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GEOMETRY OF 2-STEP NILPOTENT GROUPS
WITH A LEFT INVARIANT METRIC

BY PATRICK EBERLEIN

ABSTRACT. - We consider properties of closed geodesies in a compact nilmanifold T\N, where N is a simply
connected 2-step nilpotent Lie group with a left invariant metric and r is a discrete cocompact subgroup of N.
Among other results we show 1) There is an obstruction (resonance) to the density in T\ (T\N) of the set of
vectors P that are periodic with respect to the geodesic flow. In particular P is not always dense in T\ (T\AQ, but
P is dense in T\ (T\AQ for any F if N is of Heisenberg type. 2) Every free homotopy class of closed curves in
T\N contains a closed geodesic of largest period. Define the maximal length spectrum of FW to be the collection
with multiplicities of these largest periods. If T\N, r* \N* are compact 2-step nilmanifolds with the same marked
maximal length spectrum, then we show that T\N, T*\N* are equivalent up to isometry and r-almost inner
automorphism in the sense of Gordon and Wilson.

Introduction

Nilpotent Lie groups play an important role in many areas of mathematics, and 2-step
nilpotent groups have a special significance. They are the nonabelian Lie groups that
come as close as possible to being abelian, but they admit interesting phenomena that do
not arise in abelian groups. In this paper we study the differential geometry of simply
connected, 2-step, nilpotent Lie groups N with a left invariant Riemannian metric ( , ).
We are especially interested in those geometric properties of {TV, ( , )} that do not depend
on the choice of ( , ). One would expect to find some properties that are similar to those
in flat Euclidean space, which in this context one may regard as a simply connected,
abelian Lie group of translations with a canonical left invariant metric. Such properties
do exist, but other geometric properties of {N, ( , )} are foreign to Euclidean geometry.
For example, J. Wolf in [Wol] proved that any nonabelian nilpotent Lie group with a left
invariant metric must admit both positive and negative sectional curvatures, and J. Milnor
in [M] extended this result to Ricci curvatures. More generally, Milnor showed in [M] that
the geometry of any Lie group G with a left invariant metric reflects strongly the algebraic
structure of the Lie algebra Q. Many of the results of this paper illustrate that principle.

The geometry of simply connected nilpotent Lie groups TV with a left invariant metric
is also relevant to the study of simply connected homogeneous spaces M whose sectional
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612 P. EBERLEIN

curvatures are bounded above by a negative constant. In this context the groups N arise
as groups of isometries of M that fix a point x in the boundary sphere M (oo) and act
simply transitively on each horosphere at x. Each horosphere H at x with the induced
metric from M is isometric to N with an appropriate left invariant metric ( , ) which
depends on H. If M is symmetric, then N has 2-steps and {N, ( , )} is a manifold of
Heisenberg type [see below and also in (1.6)]. For a discussion of homogeneous manifolds
of negative sectional curvature see [Hei].

The literature does not seem to contain much discussion of the geometry of nilpotent
Lie groups with a left invariant metric. For this reason we include in the first two sections
some basic geometric facts that are probably known to individual researchers but have not
been written down. In the last three sections of the paper we consider the behavior of
geodesies in a simply connected, 2-step nilpotent Lie group N with a left invariant metric.
In particular, we study aspects of the behavior of closed geodesies in a compact quotient
manifold F\N, where F is a discrete cocompact subgroup of N that acts on N by left
transformations. We present the main results below but avoid a more detailed discussion
of the organization of the paper.

To study the geometry of 2-step nilpotent groups with a left invariant metric we adopt
the approach of A. Kaplan used in [Kl], and we now describe its main features. Let
J\f be a 2-step nilpotent Lie algebra with an inner product ( , ). Let N be the unique,
simply connected, 2-step nilpotent Lie group whose Lie algebra is At, and equip N
with the left invariant metric determined by the inner product ( , ) on J\T = Te N. Let
Z denote the center of A/", and let V denote the orthogonal complement of Z in J\T.
Each element Z of Z defines a skew symmetric linear map j (Z) : V —^ V given by
j (Z) X == (adX)* (Z) for all X <E V, where (ad X)* is the adjoint of ad X relative to
the inner product ( , ). Equivalently and more usefully j (Z) is defined by the equation
( j (Z)X, Y ) = ([X, V], Z) for all X, Y G V.

