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ON THE FOURIER COEFFICIENTS OF MODULAR FORMS

BY DOUGLAS L. ULMER (1)

ABSTRACT. - The goal of this paper is to discuss a Newton-Hodge inequality for modular forms. More precisely,
for a prime number p and an integer N prime to p we consider the characteristic polynomial of the Hecke operator
Up on the space Sk-^-2 (^i (^" N)) of cusp forms for the congruence subgroup Fi (j»" N) of SL'z (Z). The main
theorem bounds the Newton polygon of this polynomial from below by an explicit polygon denned in terms of the
genus and number of cusps of the modular curve Xi (N). The main technique is a motivic variation of theorems
of Mazur, Ogus, Illusie and Nygaard on the Katz conjecture (according to which the Newton polygon of Frobenius
on crystalline cohomology is bounded in terms of dimensions of Hodge cohomology groups) and a computation
of these Hodge groups using logarithmic schemes. We get new information because the relevant Hodge nitration
is not of type (k + 1,0), (0, k + 1) as usual, but rather of type (k + 1,0), (k, 1), ..., (1, k), (0, k + 1).

Introduction

The goal of this paper is to discuss a Newton-Hodge inequality for modular forms,
i.e., a theorem giving lower bounds for the divisibility of Fourier coefficients of modular
eigenforms by primes which divide their level. More precisely, for a prime number p and
an integer N prime to p we consider the characteristic polynomial of the Hecke operator
Up on the space Sk+^i^N)) of cusp forms for the congruence subgroup T^^N) of
SL2(Z). The main theorem bounds the Newton polygon of this polynomial (with respect
to the p-adic valuation of Q) from below by an explicit polygon defined in terms of the
genus and number of cusps of the modular curve Xi(7V). Concretely, this means that only
so many of the eigenvalues of Up can be j?-adic units; if the maximum possible number
are units, then the rest are divisible by p and only so many of those are exactly divisible
by p, etc. The main technique is a motivic variation of theorems of Mazur, Ogus, Illusie
and Nygaard on the Katz conjecture (according to which the Newton polygon of Frobenius
on crystalline cohomology is bounded in terms of dimensions of Hodge cohomology
groups) and a computation of these Hodge groups using logarithmic schemes. We get new
information because the relevant Hodge filtration is not of type ( f c + l , 0 ) , ( 0 , f c + l ) a s
usual, but rather of type (fc + 1,0), (fc, 1), . . . , (1, fc), (0, k + 1).

It is worth taking a moment to explain the origin of this theorem. If p is a prime number
congruent to 3 (mod 4) and K denotes the field Fp(j), where j is an indeterminate, then
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130 D. L. ULMER

there is an elliptic curve E defined over K so that the Hasse-Weil jL-function of E satisfies

L(E/K^)=1[[(l-ap-s)
a

where the product ranges over all eigenvalues a of the Hecke operator Up on
S^(To(p), ( p ) ) , the space of cusp forms of weight 3 and character ( - ) (the Legendre
symbol) for the congruence subgroup To(p) [Ul]. The values and derivatives of the
L-function at 5 = 1 are then powers of log? times rational numbers whose valuations at
p are bounded below in terms of those of the a. On the other hand, if r denotes the order
of vanishing of the L-function at s = 1, then the Birch and Swinnerton-Dyer conjecture
predicts the following formula for the value at 1 of its r-th derivative:

1 r ^ ( F / K n wr
^ (wl)=^)^

where vertical bars indicate the order of a group. Here 111 is the (conjecturally finite)
Tate-Shafarevitch group attached to E, R (the regulator) is a power of logp times a
rational number integral at p and r (the Tamagawa number) is an explicitly computable
rational number. Thus the right hand side is (log?)7' times a rational number and one can
estimate the power of p occuring in this rational number. Comparing this estimate with the
estimate above for the denominator of the left hand side, and using that similar results hold
with K replaced by its finite extensions K (g) Fg, one finds a Newton-Hodge-style lower
bound on the valuations of the a. In particular, roughly speaking at most 1/4 of them can
be units at p. We prove this prediction of the conjecture of Birch and Swinnerton-Dyer
and extend it to a wide class of modular forms.

Here are the contents of the paper. In addition, the reader can find a sketch of the proof
of the main theorems at the end of Section 1.
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1. Statement of the main theorems

Throughout the paper, we view the field of algebraic numbers Q as a subfield of the
complex numbers C. Recall that the conductor ofaDirichlet character ̂  : (Z/MZ)X —^ C
is by definition the smallest positive integer M9 such that ^ factors through the natural
map (Z/MZ)>< —^ (Z/MfZ)x. If M = M' then ^ is by definition primitive; in general,
there is a unique primitive character ^/ : (Z/M /Z)>< —> C through which ^ factors.
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VALUATIONS OF HECKE EIGENVALUES 131

Now for any positive integer M and non-negative integer k, let S = 5^+2 (TO (M), ̂ ) be
the (complex) vector space of cusp forms of weight fc+2 and character ̂  : (Z/MZ)X -^ C
for the congruence subgroup F()(M) of SI^Z). Recall that a form f ̂  S is primitive if it
is new (i.e., is orthogonal under the Petersson inner product to all forms coming from lower
levels), is an eigenform for all Hecke operators T^ for primes t /M, and is normalized
(i.e., has first Fourier coefficient equal to 1); in this case, / is automatically an eigenform
for all U^ with i\M. For any / G S which is an eigenform for all Tn with i ){M there is a
unique primitive form of some level dividing M with the same Hecke eigenvalues as /;
by definition, the level of this form is the conductor of /.

We recall a result summarizing what is known about these Hecke eigenvalues. Suppose
p is a prime number and / is a normalized eigenform of weight k + 2 and conductor p^M
(with M prime to p) which may not be primitive, but which is "primitive at p" in the sense
that the largest power of p dividing the conductor of f is p1^. Suppose further that the
character ^ of / has conductor ^m ' M' with M' prime to p. If m = 0 and Tpf == a/, write
1 - aT + Wp^T2 = (1 - aT)(l - f3T) with a,f3 G C; if m > 0, write Upf - af.
Then we have the following result which combines work of Deligne (for m = 0) and of
various authors starting with Hecke (for m > 0); see [Dl] and [Mi], 4.6.17 for proofs.

PROPOSITION 1.1. - The complex number a is an algebraic integer and

ad = p^1 ifrn=m/

a2 = ̂ /(p)pk if m = 1, m' = 0
a = 0 if m > 1, m > m'

Here ^/ is the primitive character attached to ^.
This result says a lot about the possible valuations of a: in particular, the archimedean

valuations of a are completely determined and at any finite prime of Q not dividing p, a
is a unit. Moreover, for any valuation v of Q dividing p, v(a) is completely determined
in the last two cases and in the first case, 0 <, v(a) < k + 1 (where v is normalized so
that v(p) == 1). Noting that if Upf = af then the complex conjugate form / satisfies
Upf = af with / G ^^(FoO^M),^), we can say that when m7 > 0, at most half of
the eigenvalues of Up on S^^oO^M),^) C 5^+2 (Fo^M),^) are units.

This trivial observation has a smooth rephrasing in terms of Newton polygons. We
define the Newton polygon (for a valuation v) of a polynomial with algebraic integer
coefficients P(T) = 1 + • • • + a^ = r^=i(1 - ̂ T) where ^i) ^ • • • ^ v{ad)
as the graph of the function defined on the interval [0, d] whose value on integers is
defined by the formula i ̂  Z - i ^ 0 ^ ) an(! which is extended by piecewise linearity.
We also define the Hodge polygon of a collection of non-negative integers (^ • • • ^ l s )
as the graph of the function F defined on the interval [0,^^] with F(Q) = 0,
^(Z^=o^) ^ Z^=o^j' an(^ ^tended by piecewise linearity. The Hodge polygon takes
its name from the fact that the numbers lj often arise from geometry, as the dimensions of
certain Hodge cohomology groups. (See Katz [Kl] for a readable introduction to Newton
and Hodge polygons.) Then the observation becomes that when p divides the conductor
of '0 (i.e., m' > 0), then the Newton polygon of the characteristic polynomial of Up
on S^lTo^M)^) © Sfc^^Fo^M),^) lies on or above the Hodge polygon of
the collection (d ,0 , . . . ,0,d) where d is the dimension of ^^(rt^j^M),^) and 0 is
repeated k times.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



132 D. L. ULMER

We are now going to present our theorems on the valuations of coefficients of modular
forms, which are strengthenings of the observation above. For a fixed prime number p,
non-negative integers k and m, a positive integer N prime to p, and a Dirichlet character
^ modulo p ^ N , introduce the Hecke polynomial

(det^-UpT^w^p^N)^)) if m > 0
E(k^m,N^)= {

[det(l-^^+^(p)p fc+1^2 |^+2(^o(^)^)) if m=0

Note that these polynomials will in general have eigenvalues of non-primitive (i.e., old)
forms among their inverse roots; however, if p^ divides the conductor of '0, then all
forms contributing to E(k, n, N, -0) are primitive at p. Now the theory of newforms (i.e.,
an analysis of the various maps Sk-^2{To(prn~lN)^) ̂  Sk^(To(prnN),f^f;)) reduces
questions of valuations of eigenvalues of Up and Tp on all modular forms to the case
of ^-primitive forms. Note also that Proposition 1.1 gives a formula for the valuation of
the eigenvalue of Up for any ^-primitive form whose conductor is divisible by a higher
power of p than the conductor of its character is (i.e., m > m1). Thus we will only be
concerned with those forms for which m = m' and thus only with those E ( k ^ n ^ N ^ )
where p^ divides the conductor of ^.

The first result concerns the case when N > 4. In the theorem below, (f) is Euler's
function: (f)(m) = the order of (Z/mZ)x.

THEOREM 1.2. - Fix an arbitrary prime number p, integers k and n with 0 < _ k < p , n > 0
and an integer N > 4 prime to p. Let g be the genus of the modular curve Xi(7V), c the
number of cusps on this curve, and set w = g — 1 + c/2 (which is an integer as N > 4).
Then the Newton polygon, with respect to the p-adic valuation of Q, of the polynomial

J] J] E(k^m^N^)
0<m^n 1/,:(Z/p7T^7VZ)><^C

p^cond^)

(where the second product is over characters modulo p^N whose conductor is divisible
by p ^ ) lies on or above the Hodge polygon associated to the integers

,,,= )̂(̂ )-̂ {; ̂
l^...=l^, =^pn)w(pn - 2)

,̂ (,0(,,-̂ )-̂ {; ̂
Moreover, these two polygons have the same endpoints.

