be a
section in 7, . which takes values in W (o,). Then for the Whittaker function Wj_,,
given by the standard Whittaker integral for Re(¢) > 0 (and similarly we define W;_ ),
we have the following identity (6.10), which holds also in the nonarchimedean case,

we(=1)""y(o x 7,8 = (P AWy, ,€rs)
I,

= /~ / We..Imly I Benien(9) | bac(y, Idydg .
No\G¢ J M5 ¢(F) 0O 0 1

JV,; is a maximal unipotent subgroup of G (not the standard one) and ﬂg’n is a certain
Weyl element. The r.h.s. of this identity is a “local integral” for SO2, X GL,. The proof
that it has a meromorphic continuation in (¢, s) which is continuous on V, x V.  is
exactly the same as for A(W, &, ;) in case £ > n. The identity takes place in the domain of
convergence of A(W,,_ .,&: ) (where the r.h.s. is the analytic continuation of the written
integral). The proportionality of A(Wj_ ,&; ) and the r.h.s. follows from the Uniqueness
Theorem. The factor of proportionality is obtained by a calculation. Theorem C for the
case £ > n is proved using an analogous identity (Section 7). Theorem C (in both cases)
shows that (7, A%, 2s—1,9)T (7 X 7, 8,%) is (up to a sign which depends on w,(—1),¢,n)
the Shahidi local coefficient for # ® 7 [Shl], which, by [Sh2], equals the Artin gamma
factor of 7 ® 7 (up to a power of 4, which depends on n,¢ and ). Thus we get, setting

v x 7,8,9) = y(1,A% 25 — 1,)I(wx,7,5,9),

COROLLARY 1. — Up to a constant of absolute value one, which depends on w,(—1),¢,n
and ¥,y(m X 7,8,1) is equal to the Artin gamma factor associated with T ® T and .

In [S] we proved the general multiplicativity property of (7 x 7,3,) in the variable
w, when ¢ < n and the field is nonarchimedean. We can prove that v(7 x 7,s,%) is

4° SERIE — TOME 28 — 1995 — N® 2
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multiplicative in both 7 and 7 for all £,n (over a nonarchimedean field). This will appear
in a forthcoming publication. This together with Corollary 1 and the general observation
in [G.S.], p.114, show

COROLLARY 2. — Over any local field and up to a constant of absolute value one, which
depends on w,(—1),4,n and ¢, y(7 X 1,s,%) is equal to the local coefficient of Shahidi,
associated to T @ T.

3. Proof of the Uniqueness Theorems
Notation and assumptions are as in section 2.
PROOF OF THE UNIQUENESS THEOREM IN CASE £ < n. — Put, (see (2.1))
R=Y"i,.(Gy) .

A continuous bilinear form on V; x V,_, which satisfies the equivariance property (2.1)

is an element of Bilg (V =1 me). Here Vmpgl is V. as a space, on which Y (*™ acts

™

through ;'. We want to show that
dimBilR(Vmp;l,VpT’s) <1,

except possibly for a discrete set of values of s. By Frobenius reciprocity [Wr.
Theorem 5.3.3.1], there is an isomorphism of vector spaces

Bilg(V, 4=, V,...) = Bily, (IHdcb;7r et p) .

H, . . . . . .
Ind® " m-14-1 is the differentiably induced representation, where the (vector) functions on

H,, have compact support modulo R. See [Wr. 5.3.1]. By Bruhat Theory (Theorem 5.3.2.3
in [Wr.]), there is an embedding

BilHn<IndCI;‘7r-7r;1,VpT’s)<—> b 710
YEQ.\H./R

T(v) is a certain space of V,®V, — distributions on an open @, x R-invariant subset
2, of H,. The orbit (double coset) v is contained in €2, as a closed subset. Note that
Q.\H,/R is finite. It is described in [S], Section 0. We have ([Wr.], 5.3.2.3),

dimT'(y) < Z dim (Bilg, nyry-1 (T ® (T3 1) 7, A))
k=0

Ay are finite dimensional algebraic representations coming from derivatives. We identify,
to our convenience, a representation with a space on which it is realized. An

ANNALES SCIENTIFIQUES DE L'’ECOLE NORMALE SUPERIEURE



172 D. SOUDRY

element of Bilg, nyry—1(7s @(mP;1)7, Ax), when considered as a U, N yY (6n)y~t
equivariant' bilinear form, embeds (wa)V|Un Y (-1 in Ax. A as an algebraic
representation of a subgroup of U, cannot have nontrivial eigenvalues. Thus we have
Yo | 72U,y NY ™ = 1. This happens only on the open orbit QnBenR (where there
are no derivatives). See [S], Section 0. Thus

dim (Bilr(V, .1, Vp... ) ) < dim (Bilg, g, ot (7o, (r51)7) )

The last space is the space of continuous bilinear forms 7" on V. x V., such that

g T ¢ g
31 T« 1 =z |w, 7[00 1 Y v =¢(Ie+—l‘7y)|detg|s T(w,v) .
g z

g T c
Here 1 z | € Pz€ Z,,Y € Myp1)x(F). s is a certain shift of —s. Now

g
write 7 as a quotient of an induced representation (in the differentiable sense) from the

*

Borel subgroup B, of G, and a quasicharacter 7. Thus we may assume that 7 = Ind j‘ 7.
I3

Consider
L:C®(Ge) — Ind%q ,
By
given by
(3.2) Loto) = [ 852 ®1 G)oa)de.

B,

where db is a right invariant measure on B,. By a theorem of Bruhat (Lemma 5.1.1.4 in
[Wr.]), L is continuous, open and surjective. Put, for ¢ € C°(Gy), v € V.,

S(¢,v) =T(Lg,v) .

S is a separately continuous bilinear map on CS°(Gy) x V., and so extends to a continuous
liner map on C’;’O(Gg)@V., (inductive tensor product) and this space, since V; is a Fréchet
space, is isomorphic to C°(Gy;V;), by a well known theorem of Grothendieck ([G],
Chap.2, p.84). Thus S defines a V. -distribution of G, (in the sense of Appendix 2.3 in
[Wr.]). Let A, p denote left and right translations respectively on G,. From (3.2), we have
for b € By, g € Gy and ¢ € CSO(GZ)

(3.3) Ly = 6‘}3/22(b)n“1(b)L¢ ;

(34) Lp(g)¢ = 7T(g)L¢ .
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Thus, from (3.1), it follows that

S(/\(b)p (g 31: ;)¢, T(g :f Y) v)
g z
=52 O Ol detgl ' () 509,0)

We are now at the situation of [Wr.] 5.2.4. Indeed consider the left action of the group
G = By x P, on (the manifold) M = G,, given by

(3.5)

(b,p)om =bmp~" .
Put, for h = (b,p) € G and ¢ € CX(M;V;),
e"(m) = p(h™' -m)
S'(e) = S(¢" ") =SNG e) |

g x
(tUn,s(h)S)(so)=6,;3/2(b)n(b)|detg|—s's<T( 1 ) )¢>

g z
Here p = 1

as above,

80

*

). We have for ¢ = ¢ Q v, ¢ € CX(Gy), v € V;, and h = (b,p)

<

g T
S"(@) = S(AL ™ )p(p™")p,v) = 672 (b)n(b)] detgl‘s'5<¢,7< 1 . )v>
= (Uy,s(M)S) (%) -
Thus, for all ¢ € CX*(M;V;), h € G,

(36) Sh(‘»o) = (tUn,s(h)S) (<P) y

and we can use Theorem 5.2.4.5 in [Wr.]. Note that S satisfies the additional property

(3.7) S<T(I‘f+1 j) oya) = zp(I“l Z) S(p) , z€Z,.

We have to first analyze the orbit space G\M = B,\G,/P,. The orbits are those of the
action of P, on the flag variety B,\G/. Let F2**! (columns) be equipped with the symmetric
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bilinear form defined by J1, and let {e1, ..., e11} be the standard basis of F'2¢*1, Let
fori < ¢, W; = Span{ey,...,e;} and denote epy2 = €_p, €043 = €_pp1,...,€0041 = €_1.
G/ acts on the variety of maximal isotropic flags D = {0 = Dy C D; C Dy C --- C D,}
by D-g = {0 = g7'Dy C g7'D; C --- C g7'Ds}. By is the stabilizer of
{0=W, Cc Wy C Wy C --- C Wy}. The orbit under P, of a flag D is determined
by the vector

(3.8) (dlm(.Dl N Wg), dlIIl(Dg N Wg), . ,dim(Dg n Wg)) .
If the vector (3.8) is

0,...,0, 1,...,1, 2,...,2,...,k—=1,...,k—1),
N N e’ N o’ ~——————

7 J2 Js Jk
then a representative for this orbit is obtained according to the following basis of a
maximal isotropic subspace

€0y Eltlye ey €thji—1 €1,€fhjiy Cbpjitlye ey Etpjitijn—1;
A - -~ >y N~ o
Ji J2
(3.9) €2, €—t4jiter ) E—bhjitintia—1) €3)C—thjitiatizr e
Js Ja

That is D; = Span{e_s}, D2 = Span{e_¢,e_s41}, etc. If k£ = 1, then (3.9) is the basis

{e_sye_pt1,...,e—1} and (3.8) is the zero vector. The stabilizer of the corresponding
flag in P, is
R R b
(3.10) Ber,ry = (b= 1 ’b € BaLur) ¢ »
b*

(BgL,(F) is the standard Bore subgroup of GL.(F').) If £ > 1, the projection of the
stabilizer in P, of the flag determined by (3.9) to the upper left (£ + 1) x (£ + 1) block is

be BGLk—l(F)

b x x
(3.11) b l
1

e BGLe—k+1(F)

By Theorem 5.2.4.5 in [Wr.] (and the proofs of Theorems 5.2.2.1, 5.2.3.1), the dimension
of the space of V. -distributions on H,,, which satisfy (3.6), (3.7) is majorized by the sum
of dimensions of the spaces of continuous bilinear forms E on V, x F which satisfy
an equivariance property of the form

b = ¢ b oz e
/
E(T L R P WY R g)
- 1 1

(3.12) =7j(b, b)|(det b)(det b') |~ qp(I’i%/) E(v,€) .
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Here b € Bgr,_,(F), b’ € Bar,_,,,(F), 7 is a certain quasicharacter (obtained from n),
N is a nonnegative integer (if K = 1, N = 0), Ay is a certain algebraic representation
in £V and k varies with all the possible orbits, defined by (3.9). Since Ay is algebraic,
then by passage to a subquotient of A, there are certain algebraic characters {«; }icr, of

b
(F*)*, (the diagonal of b’ ), such that F gives rise to a continuous linear
1
form E’ on V., which satisfies
(3.13)
b =
/ ’
J% <r b 0 Y v) — Fa (b, )| (det b)(det b)|~* ¢(I‘+1 Z) Ev):

z

« belongs to {;}icr,. Note that when IV varies, then « belongs to a countable discrete
set of (algebraic) characters of (F*)‘. Now we can use Bruhat Theory again to study
the space of functionals (3.13). Write 7 as a quotient of an induced representation from
Bgr, (F). As before E’ is determined by a distribution £ on GL,,(F'), which satisfies

b = ¢
8(A<ﬂ>p o ¢>)

(3.14) o (B (b, ') (| det b]| det b'n-s’w(@—%)fw) ,

for ¢ € C*(GL,(F)), B € BaL, (r); X~ is a quasi character which depends on 7, 7, . = 7.
The rest of the notation in (3.14) is as in (3.13) and (3.12). The orbit space relevant to

b = ¢
. . ¥ 0 |Y
(3.14) is Bgr, (7)\GLn(F')/Bek, where By is the group of all 1 as

above. The number of orbits is finite and we take the following representatives

I 0 0

I
gl =w et :

I

where w is in the Weyl group of GL, (F), e has coordinates which are in {0,1}, and
the positions where e has 1, depend on w. Let Hﬁ,kl be the stabilizer in Bqr,,(r) X Be
of gf,f, ). By Bruhat Theory, the orbit of gﬁuk)e “contributes” continuous linear functions &’

on finite dimensional spaces F'V', which Hq(,,,)e—mtertwme an algebraic representation

An: (of HSL) on FN' and XT(ﬂ)nw,ka‘l(bb’)ﬂdetb”detb’|)‘s'1/;(‘r€+1 i) for
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b X C N dl
/
(ﬂ, b (1) Y ) € Hl(,,kl Assume that k£ > 1. Then for d = ,
=/ dr—1

the element ((d ) , (d )) lies in Hfukl Again, the functionals &’
In—k-l-—]. In—k+1

w
“live” on irreducible subquotients of Ay, and these act on ( ) according to
-k

I,
algebraic characters w(d); w varies (with N') in a discrete (at most) countable set. So
we must have an equality

(3.15) w(d) = XT((‘l In_kﬂ)w)nﬁ,ka—l(d, D) detd|™ .

Thus, if s lies outside a certain discrete set, (3.15) will not be satisfied and £’ above must

be zero for all possible k£ > 1. It remains to treat case & = 1. In this case, the orbit space
b 0 %

is Bgr, (r)\GLn(F)/Bg,1, where By is the group of all 1 . (Recall that
z

b€ B, (r), # € Zy, Y € Mg41)x-(F).) Consider a representative g,(ul)e If w transforms
one of the simple root subgroups

I, Iy
1 1 = I,
(3.16) 1 ) 1 ey 1 =%
. 1
1 1

I, 0 0\"
to a root subgroup which corresponds to a positive root, then either ( 1 z ,

I,

Ig 0 —ex )
1 z > € H,(‘,L)e for T = (z,0,...,0) € F", or there is a simple root subgroup
I

Z. in Z,, such that <(Lz+1 z) , (IZH z)) IS Hq(l,l,?e, for z € Z,. In each of these

cases £ gives rise to an intertwining map between 3 (t),t € F, and a finite dimensional
algebraic representation of F'. This is impossible and hence £’ is zero in this case. So
assume that w takes every root subgroup in (3.16) into a “negative” one. This means
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that w has the form

£+1 £+2 £+3 cee n

that is, the line e,y; in w is below the line ey, and this is below the line ey 5 etc.