Conversely, for each pair of positive integers m, n and each linear map j : R71 —^ so (m)
we obtain a metric, 2-step nilpotent Lie algebra A/" = R7' 9 R771 (orthogonal direct sum),
where Z = R^ is the center of Af and the Lie bracket on V = R771 is defined by the
equation above. See (1.5).

All of the basic geometry of {N, { , )} can be described by the maps {j (Z) : Z <E Z} as
we show in section 2. This was first made clear by A. Kaplan in [Kl], who used the maps
j (Z) to study the geometry of groups of Heisenberg type, those groups {N, ( , )} for
which j (Z)2 = -1 Z |2 Id for every Z e Z. Many of his proofs are valid without change in
the general 2-step nilpotent case, and others require only small modifications. The spaces
{N, ( , }} of Heisenberg type should be regarded as the model spaces in the class of simply
connected, 2-step nilpotent Lie groups with a left invariant metric. In this class they play
a role that is similar to the role played by the Riemannian symmetric spaces in the class
of all Riemannian manifolds. Groups of Heisenberg type have especially large isometry
groups, and the geodesic symmetries at each point preserve the Riemannian volume form
[K2]. Moreover, every unit speed geodesic in a group N of Heisenberg type lies in at least
one 3-dimensional totally geodesic submanifold of N. This property also characterizes
groups of Heisenberg type in the class of simply connected, 2-step nilpotent Lie groups
with a left invariant metric [El]. If M is a symmetric space of strictly negative sectional
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GEOMETRY OF 2-STEP NILPOTENT GROUPS 613

curvature, then 2-step nilpotent groups N of Heisenberg type arise as groups of isometrics
of M that act simply transitively on horospheres of M. In particular, if G = KAN is an
Iwasawa decomposition of G = IQ (M), then the group N with a natural left invariant
metric is a group of Heisenberg type [Ko]. See also the examples following (1.3).

We now describe the main results of the paper. Let N denote a simply connected,
2-step, nilpotent group with a left invariant metric, and let F denote a lattice in TV; that
is, r is a discrete subgroup of N such that the quotient manifold F\N is compact, where
r acts on At by left translations. Let {</} denote the geodesic flow in the unit tangent
bundles SN or 5(r\AQ.

1. FIRST INTEGRALS FOR {^}. - In Corollary (3.3) we show that {gt} admits a smooth
^-valued first integral /; that is, there exists a smooth function / : SN —> Z such that
/ (^* v) = f (v) for all v G SN and for all t e R. More precisely, let ^ G Tn N be any
vector and write ^ = dLn (XQ + ZQ\ where Ln is the left translation by n and Xo, ZQ
are uniquely determined vectors m T e N = A T = V ^ Z such that Xo e V and Zo G Z.
Then / (^) = Zo defines a first integral for {(^} on TN and hence also on SN by
restriction. The first integral / is clearly invariant under {dLn : n e N}, and hence it
descends to a Z-valued first integral for {^ t} on S (T\N) for any discrete subgroup F
of N. In particular the geodesic flow in S (r\7V) does not have a dense orbit since the
first integral / is nonconstant.

The first integral / is reminiscent of the canonical Revalued first integral of the
geodesic flow in flat Euclidean space R71. In fact, the subspace Z of At = Tg N defines
an integrable left invariant distribution Z in N whose maximal integral manifolds are
flat, totally geodesic imbedded submanifolds, the orbits of the center Z = exp (Z) of N ,
where Z acts by left translations.