Remarks. - 1. - While the theorem can be refined somewhat (see below), in general our
method does not allow us to prove a theorem on the Newton polygons of the individual
E(k, m, N, '0). This restriction, as well as the need to take k < p, will be explained below
when we sketch the proof.

2. - Using the remarks immediately preceding the theorem, one can deduce a
Newton-Hodge inequality for the characteristic polynomial of Up on the whole space
^WIWAQ).
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VALUATIONS OF HECKE EIGENVALUES 133

3. - Our method applies also to the case where n = 0, but the result is just the trivial
observation above. This is also the case when k = 0.

4. - As we are taking a product over various non-trivial characters, the theorem really
concerns modular forms on F^^N). Recall that the ^^(pnN) moduli problem is the
product of the problems F^) and T^(N) (see [KM] 3.5.1). In Theorem 1.2, r^(N) can
be replaced by any representable moduli problem of finite level prime to p, e.g., r(7V) for
N > 3 and ( p , N ) = 1. The formulae for the lengths of the sides of the Hodge polygon
are the same except that g and c are now taken to be the genus and number of cusps of
the curve associated to the new moduli problem.

We can obtain finer results, where the product of Hecke polynomials ranges only over
certain characters: if (Z/pm7VZ)x is written as a product of cyclic groups of prime power
order, then we can take the product only over those characters with fixed restrictions to the
various factors Z/^Z (where i is a prime / p). The next result makes this explicit for the
direct factor (Z/pZ)x of (Z/j^A^^. To this end, fix a p-adic valuation v of the field of
(p-l)^ roots of unity Q(^p_i), normalized so that v{p) = 1. Let \ : (Z/pZ)" -^ C be the
unique character such that v(x(^) - x) > 0 f01" all re G Z prime to p. (Throughout the paper,
^ will be identified with the Teichmtiller character via the embedding Q(^p-i) —^ Qp
associated to v.) Then any Dirichlet character ^ : {Z/prnNZ)x -> C can be written
uniquely as )car1e with 0 ^ a < p - 2, where T) : (Z/7VZ)X -^ C and 0 : (1 + pZp) -^ C
are characters of finite order.

THEOREM 1.3. - Fix an arbitrary prime number p, integers k, n, N, and a with 0 ^ k < p,
n > 0 , N > 4 prime to p, and 0 < a < p - 2. Let g be the genus of the modular curve
Xi(7V), c the number of cusps on this curve, and set w = g - 1 + c/2. Let a' == 0 if a = 0
and let a' = p - 1 - a if a -^- 0. Then the Newton polygon, with respect to the valuation
v fixed above, of the polynomial

H(k, n, N , a) = ]̂ [ ]^[ E{k, m, N, ̂ )
0<m<n ̂ (Z/p^.^'^C

^=X0^
p171 |cond(i^)

(where the second product is over characters modulo p^N whose conductor is divisible by
p^ and whose restriction to (Z/pZ)x is ^a) lies on or above the Hodge polygon associated
to the integers

_ I (P271"1 - P + ̂ y2 - P^c/2 + 1 if k=a=0
\ {p271-1 - p + 2 + 2kpn~l + 2a)w/2 - pn~lc/2 otherwise

^2n-i _ ^"-i - p + 2)w if a = 0
l , = ' " = l k = <

^ ^2n-i _ 2^-1 ̂ .^ if a ^ Q

_ \ (P271"1 - P + 2)^/2 - P71"1^ +1 if k=a=0
~ \ O9271"1 - P + 2 + 2fcpn-l + 2a /)w/2 - pn~lc/2 otherwise.

Moreover, these two polygons have the same endpoints.
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134 D. L. ULMER

Remarks. - 1. - Remarks 3 and 4 following Theorem 1.2 also apply here.
2. - Theorem 1.3 is the basic result: Theorem 1.2 is obtained as a corollary by summing

over the various powers ^a of the Teichmiiller character.
3. - Of course the theorem depends on the choice of v. changing v changes the valuations

of the inverse roots of each E and it changes the value of a in the decomposition ^rjO
of a character ^. This dependence can be made less apparent by working with modular
forms with coefficients in Qp.

4. - The values of lo give upper bounds on the number of forms whose eigenvalues for
Up are j?-adic units, i.e., v/hich are ordinary in the terminology of Hida. In fact, comparing
the theorem with Hida's results, one finds that in many cases the Newton polygon of the
Hecke polynomial lies strictly above the Hodge polygon defined here. We will return to
more precise versions of this point in another paper.

When p > 3 one can also obtain results (although with different formulae) for the cases
TV < 4 by the methods used to prove Theorem 1.3. At the suggestion of the referee, we
have included a statement of these results, and indications of their proof, in Section 7.

We give an example to illustrate the difference between the trivial observation and the
theorem. The most attractive case i s n = 7 V = l , f c > 0 and a ^ 0. Then the Hecke
polynomial H(k, 1,1, a) is just E(k, 1,1, ̂ a) and all of the forms contributing to it are
new at p. Below is a diagram of the case p = 11 (mod 24), k = 1 and a = (p — 1)/2.
The numbers above the segments indicate the length of their projections to the x axis; the
numbers below indicate tlieir slopes. The diagram illustrates the remark in the introduction
that in this situation, roughly speaking at most 1/4 of the eigenvalues of Up can be units.
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VALUATIONS OF HECKE EIGENVALUES 135

We conclude this section with a sketch of the proof of Theorems 1.3 and 1.4. In
Section 2, we construct a smooth project! ve variety X over Fp, the field of p elements,
and a projector II e Qp[Autpp X] such that the characteristic polynomial of Frobenius on
the part of crystalline cohomology of X cut out by II is the polynomial H appearing in
Theorem 1.3. The coefficients of II lie in Zp if and only if p > 2 and k < p and in this
case we think of (X,H) as a "motive with p-integral coefficients." The argument here is
a small variation on that of Scholl |[S], combined with previous cohomology calculations
of the author [U2]. In Section 3, we prove a variation of the Katz conjecture, saying
that the Newton polygon of Frobenius on the part of crystalline cohomology cut out by
a projector is bounded below by a Hodge polygon, defined in terms of the dimensions
of Hodge cohomology groups cut out by the same projector. Because we are applying
our projector to vector spaces over a field of characteristic p, it must have p-integral
coefficients and this is the source of the restriction in the theorems that k < p', it is also
the reason we must take a product of Hecke polynomials rather than working with the
individual E(k, n, N, ̂ ). (Moreover, it forces p > 2; we give a different proof for the case
p = 2, k = 1 in Section 6.) The argument in this section is an essentially formal variation
of Nygaard's proof of the Katz conjecture.

The real work takes place in the next two sections where we compute the relevant
Hodge cohomology groups. Specifically, in Section 4 we construct a logarithmic scheme
Xx (in the sense of Kato [Ko]) which is closely related to X and on whose cohomology
11 acts. The main theorem of the section gives the relation between the II-part of the
Hodge cohomology of X and the II-part of the (log) Hodge cohomology of X^. The
main tools are the theory of log structures as developed in [Ko], some formal use of its
predecessor and cousin mixed Hodge theory, and a computation based on the theory of
toric varieties. In Section 5 we compute the II-part of the Hodge cohomology of Xx in
terms of sections of certain sheaves on an Igusa curve and find the dimensions of these
groups, yielding Theorem 1.3.

Section 6 contains a somewhat different proof of Theorem 1.3 for weight 3 and any
p based on a formula of Milne; this resolves the only relevant case of Theorem 1.3 for
p = 2. In Section 7 we consider the cases N < 4, which involves a slight modification of
the projector 11 and the computation of invariants under the action of the Galois group of
a certain covering of modular curves. This group has order divisible by 6, which forces
the restriction p > 3.

2. ScholPs projector

The goal of this section is to find a piece of cohomology on which Frobenius has
characteristic polynomial equal to the Hecke polynomial H ( k ^ n ^ N ^ a ) of Theorem 1.3.
We find this cohomology by applying a minor variation of the projector of Scholl [S].

We retain the notations of the introduction: p is any prime, N is an integer prime to p and
>_ 5, n and k are integers; we do not need to assume k < p, but to avoid constantly making
a special case, we assume k > 0; only trivial modifications in the discussion are needed
for k == 0. Let X-i(N) be the modular curve over Fp parameterizing generalised elliptic
curves with a ri(7V)-structure (i.e., a point of exact order N) and let I = Ig^p^N) be
the Igusa covering of level j?71 over Xi(7V); I parameterizes generalised elliptic curves E
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136 D. L. ULMER

with a FI (^-structure plus an Igusa structure, i.e., a point of "exact order j/1" on E^^
the range of the n-th iterate of the relative Frobenius of E. See [KM] Chapters 3 and
12 for more precise definitions and properties of these curves. We have a universal curve
£ --"-̂  I which is the pull-back of the universal curve £ -^ Xi(7V). We call the points
of I representing singular elliptic curves cusps and the points representing supersingular
elliptic curves the supersingular points', other points of I will be refered to as ordinary.
The map TT is smooth away from the cusps and the fibers of TV over the cusps are Neron
M-gons where M\N.

Let / : X —» I be the fc-fold fiber product of £ over I . When k > 1, the variety X is
not smooth over Fp: there are singularities arising from the product of double points in
the fibres of TV. For k > 1, let X denote the resolution of these singularities defined by
Deligne ([Dl], lemme 5.4 and lemme 5.5); this resolution is explained in detail in [S], §2
and, from another point of view, in Section 4. For k = 1, we set X = X\ in all cases
we have a map f : X —^ I .

Let C C I be the reduced subscheme of cusps and set 1° == I \ C, X° = /"^(P).
The fibers of X° -^ 1° are fc-fold self-products of elliptic curves. We obtain an action of
G = (Z/7VZ xi ^2)^ x Sk on X° by letting the Z / N Z ' s act by translation by the canonical
points of order TV, the ^ ' s act by inversion in each copy of the elliptic curve and the
symmetric group Sk act by permuting the factors in each fiber. This action extends to
X and X and covers the identity action on I . We also have the action of the diamond
operators (d) = (d)p for d G (Z/_pZ)x on I: {d) sends the geometric point representing
(£, P, i) (where E is an elliptic curve over Fp, P G E is a point of exact order N
and i : (Z/^Z)" -^ E^ is an Igusa structure of level p") to (E,P,^(d)i) where
\ is the Teichmuller character; the same recipe gives the action of {d) on X and this
action lifts to X.