({e1,...,en} is the standard basis of row vectors in F™.) Now note that if e (in gf,,l,)e) has
a zero in some coordinate, then there is a diagonal subgroup of B, ;, which commutes
I ¢ €
with 1 , and so, as in case k > 1, we can deduce an analog of (3.15), which
I’I‘
1

is impossible for s outside a (larger) discrete set. Thus we may assume that e =
1

. W, —
and then, it is easy to see that we may assume that w has the form (w’ n-t ) where

1
Wp_g = . ((n—=12¢) x (n—¢)) and w’ is in the Weyl group of GL,(F’). Thus
1
the representative gful)e looks like

( W ) I, :
w'’ 1
1

I,
aj 1- ax
Qo 1-— a2
Note that for m = : , (m I ) commutes with
)
ap—; 1—ag, "
1
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1
I, :
1 . Thus, if w’ takes one of the root subgroups
1
T,
1
1 * 1 1 N 1 1
1 *
) b ) 7 )
. 1 |
1 -
1 1 1

1 0 w

1
and we get a condition of type (3.15), which cannot be satisfied for s outside a discrete set.
If w’ does not satisfy the above property, then it has the form v’ = (w" ! , where w”

is in the Weyl group of GL,_;(F'). Continuing in the same manner, possibly enlarging the
discrete set of values that s should avoid, we see that all orbits in Bgr,, (7)\GLn(F)/By 1
contribute the zero space of linear forms £’ except the open orbit, with representative
1 1
gz(uln) where w,, = L , e = | : |; the stabilizer in Bgy, (r) X Bey1, in this
1 1
case, is trivial (and N’ = 0 since the orbit is open). Thus the open orbit contributes a
space of dimension 1 for all s. This proves the uniqueness theorem for ¢ < n.

THE CcASE £ > n. — Let
R= )f(n,f)jn,Z(Hn) .

See (2.2). We have to show that
dim Bilp(Vy, V), o) <1

except, possibly, for a discrete set of values of s. By Frobenius reciprocity, we have
) . G -
B’LlR (Vﬂ-, ‘/F)T,s'w;].) ~ BZZGZ (VW,Ind RZ (pT,S . ’(/}al)) .
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. . G . . .
Write 7 as a quotient of Ind PZ o, where o is a smooth, finitely generated representation,
[4

. . . . G .
with a unique Whittaker model. Again, we may assume that 7 = Ind Pe o. We are now in
(4

the framework of Bruhat Theory, and we leave the rest of this standard proof (similar to
the previous case) to the reader. ]

4. Asymptotic Expansions of Whittaker Functions

Our aim in this section is to obtain an “asymptotic” expression for Whittaker functions
along the center of a Levi subgroup, in such a way that the terms of this expansion are
products of polynomials, exponentials (which depend only on the representation) and of
certain continuous functions, satisfying growth estimates which can be made better and
better, according to the “degree” of the expansion. Before we give the precise statements,
let us illustrate this with the low rank example of GL3(R). Let v — W, (g) be the Whittaker
model for a nice representation 7 of GL3(R), which acts on the space V. We consider

ab
W, b as (a,b) — (0,0) .
1

We will present this function, for a = e™*,b = e~ %, as a sum of terms of the form

p(xat)ecm+0,tf0(v)7 p(:l;?t)ecacfl(t)lv)v p(xvt)eCItfl(mvv)v p(.’l),t)fg(l?,t,’l)) )

(z.e.

ﬁ(loga,logb)a_cb_clﬁ)(v), i)’(loga,logb)a_cfl(logb,v), ﬁ(loga,logb)b'c,fl(loga,v),
ﬁ(loga,logb)ﬁ(loga,logb,v)), where p(z,t) are polynomials which belong to a
certain finite set, independent of v, ¢ and ¢ vary in the set of exponents of m, up
to a given level k£ in the Jacquet module filtration. The functions f; are linear
in v and satisfy nice estimates of the form

[fo(v)] < q(v)

|f1(y,0)| < 6(y)e™q(v)

|fo(z, t,0)| < £(z, t)ed* T q(v)
where §(y) and ¢(x,t) are polynomials (independent of v), d and d’ can be chosen “very
negative” (k is chosen according to d and d’) and ¢(v) is a continuous seminorm on V.

The advantage of such an expression is that it shows us the meromorphic continuation
of an integral of the form

11 ab
/ / w, b |a|®t|b|*2 dadb
o Jo 1
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in larger and larger right half planes (in s; and in sp), and moreover, by the estimates
above, this continuation is continuous in v, with respect to the Fréchet topology. Let us
begin with the preparation towards the precise formulation of our theorems.

Let g, be the Lie algebra of G,. Let m be a representation of G, on a Fréchet space
V = V, which is smooth and of moderate growth. We assume that the subspace V,
of Kg,-finite vectors of V' is a Harish-Chandra (g, Kg,)-module. Assume that \ is
a Whittaker functional on V, 7.e. A is a continuous linear functional which satisfies
A(m(u)v) = Y(u)A(v), for v € V,u € Ny, and 9 is a nondegenerate character of N,. (We
assume that ¢ is the standard nondegenerate character of N,.)

Let
Wy(g) = A(r(g)v) -
Our aim is to describe the asymptotic behaviour of W, (a), for a = 31 -32' - 3,, where
b; = <ajlm" ) 1<m; <me<---<m, </{ and (a,...,a,) — 0. As we
£—m;

mentioned in Section 2, the methods and ideas of proof are in [W3, 15.2], where the case
v = 1 is treated. What we will do is to keep a careful track of Wallach’s derivation, so
that we are able to do an inductive process in case v > 1.

Let P,, be the standard parabolic subgroup of G, which preserves an m-dimensional
isotropic subspace. Its Levi decomposition is P,, = M, XY,

g € QL (F In @2
M,, = g EL I o |eq
g* h E G[_m Im
Let )V,, denote the Lie algebra of Y,, in g,. Put
-1,
H, = 0 € ge .
I,

H,, is in the (one dimensional) center of Lie (M,,).

For an integer k > 1, consider V/Y* V, the k+ 1-th term in the Jacquet module filtration
with respect to ),,. The space of K -finite vectors of V/YV* V is an admissible, finitely
generated (Lie (M,,), Ky, )-module, and as H,, is central, V/YEV is a direct sum of
finitely many generalized eigenspaces for 7(H,,). See [W2, 4.3, 4.4], and note that the
replacement of Vj by V causes no harm. Let E,(cm)(V) be the finite set of eigenvalues of
n(H,,) on V/YEV. For £ € E,(cm)(V), 7w(Hp) — €I has a bounded degree of nilpotence
on V/Y*V. As in [W2, 4.4.3],

UEM(W) c{e-nlee E(P(V), n=0,12,..}.

k=1
Arrange the elements of | Jp- EM™(V) = {€i™}52,, so that Re&l™ > Re&d™ > - .
Let 1 < N™ < N{™ < ... be the “jumps”, i.e. N\™ + 1 is the first index, such that

Re 61(\77?’)"41 < Re fgm)’ Nz(m) + 1 is the first such that Re 51(\231)_'_1 < Re Ej\f?’”ﬂ etc.
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Fix a norm || || on G, as in [W2, p.71]. In particular, we have ||g|| > 1, |lhg| <
I
lIh|| - |lg]| for g,h € Gy, and for g = , we may assume that
Ty
llgll = max{1,|z;|,|z:|7*}, 1 < i < £ By the continuity of the functional )\, there
exist a continuous seminorm ¢ on V and a positive constant u, such that

(4.1) Wo(9)l <llgll*q(v) , g€G,.

Put, for t € R,

agm) =exptH,, = Iye—my+1

From (4.1), it follows that for ¢ > 0,
(4.2) W (gat™)| < llgl#e**q(v) .
Assume that 1 < m; < mg < --- < m, < /{. Let

djzgjv’”j) j=1,...,v, and iy,...,i, >1.

(mj)?
Choose k;, such that
(4.3) —k;j +p <Re(d;)—1.

Given a subset J = {/1,...,4,} of {1,...,v}, such that ¢; < /5 < --- < {,, and a row
vector (y1,...,Y,), let y5 = (Ye,,-.-,ye,) and Re(ys) = (Re(yy,),--.,Re(ye,)). Given
another vector (z1,...,2,), let y; - 25 = > Yo, 2¢,. Also write J' = {1,2,...,v}\J
(and order the elements of J').

For z = (z1,...,2,), z; > 0, put
Uy = agT‘)aig’”)' e aSBT") .
If m, < £, let b have the form agT"+1)a§2""+2) cee a(zf)_mu, with z; € R. If m, =/,

set b = I. Now we are ready to state the main theorem of this section. We fix d; and
k]-, 7 =1,...,v, as above. Some of the objects mentioned in Theorem 1 depend on
(k1,...,k,), but to lighten the notation, we do not mention this dependence.

THEOREM 1. — There are finite subsets C; C UI:’:I Eﬁmj)(V), j =1,...,v, a finite set
of polynomials P C Clx1,...,x,], and for each subset J of {1,...,v}, there is a finite set
Qy of functions f(xj,b,v) on Ril X Ré=™v x V, continuous in (x5, b) and linear on V,
such that for all v € V, W, (ba,) has the form

(4.4) W(baz) = p(w1,...,2,)e ™ f(z0,b,v) ,
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where the p(x1,...,x,) are taken from P, J varies over subsets of {1,...,v} as above,
cy € HjeJ C; and for f(x;,b,v), there exist a polynomial §(z ;) (independent of (b,v))
and a continuous seminorm q on 'V, such that
(4.5) (g0, b,0)] < 8(a g )e B bl g(v) .
We prove Theorem 1 by induction on v. Case v = 1 and the induction step are provided
(mV)

by the following theorem. Put (just for Theorem 2), m = m,,, t =z, a; = az,”’, d =

d,, k =k, d = a;’ln’)' -~-‘a§ff_”[1).

THEOREM 2. — There exist a finite set £ C U((ge)..), a finite subset C C |Jr_, E™(V),
a finite set S of polynomials in C[t] and a finite set L of nonnegative integers, such that
for all v, W,(ba'at) has the form

Wv(ba/a’t) = ZZ eCtp(t)Wﬂ'(E)v(ba/) + Z eCth(t)ro,a,D(b’ a'l7 ’U)
(4.6) Re(c)>Re(d)
+ Z eCtT(t)¢C,a,D(t7 b7 a,7 U) .
Here ¢ € C, p(t), h(t), r(t) are taken from S; E,D € &€, a € L. We have

@eap(bya,v) = / e_T(k+C)T°‘WW(D)v(baTa’)dT (Re(c) > Re(d))
0

47)  bean(t,bav) = / eI 0w o (baya')dr (Re(c) > Re(d))

t
t
bea,p(t b,a v) = / e_T(k+C)T“W,,(D)v(baTa’)d'r (Re(c) < Re(d)) .
0

These three functions are continuous in (t,b,a’), linear in v and satisfy

|oc.0,0(b, a'v)| < callba’]|*q(n(D)v) ,
(4.8) |bea,(tb,a’,0)] < e RAOFU| /|26, o ()g(n (D))

where c,, is a constant, 6. 4 (t) is a polynomial and q is the continuous seminorm in (4.2).

The importance of Theorem 2 is that in (4.6), we achieve a separation of ¢ from ba’ in
the first two terms, while for the third term, we have the estimate (4.8).

Let us go back to the example of GL3(R) and explain how to use Theorem 2 in order to
—(z+t)
e

obtain the required expression for W, et , for z,t > 0. By (4.6), we have

e—(m-}»t) e

W, et = Z eCtp(t)W,T(E)v 1

—
—

(4.6)/

+ Z e h(t)Pe.a.p(T,v) + Z er(t)pean(t,z,v) .

Re(c)>Re(d)
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—

e
We took b = I and a’ = 1 in (4.6). Now we use “induction”, that is
1
e~ %
we apply Theorem 2 again to Wy (g, 1 s Pe,a,0(x,v) and ¢ o p(t,z,v).
1
e‘—l'
The application of (4.6) to Wr(g), 1 is direct and clear. In order to apply

1
Theorem 2 t0 ¢¢.q, p(z,v) and ¢, p(t,z,v), we have to use their explicit form, given
in (4.7), and the estimates (4.8). For example,

s e—(T+z)
(4.7) ©Ye,a,0(Z, ) =/ e_T(k+C)T°‘W7,(D),, e " dr .

0 1

e—r
Here we use Theorem 2, with & = e 7 and o’ = I, to express
1
e_(T+z)
W (D)o e " as a sum of terms of the form
1
e’ " ,

e =0 () War(gry e’ , €STh (T)per oD (Ty0), €T (2)Per oD (T, T, V).