2. DENSITY OF PERIODIC VECTORS IN S (T\N). - Let r be a lattice in TV. A unit vector
v G S (r\7V) is periodic relative to the geodesic flow {^} on S (T\N) if g^ v = v for
some uj > 0; that is, v is tangent to a closed geodesic of T\N. For any flow {(|)t} on a
space X it is a basic problem to determine if the periodic vectors for the flow are dense
in X. We show that this is not always the case for {g1} on S (T\N).

The density of periodic vectors for {^} on S (T\N) turns out to be related to a property
of the skew symmetric linear maps {j (Z) : Z e Z} which we call resonance. Given
Z € Z a map j (Z) : V —^ V is said to be in resonance if the ratio of any two nonzero
eigenvalues ofj (Z) is a rational number. Note that this ratio is always a real number since
the eigenvalues of j (Z) are purely imaginary. If N is of Heisenberg type, then every map
j {Z\ Z G i?, is in resonance since the condition j (Z)2 = —\Z\2 Id implies that j (Z)
has eigenvalues ±i \ Z |. In (5.6) and (5.7) we prove the following two results. The first
of these has recently been generalized in [Ma].

1. Let TV be a simply connected, 2-step nilpotent Lie group of Heisenberg type, and let
r be any lattice in N. Then the periodic vectors for the geodesic flow {^} in S (T\N)
are dense in S(T\N).

2. Let TV be a simply connected, 2-step nilpotent Lie group with a left invariant metric
and a 1-dimensional center. Then the following properties are equivalent.

a) The linear map j {Z) : V —^ V is in resonance for every Z e Z.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



614 P. EBERLEIN

b) For some lattice F in J\f the periodic vectors for {g*} in S (F\N) are dense in
s(r\N).

c) For every lattice F in TV the periodic vectors for {^} in S {T\N) are dense in
5(ryv).

We do not know if the hypothesis that N have a 1-dimensional center can be removed.
Note that checking the hypothesis a) in 2) reduces to checking it in a single case for any
nonzero vector Z of Z.

In (5.8) we construct a lattice F in a 5-dimensional simply connected, 2-step nilpotent
group N with 1-dimensional center such that none of the maps j ( Z ) , Z e Z, are in
resonance. It follows from 2) above that the periodic vectors in S (T\7V) are not dense in
S(T\N), and the same is true for any lattice in N.

3. THE ASSOCIATED FLAT TORI TB AND Tp. - If N is a simply connected nilpotent Lie
group with Lie algebra A/", then the exponential map exp : Af —> N is a diffeomorphism.
Let log : N —^ At denote the inverse of exp. Let F be a lattice in a simply connected,
2-step, nilpotent Lie group N with Lie algebra A/" = V 9 Z, and let Try : A/" —> V denote
the projection map. It is elementary to show that Try log F and log F D Z are vector lattices
in V and Z respectively. Define flat tori TB = VK-KV log F) and Tp = Z/(logF H Z). In
(5.5) we show that there exists a Riemannian submersion of F\N onto Tp whose fibers
are imbedded, flat, totally geodesic tori isometric to Tp. These fibers are also the orbits in
F\N of Jo (r\^V), which acts freely on F\N. The (closed geodesic) length spectra of TB
and TF are closely related to the length spectrum of F\N and in fact determine the length
spectrum of F\N if N is of Heisenberg type (5.17). However, the isometry classes of TB
and TF do not determine the isomorphism class of the fundamental group F of F\N (5.23).

We note that R. Palais and T. Stewart in [PS] showed that the compact 2-step nilmanifolds
are precisely the total spaces of principal torus bundles over a torus.