Following Scholl, define a character e : G —> {±1} by setting e\^ = id, e|z/7vz = 1 and
e\Sk = sgn; let II be the associated idempotent in the group ring Z[l/2Nk\][G}. We note
that 11 has p-integral coefficients if and only i f j ) > 2 a n d f c < j ? . I f y i s a Z[l/2Nk\}[G}-
module, we write V(e) for HV. Recall that \ : (Z/pZ)x -^ Qp is the Teichmuller character
which we have identified with a character (Z/^Z)X —^ Q(^p_i). Fix a prime i / p and a
place A of Q(/^,_i) over i\ we deduce an embedding Q(^p_i) c—^ Q^(^p_i) and we can
identify ^ with a character \: (Z/pZ)x -^ Q^p-i)^ If V is a Q^p_i)-vector space
with (Z/J)Z)X action, we write V^) for the ^a eigenspace.

PROPOSITION 2.1. - a) There is a canonical isomorphism

H^(X 0 F;, Q,)(6) ^ H^(I 0 F;, Sym^ ^TT^Q,)

compatible with the actions of (d), d (E (Z/J)Z)X and Gal(Fp/Fp).
b) We have an equality of polynomials in T with coefficients in Q(/^_i);

det (1 - Fr T H^I (g) F;, Sym" .R^Q^.i))^)) = H(k^ n, TV, a).

Proof. - b) is a reiteration of the main theorem of [U2], broken down into eigenspaces
for the {Z/pZ)x action; see p. 706. For a) we need to introduce another variety: let
X* —^ I be the (open) variety whose fiber over x e I is the connected component of
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VALUATIONS OF HECKE EIGENVALUES 137

the Neron model of X° -^ J°. The fiber of X* over a cusp is G^, and the inclusions
X° —^ X* —^ X are isomorphisms away from the fibers over the cusps. We also introduce
the subgroup Gk = ̂  xi Sk of G and the character ek : Gk -^ {±1}, ^ = ^G^'

Consider the long exact (Gysin) sequence ([M2], VT.5.4b, p. 244):

-> W-\C x G^)(-l) - IF(X*) -. H\X°) -. H^-\C x G^)(-l) -

(where we write HJ(V){n} for H^(V (g)F^ Q^(n)) and ^(V) for HJ(V)(O)). We apply
the idempotent associated to e^ to this sequence. According to Scholl ([S],1.3.1),

H^-\C x G^)(-l)(6fc) ^ ̂ -^(CX-fc - 1).

Recall that the fiber of TT over any cusp x of I is a Neron M-gon with M|A^, so the action
of G on the fiber of / : X —^ I over x factors through the quotient (Z/MZ xi ^2)^ x 6'^.
As the character e also factors through this quotient, the proof of Scholl's Theorem 3.1.0
applies verbatim (with M replacing his n) and we have an isomorphism

^•(X*)(6,)-^(X)(6).

On the other hand, a standard computation, using the Leray spectral sequence, the Ktinneth
formula, and [KM] 14.3.4.3, shows that

H^X°)(ek) ̂  [ H^10 0 F^ symfc R17r^) if j=k+l
\ 0 otherwise

Collating these results, we have

^'(X)(e) = 0 unless j = k + 1, k + 2

and an exact sequence

0 ̂  ff^X^) ̂  ̂ (r^F^Sym^Tr.Q,) -> ^°(C7)(-fc-l) ̂  ff^X^) ̂  0.

But a consideration of weights shows that the last map is zero, so ^"^(X^c) = 0 and

^^X^e) = Ker (ff^(r 0F;, Sym'^TT.Q,) -. H°(C)(-k - 1)).

Now Sym^ Ji^Tr^Q^ restricted to C is Q^(-fc), so applying the Gysin sequence for the
pair ( I , C ) and Sym^ ^TT^Q^, we find

Ker (J4(J° 0 F;, Sym' R1^,) -^ H°{C)(-k - 1)) = H^I 0 F;, Sym' ^TT^Q,).

This gives the isomorphism of the theorem. As all of the maps used in the proof are
equivariant for the actions of Galois and (Z/^Z)^ the proposition is proved. D

Now combining the proposition with a result of Katz and Messing ([KMe], Theorem 2),
we find a piece of crystalline cohomology on which Frobenius has characteristic polynomial
equal to the Hecke polynomial H:
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COROLLARY 2.2.

det (l - Fr T\ (ff^1 (X/Zp) 0 Qp) (6, x')) - ff(fc. ̂  ̂  a)

3. A variation of a conjecture of Katz

Fix a prime p and a smooth and proper variety X over a perfect field k of characteristic ̂ .
Let W = VF(fc) be the ring ofWitt vectors over k. Then we have the crystalline cohomology
groups H^(X/W), which are endowed with a canonical ^-linear endomorphism <&,
induced by the absolute Frobenius of X. In fact, the pair (H = H^(X/W)/torsion^ $)
is an example of an F-crystal on fc, i.e., a free, finite-rank H^-module together with an
injective semi-linear endomorphism.

Associated to an F-crystal we have two polygons: its Newton polygon and its abstract
Hodge polygon. To define the Newton polygon we assume for simplicity that k is a finite
field with pf elements. (For the general case see [Kl].) In this case, ^f is a IV-linear
endomorphism of H and the Newton polygon for the valuation v of (ff, ̂ ) is by definition
the Newton polygon, in the sense of §1, of the characteristic polynomial det(l — ^^{H)
computed with respect to a valuation ~.v. To define the abstract Hodge polygon, we note
that since $ is an injection, ^(H) is a IV-submodule of H of maximal rank; use elementary
divisors to choose bases z ; i , . . . , Vgj w i , . . . , Wg of H so that ^>Vj = pejWj. Then set h^

to be the number of times i occurs among the ej. By definition, the h1 are the abstract
Hodge numbers of (ff, <I>) and its abstract Hodge polygon is the Hodge polygon, in the
sense of §1, of its abstract Hodge numbers.

It is an easy result of linear algebra, due to Mazur (see [Kl], 1.4.1), that the Newton
polygon of (H, <t>) lies on or above its abstract Hodge polygon, and that they have the same
end points. Much more interesting is the result, conjectured by Katz and due in various
forms to Mazur, Ogus, Illusie and Nygaard ([Ma], [BO] Chapter 8, [I] 11.4, and [N]), that
the abstract Hodge polygon of (ff, $) lies on or above the Hodge polygon associated to
the geometric Hodge numbers h^ = dim^ ff^^^X^Q^). The main result of this section
is a generalization of this result where H is replaced by a piece of cohomology cut out by
a projector in the group ring of the automorphism group of X.

Let G = Autfc(X) and take e in the Zp-group ring Zp[G] such that e2 == e. The ring
Zp[G] acts on H^{X/W) and on H^^X,^) for all r and z.

PROPOSITION 3.1. - The group eH^(X/W)/torsion is an F-crystal whose abstract
Hodge polygon lies on or above the Hodge polygon associated to the integers

hi =dlmkeHr~i(X,^)

with i = 0,... ,r.

Proof. - That eH^(X/W) /torsion is an F-crystal is clear: $ is Zp-linear and
commutes with any automorphism of X. The proof of the statement on the polygons
will be an essentially formal variation of the argument of Nygaard, which in fact proves
more. We adopt the notations of [N]; in particular, Wnf^ are the de Rham-Witt sheaves
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of Illusie [I]. First of all, if a- G G, we have canonical isomorphisms of quasi-coherent
sheaves on Wn(X)

a^Wn^ ——. W^

for all n, %, which are compatible with the operators d, V and F of the de Rham-Witt
complex ([I], 1.1.14,1.2.17.5). From this we deduce automorphisms of H^X^ Wn^l^) and
HP(X, Wn^^) which commute with d, V and F. We also deduce from a isomorphisms

a* W^ (r, n) ——. W^ (r, n)

of the complexes of [N] §1 which are compatible with V and F. Thus e acts on all the
groups appearing in Nygaard's proof, commuting with all the operators there. Finally,
noting that M ̂  eM is an exact functor on the category of Zp[G]-modules, we can
apply the argument of [N], Lemma 2.2 essentially verbatim, inserting e's as necessary.
This yields the crucial estimate

nrh°(n) + (nr - l)^^) + • • • + h^-^n) < rh°(n) + (r - l)/^) + • • • + h^^n)

for all n and r, where h^n) are the abstract Hodge numbers of (eH,^) and
h^n) = length^eJr-^X,^^). Applying Lemma 2.4 of [N] for n = 1 yields
the proposition. D

4. The situation at the cusps

We return to the notations of §2: I is the modular curve J^iQ^TV), / : X —^ I is the
fc-fold fiber product of the universal curve £ —^ I and / : X —> I is a certain resolution of
singularities of X, equivariant for the action of G == ((Z/TVZ)^ xi /^) xi Sk and ( Z / p Z ) x .
This resolution is explained in detail in [S], §2; see also below. We assume that p > 2
and k < p so that the projector n associated to the character e : G —^ =L1 defined in
§2 has p-integral coefficients; we have also fixed a power ^a of the basic (Teichmtiller)
character ^. The goal is to compute the dimensions of the H3(X^~)(€^a). We begin
in this section by handling the problems presented by the bad reduction of £ at the
cusps and then finish the computation in the next section. The main results of the section
(Propositions 4.1 and 4.2) are obvious in the case k = 0 so to avoid special cases, we
assume k > 0 throughout this section.

We will use the logarithmic structures of Fontaine and Illusie as developed in [Ko]. Let
C C I be the reduced subscheme of cusps and consider the log scheme (J, M) where
M C Oj is the subsheaf of monoids consisting of functions invertible outside C. Similarly,
define log structures on <?, X and X by using the subsheaf of functions invertible off the
cuspidal fibers. We denote the resulting log schemes with a x: I ^ , £ x , etc. The map of
log schemes £x —> I x is smooth ([Ko], 3.7(2)) and Xx —» I x is easily seen to be its
fc-fold fiber product and is thus also smooth. For X, note that the fibers of / : X —^ I over
C are non-reduced divisors: if x € I is a cusp the components of /-l(^) coming from
proper transforms of components of /-l(^) have multiplicity 1, but the new components
introduced in the blow-up X —^ X have multiplicity 2. Let D be the reduced divisor
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underlying /"^C); then D has normal crossings (i.e., etale locally on X, D is a union
of coordinate hyperplanes in affine space) and, from its definition above, we see that the
log structure on X^ is the one associated to D as in [Ko], 1.5. Now etale locally on X^
and I x we have evident charts (in the sense of [Ko], 2.9) coming from the divisor with
normal crossings structure and also a chart for the morphism X^ —-^IX\ using these charts
and applying Theorem 3.5 of [Ko] (and the assumption p > 2) we find that ^x -^ I x

is also a smooth map of log schemes. As I x is smooth over Spec Fp (with its trivial
log structure), so are X^ and Xx.