1

When we substitute these elements in (4.7)’ and then examine their contribution to (4.6)
(the second term), we obtain sums of elements of the following three types

-7

oo €
(1) h(t)p' (z)ette'™ / e TR W By, e " dr
0 1
(o]
(%) h(t)h'(a:)eCt+c’m/ e T (T, v)dT
JO
oo
(i4d) h(t)r! (z)ect*e' / eI (e, v)dr .
0

Note again that in (i) and (ii), we have elements of the form
Pz, £)e+ 7 fo(v)
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where the variables (t,z) are separated from v, and fo(v) satisfies the estimate (4.8). In
the element of type (iii), ¢ is separated from (z,v), so we view (iii) as follows,

p(a:,t)ethl(:v,v) )
where -
filz,v) = ecw/ e TGy o (@, T 0)dT
0
The estimate (4.8) implies

|f1 (.TI, U)l < eRe(c’)z / e—-r(k+Re(c))7_ae(—Re(d).{.Re(d’))meyT&C/al (:L‘)q(ﬂ'(D/)’U)dT .
JO

-

e
Here d’ is the “d” in (4.8), which corresponds to ¢’ and 1 . See (4.3). We get
1

e AR LT
0

The last integral is bounded by c, = [~ e~ "7*dr, since Re(c) > Re(d) > —k + pu+ 1.
Similar arguments, though a little more complicated, apply for the third term of (4.6)’.
Thus the rough idea is to “keep separating” the variables z,,z,_1,... in W,(a;), “as
much as possible”, so that when we reach a place where we cannot separate variables
“any more”, then we at least have a nice estimate of type (4.5). Let us now proceed to
the proof of Theorem 2 (the induction step).

Proof. — The proof is essentially a repetition of [W3, 15.2.4], and keeps a careful track
of the form of the coefficients and of the difference in the asymptotic expansion. Also
see [WI1,72.].

In [W3, 15.2.4], Wallach constructs a set {E;}X; C U((g¢).), E1 = I, and for each
1 <i<T,aset {D,;} CU((g)c), where r indexes the basis of monomials {Y,}
of y:;, in the standard basis elements of )),,. For these sets, there is a T X T matrix
B = B(™ = (b;;), such that forall v € V, 1 < i < T,

(4.9) 7(Hp)w(E)v = Z bijm(Ej)v+ Y w(Y,)n(Dyi)v .

Fortunately, we do not have to know more about (4.9) than what we have already said.
This equation is the only nontrivial fact needed from [W3] for the proof. The rest (follows
Wallach) is given in full detail and is completely elementary. We see from (4.9) that the
projection of Span{n(E;)v}%_; in V/Y* V is a finite dimensional space, stable by 7(H,,),
which acts on the spanning set according to the matrix B (modulo V¥ ). Put

W,y (ba'ar) W‘Ir(?T)ﬂ(DT,l)v(ba/at)
F(t,b,d',v) = : ,  G(t,b,a',v) = Z :
W (Br)w(ba'ar) " \We@ (o, (b0ar)

s
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Then, by (4.9),

(4.10) ditF(t’b’ a',v) = B- F(t,b,a’,v) + G(t,b,d ,v) ,

and the solution of (4.10) is (see the appendix to Section 8 in [C])
t
(4.11) F(t,b,a',v) = e"BF(0,b,a’,v) + etB/ e""BG(1,b,d ,v)dT .
0

Let C be the set of eigenvalues of B on CT. For ¢ € C, let P, be the projection of CT on
the c-generalized eigenspaf:e. Put Q = ERe(C) <Re(d) P. , R= ZRe(c)ZRe( 0 Pes
(Q + R = I). Now rewrite (4.11) in the form
(4.12)
F(t,b,a',v) = eBF(0,b,a’,v) + R(e® / e "BG(1,b,d ,v)dr)
0

t

— R(e'B / e "BG(7,b,a’,v)dT) + Q(etB/ e "BG(1,b,d ,v)dT) .
t 0
The integrals in the middle two terms of (4.12) are absolutely convergent, as we shall now

show. First, note that for a monomial Y,

e”’”W,,(Dr Jw(ba’ar)
, ,
Wﬂ'(?r)ﬂ'(Dr,i)'U(ba (17-) =
0

U

The first case occurs if and only if Y, = X*, where X, = 0 , the

standard basis vector of the root subspace of },,, which corresponds to the simple root
defining P,,. Put D] ; = D, ; in the first case and D, ; = 0 in the second case. Thus

G(T7 b? al? v) = e_kTL(T’ b? a’? v) )

where
VV,,(]_)IT,1 v (ba’a,)

L(r,b,a ,v) = Z :
Ww(D;,T)v (ba'lar)

To show the absolute convergence mentioned above, it is sufficient to consider
P.(e'B [ e ™ G(r,b,a',v)dr), for Re(c) > Re(d). We have

2. (e“—f)BG(T,b, o,0))ll = e7||P, (e(t_T)BL(T,b,a’, v)) I

< e_k"'fc(t - T)e(t_T) Re(C)“L(T7 b’ a/’ ’U)” :

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



186 D. SOUDRY

Here f. is some polynomial which depends on ¢ and on B. By (4.2), there is a continuous
seminorm ¢g; on V, such that

IL(7,b,a",v)|| < e*"|[ba’[|* g1 (v) -
Thus

1P, (=BG (r,b,a',0) )| < folt
< folt = T)et RO ba gy ()
>

We used (4.3) and the fact that Re(c)
convergence.

We will obtain the expansion (4.6) by equating the first coordinates of both sides of
(4.12). Recall that the first coordinate of F'(¢,b,a’,v) is W, (ba'a:). The first coordinate
of the first term in the r.h.s. of (4.12) has the form

(4.13) et REAE) - e(HTRATHT | b gy (v)

Re(d). This implies the required absolute

T
Z ‘Pi(t)er(Ei)v(bal) )
=1

where

= Z GCtPLC(t)

ceC

and P; .(t) are certain polynomials. The first coordinate of the second term in the r.h.s.
of (4.12) has the form

T )
(4.14) Z Z/ ni(t — T)e_kTW,,(D/r‘i)v(ba'aT)dT ,
i=1 r Y0

where

n(@)= Y, eThix)

Re(c)>Re(d)

and h; (z) are certain polynomials. Each term in (4.14) is a sum of terms of the form
e“h(t)/ e " * W, by (ba'ar)dr = e h(t) e an(b,d,v) ,
0

where Re(c) > Re(d), h(t) belongs to a certain finite set of polynomials, o belongs to a
certain finite set of nonnegative integers, and D is of the form D; ;. As in (4.13), we have

e l(byd's0)] < ||ba'||”( / e-%adr) a(x(D)0) = callba[*q(x(D)o) -
0

In a similar way, the first coordinate of the third term in the r.h.s. of (4.12) is a sum
of terms of the form

tr(t)/ e_T(k+C)T°‘W,,(D)v(ba'a,)dT = e r(t)pe.an(t,b,a',v) ,
t
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where Re(c) > Re(d), r(t) belongs to a certain finite set of polynomials, @ belongs to a
certain finite set of nonnegative integers and D is of the form D ;. We have

|be.a,D(t,b,a’ )| < 7 RIHERAD 1pg! |16, (£)g(n (D))

where 0. () is a certain polynomial. Finally, the first coordinate of the fourth term in the
r.h.s. of (4.12) is a sum of terms of the form

¢
e“tr(t)/ e TR AW by (ba'a)dr = e (t)Bea p(t,ba v)
0

where Re(c) < Re(d), r(t) belongs to a certain finite set of polynomials, @ belongs to a
certain finite set of nonnegative integers and D is of the form D] ;. We have, in this case,

|fe,a,0(t, b, v)| < e ROFE g |16, o (¢)g(m (D))
where 6. (t) is the polynomial %ﬁ—; The continuity in (¢,b,a’) of the functions in (4.7)
is clear. This completes the proof of Theorem 2. |
Proof of Theorem 1. — Case v = 1 is already proved in Theorem 2. In this case (4.6) reads
W (bar) = D e p(OWrppu(0) + D e h(t)pea,n(b1,0)
(4.15) Re(c)>Re(d)
+ > e (t)pe,an(t b, 1,0) .
The first two terms of (4.15) have summands which correspond to the subset J = {1} of {1}
(and J' = ¢) in (4.4), so that f(z /b, v) is either of the form Wy gy, (b) or ¢ o, p(b,I,v),
both of which define continuous linear functions on V, which satisfy (4.5) (as follows
from (4.2) and (4.8)). The third term of (4.15) has summands which correspond to the
subset J = ¢ of {1} (and J' = {1}), taking in this case f(z;/,b,v) = e“¢.op(t,b,I,v)
in (4.4). By (4.8), we have
|f (0, b,0)] < e TFF[b]|#6, 0 ()g(n (D))
< e P D|p)|#6, o (t)g(m (D)) -
This shows (4.5).

Now use induction on v. We consider each term of (4.6). In the first term of (4.6), using
induction on v, we see that Wy (gy,(ba’) is of the form (4.4),

Weeyo(ba') = Y fl@r, .., @umr)e ™ flap,b,n(E))

where J varies over subsets of {1,...,v — 1}. Substituting this in the first term of (4.6)
(putting back ¢t = z,, ¢ = ¢, etc.), gives a sum of the form

Zp(:vl, oy, )eST T (g b))
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which corresponds to subsets of {1,...,v}, which contain v. Here f(zj;,bv) =
f(zy,b,m(E)v).

The properties (4.5) are satisfied by the induction hypothesis. For the second term of (4.6),
using (4.7) and the induction hypothesis (now replacing b by ba,), we have

@e,.a.p(bya’,v) = Z/ e mhvte ) anig, L. ,x,,_l)e”'“f(wjl,baT,N(D)v)dT ,
0
where J varies over subsets of {1,...,v — 1}. Thus the second term of (4.6) has the form

Zp(xl, o, @y )elT Tty f(zy,b,v)

which corresponds to subsets of {1,...,r}, which contain v. Here
f(y,bv) = / e~ T®eFe) e f (0 bay, m(D)v)dr
0

We have, by the induction hypothesis (4.5) and by (4.3) (recall that in this case
Re(c,) > Re(d,)),

|f(.'17J', b, 'U)I S (/ eT(—ku—Re(Cu)-i‘M)TOch) 6(xJ/)ezJ/'Re(djl) ”b“”&(ﬂ'(D)’U)
0
s(/ G_TTQ"T)‘5<xw>e%"“e<dﬂ>||b||ﬂa(w<D>v>
0
= cab(m )™ B |b||Fg(m (D)) .
This shows that (4.5) is satisfied for f(z;/,b,v). (We use the notation of Theorem 1.) This

also implies the continuity of f in (x;,b). Now consider the third term of (4.6). Again,
using (4.7) and the induction hypothesis (replacing b by ba.), we have for Re(c,) > Re(d, ),

ey .0 (T, b, 0" v) = Z/ e Tkt ronay o xy1)e ™ f(z g, ba,, m(D)v)dr,
where J varies over subsets of {1,...,v—1}. The corresponding sum in (4.6) has the form

Z p(z1,...,2,)e " f((xg,2,)b,0),

Re(c,)>Re(d,)

which corresponds to subsets J of {1,...,v}, which do not contain v. (J' denotes the
complement of J in {1,...,v —1}. J'U{v} is the complement of J in {1,...,v}.) Here

flzy,z,),b,v) = ec”m”/ e"T(k“""c”)To‘f(xJ/,ba,,ﬂ'(D)v)dT .
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We have, by the induction hypothesis (4.5), (4.3) (and Re(c,) > Re(d,)),

|f((zj,,;pu),b’v)l < (/ eT(“hutn) | - Re(cU)(r—zu)TadT)5(xj/)ezJ,‘Re(dJ,)”b”uq~(ﬂ.(D)v)

v

o0
< (/ e""“"‘Re“"’*”)T“dT)5<x.w>ezw Re(d;)+ew Reldo) |||k gi(r(D)o)

< (/ 6"rad7)‘5(371')6“””‘1“(‘1”)”“ Rl b #g(m (D))
— 6(xJ,’$V)ezJ/~Re(dJ/)+z,, Re(d,,)”b”pa(ﬂ.(D),v) )
6(zy,x,) is a polynomial. This shows (4.5) in this case and also the continuity of f

in (zj,x,,b). Finally, using (4.7) and the induction hypothesis (replacing b by ba), we
have, for Re(c,) < Re(d,),

beya,0(Ty,b,a’,v) = Z/e_T(k”+c”)T°‘ﬁ(:c1, s Ty1)e Y f(x g, bar, m(D)v)dr
0

where J varies over subsets of {1,...,v—1}. The corresponding sum in (4.6) has the form

Z p(xl,...,x,,)e”'“f((rcy,:zz,,),b,v) )

Re(c, )<Re(d,)

which corresponds to subsets J of {1,...,v}, which do not contain v. Here
T, .
fl(zy,z,),bv) = ec”””"/ e Thete) o f(0 5 ba,, m(D)v)dT .
0

We have, by the induction hypothesis (4.5), (4.3) (and Re(c,) < Re(d,)).

Ty

|f (@1, 20),b,0)| < /er('k”“‘)-eRe(C”)(w”_T)‘T“dT 8(w g )e R |bl|#G(m (D))
0

Ty

/er(—k,,—Re(du)+,u)TadT 5(xJ,)ewJ/~Re(dJ/)+z,, Re(d,,)”b”pZZv(,Ir(D)U)
0

(/ v e_TTadT)(5((L‘J/)€w"/'Re(dJ')+m" Re(dy)”b”ua’(ﬂ.(D)U) .
0

IN

IN

As in the last case, this proves (4.5) and the continuity in (z;/,x,,b). The proof of
Theorem 1 is complete. ]
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DEPENDENCE ON PARAMETERS. — We review and modify the arguments of Theorems 1,2 in
order to see the dependence of the terms in (4.4) and (4.6) on parameters. For example,
in the case of GL(3), we want to deduce that the meromorphic continuation in (s, s3)

of the integral
1 1 ab
/ / w5 | e b dadb
0o Jo 1

is also analytic in the parameters of the representation w. Our treatment here is just to
penetrate deeper into proofs of the previous two theorems.