4. LENGTH SPECTRUM OF F\N. - Let F be a lattice in N, and let C denote a free homotopy
class of closed curves in F\N. Let I (C) denote the collection of lengths of closed geodesies
of F\N that belong to C. The length spectrum of F\N is the collection of all ordered pairs
(L, m), where L is the length of a closed geodesic in F\N and m is the multiplicity of
L, L e. the number of free homotopy classes C for which L G I (C). Compact nilmanifolds
F\N and r*\7V* are said to have the same marked length spectrum if there exists an
isomorphism (f) of F onto F* such that I (<^ C) = I (C) for all free homotopy classes C
in r\7V, where (^ denotes the bijection induced by (j) between free homotopy classes of
closed curves in T\N and r*\^V*.

The set I (C) contains in general more than one number for each free homotopy class
C [(4.8) and (4.11)]. However, I (C) always contains a largest number F (C), which is
explicitly computable (4.5). The maximal length spectrum of T\N is the collection of
all ordered pairs (£, m), where L = F (C)} for some free homotopy class C of closed
curves in T\N and m is the number of free homotopy classes C for which L = Z* (C).
Compact nilmanifolds F\N and r*\7V* are said to have the same marked maximal length
spectrum if there exists an isomorphism of) of F onto F* such that Z* (<^ C) = F (C) for
all free homotopy classes C in T\N.
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GEOMETRY OF 2-STEP NILPOTENT GROUPS 615

The closed geodesies with maximal length Z* (C) in a free homotopy class C of F\N
have both geometric and dynamical significance. If 7 is a closed geodesic in C with length
r (C), then 7 is the projection of a geodesic in N of the form t —> n ' exp (^) for some
^ G A/". The geodesies of A/" are rarely left translates of 1-parameter subgroups of N (see
(3.9)). To explain the dynamical significance of F (C) we define for each number a; in
I (C) a set 5W^ (C) consisting of those unit vectors in S (T\N) that are tangent to a closed
geodesic of length uj that belongs to C. Clearly each set SN^ (C) is invariant under the
geodesic flow {^}. If a;* = F (C) and if uj is any number in / (C) distinct from a;*, then
we show in (4.18) that the dimension of SN^. (C) is strictly smaller than the dimension
of SN^(C). Moreover, in (4.17) we show that SN^. (C) is a smooth submanifold of
S (F\7V), but we do not know if this is true for SN^ {C) with uj ^- a;*.

In (5.20) we show that there are essentially only two ways that compact, 2-step
nilmanifolds F\N and r*\7V* can have the same marked maximal length spectrum
(Note that if T\N and r*\7V* have the same marked length spectrum then they have the
same marked maximal length spectrum.)

1. There exists an isomorphism ^ of N onto N * such that ^ is also an isometry and
^(r) = r*.

2. N = TV* and F* = ̂  (F), wherre ^ is a F-almost inner automorphism of N; that
is, for each element 7 of the lattice F there is an element a of N, possibly depending
on 7, such that ^ (7) = a ' 7 • a~1.

The importance of F-almost inner automorphisms of N was discovered by C. Gordon
and E. Wilson, who proved in [GW1] that if ^ is a F-almost inner automorphism of N
for some lattice r of TV, then r\7V and ^ (r)\7V have the same spectrum of the Laplacian
on functions but are not in general isometric. Later work (cf. [Gl] and [DG1]) showed
that if '0 is a F-almost inner automorphism of TV, then T\N and ^ (r)\7V have the same
marked length spectrum and the same Laplacian spectrum on functions and differential
forms. It follows from these facts and (5.20) that if r\7V and r*\7V* are compact, 2-step
nilmanifolds with the same marked maximal length spectrum, then they also have the same
marked length spectum and the same Laplacian spectrum on functions and differential
forms. Moreover, (5.20) shows that if r\7V and r*\7V* are compact, 2-step nilmanifolds
with the same marked maximal length spectrum, then the associated sets of tori {TB, Tp}
and {TB*, TF-} are pairwise isometric (Corollary 5.22).