Thus, we have a diagram of log schemes

^x

/ \
X Xx

smooth over Spec Fp. In this section, we will compare the Hodge cohomology of X and
of X^, finding that they are essentially the same after applying the projector II. To this
end, introduce sheaves of log differentials ([Ko], 1.7)

^"Xx = ̂ Xx /SpecFp 5 ^Xx ^ ^ X x / S p e c F p ? and 0}x =^}x/SpecFp

which are locally free on X, X, and I . On J, f^x = ^(C) and on X, 0^ = ̂ (logD),
the sheaf of meromorphic z-forms T] which have at worst simple poles along D and whose
differentials dr] also have at worst simple poles along D. We note that any a G G induces
automorphisms of the log schemes ^x, Xx, and I x , and we have canonical isomorphisms

—*01 ~ r\i
a " "XX ————^ ^xx5

similar remarks apply to the other sheaves of differentials considered above, and to the
(d), d e (z/pZ)><.

PROPOSITION 4.1. - The inclusions 0 ~ ^ f 2 ~ ^ induce isomorphisms

H^X^^(e)^H^X^)(e)

for all (i^j) / (k + 1,0) ^r (fc + 1,1). Moreover, there is an exact sequence

0 ̂ H\X^){e) - ̂ (X^^) - H°(C^Oc) ——.
^(X^^e) -. ̂ (^^(e) - 0

Remarks. - 1. - We will show in the next section that in fact 8 == 0, so we have
isomorphisms for all (z,j) / (k + 1,0).

2. - When k = 0, H°(C,Oc) must be replaced by the subgroup

{feH°(C^c)^f(c)=0}
cec
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PROPOSITION 4.2. - The map g : Xx —>• Xx induces isomorphisms

H^X^)^H^X^)

for all %, j, which are compatible with the actions ofG and ( Z / p Z ) x .
Before beginning the proofs of these propositions, we make a general observation about

sheaves of logarithmic differentials. Let Z be a smooth proper variety, D a divisor with
normal crossings on Z, and Zx the associated log scheme. Etale locally on Z, D is a
union of smooth divisors and for j>_ 1 we let jD (resp. jD) be the union in Z (resp. the
disjoint union) of the j'-fold intersections of components of D. These constructions glue
to give a subvariety jD of Z and a smooth variety jD which is the normalization of jD\
let dj : jD —^ jD be the natural map. The local j + 1-fold intersections glue together to
define a normal crossings divisor on jD and we let jDX be the associated log scheme.
(We call the divisor defined here on D = ̂ D the divisor of self-intersections of D.) By
convention, we let o^ be Z^ the log scheme supported on Z associated to D. Then for
j >_ 0 each irreducible component Cx of j+i-Dx (with the induced log structure) admits
j + 1 maps to jDX each of whose images are divisors with normal crossings; for each
of these maps the Poincare residue defines a homomorphism of coherent Oz -modules
dj^-^ —^ a^+i^^1. Summing over all components and all maps as above, we get
a homomorphism

^•*^.px -^ ^I^^DX-

We also have an inclusion

^^WogD)=^.

We will also need the following variant: suppose E, E\ and E-\-E' are normal crossings
divisors on Z. Define jE, jE and bj : jE —> jE as above using the j-fold intersections
of components of £', and let jEX be the log scheme supported on jE corresponding
to the normal crossings divisor E + E ' . Then as above, the Poincare residue defines a
homomorphism

bj^E. -^ ^+I*^EX

of coherent Oz -modules and we have an inclusion

^(log^) - WogE + E ' ) = ̂

LEMMA 4.3. - The sequences of coherent Oz-modules

0 ̂  ̂  -^ %(log.D) ̂  a^^\ -^ ... -. a^O^ -. 0

and
0 ̂  WogE) -> ^(log£ + ̂ /) -^ 6i,^ -. .. • -^ ̂ 0^, -^ 0

are exact for the etale topology.
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Proof. - The question is etale local, so we can assume Z is Zariski open in affine space
and D, E, E ' , and E + E ' are unions of coordinate hyperplanes. The result in this case
can be obtained by direct calculation. Alternatively, one can note that the sequence of
the lemma is a special case of a more general construction of Ishida and the lemma is a
consequence of [O], Theorem 3.6 (4). D

As the next step toward proving the propositions, we have to discuss the geometry of
the resolution X -^ X from a slightly different point of view than that of [S]. Recall that
the fiber of / : X —> I over a cusp of I is a fc-fold product of a Neron M-gon where
M depends on the cusp and M\N. The singularities of X arise from products of double
points in these fibers. The resolution X is obtained by a sequence of k — 1 blow-ups: let
y,, i == 0 , . . . , k — 2, be the union in X of the subscheme of the cuspidal fibers consisting
of products of i copies of P1 and k — i double points. Set X(0) = X, Y(0) = YQ and
define inductively X(i) as the blow-up of X(i — 1) along Y(i — 1) and Y(i) as the proper
transform of Yi in X{i). Then Y^-i is the singular locus of X and X = X(k — 1) is
smooth. We define Bi as the exceptional divisor of X(i + 1) —> X(i) and Di as the proper
transform of Bi in X. Also let Dk be the proper transform in X of the fibers of / : X —^ I
over the cusps. The divisor D is the union of the Di, i = 0 , . . . , k — 2, k. We call the
irreducible components of Di type i components of D', the dimension of the image under
X —^ X of a type i component is i. Note that each Di is stabilized by G and ( T i / p T i ) ^ .

To describe the Di and their intersections, we introduce some other varieties. For
2 < r <: k consider the projective space p27'-1 over some field F with coordinates
^1,^/1, . . . ^ X r ^ V r and let Pr be the complete intersection

XlVl = • • • = XrVr-

For 0 ^ i <, r — 2 let P^i be the subvariety of Pr where at least r — 1 — i pairs xj, yj
of coordinates vanish. Set Pr(0) = Pr and define inductively Pr(i) as the blow-up of
Pr(i — 1) along the proper transform of Pr,i-i. Then Pr,r-3 is the singular locus of Pr and
Pr = Pr(r- 2) is smooth. Similarly, for 0 < r < k, set Qr = (P1)7' and for 0 < i < r -1
let Qr,i be the union of all products with i factors equal to P1 and r — i factors equal to
0 or oo e P1. Let QrW = Qr and define inductively Qr(i) as the blow-up of Qr(i — 1)
along the proper transform of Qr,i-\\ finally set Qr = Qr{f ~ 1)-

The following lemma records the geometry of the resolution X that we need. We leave
the proof as an exercise; see [S], §2 for hints.

LEMMA 4.4. - a. — For 0 <_ i <_ k — 2, Y(i) is a disjoint union of copies of Qi.
b. - ForO < i < fc-2, -B, -^ Y(i) isaPk-i bundle, i.e., locally onY'(i) Bi ^ Y(i)xPk-i

and Bi —> Y(i) is the projection.
c. - For 0 <_ i < i' < k — 2, each component of the proper transform ofY^i to X(i + 1)

meets each fiber of Bi —> Y(i) either in 0 or in an irreducible component of Pk-i,i' -i-i
and each such component occurs once. Each irreducible component of Di is a Pjc-i bundle
over Qi.

d. — For 0 < : i < i f < : k — 2, the intersection of a component of Di' and a component
of DI, viewed as a subscheme of D^, is a Pjc-i' bundle over a smooth divisor of Qr. If
i < i' — 1 then this divisor is a component of the proper transform of the exceptional divisor
of Qr (i + 1) —> Qi'(i) and each such component occurs exactly once; if i = i' — 1, this
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divisor is a component of the proper transform of' Q z ' ^ to Qi, and each such component
occurs exactly once.

e. - The divisor Dk has normal crossings and its normalisation Dj, is a disjoint union of
copies of Qk. Over a cusp with M > 1, each component of Dk itself is a copy of Qk and
the intersection of one of these components with all the others is the proper transform of the
divisor Qk,k-i c Qk to Qk- Each component of this intersection is isomorphic to Qk-i.
Over a cusp with M = 1 there is exactly one component of Dk and the divisor of self-
intersections of this component (in D k ) is the proper transform of the divisor Qk k-i c Qk
to Qk; thus again, each component is isomorphic to Qk-i. For 0 <, i <, k — 2, the divisor
defined on each component of Dk by Di is the proper transform in Qk of the exceptional
divisor of the blow-up Qk(i + 1} —^ Qk(i)'

Now we define a log structure on Qk as follows: consider the divisor D' which
is the union of the proper transforms of the exceptional divisors of the blow-ups
Qk(i) —> Qk(i - 1) for i = 1 , . . . , k - 1 and the proper transform of the divisor Qk,k-i.
The log strucure on Qk is then the one associated to this divisor with normal crossings and
we denote the resulting log scheme by (%. Note that according to part e) of the lemma,
the divisor D' is the divisor of self-intersections of D, restricted to a component of Dk.

We have an action of the group Gr = ̂  x Sr on Pr (induced by the action of Gr on
Pr which permutes the coordinates x ^ , . . . ,yr preserving the pairs Xj.yj) and an action
of Gk on Qk (induced by the action of Gk on Qk where the /^'s act by z ^ 1 / z on the
factors P1 and Sk permutes the factors). Let Or : Gr -^ ±1 be the character which is the
identity on the p.^s and the sign character on Sr. We recall that k is assumed to be < p
so the projector associated to €r in the group ring of Gr has p-integral coefficients.