We assume that our representation is induced from a lower parabolic subgroup P of G,
which has Levi part GLy, (F') x - - - X GLy, (F') X Gy_(¢, +..++,) and a generic representation
o1 - |det.i21 R--®
o.|det-|** ® ¢’. Put z = (z1,...,2.) and denote the representation by m,. Denote by V,
the space of the induced representation and by V' the space of restrictions of the functions
in V, to K¢,. We realize 7, in the space V. Let A1,..., A, A’ be Whittaker functionals

for 01,...,0.,0'. For v € V, there is a unique v, € V, such that UZ‘KG = v. Put
I3

W.(v) = L AM® @A ®N)(v(u)O  (u)du

Here U is the radical of the opposite to P and O is the restriction of a nondegenerate
character of N, to U. The integral converges absolutely if (Re(z1 —22), ..., Re(ze—1 — 2¢),
Re(z.)) is in an appropriate translation of the negative quadrant of R® and it has a
holomorphic extension which defines a Whittaker functional for 7,. We assume, for
simplicity, that W, (v) is a Whittaker functional with respect to the standard nondegenerate
character of G,. We shall denote for g € Gy, v € V and E € U((9¢)¢)s

Wo,z(g) = Wa(r.(g)v) ,
Wﬂz(E)’U(g> = Wz(ﬂ-z(g)ﬂ-z(E)v) .

Given a compact subset €2 in C®, there are a continuous seminorm ¢ on V and a positive
number p, such that

(4.16) We.=(9)l < llgll*q(v)

for all g € Gy, v € V, z € Q. In particular, we have
(4.17) W (9a™)] < llgll*e*q(v) ,

forall g € Go, t >0, m < ¢, v eV, z e Q. Inequalities (4.16), (4.17) replace (4.1)
and (4.2). We shall assume that 2 is connected with a nonempty interior. Let 1 < m < ¢

and k£ > 1 be integers. Denote by E,(C";)(V) the finite set of eigenvalues of w,(H,,) on
the space V/YV® V. Recall that an element of E,(cm)(V) is of the form c¢(z) — n where

4
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c(z) € E(m)( V) and n is a nonnegative integer. By [W3, 12.4.7], EYZ)(V) consists of
linear functions in zi,...,2. (this includes a translation). We now modify the argument
of Theorem 2. Choose d, a negative number, as large in absolute value as we may want.
Choose k, a positive integer, such that

(4.18) —k+p<d—1.

With these u,k and d, let us use the same notation as in the proof of Theorem 2. We
note that the sets of elements {E;}X ; and {D,;}, in U((g¢).) do not depend on the
representation. This is clear from [W3, 15.2.4]. Let

We_(50)0(ba'ar) W @y (D30 (00 02)
Fz(t,b,a’,v) = ) Gz(t7b7a/7v) = Z
W (Bryw(ba’a;) " \W, @y (D, 1) (bar)
We have
(4.19) 7 (Hp)m.(E)v = Zbu(z . (E;)v + sz (Y ). (D, )v
Jj=1

By [W3, 12.4.7, 15.2.4], b;;(z) are rational in z. The eigenvalues of B(z) = (b;;(z)) lie of
course in E (m)(V). It follows that the matrix e*B() has coordinates which are of the form

(4.20) > pa(t)e )

where p.(t) € C(z)[t] and c(z2) € E,(c"z‘)(V) The elements p,(¢) lie in a finite subset of

C(2)[t] (which depends on k). Let C be the set of eigenvalues of B(z) on C”, considered
as a set of linear functions in z. As in (4.10), (4.11), equation (4.19) gives rise to a
differential equation satisfied by F,, whose solution is

t
(4.21) F,(t,b,d',v) = eBHF,(0,b,d,v) + etB(z)/ e BEAG, (1,b,d ,v)dr .
0

Again, we equate the first coordinates of both sides of (4.21). The first coordinate of
the Lh.s. is W, .(ba’a;). By (4.20), the first coordinate of the first term in the r.h.s. of
(4.21) has the form

(4.22) S b (D) OW,_ 5. (ba') -

p.(t) lies in a certain finite set of C(z)[t], £ lies in a certain finite set of /((g¢).) and
¢ € C. The first coordinate of the second term in the r.h.s. of (4.21) has the form

(4.23) Zh tc(z)/ _T(Hc(z))To‘Wm(D)v(ba,’af)dT
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Again h(t) lies in a certain finite set of C(z)[t], D lies in a certain finite set of U((g¢). ),
« lies in a certain finite set of nonnegative integers and ¢ € C. Put

t
(4.24) $e,a,0,:(t, b, v) = / e Tk roWw by, (bd'a)dr
0
and let
1
Qo1 = {zEQI—k—ReC(z)+MZ_§} 7
1
Qe = {zGQI—k—Rec(z)+u§ —g} .

Q = Q1 UQ,. If the union is disjoint, then one of the subsets 2., 2.2 is empty.
First, note that ¢. o p .(t,b,a’,v) is holomorphic in z in €2, and continuous in (¢,b,a’),
uniformly in ). Indeed, since €2 is compact, there is A such that

—Rec(z) <A |, VzeQ.

Thus, using (4.17), we have for 7 > 0 (bounding ¢(7.(D)v), on 2, by another continuous
seminorm which we denote again by g),

e TN W Dy (ba'ar)| < eTTHHARTba’ | #g(v) .

This implies the holomorphicity in €2, and also

t
(b2 (8,1, ', 0)]| < |lba’[q(v) / o7 (kA o g
0

From this the continuity in (¢,b,a’) (uniform in ) is easy to obtain. Now let us estimate
¢e,a,0,2(t,b,a’,v) on Q. ; and on Q... Assume that z € Q. ;. Then

t
|¢c,a,D,z(t,b,al,v)| < ||ba'||"q(v)/ eT(—k—Rec(z)+p+1/2)e—r/27_ad7_
0

< et(—k—Rec(z)+;L+1/2)“ba/”yq(v)éa(t) ,

ta+1

where 6,(t) = 571 It follows from (4.18) that on

€ e,a,p,:(t,b, ', v)| < €80 (t)[ba’||*q(v) -

Assume that z € Q... Then write

¢ca,p,:(t, b/, 0) = / e Tkt oW, (bdar)dr
(4.25) o .
t
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The absolute convergence of the integrals in (4.25) follows from
e+ ENTEW by, (ba'ar)| < ||bd'|[Fg(v)erFTRe DT < b/ |[#g(v)e 5 70

In particular, this convergence is uniform on . », and hence each summand in (4.25) is
holomorphic on §2. . Each summand is continuous in (¢, b,a’), uniformly in z € Q. as
will be clear from the following. Let

(4.26) o= (b, 0) = /0 e~ e o (ba'ay)dr
(4.27) @e,a,D,2(t,b,a V) =/t e‘T(k+°(z))T°‘Wﬂz(D)v(ba'a,)dr.
We have

Iwc,a,D,z(bvalvN S 6a}|ba’||“q(v) ’

for 2 € Qe 6y = f0°° e~ /3 redr.
The continuous function z — —k — Rec(z) + p is nonzero on the compact set Q. »
and so there is Ag > 0 such that

(4.28) | —k—Rec(z)+pul >A40>0, Vz € Qo .

We have
oo

!(ﬁc,a,D,z(t, b, (l/, ’U)| S (/ e‘r(—k——Rec(Z)‘HL)TadT) ”balllﬂq(v)
t

—k—Rec(z > (1) ta!
— et(—=k=Rec(z)+n) <_e_ + e_zta T4 —aT lloa’||#q(v) .
z z

z

Here e, = —k — Rec(z) + p. By (4.28), |e,| > Ay > 0 for all z in Q.. Thus

|Ge.a,p,z (8 b, 0’ 0)| < e TETRCETIEL(8)|[ba’||#q(v)
where 6! (t) = % + %Z; + -+ 4 2. This implies that on ..
’ 0 0

1) Gea,p,:(t,b,d', )| < 76, (2)]Iba’|#q(v) -

Summing up, we proved the following analog of Theorem 2. (We keep the notation of
Theorem 2. We fix Q,u,d and k as above.)

THEOREM 3. — There exist a finite set € C U((ge) ), a finite subset C C UI:ZI E(V),
a finite set of polynomials S in C(z)[t], and a finite set L of nonnegative integers, such that
forall v € V and z in Q, W, ,(ba’a,) has the form

(4.29) W,(bd'a;) = sz(t)etc(z)W,,z(E)v(ba’) + z ho(£)e*® g o p . (t,b,a,v) ,
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where p.(t), h.(t) €S, c€ C, E,D € £, a € L. ¢pocp.(t,b,a',v) is given by (4.24);
it is holomorphic in z € S, uniformly continuous in (t,b,a’) (as z varies in Q). For
z € 8.1, we have

(4.30) € e,a,p,2(t,b,a',v)| < e8a(t)]ba’||#g(v) ,

where 6,(t) = %_:—; and q is a continuous seminorm on V which is independent of z and
of D. For z € Q.9 we have

(4.31) be,a,0,2(t:0,0",v) = e 0D, (b,0',v) = Pea,p.-(t,b,0',v)

where co.p,:(b,a',v), Gca,p,:(t,b,a',v) are given by (4.25), (4.26). They are both
holomorphic in z € §Q, 3, uniformly continuous in (t,b,a’) as z varies in Q. » and

(4.32) |0c,0,D,2(b,a, v)| < ||ba’||*8ag(v) ,
(4.33) |Ge.a,p,2(t,b,0",v)] < 76, o (B)llba’[[#g(v) -
Here 6, is a constant and &, ,(t) is a polynomial (independent of z or D). |

Remark. — C in Theorem 3 is thought of as a finite set of linear functions in z.

We now prove the analog of Theorem 1. We choose (very) negative numbers dy,...,d,
and positive integers kq,...,k,, such that
—kj+[l,<dj~—1, 1=1...,v.

We use the notation of Theorem 1. By (4.29), applied to ¢ = z,,, m = m,,, we have that
W, .(ba,) is a sum of terms of the following two types.

(4.34) pZ(l'V)exVCV(Z)sz(D)v (baglm)' e a(mu—l)) )

Ty—1

(4.35) pa(a,)eme / e bte N o, (bl alme el Ydr,
0

Here p,(z,) is taken from a finite set of C(z)[z,], ¢, € Uf”:l E{)(V), a,- from a
finite set of nonnegative integers, and D is taken from a finite set of /((ge).). Now
apply (4.29) again to (4.34) and to (4.35). A term of type (4.34) is then a sum of terms
of the following two types

po (@t @)1 T (bag’fl)’ . a;rff;e))
and

Ty—1
v—1Cu— +xyc —Ty—1(ku; +cv—1(2)) JOv—1
Do (Tyo1,m, )emrmrev 1 (e (z)/ em vk e (@) o
0

W, (D)o (bai’:“ e a(;;‘_"f)aﬁv"_"l—l)) dr,_1 .
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A term of type (4.35) is a sum of terms of the following two types
Ty
pz(xu_l,a,y)ezu_lcu_l(z)ﬂu%(z)/ e (hurten (2)) o
0

2

W Dy (ba(;l”l)' aa ai’:’_””)a%n"))dn
and
P (@1, @, et 1ot BT Ten () /Oz" /ox”_1 R P
We. o (b0l -+ alme s alme o0 alm) ) d(ry-a,m,)

Again p.(z,_1,7,) are taken from a finite set of C(z)[z,_1,%,], etc. We apply again
(4.24) to each element of the last four types and so on. Finally, we get a sum of elements
of the following types

u

z; Tiy )
pz(:cl,...,:vu)He’ici(z)/ ' / H (e‘“‘j(kia“”ci’j(z))’r;;”)
0

(4.36) i=1 0 j=1
W, oyo (bally - 0l ) d(ms, o)

Here {i1,...,%.}, 91 < -+ < 1y, isasubsetof {1,...,v} (it may be empty), p.(z1,...,2,)
ki

is taken from a finite set of C(2)[z1,...,2,], ¢; € U E(V), aq,...,q, are taken
r=1

from a finite set of nonnegative integers and D from a finite set in /(g,). ). As in the case
of one variable, the integral in (4.36) is holomorphic in z € {2 and uniformly continuous
in (z;,...,x;,,b) as z varies in 2. Put

Qcil,.u,ciu sl Qcil,jl n Qcilyjz n...n Qciu gur Jlsee oy Ju = L2.

Assume that z € Now for such z, rewrite (4.36) as follows. If j, = 1,
leave the integration fozi’ as it is, and if j, = 2, write the integration f:” as f0°° - [

r =1,...,u. Thus the element (4.36) becomes a sum of elements which are obtained fro;n
(4.36) by replacing some of the integrals " by either [~ or f:o . The analysis in the

proof of Theorem 3, shows that each such term has the form

CiyyeensuidlseesJu”

m
p2(z1,...,2,) He’”’ic’i(z)fz(:z;v/l, ces Ty 5 bv)

i=1

where {1,...,v} is the disjoint union of {vyi,...,%m} and {v'4,...,7_m}
Y1557 v-m} C {i1,..-,i.}. The functions f,(zy,,...,oy _ ,b,v) are linear in
v, holomorphic in z € cinid1ynjus Uniformly continuous in (2. ,...,%y _ ,b)

Cil yoory
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as z varies in {2 ',cm 1,ju» and there exists a continuous seminorm ¢ on V and a

011:

polynomial §(z. ,.."., 2, _ ) such that
|[fo(@yr yonoy gy b, 0)|

(4'37) T dr - +w/ d_/

< 1% ¥ —m 6(1;7,1, . 7w'y’u_m)”b||MQ(U) .
Let us denote this space of functions f.(z,...,2z, _ ,b,v) on RI™ x Rﬁ_’m” xV
by F; ;5 where J = {i1,...,iu}, I = {7'1,-- 7o} 5 = (J1,-- -, Ju)- Note that if
J» = 1 then I contains ¢,. Put also

€. VUi sesCiy i1 T
Tiy “

¢CJ,aJyD 22y, b U) / / H T (kij teiy (z))TZij)

(4.38)

Ww;(D)v (ba‘(’_llil) . '.as.:rii“))d(Til,...,Tiu) s
for ¢c; = (¢iyy..y¢, ) a5 = (@i, ..., i,), x5 = (ziy,...,z;,). Now we can state the
analog of Theorem 1, which we just proved. Fix Q, d;,...,d,, k1,...,k, as before.