The relationship between the (unmarked) maximal length spectrum and the marked
maximal length spectum is somewhat mysterious. In (5.23) we construct two examples
that illustrate the problem:

1. There exist homeomorphic compact, 2-step nilmanifolds T\N and r*\7V* that have
the same maximal length spectra but do not have the same marked maximal length spectra
for any choice of isomorphism (f) of r onto F*. In this case the associated tori TB and
IB* have the same length spectrum but are not isometric.

2. There exist compact, 2-step nilmanifolds r\7V and r*\.?V* with the same maximal
length spectra such that F is not isomorphic to F*. Hence their marked maximal length
spectra are a priori different. This also shows that the maximal length spectrum does not
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616 P. EBERLEIN

determine the isomorphism class of the fundamental group F of T\N. However, in this
example the associated sets of tori {TB, Tp} and {TB*, Tp-} are pairwise isometric.

In a compact, 2-step nilmanifold T\N the relationship between the length spectrum and
the spectrum of the Laplacian acting on functions or differential forms is unclear, even in
the case that N is of Heisenberg type. This relationship deserves further study. It is also
unclear to what extent the results (if not the methods) of this paper generalize to simply
connected nilpotent Lie groups with a left invariant metric and an arbitrary number of steps.

We are grateful to the referee of the first version of this article, who simplified the
proofs of several results and made many useful remarks. We would also like to thank
W. Ballmann and C. Gordon for helpful comments.

1. Definitions and examples

Let AT denote a finite dimensional Lie algebra over the real numbers. For each integer
z ^ 1 we define AT' = [AT, A/''"1], where A/"0 = Af. The Lie algebra At is nilpotent if
Af^ = {0} for some positive integer i. A nilpotent Lie algebra AT has a nontrivial center
that contains A/^~1 if Af'1 = {0}. A nilpotent Lie algebra AT is k-step if A/^ = {0}
but A^-1 / 0.

Let N denote the unique simply connected nilpotent Lie group corresponding to a
given nilpotent Lie algebra AT. Let exp : Af —> N denote the Lie group exponential
map. It is known that exp is a diffeomorphism [R], p. 6. We let log : N —» At denote
the inverse of exp.

2-step nilpotent groups and algebras.
We are primarily interested in the case that N and Af are 2-step nilpotent. In this

case the Campbell-Baker-Hausdorff formula (cf. [Hel], p. 96) yields the following simple
expression for the multiplication law in N.

(1.1) exp (X) . exp (V) = exp ( x + Y + 1 [X, Y}\
\ 2 )

for arbitrary elements X, Y of At.
From the expression above we obtain
(1.2) Let 0, ^ be arbitrary elements of TV, and write 0 = exp(X), ^ = exp(V) for

suitable elements X, Y of AT. Then
a)W1 = exp(V+[X, V])
b) [^ ^] = W1^-1 = exp([X, V])
c) (f) commutes with '0 if and only if [X, Y] = 0

d) log (0 • '0) = log (f) + log ̂  + . [log ( / ) , log '0].
The following description of the differential of the Lie group exponential map

exp : At —^ N will be useful.
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GEOMETRY OF 2-STEP NILPOTENT GROUPS 617

(1.3) LEMMA. - Let J\f denote a 2-step nilpotent Lie algebra, and let N denote the simply
connected 2-step nilpotent Lie group with Lie algebra At. Let exp : A/" —^ N denote the
exponential map. Then for any elements ^, A of AT we have d exp^ : T^J\T —^ Texp(^) N
is given by

d exp^ (A^) = d£exp (Q ( A + , [A, ^] )
\ ^ /

w/^r^ A^ denotes the initial velocity of the curve t —^ ^ + t A and Z/exp (0 denotes left
translation by exp(^).

Prw/. - By definition d exp^ (A^) is the initial velocity of the curve t —> exp (^ +1 A).