LEMMA 4.5. - For all i and j, H^Pr, ̂ ~ ){er) = 0. Also, H^Qk, ? 2 - x )(efe) = 0 unless
rr ^k

i = k and j = 0 and H°(Qk, ̂ x )(e/,) = F (where F is the ground field).
^k

Proof. - We will use the theory of toric varieties {see [0]), beginning with some general
remarks. Let Z be a smooth toric variety. Then (because the fan associated to Z is
simplicial) the complement of the open orbit in Z is a divisor D with normal crossings.
If Zx denotes the associated log scheme, then the sheaves Q^x are globally trivial; more
precisely, O^x ^ Oz 0z ^N where N is the lattice of cocharacters of the torus acting
on Z. Now well-known results on the cohomology of equi variant invertible sheaves on
toric varieties (e.g., [O], 2.2) say that H^Z, Oz) = 0 unless j = 0. Thus H^Z, 0^) = 0
if j / 0 and = F (g)z ^N if j = 0.

Now apply this remark to Qk'. let T be the torus G^ with cocharacter group N = Z^.
We can give Qk the structure of a toric variety so that the divisor D' defined before the
statement of the lemma is the complement of the open orbit. According to our general
remarks, H^Qk^-x) is 0 unless j = 0 and is F 0 A'TV if j = 0. Now the action of

- f c
Gk on the cohomology of Qk is via its action on N which is the obvious one (permuting
the coordinates and changing their signs). Thus we have a non-trivial €k eigenspace only
when i = k and j = 0, in which case it is one-dimensional. This proves the second
statement of the lemma.

We return for a moment to the general considerations of the first paragraph of the
proof. In the notation of Lemma 4.3, each component of jDX is itself a smooth toric
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variety with the log structure associated to the complement of the open orbit. Thus by
the above, the sequence

0 -^ ̂  -^ WogD) -^ a^-^\ ̂  . • . ̂  a^O^, -. 0

is an acyclic resolution of f^ of length %. We obtain that W{Z,W^) = 0 for j > i and
Serre duality implies that H^Z,^) = 0 for j < i. Also, we have a surjection

^0(^^0^.)-^(Z,%).

To finish the proof of the lemma, we will apply this to Pr.
Consider the group V C R^ with basis e i , . . . , e ^ viewed as the cocharacter group

of the torus G^ in the usual way. The torus G^ acts on Pr via (a ; i ,^ / i , . . . , X r , y r ) 1-̂
(airci^a]"1?/!, . . . , drXr; a^Vr) and the kernel is ^2 embedded diagonally. Let N =
V + ^(^i + • • • + Or) be the cocharacter lattice of the torus T = G^/^. Then Pr is the
toric variety associated to a certain fan in N 0 R. The cones of positive dimension i in
this fan are the following: fix a subset S C { 1 , . . . , r} of cardinality r + 1 - i and signs
+ or — for each element of S. To this data associate the cone generated by the vectors
-^(=Lei ± • • • d= Or) where the signs of the Cj with j G S agree with the fixed signs. (To
z^
see this, note that to each choice of data as above is associated an (r — ^-dimensional
orbit of T on Pr: take the subset where xj = y^; == 0 if j ^ S and either xj or yj = 0
if j G S, depending on the sign attached to j. For simplicity assume the signs are all
+ so y^; = 0 ^ Xj for all j G S. The union of all orbits whose closure contains this
orbit is the open set

u = [x, / o|j e 5}.

Then the 1-parameter subgroup Gm —> T C Pr associated to a cocharacter n = ̂  ajCj e N
extends to A1 —^ U if and only if aj > \aj'\ for all j C S', j ' ^ S'. The cone spanned by
these cocharacters is exactly the cone associated above to the given data.) The resolution
Pr is equivariant, so corresponds to a subdivision of this fan which one checks (using
Theorem 10, p. 31 of [KKMS]) can be described as follows: the subdivision consists of
simplicial cones, so it suffices to list the r-dimensional ones. To each permutation a- G Sr
and function 5 : { l , . . . , r — l } — ^ ± l w e associate the cone spanned by the vectors

5(l)<°a(i), ^(1)^(1) + 5(2)e^(2), . . . , 5(l)e^(i) + • • • + s{r - 2)e^_2),

^(5(l)e^i) + • • • + s(r - 2)e^_2) + s(r - l)e^_i) + e^)),

^0(l)e<r(i) + • • • + s(r - 2)e^_2) + s{r - l)e^_i) - e^)).

In particular, every z-dimensional cone of this fan with i < r is contained in a hyperplane
of the form {S^ej|aji = ±a^} for some choice of d=, ji and j'2.

Now the action of Gr on Pr corresponds to the linear action of Gr on N ® R where
Sr permutes the ej and the j-th ^2 sends ej to —ej and leaves the other ei invariant. In
particular, the hyperplanes just mentioned are each fixed pointwise by some element of
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g G Gr with €r(g) == —1. Also, the r-cone above is stabilized by the g G G such that
^(<°a(r)) = -eo-(r) and ^(eo-(,)) = eo-(,) for z < r; again €y.(^) = -1.

Now if D is the complement of the open orbit in Pr then the group H^^D^ ̂ 0 , ^x )
of the general remarks can be canonically identified with Q). F where the sum extends
over all cones (f) of dimension i of the fan associated to Pr\ G acts on this group via its
permutation action on the cones of the fan. Then the observations of the previous paragraph
show that the €r part of the source of the surjection

g)F^H\p^)
0

is zero for all i. This completes the proof of the lemma. D

Remark - The isomorphism of the second part of the lemma is canonical only up to a
sign, depending ultimately on the choice of a generator of A^Z^ ^ Z.

Proof of 4.1. - Recall the divisor D with normal crossings on X which is the union
i

of the Dj. For 0 < i < k — 2, let Ei be the divisor ^^Dj and let JS-i be the empty
j=o

divisor. We note that by Lemma 4.4a, each Dj (0 <^ j < ^ k — 2) is the disjoint union of its
irreducible components (or equivalently, in the notation of Lemma 4.3, ^Dj = 0). While
Dk is not the disjoint union of its irreducible components, its divisor of self-intersections
is (by Lemma 4.4e), or equivalently, 3!̂  = 0. Applying the second exact sequence of
Lemma 4.3 with E = Ek-2, E ' = Dk, we have an exact sequence

0 ̂  ^(logJ^_2) -^ ̂ , ̂  &1*^1 ̂  &2*^x ^ 0

Here, by Lemma 4.4e, the components of Dk are isomorphic to Qk and the log structure
induced from D^ is that of Q^. Also, the components of ^Dk are isomorphic to Qk-i
and the log structure induced from <^D^ is that of Q^_i.

Now applying the second exact sequence of 4.3 again, with E = £j-i, E ' = Dj, we
get exact sequences

0 - ̂ (log^_i) - ̂ (logJS,) ̂  ̂  - 0

for 0 < j < k — 2. (Here Dj = Dj since Dj is the disjoint union of its irreducible
components.) Note that i?_i = 0 so 0-(logi?-i) = Q ~ . Thus to prove the proposition,
it suffices to show that the e parts of the Hodge cohomology of the various D^ and of
2^ vanish except for ff°(J9fc,^^x).

fc
First consider D^. Under the action of G = ((Z/TVZ)^ >3 /^) xi Sk on the components

of D^ there is one orbit for each cusp. The stabilizer of each component is
((MZ/TVZ)^ x ̂ ) x Sk (where M depends on the cusp) and (MZ/TVZ)^ acts trivially.
Using Lemma 4.5, we find that

JF(^,f2-.)(e) ={H°{C,Oc) if i = k and ̂  0
fc t 0 otherwise.
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(We note that this isomorphism is only canonical up to a choice of sign at each cusp, the
ambiguity coming from that of Lemma 4.5.)

As for 2.D/?, note that for any component of 2^, there exists an element g G G fixing it
pointwise and such that e(g) = -1. Thus H^^D^ ̂ x)(e) = 0 for all {ij).

To finish the proof, we will show that

ff*(2^^)(6)=0

for 0 ^ j ^ k - 2. First note that the stabilizer of an irreducible component of Dj is

{{(MZ/NZy x ^) x S,) x (((MZ/TVZ)^' x ^-J) x 5,_,)

with the MZ/TVZ's acting trivially. Now in the description of a component of Dj as a
Pk-j bundle over Q^, the subgroup (((MZ/TVZ)^ x ^-J) x Sk-j) of the stabilizer
acts trivially on the base and in the usual way on the fibers.

Let C be one of the components of Dj with its fibration h : C -^ Qj and let C^ be the
log scheme supported on C which is an irreducible component of Dx. Using the Leray
spectral sequence, it will be enough to show that

{Rh^x)^k-,)=Q

where Ck-j : Gk-j —» d=l is the character defined above. But Lemma 4.4d) says that
the log structure on C (which is induced by the divisor £j-i) is the inverse image of
the log structure on Q^. Thus ^ ' / ^ x = ^ • ^ and the sheaves ^- have a filtration

/ "J / ^-7 Jv

whose graded pieces are

^^f^^,-

Now C -^ Qj is a Pk-j bundle, so

Rqh^/^ = Hq^^^) ̂  OQ,.

Applying €k-j and Lemma 4.5, Rh^. = 0, and this completes the proof of
Proposition 4.1. D

Remark. - One can also prove Proposition 4.1 by analyzing the weight spectral sequence
for H^X, f2^ ) (see [D], 3.2.13m). This is somewhat messier in that one needs geometric
information on all possible intersections of components of D.

Proof of 4.2. - This follows from the more precise claim Rg^~ ^ = f2^x and the fact
that g is G- and (Z/j^^equi variant. The claim follows from the projection formula and
the following two lemmas.

LEMMA 4.6. - Rg^O^ = Ox.

Proof. - This is a general fact about toroidal singularities, but we will give a direct proof
here. It suffices to prove the claim for each of the blow-ups h : X(i) -^ X(i - 1). That
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h^O = 0 is Zariski's main theorem. Also, away from the center of fa, R^h^O -==- 0 for
i > 0 and j > 0. We will show that the stalks {R3h^O)y are zero for each closed point y
in the center of h and each j > 0 by using the theorem on formal functions (cf. [H], V.3.4).

Write Z = h^^y} and let Zn be the thickened fiber of order n. Etale locally near the
cuspidal fibers, h is the blow-up of

Spec F[a;i, 2 / 1 , . . . , Xk-i, yk-i,Zk-i+i,...,Zk]/(x^ = • • • = Xk-iVk-i)

along the subscheme

Xl = ^/l = • • • = ̂ fc-i = 2/fc-z = 0

(where F is the residue field at the corresponding cusp); thus X(i) is etale locally

Spec F[Ai, B i , . . . , Ak-i-i, Bk-i-i.Xk-i, Zk-i+i,. • • , ̂ ]/(AiBi = • • • =Ak-i-iBk-i-i)

with h*(xj) = AjrKfc-i, /?-*(%) = BjXk-i (j < k - i) and fa*(^_,) = rrfc-iAiBi. In
particular, the fiber Z is isomorphic to the variety Pk-i over F. If Z denotes the ideal
of Z in X(i), we have exact sequences

o -> z^r^ ̂  Oz^, -> Oz, -> o.