THEOREM 4. — There are finite subsets C; C U’:; 1 E,(m,":j)(V), Jj=1,...,v, (viewed
as subsets of linear functions in z), a finite subset & C U((ge)c), a finite subset P
in C(2)[z1,...,z,] and a finite subset L of nonnegative integers, such that for all
veV, zeqQ,

Wy(bae) = > po(a1,--., ) [[ €7D e, a,.02(2,b,0) .
=1

Here p,(z1,...,2,) € P, ¢; € C;, J varies over subsets of {1,...,v}, ay € LV and
D € & ¢y 0, p,:(x5,b,v) is given by (4.38). It is linear in v, holomorphic in z € Q,
uniformly continuous in z j, as z varies in . Let j € {1, 2}|J . Then on QCJ - we can write

H ezici(z)(l&c./,a.r,D,z(l'J, b, U) = Z err .Cll(Z)fz(xI? b, ’U)

i=1
where I varies over certain subsets of J, I' = {1,...,v}\1, and the functions f.(x1,b,v)
belong 1o a certain finite subset of F; | -. |

Finally we remark that the four theorems of this section hold in the case of general
real (split) reductive groups, in particular for GL,, and the simple algebraic groups. The
proofs are the same word for word, noting that for (z1,...,z,) € R, a, represents an
element of the (connected) center A of the Levi part of an arbitrary standard parabolic

subgroup and for z4,...,z, > 0, a, € A7 In this paper, we will apply these results to
GLn(F), Gz = SOQ@+1(F), Hn = SOzn(F)
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5. Proof of Theorem A in case / > n

We will use several reductions, so that it will suffice to prove Theorem A only for
integrals of the form

(51) R(W'U’ET,S) = / Wv<<a Ig_n> )g‘r,s(Iaa)fs_l(a)ldet a|s+3n~§272 da s

A

ay

for v € V., &5 €V, A,(f)

Drse = {a= a; >0,1—-1,...,n

Qn,
6(a) = 6(m(a)) is the modular function for H,, with respect to the standard Borel
subgroup. Put, for short, s’ = s + &‘% For (5.1), we apply the results of section 4.
In the sequel, whenever we write that B(W,, &, ) satisfies the properties of Theorem A,
we mean that B(W,, &, ), initially defined as an absolutely convergent integral in some
half plane, has a meromorphic continuation to the whole s-plane, which is continuous on

Vz x V, . and meromorphic in (sy,...,s) if W, = Wy, . Put
B(W'mgrs
A -2
(5.2) / / < ( ) )g,,s(f, )5~ (a)| det a|"* "7 dzda .
l-—n
A(+) X (n0)

Recall that this integral converges absolutely for Re(s) large enough ([S], 5.3).
LEmMA 1. - If B(W,,, &, ) satisfies the properties of Theorem A, then so does A(W,,, &, ;).

Proof. — By the Iwasawa decomposition, we have (first for Re(s) large enough),

(5.3) AW 6) = / B (ne(k))Wo, pra(k)Ers )k

Ky,

Since B(W,,&; ) is a meromorphic function of s, which is continuous on V, x V,__,
it follows that for s which is not a pole, the function k — B(7(jn ¢(k)W,, prs(k)érs)
is continuous on Ky , and hence bounded, when v and ., are fixed. In particular, the
integral (5.3) converges absolutely, if s is not a pole. By the Banach-Steinhaus theorem,
since (v,&r5) — B(m(Jne(k))Wy, prs(k)érs) is, as k varies over Ky, , a pointwise
bounded family of continuous bilinear forms on V; x V,,__, it is equicontinuous, and hence
A(W,,&; ) is continuous on V; x V, . (Note, that since V.,V are Fréchet spaces, the
notions of continuity and separate continuity on V, x V, | c01n01de ) The convergence of
the integral (5.3) is uniform in s, when it varies in a compact set which does not contain a
pole (and, similarly, it is uniform in (s, ..., sx), when it varies in a compact set, when we
consider W, = Wy, 5,.). Thus A(W,5, _ s,,&s) is meromorphic in s, s1,...,5,. M
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Our aim is to “get rid” of the dz-integration in (5.2). Put

Bj(anfr,s)

A
4 ¢ ,
(5:4) = / / Wv<(x I; ) )ﬁf,s(l, a)67(a)|det a|* dzda .
AL My (B) 0 0 Ty

Note that B(W,, &) = Be_n(Wy,&r).
LEMMA 2. — Assume that £ > n, and let 0 < j < £ —n. If B;j(W,,&, ;) satisfies the
properties of Theorem A, then so does Bji1(W,,&; ).

Proof. — The proof is similar to ([S], 5.4). First assume that j = £ — n — 1. Consider
the subgroup C,, of elements in Gy, of the form

I, 0 U 0 4

Iy, 0 O 0

n(u,z) = 1 0
I, 0

I”l

Let ¢ € S(C,), the space of Schwartz functions on C,,, and put for v € V,

== (g)y = / ¢(n(u, 2))m(n(u, 2))vdn(u, ) .
Cn

T1

_ (I, A
Letx—(x Ien)’x—( :
X

—n

Wﬂ-(l—n—l)(q‘))v <§(a Ie—n) ) = a(a;'f—na)wv <§(a Ie—n) ) )

) = / $(n(u, 2)(yu)dn(u, 2)
Cr

) € Ms—nyxn(F). We have, as in ([S], 5.4),

where

for y € F'™ (row vectors). ¢ lies in S(F™) and the map ¢ — ¢ is continuous from S(Cr)
to S(F™). Put for ¢ € S(F") and v € V,,

I, A
m)(p) = ()71'( 0 Ip—n— )vd .
Ml /goy ( 130 . Y

Fn Yy
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Then (first for Re(s) > 0),

(55) B(W‘n(f—"—l)(q&)mgﬂs) =B n (Wﬂ(l—n-l)(qs)mg‘r,s) =By n1 (WW(I)(g)vaﬁ‘r,s) .

Assume that B,_,_1(W,,&, ;) satisfies the properties of Theorem A. Then it follows
that for s which is not a pole, the trilinear map Ty_,—1 : S(C,) x Vo xV, . — C,

given by Ty_n_1(¢,v,ér5) = Bf—n—l(Wn(l)($)u’€Tvs) is continuous, and so the

bilinear map T;_,,_; : (S(Cn)®Vy) x V,,, — C defined by T;_,_,(¢ ® v,&.,5) =
Bi—n(Wate-n-1((gyw: &r,5) is continuous. The map S(C,)®Vy — Vi, given by ¢ @ v —
7¢="=1)(4)v is continuous. It is also surjective (by the Dixmier-Malliavin Lemma [DM])
and it is open (by the open mapping theorem). Therefore, the bilinear form (v,&, ;) —
Bi_n(W,, &) is (separately continuous and hence) continuous. The assumptions about
the meromorphic properties of By_,—1(Wy.s, .. s.,&r,s) clearly imply the same properties
for Be—n(Wys,,... s €r,s)- Next, we repeat the argument for j < £ — n — 1. Assume that
B;(W,,&, ) satisfies the properties of Theorem A. Let L; be the subgroup of elements
in G, of the form

T,8

A
I, 0 u
n(u) = I 0 voou=(ur, U,y Upen—jo1) € My (e—n—j—1y(F) .
Ipnj

Put, for ¢ € S(L;), v € V,,

7O = / $(n(w))m(n(w))vdn(u) .

Z1
Let z = : € Mj11yxn(F). We have
Tj+1

A A

a a
Wﬂ'(f)(qb)v( X Ij+1 > = ¢(-'L'j+1)Wv< x Ij+1 ) 9
0 0 Ippnoj 0 0 Jppnoj

where, for a row vector y € F",

W= / (n(w) b (s ) () -
Lj

;5 lies in S(F™). Put for ¢ € S(F™), v € V,,
I, "
_ 0 I
T(e—n—j) (@) = / <P(y)7r< y 01 )vdy~
Fr 0 0 0 Ipmpjq
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Then
Bjs1(Wa )0 érs) = B; (Wm_n_n@)wfﬂs) '

Now we are at the same situation as in (5.5), and we proceed asincase j =f—n—1. B

Proof of Theorem A (in case { > n). — By the previous two lemmas, it is enough to
prove the theorem for R(W,, &, ;) instead of A(W,, ¢, ). Write in (5.1)

A
(a ) zagl)agz)‘-w‘afl”),ai>0,i:1,2,...,n,
I(Z—n

N
where o) = (an > . Put g0 = (an
Iz_]'

for ¢ € S(N,) and v € V,,

7 ) (in GL,(F)). If £ = n, define
n—j

m()v = /d)(u)ﬂ(u)vdu .

If £ > n, define for ¢ € S(Z,41) and v € V,

www= [ ¢(u)7r<(u Iz_n—l)/\>vdu.

n+1

We have
a " -~ a "
Wﬂ-(¢)v (( Il—n) ) = (}5((11, IR a’n)WU << Ie—n) ) '

a(al,...,an)z /d)(u)w(aua_l)du , if £>n,
z

n+1

where

$(a1,...,an)=/¢(u)¢(aua—l)du , if L=n.
N,

We first consider

R(Ww(¢>)v7 g‘r,s)

(5.6) =/Wv<<a Ie_n)/\)gf’s([’a)qg(al,...,an)_lﬁ‘l(aﬂdetalslda.

ALH

The integral (5.6) is a sum of the following integrals R,(¢,v,&;s). Let n =
{mlam2)"'7mu}a
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my < my < -+ < m,, be a subset of {1,2,...,n}, and let 7 =
{mi,my,...,m,_,}, m{ <mh<---<ml_,, be its complement in {1,2,...,n}. Then

Rn (¢7 v, §T,s)

(5.7)

Wv<(a Te- ) )5””’“)5(‘“"~-7an>6—1(a)|deta|s’da.

0<a;<1, i€n
1<a;, i€n’

We have to distinguish two cases according to n € 5 or n € 7. Both are treated in the
same way, so let us assume that n € n. (This is the less convenient case....) Denote, for a
subset v = {i1,...,%,} of {1,...,n}, i1 < -+ < iy,

[Ma” , if ngy

1€y
a(’Y):H(IEl) ; a(y) = il NO) i c s Oy = (@55 00,)
p a;’ , if nexy
€y i 7
i#En

Also put 7 = n\{n}.
Then (5.7) can be written as

Ri0&) = [ Wetatmlal))r(an) na(D)alm)

0<a;<1, t€n
1<a;, i€’

cwr(an)lai, . .. a,) - 6" (a)|detal” da .

Here we denote &, ,(h) to be the function on H,,, which takes values in W (r,9~1), so
that &, ;(h)(m) = & s(h,m) for h € H,, and m € GL,(F). w, is the central character
of 7. Now let us use Theorem 1 in section 4 (which is valid as remarked there for any
real reductive quasi split group). Thus, fix x > 0 and continuous seminorms ¢ — on V.,
and h — on V., such that

Wo(g)l < llgl*q(v) , veVm, ge Gy,
[W,(m)| < ||m|[*h(v) , veVr,me GLy(F) .

Here v — W)/(I) is the Whittaker functional on V,, with respect to %~!. (The norm
|lm|| on GL,(F) is assumed to be such that |c-m| = ||m], for ¢ € F*. We may
T

assume that for m = - , [lm]] = max{1, |z;|, |z:|~*}i<n.) Consider
n—1

1
Uiz BV (V) = (€77}, so that Reg(™ > Regy™ > - and Ui, E(™(V7) =
(€m0 so that Re €™ > Re (™ > -- - (In the second case, the superscript (), means
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that we consider the maximal parabolic subgroup of GL,,(F), which is of type (m,n —m),
and consider the generalized eigenspaces in V, for the action of H,, = <_Im 0) in

V:/ y,';v,; Ym is the Lie algebra of the unipotent radical.) Denote the “jump” indices in
the first case by N™ < N{™ < ... and in the second case by N\™ < N{™ < ...

Let d; = ENTT{')J')’ j=1,...,v,and d; = gz(v"‘l:")f” Jj =1,...,v— 1. The indices i; are

7

J J
chosen to be large (as large as we want). Recall that m, = n, since n € 1. Choose positive
integers k;, 7 = 1,...,v, such that

— k;j + 1 < Re(d;), Re(cij) , for j=1,...,v-1
and
—k, +un <Re(d,) .

By Theorem 1, section 4, there are finite subsets C; C U’:’zl E,(»mj)(V,,), ji=1,...,v
C; C Uf’zl E,(fn")(VT), j=1,...,u—1,suchthatfor0 < a; <1, 1 €7

(59) Wo(a(n) = D _r(logag)ay p(ar,,v) .
Here loga, = (logam,,...,logan, ), r is taken from a fixed finite set in Clz1,...,z,],
(it depends on (k1,...,k,), but not on v). J varies over subsets of  and J’,, denotes

its complement in 7. Let J = {i1,42,...,%.}, ¢1 < %2 < -+ < i,. Then ¢; has the form
(Ciy+ Cigy-- - Ciy ), With ¢; € Cj, and a7 = a; "'+ a; “". ¢ is taken from a fixed finite

set of functions, continuous in a;:_, linear in v, for which there exist polynomials 3, in
v — u variables (independent of v), and continuous seminorms ¢, such that

—Re(d ! ~
(5.10) (@, v)| < Blogas, )y "W ), ve V.
Similarly, for w € V,
(5.11) Wi (a(m) = 3 b(log az)ag™e(ag,w) -

Here Q varies over subsets of 7. Q}; is the complement of @ in 7. If @ = {ji, ..., j:}, then

¢q has the form (,,...,¢;,), with ¢ € C;. b is taken from a certain set of polynomial
in v — 1 variables (independent of w) and e — from a certain set of functions, continuous
in aqy,, linear in w € V,, for which there exist polynomials € in ¥ — 1 — ¢ variables

(independent of w) and continuous seminorms ﬁ, such that

— Re (i )3
(5.12) le(agy,w)] < ellogagy) 9 h(w) .
(Recall again, that if Q' = {j1,...,J,—1-¢+} is the complement of @ in {1,...,» — 1},
then agf(d‘?’ﬁ) = aiedh' ;’:e_dl"_‘tl".) Substitute (5.9) (with 7(a(n’)v) instead of v,)
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and (5.11) (with 7(a(n’)&-,s(I) instead of w), in (5.8). We get that R(Wr (4, ér.s) is a
sum of integrals of the form

p(l0g ay)az - ag™ - plaz,, w(a(n)v)e(aqy, T(@(m))(Exs(D))

(5.13) 0<ai<l, ien
1<a;, i€n’

wr(an)p(ar,...,a,)8" " (a)|det a|* da ,
where p(z1,...,z,) is a polynomial of the form r(z1,...,2,)b(z1,...,2,_1), J and Q

vary over subsets of {1,...,v} and {1,...,v — 1} respectively. Let Q2 be the complement
in n of J'; UQ;. Let © = (JUQ)\SQ. Assume first that n ¢ Q. Then we can write

a3 - g™ (@, (aln)v)e (agy, (@) (Ea(D)))

(5.14) )
= ag " f (agy, m(a(n)v, (@) (Ers(D))

where f is continuous in agq:, linear in the remaining two variables, for which there is
a polynomial 4, a nonnegative number My, which depends only on 7,7 and continuous
seminorms, ¢ — on V;, h — on V;, such that

£ (acy w(a(m))o, T(@(m)) (& (1) )

o MG (alal )oY ) 6 (1)

< §(log aﬂg)a(z;,
This follows from (5.10), (5.12) and the fact that for ¢; € C;, we know that c; has the
form &; — n, for §; € Efm")(V,,), and n is a nonnegative integer, and thus if 0 < a < 1,
=% < a% and so a~% < a™ for M} = max{—§;|¢; € E{™)(V,)}. This holds,
similarly, for ¢; € C;. Thus the product of terms in a;” -ag?é" (in (5.14)) which belongs
to €1 is bounded by a fixed power a,%[". IfQ = {f,...,4,}, then a%d" = (ag," - ag, )Mo

Let D; = —d; + Mo, Dj = -JJ- + My. From (5.15), it follows, using that 7 and 7 are of
moderate growth, that there are a positive number M; (fixed) and continuous seminorms
g1 —on V; and h; — on V., such that

£ (aqy m(a(n o, (@) € (D)

< 8(log ag; Jag P 0 a ()| Gy (v)ha (&.5(1)) -

(5.15)

(5.16)

The case n € € is treated similarly. Thus (5.13) is a sum of integrals of the form

p(log an)aa‘““““)f<a94,,w<a<n'>>v,r(d(n’))(sf,ﬂ»)

(5.17)  o<ai<1, i€y
i<a;, i€n’

$la1, ..., an)wr(an)6 (a)| det a|* da .
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If n € Q in (5.17), we modify ¢o by adding to it one more coordinate, set to be zero.
Assume now that ¢ is of the following form if ¢ > n,

1 U2 -
1 u23 u,]
1
¢
1 Un,n+1
1
= ¢1(u12)¢2(u23) ce (Un n+1)¢(u137 ceey Un—l,n+1)
and if ¢ =
1w N
1 ugs Yis
1 u'n,n+1
¢ 1 —Up,n+1
1
1 —u
1
= d1(u12) -+ Pn(Unnt1)P(uss, .. ).
Then N
#la,...,a,) = ¢1(al) (an)a( )
where

(®) = /@(ulg,...)d(ulg,...) .

Now consider (5.17), where instead of p, we take just one monomial of p. Let
Q, = {j1,---,Jc} We get an integral which is a product of terms of the following types

(5.18) a(P) /(loga DPia,(eitedtmas i (G, ), , mAIEQ,
1
(5.19) / 10g a,)P” a; ™ Ty (an)dn(an)da, , if meQ,
0
(5.20)

¢
[T [(tog s a8y, (a3)] £ (aqy, w(aln))v, 7(@(n ) (Er,s (1)

0<ay, <1, i<¢ =1
1<a,.r z<n v

mis+6,, ’~
.Ha “Pm (Am: )d(ah, vajc»am’l""’am’n-,,)'
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(Recall that o' = {m},...,m/_,}) If n € Q, we have to modify the last term by
multiplying the j. = n factor by w-(a,). é; is the exponent which §~*(a) contributes at
the i-th coordinate. We see that (5.18) and (5.19) do not depend on v or &, 5, and they
represent meromorphic functions which are continuous in ¢,,, (and in ¢, in (5.19)). By
(5.16), the integral (5.20) converges absolutely in a half plane Re(s) > sy, and since
D;, Dj can be taken as large as we want, s, can be taken negative and large in absolute
value, as much as we want. This establishes the meromorphic continuation to such a half
plane, and the estimate (5.16) implies that this meromorphic continuation is continuous
on Vi x V, .. Clearly (5.20) is continuous in the variables ¢;, and ¢m;. We thus have
proved that R(Wr (1 ® 2 ® - - @ ¢y, @ ®)v, &, 5) has a meromorphic continuation which
is continuous in (¢1,...,¢n, ®,v,&, ). The same reasoning as in Lemma 2 shows that
R(W,,&; s) has a meromorphic continuation which is continuous in (v, &, s) (whenever
s is not a pole). Finally, it is easy to repeat the above arguments, for W, ., this
time using Theorem 4 in Section 4, to see that R(W,.,, .. ,&-s) is also meromorphic

in (s1,...,8%). Of course the same proofs, apply to A in exactly the same way. This
concludes the proof of Theorem A for case £ > n. Recall that now Theorem B (for £ > n)
also follows (from the uniqueness theorem of Section 3 and from Theorem A). |

6. Proof of Theorems A,B,C in case / < n

The proofs of Theorems A,B,C that we give here (in case £ < n), are tied together. In
particular, Theorems B and C are obtained as a result of certain identities (the theorem
below). However, the uniqueness theorem of Section 3 plays an important role in the proof
of these identities, and so our proofs weave Theorems A,B,C together. The proof is in the
spirit of the proof of multiplicativity of the gamma factor in the p-adic case ([S], Sec.11).

. . G . . .
Assume that 7 is a quotient of Ind ﬁ“ o, where o is a generic representation of GL,(F’).
4

. . N G .
Since the Whittaker model of 7 is identical as a space to that of Ind ; o, and since the
4

. G . G
quotient map from Ind ?l o on 7 is open, we may assume from now on that 7 = Ind ?2 0.
£ 4

We realize o in its Whittaker model W (o, ). The space of 7 consists of smooth functions
¢ on Gy, which take values in W (o, ), so that

p(amg; h) = | det m|~/?¢(g;hm), g € G¢,u € Yo, m, h € GLy(F) .
Define

(6.1) Wolg) = / $(ug, Toy " (u)du .
Y,

Formally ¢ — W, (I) defines a Whittaker functional on the space of 7 and we want to
relate A(Wy, &, ) with the GL,, x GL,-gamma factors of 7 x ¢ and 7 x &. The integral
(6.1) may diverge, and so for { € C, we consider

G
T = Ind Fj o_¢,
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where
o_¢=o0-|det-|¢

Then for a holomorphic section ¢, which now satisfies
$oc(Timg; h) = |detm|==/2¢, (g, hm) ,

the integral

(6.2) Wy, (g) = / boc (ug, Ty (w)du

converges absolutely for Re(¢) > 0 and has an analytic continuation for all (. W,_ (1)
defines a continuous Whittaker functional on V. If ¢, # 0, then there is g such
that W, . (9) # 0. Given W € W(m,), there is a standard section ¢, ¢, such that
Wy, , = W. We will prove that the following identity holds.

27(0 XT,8§— Cv"/})’Y(& XT,8 +C7/‘/))
NS (7, A%,25 = 1,9))

A(W¢a,u§7,$) = ‘Z(W¢o,(7€7',s) .

Together with this proof the meromorphic continuation in (s,() of A(Wy, &) and

E(W%,C,{T,s) will be established. Theorem C then follows by letting ¢ tend to zero.
Define (first for Re(s) > 0) the following Whittaker model for p, ;.
If n is even,

(6.4) We,  (h) = /Er,s(wglu(z)h, Dyp(xp-1,1)dz .
If n is odd,
Ieyp v |0y
(65) W, (h)= / §r,s(w;1 ¢ 1 “f - h,I>¢(vn—1)d“dy-
In—-l

(The Weyl element w, is defined in Section 2). These integrals have holomorphic
continuations to the whole plane and define the Whittaker model of p. ;. Note that
Wre, . (h) is a Whittaker function with respect to the standard maximal unipotent subgroup
and the character

(6.6) A TN P(z12+ 223+ + Zn—1n — Tn-1,1) n even
. 2" Y(z12+ 203+ + Zn—2n-1— Zn—1,n + Tn-1,1) 7 0dd .

Put -
gr*,l—s = M(wmf‘r,s)

(see Section 2). This is a section in the induced representation from 7* - | det ~|1_s to H,.
The induction is from the parabolic subgroup @, if n is even, and from the parabolic
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1 ¢ 1
m-1 ) For
1 1

this representation define (first for Re(s) < 0) the following Whittaker model.
If n is even,

subgroup w, @, w; !, if n is odd. 7*(m) = T(

(6.7) We )= [ &, b)g(enora)ds
If n is odd,
(68) Wg;*,l—s(h) :/gr*,l—s(wnu(x)h’vb;,n)’d]_l(xn—l,l)dm

(bn, bon are given in Section 2). These integrals have a holomorphic extension to the
whole plane (provided &~ ;_ is holomorphic; otherwise it will be meromorphic with

possible poles coming from ET*J_S only). They define Whittaker models (for p,-1_,) with
respect the standard maximal unipotent subgroup and the character (6.6). The Shahidi local
coefficient v(7,A%,2s — 1,%) in (6.3) is defined such that

(69) 7(7—7 A272S - ]-71/})Wg_*1 (I) = Wfr.s (I) .

Put
/ In—f
;Bf,n = WnpMm I /Bf,n .
4

Recall that » = n — £ — 1. The proof of (6.3) together with the proof of Theorem A
center around the following

THEOREM. — We have the following identities (whose interpretation is given in the proof).

wU( - l)n_lv(a XT,8— C?l/)_l)A(qua,()gT,s)

I,
6.10 . .
(6.10) We. . (m y I ﬁé,nw,n(g)>¢a,c(9,f )dydg
YeZ\G Mrxe(F) 0 01
wo( = 1)y(ox 71— s = Y AWy, &)
I,
6.11 .
(6.11) = / / We <m y Ir ﬁé,nw,n(g)> boc(9, I)dydyg -
V0 Z\Ge Mrxe(F) 0 0 1

(We,, and W~ are defined by (6.4)-(6.8)).

éf*,l—s
Proof. — These identities are obtained formally exactly as in ([S] 11.4, 11.14) for
case k = £. See also the first part of the proof of the theorem in [S] Section 12. This
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includes among other manipulations an application of the functional equation for o x 7
(or 0 X T) to an inner integral of a multiple integral which converges absolutely in a
vertical strip in s (which depends on (). The justification of the formal calculations which
lead to the identities (6.10), (6.11) is as follows. Denote the right hand side of (6.10)
by B(We, ,,¢,) (the right hand side of (6.11) is then B(Wg* : 5’¢"’<))' Note how

B(We. ,,¢o,) resembles the local integrals for case £ > n, only the roles of Ind o

n

and Ind ;e o - |det-|~¢ are interchanged, and it has the form of an integral of Rankin-

Selberg type for SO, x GL,. The identity (6.10) (still formal) brings out a duality
between A(Wy,_ ,&;,) and B(W,__, ¢, ) and relates these two local integrals, one for
SOq¢+1 X GL,, and one for SO,,, x GL, by a functional equation. Since the justifications
for both (6.10) and (6.11) are the same, we explain just the first case. As in [S], Section
5, it is easy to see that for fixed s and Re(() large enough (depending on s), the integral
B(We, ,¢-) converges absolutely, and moreover, exactly as in the proof of Theorem A for
case £ > n (Section 5), we see that B(W¢_ ¢, ) has a meromorphic continuation in (, s)
to C? which is (when defined) continuous on V,  x Vz_ .. Since B(W¢, , ¢q ) is obtained
by formal manipulations on A(Wy_ ., ), it is easy to see that B(W;_, ¢, () satisfies the
equivariance property (2.1), and so by the uniqueness theorem of Section 3, A(Wj,_ ., &;.5)
is proportional to B(W;_ ,és¢), in the domain of convergence of A(Wy, ,&: ). The
continuity of A(Wy,_ ,&; ) in its domain of convergence is explained in Lemma 1 below.
To find the proportionality factor, we calculate A(Wy, ,&;,) and B(We, ., ¢s) for a
special substitution. This is done in Lemma 2 below, and the theorem is proved. |

Remark. — The proof above follows the same line of argument that we used in the p-adic
case in [S], Section 11, when we proved the multiplicativity of the gamma factor. There
we already knew in advance that A(W,,_ .,&; ) is a rational function in ¢~°, and the
uniqueness theorem ([S], Section 8) had no continuity requirements. Here we overcome
this crucial issue of continuity, by first establishing it in the case of integrals of type
B(W,¢s) for SOz, x GL;,, n > £ (exactly as in Section 5), and then we compare
B(We, ., o) and A(Wy, &) in the region of convergence of A(W,, ,&;).