But X{i) is Cohen-Macauly and Z is generated at each point by a regular sequence
((xjc-i^Zk-w^ • • • f^k) in the coordinates above), so

jnyjn+i ̂  Symn(Z/Z2);

moreover, in the coordinates above, it is visible thatZ/Z2 ^ (0^-^^C)z(l)). Finally, Pj,-i
is a complete intersection and an easy Koszul argument shows that H^Pjc-i^ 0{n)) = 0
for all j > 0, n >_ 0. By the theorem on formal functions ([H], III. 11.1)

(R^h^^limH^Z^OzJ

which is zero by induction. Since Wh^Oy is coherent, it must vanish. D

LEMMA 4.7. - ^*^x ^ f^ for all i.

Proof. - Pull-back of differentials gives a homomorphism ^*^^x —^ 0-.^ of locally
free sheaves on X of the same rank which is manifestly an isomorphism away from the
cuspidal fibers. But near these fibers one checks directly from the explicit description of g
that the pull-back of a set of generating sections of S^x in fact generate ^x- (Indeed,
in the coordinates above, the differentials d x j / x j ( j<_ k — %), dyk-i/yk-i and d z j / z j
(k — i + 1 < j) generate ^^/^_i \x and pull-back to dAj/Aj + dxk-i/xjc-i (j<: k — i — 1),
dxk-i/xk-i, dxk-i/Xk-i+dA^/A^-}-dB^/B^ and d z j / z j (j > k-i+1), which generate
"w) n

This completes the proof of Proposition 4.2.
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Remark. - As pointed out to me by Illusie, g is in fact log etale: this follows from
Lemma 4.6 and [Ko] 3.12 or from [Ko] 3.5 and the proof of Lemma 4.7.

5. Hodge Cohomology of Xx

Next we turn to the calculation of the Hodge cohomology of Xx.lt will be convenient to
calculate the part cut out by the projector associated to e first and then pass to eigenspaces
for the ^a.

Recall the universal curve TT : £ -^ I and consider the sheaf R^T^^OS on J. As TT : £ -^ I
is a flat family of curves of arithmetic genus 1, this sheaf is locally free of rank 1; define
an invertible sheaf uj by a;"1 = R^-K^O^. We will also need the sheaf of relative log
differentials O^x/jx for / : Xx -^ I x ([Ko], 1.7) which sits in an exact sequence

0-./*^x -^^x -^x/jx ^0.

This sheaf is locally free of rank k on X. Defining ^x/jx = A '^x/ jx , we have
exact sequences

(5.1) 0 ̂  /*f2}x 0 ̂ x'/.x ^ ^xx -^ ^xx/ jx -^ 0.

Noting that the sheaf !^x/jx (^., ^xx/jx for k = 1) is the relative dualizing sheaf
for TT, we find that Ti^f^x y^x is invertible and isomorphic to uj and that R1^^^ ,^ ^ Oj.
There is a canonical section o;can of uj = Ti-^f^x/jx, defined by the following property: if
(£', P, %) represents an ordinary point of I (so E is an ordinary elliptic curve together with
a ri(^V)-structure P and an Igusa structure i : Z/pnZ ̂  E^^), then

j^^{E,P,i)=dt/t

where j : fipn ^ E i s the inverse of the Cartier dual of i and d t / t is the standard
invariant differential of Gm, restricted to /^,n. The section o;can generates uj away from
the supersingular points and vanishes to order ^n-l at each supersingular point. (This is
essentially Igusa's theorem that the Hasse invariant has simple zeros; cf. [KM] 12.8.2.)

Now ^x/ jx is locally free of rank k on X and isomorphic to a direct sum of k copies of
pull-backs of f ^ x / j x under the k projections X —^ £. Note that since any automorphism
a G G gives a map of log schemes a : Xx —^ Xx which covers the identity map
of I x , it makes sense to apply the projector associated to e to the sheaves R3f^^^ and
R3 ̂ n ^ x / ^ x . The Ktinneth formula and linear algebra yield the following result.

LEMMA 5.2. - There are canonical isomorphisms of sheaves on I :

(Wf^ \(^^i^~3 tf^J^1^[n j ^ ^ x / i x ) ( e ) — < J

\ 0 otherwise

Inserting this result into the long exact sequence of Rf^ coming from 5.1 and using the
projection formula, we find isomorphisms

(^/,^x)(€)=0 if z + j / f c o r f c + 1
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and

exact sequences

n —. (^-^.o^

(-R^Ox)^)^-";

o ̂  (^-v^x)(6) -^ ̂ -k --^ ^}{C) 0^-^ -. (^-v^x^e) ̂  i

for 1 <, i < k\ and an isomorphism

{f^){e)^^(C)^^.

LEMMA 5.3. - The (Kodaira-Spencer) map of sheaves

, ,2i-k 6 , O^r^ ̂  / ,2i-2-kUJ ————>- ^Lj\^ ) Q>9 UJ -,

considered as a global section of Hom^2^ ̂ }(C) 0 o;21-2^) ^ 0}(C) (g) a;-2, is an
isomorphism away from the supersingular points and vanishes to order pn~l{pn — 2) at
each supersingular point.

Proof. - We have a universal curve TT' : £ ' -^ X^(N) and a variety X' —^ X^{N)
whose fiber products with I -^ X:[(N) are the £ and X under consideration. Moreover,
the invertible sheaf uo on I is the pull-back of R^-K^O^ on Xi(AQ and the map 6 is the
pull-back of a similarly defined map 6 ' on Xi(7V). But Xi(A^) is a fine moduli space for
elliptic curves and so the Kodaira-Spencer map 8 ' is an isomorphism. As I —> Xi(7V) is
etale away from the supersingular points and totally ramified of degree ^n - p71-1 at the
supersingular points, the conductor calculations of [KM], 12.9.3 show that 8 vanishes to
order p^1^ - 2) at each supersingular point and is an isomorphism elsewhere. D

Remarks. - 1) In fact, one can show more precisely that 6 is multiplication by a non-zero
multiple of the global section (dq/q) c^ of ^}(C) 0o;-2, where o;can the canonical global
section of ^ defined above and dq/q is a certain log differential (whose ^-expansion is dq/q)
related to the ^-divisible group of £ over I . (For dq/q see, for example, [K2], A.I.3.18.)

2) The fact that this Kodaira-Spencer map is not an isomorphism, i.e., that there is
ramification in the map from the modular curve I to Xi(-/V), accounts for the fact that the
Hodge filtration we are considering has the unusual type ((fc + 1,0), (fc, 1), . . . , (0, k + 1))
that it does.

COROLLARY 5.4. - If 1 <: i < k and i + j = k + 1 then

(^/^.)(6)

is a skyscraper sheaf with stalks of dimension p^1^71 - 2) supported at each supersingular
point of I . If i = 0 and j = k, then

(W^xx)(^) = ̂ k

and ifi = k + 1 and j = 0, then

(^^^x)(6)=n}. 0cA
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For all other (%,j) \ve have

(^/^.)(6)=0.

We write Q for (J^fc+l-Y^,)(e) and C\ for H°{I,Q). It is now easy to compute
the e-part of the Hodge cohomology of Xx: the Leray spectral sequence of / splits into
short exact sequences

0 -. H^I^R^f^^e)) -> JP(X^.)(6) -. H\I,Wf^ (e)) -^ 0.

Using the corollary, and Propositions 4.1 and 4.2, we find isomorphisms

f O if % + j / f c + l a n d ( z j ) / ( f c + l , l )
7F(^ »^)(6) ̂  c! if 1 ̂  % < fc and j = fc + 1 - %

[^(J,^) if % = 0 a n d j = fc + 1

and an exact sequence

0 -^ ff°(X, ̂ Ke) -> ff°(J, f2}(C) 0 c^) -^-^ ff°(C7, Oc)

->ff l(X,^+ l)(6)^0.

The map r can be identified (up to a sign at each cusp which comes from Lemma 4.5 via
its use in Proposition 4.1) with H° of the residue 0}((7) 00;^ -^ Oc 0^ followed by the
isomorphism Oc 0 ̂  ̂  Oc deduced from the canonical section ujcan of a;. In particular,
since uj has positive degree, r is surjective and we find

H\X, ̂ l)(e) ̂  H\I, ̂  0 ̂ )

and
^(X^+^-O.

(Here we have assumed k > 0. If k were 0, the group H°(C,Oc) would be modified
as in the remark after 4.1 and again r would be surjective.) Collating our results, we
have the following.

THEOREM 5.5. - We have isomorphisms

f O i f i + j ^ k + 1
H3(Y QZ y.^J ̂ (^i^) i f i = k ^ - l a n d j = 0
11 ̂ ^x^)- \ c{ i f l ^ i ^ k a n d j ^ k + 1 - i

[H^I^-^ if i = 0 a n d j = k + l

compatible with the action of (Z/pZ)^

COROLLARY 5.6. - The Hodge to de Rham spectral sequence

E^ = m{X^{e) =^ H^^X^e)

degenerates at E^ and the crystalline cohomology groups H^-^X /W)(e) are torsion free
for all d.
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Proof. - We have inequalities

mnkwH^(X/W)(e) ^ dim H^{X){e) ̂  ̂  dimH^X^^)(e)
i-}-j=d

coming from the universal coefficients exact sequence in crystalline cohomology and the
Hodge to de Rham spectral sequence respectively. Both inequalities are equalities for all d
if and only if ff^is ls to1'81011 f^6 ^or a!! d a11^ Ae Hodge to de Rham spectral sequence
degenerates at E\. But the numerology just below computes the sum of the dimensions of
the J :P(X,f2~)(e) and Corollary 2.2, together with standard formulae for dimensions of
spaces of modular forms (e.g., [CO], Thm. 1), computes the ranks of the H^{X /W)(e).
These numbers turn out to be equal. (Their common value is 0 if d ^ k + 1 and is the
sum of the li in the statement of Theorem 1 . 2 i f d = f c + l . ) D

Remark. — The proof of Corollary 5.6 also shows that the Newton and Hodge polygons
associated to (X,e) have the same endpoints.