Proof of Theorem A (in case £ < n). — The identities (6.10) and (6.11) which initially
hold in the domain of convergence of A(Wj, &) (resp. A(Wy, &) already

provide the meromorphic continuation in (s,() of A(Wy,_ &) and Z(W%(,fr,s) as
well as their continuity on V;_ . x V, . At this point we note, continuing the above
remark, that this is analogous to the way we obtained the unramified computation
of A(W,&;,) in [S] Section 12. We computed A(Wy, &) for unramified data
through the identity (6.10), the computation for B(W;__,#, ) being known. If 7 is
a quotient of I(gy,...,0,;0,81,...,8k) as in Theorem A, we write ¢’ as a quotient of
Go_(ty4tiik . . .
Ind Ff (a8 o where o’ is a generic representation of GL¢_ (¢, 4...4+,)(F'), and then
£=(t1 4 +ty)
replace o by the representation oy, s, = o1|det:|™%! @ --- ® oy|det |75 ® ¢”. The
resulFs of Section 4 imply that B(W¢_,, Wy, ) is meromorphic in (s1,...,sk,(,$).
(Again, the proof is as in Section 5.) Thus the same is true for A(W,, &rs)
S1

N I R 1Y
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by (6.10), and similarly for A(W,,
Theorem A for case ¢ < n.

,€-5) by (6.11). This completes the proof of

----- SksC

Proof of Theorem C (in case £ < mn). — This proof follows exactly as in ([S] 11.4, 11.14).
We bring it for completeness sake. Consider identity (6.11) (of meromorphic functions

in (s,())
wo (=10 X 71 =5 = (™AW, 60) = BWz | o) -
By (6.9), we have
V(1A% 25 = L) BWz | o) = BWe, ., doc)
and by (6.10), we have
B(We, ., ba¢) = wo(=1)""1y(0 x 7,5 = (™) AWy, ., &rs) -
It follows that

wo(=1)"y(o X 7,5 - C,l/J_l)A(W%‘(,fT,S)
= ’Y(T7 A2,2$ - 17 77[))7(0' X ?7 1-s5- Caw_l);{(W(ba,g;gr,s)-

Thus we get

_1)717(0 XT,8— C7¢—1)’Y(a X T,8+ C’¢)A

7(7—7 A27 23 - 1) 1/}) (WQSU'( ’ £T,S) = A(W¢U,( ? 67_:5) °

wa(

Finally, note that

wd(—l)n’y(a XT,8— Ca"n[)—l) = w‘r(_l)e'}/(a XT,8— Cﬂ/}) .

This proves Theorem C (for £ < n). [ ]

It remains to prove the following two lemmas, which were needed in the proof of the
theorem of this section. These lemmas concern the identity (6.10). The two analogous
lemmas for (6.11) are obtained similarly.

LeEmMA 1. — For £ < n, A(W,, &, ) is continuous on V. X V,,_, if Re(s) is large enough.

Proof. — As in Section 5, it is enough to prove the continuity of
~ B (b _
R(00:60e) = [ Wa®olbs,.. 0571 / feo (:Bm( ! e))q/za(x)dfdb

(+) —=(¢,n)
A, X

ing € S(F*),v eV, &, €V, ,for Re(s) > 0. b has the form diag(b1by -+ by, by - - -
be, ..., be—1be,be),b; > 0, and 6(b) = 6(3) is the modular function of G, with respect to
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the standard Borel subgroup. There are a positive number p and continuous seminorms
g on V. and p on V,_ _ such that

T,8

IW.(9)l < llgll*q(v) . vEVr, g€Ge,
(6.12)

s (ks m)| < Alm*p(&rs) s &rs €V, ., k € Kn,, m € GL(F) .
(The norm on GL,(F) is one which comes from PGL,(F)). Thus

R(v, $,6,.0)] < / 1811672 (b) | det bl " (b, ..., be)

(+)
Al

[ it (m - )f) @zdb - q(v)

*X(f»n)

(6.13)

Now write the Iwasawa decompostion of T = u(z) = v,m(t,)k., with v, € V,,, t, €
Ag;'), k., € Kg,. By [S], 7.3 Lemma 3, we have

(6.14) (L+ [lzl®)7% < det(ts) < (1+ |J=)*) 71/
and there is a positive number M such that
(6.15) lIt=ll < (1 +[l2]*)™
(||| is the Euclidean norm of the matrix z). It follows from (6.12)-(6.15) that for
Re(s) > 0,
7 b b e(s n——g—""
Robel s [N ) Ol s O oo, b
AP

n—2
(1 + [|||?) " FRE+HZT2IH Mg g(p)p(&, ) -

X:(f-n)

The db-integral converges for Re(s) large enough and is continuous in ¢. The dz-integral
converges for Re(s) large enough, and the Lemma is proved. ]

LEMMA 2. — Let £ < n. Given W, € W(o,%) and W, € W(r,¢p1), there are
q’)((,];) € V. _and 5(]) V,... 1 <j < N, such that

o,

m s—c_n=t
(6.16) ZA( (,),g / W,( In_lz)Wa(deetml " dm
Zy|GL¢(F)
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and
(6.17)

0
I, | Ws(m)|det m|s_c_n_2_‘l dydm .

N
> B(delqbf,’%) = / / W
i=1 ' y

Z\GL¢(F) Mexr(F)

3 oo
o O =

Proof. — The equalities (6.16), (6.17) should be interpreted as equalities of meromorphic
functions. Note that the right hand sides of (6.16), (6.17) are the typical local integrals,
which appear in the local functional equation for GL,,(F') x GL,(F') and 7 x 0. See [J.S.].
The substitutions which give (6.16) are described in [S], Proposition 7.3. In exactly the
same way, it is easy to see that those same substitutions give (6.17) as well. |

7. Proof of Theorem C in case / > n

We use the notation of Section 6. We will prove that the following identity holds

Y4 n')’(a XT,8— C,?ﬁ)”y(a X T7S+ C,"/))
(7.1) w (-1 A% 25— 1.9

A(W¢a,g ) 57‘,8) = A'(Wd%,,g s 67',3)

The precise definition of y(7,A%,2s — 1,7)’) is as follows. Define (first for Re(s) > 0)
the following Whittaker model for p. ,.
If n is even,

(7.2) We, . (h) = / Er,s(wy u(@)h, Dp(52n-1,1)dz
If n is odd,
I,.1 v |0y
110 1700
(7.3) Wﬁlf,s(h) = /,&s (wnl ’ T h, I) PY(3Un-1)dvdy .
In—l

These integrals have holomorphic continuation to the whole plane and define the Whittaker
model of p,,, W  (h) is a Whittaker function with respect to the standard maximal
unipotent subgroup and the character

(7.4)

2 Y(ziz+ -+ Znin — %xn—l,l) , n even
(0 z*)

1/)(2:12 + -+ Zn—-2,n—1 — %zn—l,n + xn—l,l) , N odd .

Also define (as in Section 6), first for Res <« 0, the following Whittaker models for

g‘r*,l—s'
If n is even,

(7.5) We ()= [ & awau(@h ) (Genor)de

* 1
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If n is odd,

T*,1—s

o wi w=[ ET*,l_s(wnuu)m(I"—l _2)h,bz)w(%wn-1,1>dx.

These define Whittaker models for ET*J_S, with respect to the standard maximal unipotent
subgroup and the character (7.4). The local coefficient v(7,A% 2s — 1,4') in (7.1) is
defined such that

(77) AT A2, 25 LWL (1) =W, (T).

As in Section 6, the proof of (7.1) is based on the identities in the following theorem.

THEOREM. — We have the following identities in case £ > n.

WT(_]')Z_LY(U XT,8 — <7¢)A(W¢a,c7§‘r,s)
Ie_n 0 v Cc

I, 0 0
1 0

(7.8) = / W¢_ .(9) / ¢>a,<< I

Va\Hn

3

'(1/)—1 (’l)g_n)d('ll, ¢, y)dg )

wd(—l)nwr(_l)e+n_1’y(a X ?, 1—-s— C?¢)Z(W¢a,(’€‘r,8)
0

IZ—n v c )
I, 0 0 ¢
(79) = / Wér* . (g)/(ﬁa,g( 10 v’ ll'n,ijn,l(g);-[l>
V.., ’ I, O
If—n
'lﬁ—l(vg_n)d(’l},c, y)dg .
Here
Il—n
In €1 Al I
U T T A
I, "
(7.10) Le—n
1
0 1
0 1/.
€1 = : aAl =51:
0 0 - 0
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If £ = n, we have

UJT( - I)E_I/Y(U XT,8— (>¢)A(W¢>U,u§7,s)

(7.11) .
:/ Wﬁlns(g)(ba,C(N’n]n(g)vIn)dg7
Va\H.,
We(—1)"w, (1) "y (0 x T, 1 — s — () AWy, ., Ers)
(7.12) = / W (9)8oc(pnin(9); In)dg -
Va\H,

Here ]n(g) = jn,n(g) and

In €1 Al
(7.13) tn = 1€ |jn(w;?).

I,

Proof. — Since Theorem A is proved in this case (Section 5), then the formal manipulations
that we are going to use are interpreted in exactly the same way as in Section 6, using
Theorem A and the uniqueness theorem of Section 3. We therefore explain just the formal
proof of the identities above. Note again that these identities reflect a duality of local
Rankin Selberg integrals, one for SO9¢41 X GL,, and one for SO, x GL,. Assume first
that £ > n. Substitute Wy_ (from (6.2)) in A(Wy, &), We get

(714) [ [ enctainitarton s, (g)dudsds
Vi\Hn X, , Yi
Factor the integration on V,,\ H, through L,. We get
A
/ / / / d’o,C (UE<GJ Ié—n) jn,l(g)QIK) .
Qu\Hy X(,, Y Zu\GLn(F)

P (u) fe,. . (m(a)g)| det a|' =" dadudzdg

The precise meaning of [ is [ . Write
Qn\Hn KHn

a

A A
_[a
ZE( If—n) = (xa Ie_n> , TE M(g_n)xn(F), a € GLn(F) .

Change variable  — za™!, and write
A a A I, "
a
(1; I ) =\|r Ié—n—l 0 Ippo1
e 0o 0 1 t 0 1
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A
a
Conjugate w by | r I,_,_y (¥(u) is not affected). We get
0 0 1
I A
[ ][l ] (B g
teFm Y, Zu\GLn(F) M—n_1)xn(F) t 0 1

(7.16) O\
a
In,e(9); (7" Iy ny )fr,s(g»a) +| det a|s—<_e~Tndea) dudtdg .

0 0 1

The inner drda integration in (7.16) is (for ¢, u, g fixed) a local integral for the theory of
GL, x GL,,. Thus, using the local functional equation in this case, we have

o= (o x s = CAWa, o) = [ [ [erw

Qn\H, teF™ Y,

I A
i ) I,_,
(717) ( / ¢'U,C (u 0 Irns ]n,l(g); (a ¢ >)
Z,\GL, (F) ¢ 0 1

&s(g,a) - | det als—c—%ﬂ"lda> dudtdg .

A
Conjugate (a I ) across in (7.17) and let
l—n

(™)
Wn, e = In .

We get
(7.18)
I A
/ b (W)n (@”*“" 0 Teon— J'n,E(m(a)g);Ie)
Qu\H, Z.\GL.(F) Y: t 0 1
fe...(m(a)g)|detal|' " dudtdadg
I A
= / / /w_l(“)d’a,c (@n,eu 0 Irn jn,z(g);ftz> fe...(9)dudtdyg .
Vo \H, teF™ Y, t 0 1
Write
0 Ig_n v * *
u = 1 1.// 17/
Il—n 0
I,
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Then

I,
¢o,<<@n,€“ 0 Ippnoy jn,z(g);Itz) =

t 0 1
I, 0 v * *
0 Ig_n v — <0)5 * * Ie_.n_l 0 O
—~ t .
=¢o ¢ (wn,e 1 . Jne(9); 1 t > .
Ip_, O I,
I,

Changing variable v — v + ((t))ﬁ in (7.18), we get that the (formal...)dt integration in
1

0
(7.18) forces v = e; = | . |. Write

I, 0 e 0 A I, 0 o0 (¢ 0
Ig_n 0 0 Ig_n 0 0 C
U= 1 0 e1 1 0 0
Ie_n 0 Iz_n C
I, I,
I, 0 0 0 z I,

0o I, 0 O 0 I, v y

1 0 0 1 2

Ig..n 0 Il—n
I, I,

Denote the second matrix in this product by a(c) and the last by v(v, y). Note that the third
matrix is j,¢(u(z)) and that v(v,y) commutes with j, ,(g). The integral (7.18) becomes
(7.19)

/ / (/ d)"’“(7”"@")‘0‘(0)%,!(“(z)g)v(v,y);Ie)

v\, U,

P (ve—n) fe,., (u(2)g)dv (v, y)dC) du(z)dg

- / / bom (’Yn,e@n,za(c)jn,e(g)’/(“,y);-’e) N (ven) ... (9)dv (v, y)dedg
m(Z,)\H,
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Here
IZ—n
In €1 A1
Yn,e = 1 6,1
I,
Il—n
Now factor the dg integration in (7.19) through U,. We have
(7.20)
7n,l'&)n,la(c)jn,2(ﬂ(x))
I, I,_, dz 0 ¢ 0
I, I, 0 O c
= x 1 (I“” )W 1 0 0 |Wne
* x I, In + Arz I, -—uzc
I[_n Il—n
Thus
¢U,C <7n,€ﬁ’\n,£a(C)jn,f(ﬂ(x)g)l/(va y)7 IK)
I, cx 0 ¢ 0
I, 0 0 c
=¢(%fvn—1,l)¢o,c<%,e 1 0 0 Tﬁn,ejn,z(g)l/(v,y);Lz)-
I, —zc
IZ—n
The integral (7.19) becomes
Iy, cx v ¢ Y
I, 0 O c
/ /¢a,< (%,e 10 @n,ejn,e(g);fe>
J I, —-=zc
m(Z,)Un\Hn
(Z)Un\ I
¢(%wn—1,1)¢—l(vl—n) : fﬁr,s (E(z)g)d(m’v’y70)dg .
We have
Iy, cx v ¢ Y
I, 0 O c
Vn,e 10 v |y
I, —zc
Ii—n
I, cx v—cxey c(I+zA;)—ve) y
I, 0 0 (I —Aiz)cd + e/
= 1 0 v —ejxcd
I, —zc
Ilf—n
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Change variable v — v + cze;. Note that ¥((cz)¢—n,1) = ((cze1)e—r) and that
cI +xA;) —v'er — c(I — xA;) — ve). Change variable again ¢ — c(I — zA;)~! and
then ¢ — c + ve). We get

(7.21)
Ii—.., 0 v ¢ y
I, 0 O c
/ ( [ e Lo ’Yn,ﬂf’n,ejn,e(g);Ie)¢—1(vz—n)d(1’,0,y)>
J I, 0
m(Zn)U,\Hn
(Z.)T.\H o

| (/ V(gEn-1)fe.. (mx)g)dx) g .

The inner dz integral in (7.21) is a Whittaker integral for p;,, and it equals W} (w,g)
(see (7.2), (7.3)). Thus (7.21) becomes

(7.22)
Ip_, 0 v ¢ Y
I, 0 0 c
/ Wéf,s(g)/%,c( 1 o Mn,ejn,e(g);Ie>1/f1(vn—z)d(v,c’y)dg,
Vi\H,, I, 0

wWhere e = Vn¢Wn edne(wy ). This proves (7.8).

Assume now that £ = n. The (formal) proof is similar and should be modified as follows.
Note that there is no unipotent integration in A(Wy_ ,&: ). As in (7.15), A(Wy, ., &:5)
equals

(7:23) / / / boc (@7 (9): I )~ (W) fe. . (m(a)g)| det a]' " dadudy .
Qn\Hn Y Z,\GL,(F)

~ ~_1

Here j,(9) = jnn(g). Note that ¢ (aua~') = ¢(ep,av) where €, = (0---01) (n coor-

I, v =z
dinates), u = y(v,z) = 1 o |.Again “ / ” means “ / 7. The integral (7.23)
In Qn\Hn KHn
becomes
/ / ( / ¢cr,( (y('v? z)]n (g)§ a) 57',3(97 a)
(7.24) Q. \H. Yi “Z,\GL.(F)

Y Hepav)|det a|s"<da> dy(v,z)dg .

Formally, the inner da integral, is (for y(v, z),g fixed) a local integral for GL,(F') x
U1
GL,(F) and (o, 7). The function @, (21,...,2,) = Y"1 (> i zv:), v= | : | plays

Un
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the role of the “Schwartz function”. Now applying the functional equation for (o, 7), we get
w‘r( - 1)8_17(0 XT,8— (:a "p)A(W(ﬁa,gagr,s)

- / /( / B (y(v, 2)jn(9); )ers(g, @)
Z,\GL, (F)

(7.25) o\H. Ve

Po(er -ta™1)| det a|1+3_<da) dy(v, z)dg .

Here £, = (10---0).
We have @,(eifa™t) = 8, 4-1c,, and (7.25) becomes

(7.26) / / / boc (v~ 1, 2)n(0); 0)Ers (g, )| det o]+~ dadzdg
Q-.\H, Z,\GL,.(F)

=/ / / boc (vnjnw(z)m(a)g);zn).ﬁf,s(u(z)m(a)g;In>|deta|1-"dadzdg
Qn\H, Z,\GL,(F)

(7.27) = / Go.c(1nin(9); L) fe. . (9)dg -
m(Z,)\Hn

In €1 A1
Here ~,, = ( 1 € ) . Now factor the integration in (7.27) through U . As in (7.20)

I,
L,
’Yn]n(ﬁ(x)) = * 1 (In + Alill)/\’)‘n .
*  x I,

Thus the integral (7.27) becomes

/ bo.c(tin(9); In) [ $(3n11)fe. . (A(z)g)dedg

m(Zn)U\Hn

= / We. (9)boc(Bnin(9); In)dg
V.\H,

(7.28)

where pn, = Ynjn(w; ). This proves (7.11).

[Again the interpretation and justification of the above formal proof are as in case
£ < n. If some readers still find some of the above steps too outrageous, here is an
example. Consider the passage from (7.24) to (7.26). The convergence of these integrals
in their appropriate domains can be established in a way similar to case £ < n. Note
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that in Section 5, we proved that the meromorphic continuation of A(Wy_ &, ) exists
and is continuous on V;_ . x V, _ as well as meromorphic in parameters. Clearly both
integrals satisfy the equivariance property (2.2), and so they differ by a proportionality
factor (Section 3). To find the factor, we use the following substitutions. Let &, ; have
support in Q,U,, such that

& o(m(a)Ti(2); I,) = | det a7 o(z) W, (a) ,

where ¢ is a Schwartz function and W, € W(T,'(,[)—l). In (7.24), “ f ” may also be
interpreted as [ . Thus (7.24) becomes

Un

T (0)P0,c (y(v, 2); )Wy ()9~ (enav)| det a|*~*dady(v, 2) ,
Ye Z,\GLn(F)

where

Toc (@) = / (@) ¢ (i (W) b s

By [D.M.], every ¢, ¢ (smooth) can be written as a linear combination Zra,c(%)ff’,(j,)(-
Thus for a given ¢, ¢, there is a linear combination of integrals of type (7.24), which equals
(7.29) / / bo.c(y(v, 2); )W, (a)p™} (e,,av)| det a|*~“ dady(v, 2) .
Ye ZnGLn (F)

Now take ¢, to have support in P,Y, and such that

boc(y(v,2);0) = $1(v)h2(2)Wo(a) ,
where ¢; and ¢, are Schwartz functions and W, € W (o, ). The integral (7.29) then equals
(7.30) ¢ / W, (@)W, (a)$1(—ena)] det o]~ da ,

Z,\GL,(F)
where ¢ = [ ¢2(z)dz. When we multiply (7.30) by w,(—1)""'y(o x 7,5 —(,%) and apply
the local functional equation for GL,(F) x GL,(F), we get
(7.31) c / W, (a)W,(a)p1(erfa™")| det a|* T~ da .
Zn\GLn (F)

Now apply the same substitutions and linear combinations to (7.26). We get

$oc(y(a™ er,2);a)W,(a)| det a|'**~dzda

Zn\GLn(F)

= / /¢1(€1ta_1)¢2(Z)Wa(a)WT(a)| det a|***¢dzda

=c / W, (a)W,(a)p1(erfa™")| det a|*T*Cda .
Z,\GL,.(F)
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This proves that the proportionality factor in (7.25) is w,(1)""1vy(o x 7,5 — (,%).] Let
us proceed to the proof of (7.9) and (7.12). It is almost the same as that of (7.8), (7.11),
but we have to be careful about the modifications. Assume that £ > n. If n is even,
then A(W%C,& s) = A(W%C,{T 1=s) and &1y (h, L) = M(wn,ffs)(h, by) lies in
pr+1-s and (7.9) in this case is a special case of (7.8) (with gf*,l_s replacing &, ;).
Assume that n is odd. Then

AWy, o 60) = AW, c(dn 0yt Exe1—s)

where
I,

dnye = Iyo—ny+1 )jn,e(w)
I,

and
&e1—s(h ) = M(wy, &,5) (R, bl,c™)

(see Section 2). &* lies in the space of p,- 1_,. By (7.21) we conclude that

T*,1—5

wr(=1) (o X 71— s = £ ) AWy, &)

I, 0 v ¢ y
I, 0 O c
(732) = / (/4’0,(( 1 0 ’Yn,e@n,ejn,e(g)dn,z;fe)
' m(Z0)Tn\H., L 0
IZ—n

™ Hvn_e)d(v,c, y)) . (/¢(%xn_l,1)f§:*‘l_s(ﬁ(z)g)dm) dg .
The inner (Whittaker) dz integral in (7.32) equals
[ithena )M ) (@) e

(733) = [ W )M (wn, &) (o) g%, o

— ! Iﬂ—l -1 w
=W <m< —1/2)“’ 9 )

(see (7.6)). Thus change variable in (7.32)

g (wnm (In_l __2)‘9) = w;lm(In_l _1/2)g“’. Note that
I w
jne('w 1m< ! _1/2)9 )dn,Z

In—l . 1
= —Ig(e_n)+1 ]n,ﬂ(w; g) .

-1/2

-2
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We have
1
In—l
7n,l@n,£ "IZ(Z—n)+1
n—1
-2
In—l
10 -2 0 -2
0 I,., O 0 0
= 2 0 -3 0 -2 YrtWn e -
00 0 I, 0
-2 0 2 0 1
Il—n
Write
1 -2 -2 1 1 -2 -2
(2—3 —2)=(2 1 )(0 1 2)
-2 2 1 -2 -2 1 0O 0 1
We get
I, 0 v ¢ Y
I, 0 0 c I
¢0,C< 10 v ’Yn,l’[ﬁn,ljn,f (w;1m< ot _1/2)9w)dn,e;fe>
I, 0
Ié—n
I 20 —2co 0 v—2c ¢ Ca Y
1 0 0 0 0 ch
I, 0 0 0 )
=¢>a,<( 1 0 0 v -2
I..1 O 0
1 20 —2d,
Il—n
_Il—n
1 0 -2 0 -2
0 I, 0 0 0
0 0 1 0 2 "Yn,lfbn,ljn,é(wglg); IZ
0 0 0 1.1 0
0 0 0 0 1
‘"Ie—n
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(we wrote ¢ = (c1,cz) where ¢; € M(g_pn)x(n—1)(F))

Iy, 0 —v+2c -c Y
I, 0 0 —c
=1 (2(115_” - (Cz)z_n))¢a’< ( 1 0 —v+ 26'2
I, 0
IK—n

IR _ -1,
’Yn,;wn,fjn,i(wnlg);( ton I >> .

Change variable (in (7.32)) v — v + 2¢; (note the cancellation of 1(2(cz)¢—y) and then
v —v,c — —c, We get

I, 0 v ¢ Y

I, 0 O c

/ 8 / P ( Lo

Vo \Hn L, 0
Il—n

1~ _ I _
’Yn,;w"yfjn,f(wn 19); ( ) I ))dJ l(vf—n) ' d(v,c, y)dg .

Now change g — —g. Note that Wé (-9) = wT(-l)Wév (g9)- We have

T*,1—s

NP Iin o
’Yn}wn,ljn,tZ(_I%l) = < ¢ _I ) Tn,eWn, e -

Il—n

A
Conjugating further to the left with < I ) , we get
in

wrwe(—1) / 57 .

Va\Hr
Il—n

/ ¢a,<(

This proves (7.9).
Finally consider case £ = n. If n is even, then (7.12) follows from (7.11). Assume that

n is odd. Again, using (7.28), we get
wr(_l)n—17(0 X ?, 1-s- <7¢)Z(W)¢a,<’§7',s)
(7.34) = / ¢a,<(’7’njn(g)dn;-[n)/w(%wn_l,l)fﬁi*,l_s(ﬁ(z)g)dﬁl)dg .

m(Z, )U—n \H,

0
I,

- o

Ponedn,e(9); Ie) d(v,c,y)dg .

SNooao
o S Aaw

If—n
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I,
Here d, = -1 Jn(w). As in (7.33), the (Whittaker) dz integral in (7.34)
I,
equals Wé (m (I"_l 1 /2)10; 1 g“’), and the Lh.s. of (7.34) becomes
T*,1—s -
o | ni ((w m (It g)w do; I, |W- (g)dyg
o,C nJn n -2 nyin Erens .
Va\Hn

Exactly as in the last case, this integral equals

/ o (%Ilj(w;lg);ln)Wé*,l_s(g)dg

Vo \Hn
. ’
= wcrw‘r('_l) / Po ¢ (Nnjn(g);In)Wa* 1_s(g)dg .
Vo \Hn
This proves (7.12) and the theorem. ]

Proof of Theorem C (case £ > n). — As in case £ < n, the proof follows immediately
from the identities (7.8),(7.9),(7.11),(7.12) and the functional equation which defines the
local coefficient (7.7). For example, if £ > n, then (7.8),(7.9) and (7.7) imply that

wr(=1) (0 x 7,5 = () AWs, o &)
=FY(7—7 Aza 2s — 17'le)wﬂ(_l)nwf(—l)e-}-n_l’)’(a X 7/:7 1-5- C)@b)g(w/:ﬁg,g»&'r,s) )

and so

___1)71'7(0' XT,8— C)¢)7(a XT,8 + Cvd)_l)
’Y(Tv A2a23 - 1a1/}/)

wo(=1)"w,(

AWy, &) = AWy, . 6) .

Finally, (7.1) is established using w, (—1)"v(Gx 7,5+(,%™1) = w (= 1) y(Gx T, s+, ).
The proof in case £ = n, is similar. [ ]
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