It remains to decompose the groups H^X^-^e) for the action of the diamond
operators (d), d C (Z/pZ)x and to compute the dimensions of the pieces. Fix a power ^a

of the basic character \ : (Z/J)Z)X —^ C, written with 0 <_ a < p — 2.
Recall that the basic character can be identified with the Teichmuller character ^ :

(Z/J)Z)X —^ Tip using the valuation v. We compute the action of (d)* on o;can using its
characterizing property above: at ain ordinary point ( E ^ P ^ i ) where i : Z/^Z c—^ E^^
has inverse Cartier dual j : ^pn <--^ E, we have

ean)(^ P, i) = J*^can(^, P, X(d)i) = xW dt/tr(w*^
f~\-V\ -(-l-t^a /fl-lt £^V 1-tOft/l QO / . I 170-Mld^AC1 •("<"» r\1l'f\C^1/'so (d)*o;can = x(^)^can. On the other hand, as o;can vanishes to order ^n 1 at each

supersingular point as a section of uo, and since uj is the pull-back of an invertible sheaf
on Xi(7V), it has a generating section which is invariant for the {d). We find then that the
(d) act on the cotangent space to J at each supersingular point via the character ^. Also,
at each supersingular point and for each I , ̂ (C) 0 a/ has a local section invariant for the
(d) which vanishes to order ̂ "^p71 — 2); thus the (d) act on a generating section via ^.

To compute dimensions, let g be the genus of X^{N) and c the number of cusps on this
modular curve. The Kodaira-Spencer isomorphism ^^(^(^ cusps) ^ uJ1 on X-^(N)
gives that w = g - 1 + c/2 is the degree of a; on Xi(7V). By [KM] 12.9.4, we have that
the number of supersingular points on I is (p — l)w,

degjo; ̂ j/1-1^- l)w,

and
2gi - 2 = p^-^p - l)w - p-^p - l)c.

Applying the observations of the previous paragraph, we see that

^ 7} dim r-rv^ - S ̂ n-l^n -2) + ̂  if a ̂  °(5.7) dim C,(x ) - <[ ^n-i^n _ 2) - (^ - 2))w if a = 0
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To find the dimension of H ° ( I , ̂ 1 0 c^)^), let V be the quotient of I by (Z/p^;
the curve V sits in the tower

I ->Y ^Xi(AT)

and carries an invertible sheaf (also called uj) whose pull-back to I is uu. The map J —» V
has degree p— 1 and is totally ramified at the supersingular points and unramified elsewhere.
Let S C Y be the reduced divisor of supersingular points and let a' = 0 if a = 0 and
a' = p — 1 — a if a / 0. We have an isomorphism

H°{i^10^)0^) ^ ff°(J^1 ̂ ^(-ay1-1^))^0)
5 ̂  ̂ an

and by the above remarks,

H ° ( I , Q1 (g) ̂ +a/ (-oV1-1,?))^0) ^ ^°(y, ̂  0 a;̂  (65))

where 6 = [(-p71-1^ + J9 - 2)/(j9 - 1)J = -a^j/1-1 - l ) / { p - 1). (Here [x^ means
the greatest integer < x.) Now using Riemann-Roch and Riemann-Hurwitz, the dimension
of this last group is

J (^2n-i _ p ^_ 2)^/2 - ̂ n-lc/2 +1 i f f c = a = 0
^ ^2n-i _ p _^ 2 _p 2^n-i + 2a /)w/2 - pn~lc/2 otherwise

Finally, ff1^^-^)^) ^ H°(I^} 0 c^)^-0')*. Summing up,

THEOREM 5.8. - The dimensions of the Hodge cohomology groups H3 (X, ^2^)(6, ̂ a) ar^;

dimffo(X,^+l)(6,xa)

^ f O271"1 - P + 2)w/2 - pn-lc/2 +1 if k=a=0
- ^ (p2n-i _ ^ _^ 2 + 2fcj9n-l + 2a /)w/2 - pn~lc/2 otherwise,

for 1 < i <, k

rrW-z^ o- V. V^ - <f ̂ n-l^n - 2) + 1)^ ^ a ̂  °dlmjn ^'"xX6^ )-< [(^- l(^_2)-(^-2))w ya=0 ,

<2nri

dim^+^O^x')
^ f (j^271-1 - p + 2)w/2 - j97l-lc/2 +1 if k=a=Q
~ \ (p271"1 - j9 + 2 + 2kpn~l + 2a)w/2 - pn~lc/2 otherwise.

Here a' = p — 1 — a if a ^ 0 and a' = 0 if a = 0.

Combining Corollary 2.2, Proposition 3.1 and Theorem 5.8 yields Theorem 1.3 forj? > 2.

Remark. - A more elegant approach might be to do the cohomology calculations of [U2]
in the crystalline cohomology of Xx and to prove Nygaard's theorem with projectors for
log cohomology. We would then be able to avoid the crutch of the smooth variety X by
consistently employing log structures.
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6. Another approach in weight 3

In this section we will give another proof of Theorem 1.2 for k = 1 and any p. Although
it is possible to do so, for convenience we will not break up the result according to powers
of the Teichmtiller character as we are mainly interested in the case p = 2 (for which
Theorem 1.2 and 1.3 are equivalent).

Fix p a prime, n and N positive integers with ( N , p ) = 1 and set k = 1. We assume
that pnN >_ 3 (otherwise there are no modular forms to consider). Keeping the notations
of §2, we have X = X = £ a smooth elliptic surface over Fp with elliptic fibration
TT : X —> I where I is the Igusa curve I g - ^ _ ( p n N ) . Our proof will be an easy consequence
of the following (somewhat weakened) result of Milne ([Ml], 7.4).

THEOREM. - Suppose X is a smooth projective surface over the field ofp elements. Let Z
be the H2 z,eta function of X:

Z(T) = det (1 - Fr T^^X (g) Fp, Q^))

and -write Z(T) = fj(l — o^T). Fixing a valuation v of Q over p normalized so that
v(p) = 1, \ve have

^ (1-^))<6
v(a,)<l

where e = ̂ {X,0x) - 1 + dim (Pic Var(X)).
Now let

L,(T) = det (1 - Fr T^-^I 0F;,^7r,Q,)).

The Leray spectral sequence of TT (in ^-adic cohomology) degenerates and so we have
Z = LoL^ Z/2 • But LQ and £2 have the form Y[ (1 — CjpT) where the Cj are roots of
unity, since the corresponding cohomology groups are spanned by the cycle classes of
the zero section and of the components of the fibers respectively. Thus the conclusion
of Milne's theorem holds with Z replaced by Li. On the other hand, according to the
main theorem of [U2],

p-2

£i=J]ff ( l ,n ,^a)
a=0

(where the H ' s are as defined in §1).
The Riemann hypothesis and functional equation for varieties over finite fields show

that the hypotheses of the following result are satisfied by L\.

LEMMA 6.1. - Suppose H(T) = H(l — o^iT) is a polynomial of degree d whose inverse
roots ai are algebraic integers satisfying ai'di == p2 and {01.1} = {o^}. If

^ ( l - ^ ( a , ) ) < e
v(a,)<l
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then the Newton polygon of H (with respect to v ) lies on or above the Hodge polygon
associated to the integers (e, d — 2e, e) and these two polygons have the same endpoints.

Proof. - That the two polygons have the same endpoints is clear from the hypotheses.
To check the statement on the polygons, number the o^ so that v(ai) <_ ' • • <_ v(ad).
Then since v(o^) >_ 0, we have

V / ^ ^ \ ° if 3 < eV v(ai) > <. . ., . -
4^ \3 -e i f j ^ e

for all j < \d/2}. This is exactly the claim for the first half of the polygon. For the
second half, we note that the hypotheses v(ai) + v{ai) = 2 and {01.1} = {o^} imply that
the Newton polygon of H is symmetric with respect to the line y = (d — e] — x. Thus
the lemma is proved. D

To complete the proof of Theorem 1.2 it remains to compute d and e. The computation
of d (i.e., the dimension of a certain space of modular forms) is standard and we merely
record its value:

d = 2p2n-\p - l)w - p^^p - l)c
where g and c are the genus and number of cusps on Xi(7V) respectively and
w = g — 1 + c/2. To compute e, recall that since X is a non-constant elliptic surface,
dim PicVar(X) = g i , the genus of J. As before, define an invertible sheaf uj on I by
uj~1 = B^^^.0x\ then the Leray spectral sequence for TT (in coherent cohomology) yields
that ^(X^Ox) == ^j, the degree of uj on I . Now applying the "numerology" of [KM],
12.9.4, we find

e=prl^)((."+2).-c).

Combining Milne's Theorem, 6.1, and the values of d and e, we get a lower bound on
p-2

the Newton polygon of IT ff(l, n, N^ a). The result agrees with Theorem 1.2 when p > 2
a=0

and proves it for p = 2.

Remarks. - 1. - The theorem of Milne cited above actually asserts the that the sum over
eigenvalues is equal to e minus the dimension of a certain group scheme. This dimension
measures the failure of the Newton polygon to satisfy a certain "kissing condition" with
respect to the Hodge polygon, and it is possible to determine in some cases whether or not
this dimension vanishes. We will return to this point in a future paper.

2. - The proof of Theorem 1.2 given in this section can also be carried through for the
cases N <^ 4, as long as pnN > 2 (so that there exists a universal curve over some open
supset of the Igusa curve). Note that there are no modular forms of weight 3 for Fi(2),
so there is nothing to prove when pnN = 2.

7. The cases N < 4

When N < 4 the moduli problem Fi(A^) is not representable and we do not have
a universal curve over all of J, so our previous argument requires modification. In this
section we sketch a proof for these cases (when p > 3) and state the results.
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Fix a prime number p, positive integers n and k with k < p, a positive integer TV ^ 4
prime to p, and an auxiliary positive integer M > 3 with (M, TV) = 1 and such that p
does not divide the order of GI^Z/MZ) (which is possible if and only if p > 3). Fix
also a power ^a of the basic character \ : {Z/pZ)x -^ C associated to a fixed valuation
v of Q(^p) over p; we take 0 ^ a ^ ^ - 2. Let IM be the complete modular curve
attached to the simultaneous moduli problem Ig(pn) x Fi(A^) x F(M) and let XM be
the desingularization of the fc-fold fiber product of the universal curve SM -^ IM. defined
as in Section 2. We have an action of G = ((Z/7VZ x (Z/MZ)2) x ̂ k xi Sk on XM
covering the trivial action on IM, and an action of GI^Z/MZ) x (Z/pnZ)x on XM
and JM; (±1), embedded diagonally in GL^Z/MZ) x (Z/^Z)^ acts trivially on JM
(but not trivially on XM)- The quotient of IM by the GI^Z/MZ) is J, the modular curve
for the moduli problem I g ^ p " ) x I\{N) and the subgroup ( Z / p Z ) x C (Z/pnZ)x acts
on J, with (±1) acting trivially; let Y be the quotient. The curve Y can be interpreted
as the modular curve for P x F-i(N) where P is a certain moduli problem of p-power
level which we need not make explicit here.

Let 61 : G -^ ±1 be the character which is trivial on the factors Z / N Z x (Z/MZ)2, the
identity on the factors ^2. and the sign character on the symmetric group S k ' Let 63 be the
trivial character GL2(Z/MZ) —> 1 and let 63 = ^a. Then we have corresponding projectors
IIi, Il2, and Il3 in the group ring Zp[G x GL^Z/MZ) x (Z/pZ)^; note that the n,
commute. For any G x GL^Z/MZ) x (Z/j^Z)"-module H we will write H(ei) for IT,^.

Let E ( k ^ n ^ N ^ ) be defined as in Section 1 and set

H(k, n, N, a) = [J JJ E{k, m, N, ̂ ).
0<m^n ^(Z/p^A^^C

V^X^0

p^ |cond('0)

Then a trivial modification of the argument of Section 2 (replacing Fi(A^) with
ri(7V) x F(M) throughout) gives that

ff(fc,n,7V,a)=det(l-FrT|ff^(XM/W)(6i,62,63)).

Applying Proposition 3.1, we find that the Newton polygon of H(k^ n, TV, a), with respect
to the valuation v, is bounded below by the Hodge polygon associated to the integers
k = dim^+^XM^Xci^^).

Now the arguments of Sections 4 and 5 apply verbatim to show that

( H ^ I M ^ - ' ) i f ^ O
H^-^XM^')^) = { C ] , if 1 ̂  i ̂  k

(H^IM,^^^) if i=k+l

where C^ is the group of local sections of f2}^ 0 ̂ t2^-cl-k modulo those vanishing to
order p71-1^ — 2) at each supersingular point and LJ is the invertible sheaf (T?1?!-^^)"1

on I M ' This isomorphism is compatible with the actions of GL2(Z/MZ) and {Z/pZ)x

and so we have to compute the dimensions of the spaces Hl{IM^~k)^2, ̂ 3), Q.(c2, ^3),
and H°(lM^1 0 uJk)(e-2^e^). The computation of these dimensions follows closely the
argument in the last part of Section 5, and is essentially straightfoward, albeit tedious. One
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slightly subtle point is that the invertible sheaf uj does not descend to Y. However, when
N = 1 or 2 (resp. when N = 3 or 4), there is an invertible sheaf uJ1 (resp. uj) on Y whose
pull back to IM is ̂  (resp. uj) twisted by a divisor supported on the points parameterizing
generalized elliptic curves with level structure which have extra automorphisms. To carry
out the computations, one needs to keep track of ramification in the map IM —^ Y and
one also needs to know the genus of V, which can be obtained from the Riemann-Hurwitz
formula and Igusa's computation ([Ig]) of the genus of T^Q/1).

In the statement of the theorem below, [x^ is the greatest integer < x.

THEOREM 7.1. - Fix a prime number p > 3 and integers k, n, N, and a with 0 ^ k < p,
n > 0, 1 < N < 4, ( N , p ) = 1, and 0 <, a ^ p - 2; ifN < 2, suppose a = k (mod 2).

/^-i _ i\
Let a' = 0 if a = 0 and let a7 = p - 1 - a if a / 0. Also, let A = a[ -———— and

p - 1
^-i _ ^

. For 1 < i < k, define integers

1 if a / 0

A' = a'l p-i )
p^^-^)

^ i = L J + 0 if a = 0P-1
.n-l̂ n _

2(P - 1)

^ j^"1^-^) r i if a / 0 ̂ J 2% + 2 = fc - (-l)^ (mod 4)
2 L 2 ( v - l ) J to otherwise

{ if n odd, a -^ 0, anrf i = 1 — a — k (mod 3)

c _ | P (^ — 21) [ i 1 or if n even, a = 0, and z ̂  —1 — fc (mod 3)
^ — L o/ _ i\ J '

^ / or if n even, a ~^=- 0, and i ^. a — k (mod 3)
0 otherwise.

If N = 1, set

9=
p2rz-l _ l̂ -1 -J9+26

24"

If;/1"1 ^ p = l (mod 4) _ l ^ P n - l tfP=^ (mod 3)
4f 1 if P=-^ (mod 4) 3\ 1 if P =-1 (mod 3)

,̂.,,̂ ,.-.-.(̂
fc + a

^ if p = 1 (mod 4)
^n-i [ ^

f c + Q n-l , a?

4 J "2^-1)J 2
k+ a I n-l

— -A if p = —1 (mod 4)

if p = l (mod 3),n-l

+

,n-lf c + Q n-i , QP - -A if p= -1 (mod 3)
6 ^ 3(p-l)J 3

1 if k= a=0
0 otherwise,
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/p^J_\ C O ifp=l(mod4.)
1 \ 12 ) 1 { 6 2 - ^ 6 1 if p = -1 (mod 4)

r 0 if p SE 1 (mod 3)
• \ 83 - ^6i ;y p E= -1 (mod 3)

for 1 <: i <: k, and

^=.-l+^t-l-A/(^l'

Aj+a'
if p= 1 (mod 4)

k+a' n-i , a'P""1
- -A' ;yp= -1 (mod 4)-p" - +

2(P-1)J 2

k + a '
if p = 1 (mod 3)P

f c + a 7 „ i a^"-1 | 1 .
— — — P + — — — — l - - ^ •- -A' if p^-1 (mod 3)

3h-l)J 3

+
' 1 if k= a=0
0 otherwise,

If N = 2, ,?er

f f=
p2n-i _ g^n-i _ p + iQ ^ ifp"-! ;/ p ̂  1 (mod 4)

8 4 [ 1 if P= -1 (mod 4)
_l fp" - 1 ^

4ll ij

^.-1+^--A(^-

fc + a
ifp=l (mod 4)P

n-l

+

^±^-1 . -a^
4 -

1 ifk=a=0

T-^"1 + 2(^)J - 271 ^^-K-d4)

/ ' f c = a = 0
0 otherwise,

_ (P- l \ . ( 0 if P=^ (mod 4)
V 4 ) 0 1 ' f ^ -^ i ^J9=- l (mod4)
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for 1 < z <^ k, and

D. L. ULMER

. -r

f c+
4

fc+
4

2 '

a'

a'
1

p"-1

^n-l^

^ 1 1 .

\ 4

aV1-1 |
2(p-l)J

/

</; P~

/!' if n —
^A lj p

1 (mod 4)

1 (mod 4)

f 1 if k=--a=Q
I 0 othenvise.

If N = 3, ^

^2n-i -Gj)71-1 - p+8
^=

_ Ifj)71-1 if p ^ l (mod 3)
- 3 f l ^ ,0= -1 (mod 3)

IQ = g - 1 + (fc + alj/1"1 - A
^^ -1 '

^""a"

+

2(k + a) | .- 1 .. i / ,a o\
———- \pn~l if P = 1 (mod 3)

J
| 2 ( f c + a ) ^ i ap71-1 [ 4 .
[-S——^ + 3(^1) J - ̂  ;/ p = -1 (mod 3)

' 1 if k = a = 0
0 otherwise,

/ ^ -1 \ f O (^=1 (mod 3)
V ^ Y 1 + \63 - ̂ i if P -= -1 (mod 3)

i <^ 1c nnrlfor 1 <: i <: k, and

l,^ = g - 1 + (fc 4- a')^-1 - A' (p-1}
\ ° /

2(fc+a /) ,_i
——^—— ^ i f p ^ l (mod 3)

^(fc+a')"1^ i a'p71-1 | 4 .-^———'-p7'"1 + —-——- - -A ifp = -1 (mod 3)
L 3 ' 3(p-l)J 3 " v /

f l if k = a = 0
I 0 other-wise.
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If N = 4, set
p2n-l _6^n-l - j9+6

9= ——————————.——————————

,̂.̂ ^±iĵ ..(^)
J 1 if k=a=0
\ 0 otherwise,

'-(^>.
/or 1 < % < fc, anJ

| fc + ̂  + 1 | ,_i ,,(P-^\
lk^=g-l+\——^——p" A[•~~Y~)

r i y & = a = o
I 0 otherwise.

Then the Newton polygon, with respect to the valuation v fixed above, of the polynomial

H(k,n,l,a)= [[ JJ £(fc,m,l^)
O^m^n •0:(Z/pmNZ)><-^C

V^X"^
p^ |cond('0)

(here the second product runs over all characters '0 modulo p^N whose conductor is
divisible by p^ and whose restriction to (Z/pZ)x is ^a) lies on or above the Hodge
polygon associated to the integers IQ^ . . . Ik+i- Moreover, these two polygons have the same
endpoints.

Remarks. - 1. - If N <_ 2 and a ̂  k (mod 2) (i.e., x^-1) ¥- (-l)fc) ^en there are no
modular forms with character ^ and the polynomial H(k,n^ l,a) = 1.

2. - The integer g is the genus of Y. The expression g — 1 in Theorem 1.4 is the
analogue of the expression pn(|)(pn)w/2 — (^(p^c^ in Theorem 1.3.

3. - The integer <$i is the number of integers x with p^Y < x < p^'^o! -\-pn~l{pn - 2)
and x =. —1 (mod p — 1). The integer 8'z (resp. ($3) is the number of integers x in the

same range which are congruent to — 1 + ————————(^){pn) modulo 2{p — 1) when
p ^ -1 (mod 4) (resp. are congruent to -1 + (2z - 2 - k + a7)^?71) modulo 3(p - 1)
when p = —1 (mod 3)).

The only cases not covered by Theorems 1.3 and 7.1 are those where N < 4 and
p <: 3. The cases TV arbitrary, k == 1, p arbitrary can be treated as in Section 6. The
cases k = 2, p = 3, N = 1,2 or 4 seem to require a detailed geometric analysis (as in
Section 4) of singularities arising from the bad reduction of the universal curve at the
unique supersingular point (when N = 1 or 2) or at the irregular cusps (if N == 4). We
will not pursue this further.
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