By (1.1) we see that d£exp(o ( A + - [A, ^] ) is the initial velocity of the curve

^^exp^.expfJA+^A^]}) = e x p ( $ + t A ) . D
\ I z J /

Exampfc .̂
It is easy to construct 2-step nilpotent Lie algebras. Let V, Z be any finite dimensional real

vector spaces with bases {V^ . . . , Vn} for V and {Zi, . . . , Z^} for Z. Let M = V C ̂
and define a bracket operation in J\f by

m

[^,V,]=^^..^
a=l

where the constants {C^} are chosen so that C^; = -C^ for 1 ̂  %, j ^ n, 1 ̂  a ^ m,
but not all of the constants are zero. Define [Z^, C]=Ofor3i\l(,eAf,l^a^ m. The
Jacobi identity is automatically satisfied since [A/\ A/"] ^ Z, and J? lies in the center ofA/\

We construct more explicit examples (cf. [K2], p. 39).

Example 1. - Heisenberg algebras
Let n ^ 1 be any integer and let { X i , . . . , Xy,, Vi, . . . , Vn} be any basis of

j^2n ^ y ]̂  ^ be a 1-dimensional vector space spanned by an element Z. Define
[Xi, Yi\ = -[Yi, Xi\ = Z for 1 ̂  i ^ n with all other brackets zero. The Lie algebra
]\[ = V 9 Z is the (2n + 1)-dimensional Heisenberg algebra.

Remark. - Let C .H^ denote the complex hyperbolic space of real dimension 2 n. The
normalized sectional curvatures K (n) satisfy -4 ^ ^ (II) ^ -1. Let G = lo^CH71)
and let G = KAN be an Iwasawa decomposition of G. The group N is the (2n + 1)-
dimensional Heisenberg group, the simply connected, (2n + 1) -dimensional nilpotent Lie
group whose Lie algebra is the (2n + 1)-dimensional Heisenberg algebra. Geometrically,
AN acts transitively on C H71 and fixes a unique point x in the boundary sphere C H^ (oo).
The group N acts simply transitively on each horosphere at x (see section 6 of [Ka] and
[E2]).

Example 2. - Quatemionic Heisenberg algebras.
Let n ̂  1 be any integer. For each integer i with 1 ̂  i ̂  n let H1 denote a 4-dimensional

real vector space with basis [Xi, Y,, Vi, Wi}. Let V = ®H\ Let 2 be a 3-dimensional
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618 P. EBERLEIN

real vector space with basis {Zi, Z^, ^3}, and let AT = V C Z. We define a bracket
operation in A/" as follows:

[Zj^] = 0 for 1 ̂  j ^ 3 and all ^ G Af

[X^Y,}=Z^ [X^Vi}=Z^ [X^Wi]=Z^ for l ^ i ^n

[Y^Xi]=-Z^ [Y^Vi\=Z^ [Y^Wi}=-Z^ for l ^ i ^n

[V^Xi]=-Z^ [V^Y^=-Z^ [V^W,]=Z^ for l^i^n

[W^X,}=-Z^ [W^Y^=Z^ [W^V^=-Z^ for l ^ i ^ n
all other brackets are zero

The resulting Lie algebra At is the quaternionic Heisenberg algebra of dimension
4n + 3.

Remark. - Let N denote the simply connected (4 n+3)-dimensional nilpotent Lie group
whose Lie algebra is the (4n + 3)-dimensional quaternionic Heisenberg Lie algebra. Let
H H71 denote the quaternionic hyperbolic space of real dimension 4 n. The remark of the
previous example now applies to N if one replaces Cff^ by H H " ' .

(1.4) DEFINITION. - A 2-step nilpotent Lie algebra Af is nonsingular ifad X : At^ Z
is surjective for all X G N — Z.

Here ad X (V) = [X, Y] for all X, Y G Af. The Heisenberg and quaternionic Heisenberg
algebras are nonsingular for any positive integer n. The nonsingular 2-step nilpotent Lie
algebras Af form an important class of 2-step nilpotent Lie algebras, and in general one
can say much more than in the general case about the geometry of the corresponding
group N equipped with a left invariant metric.

Metric examples. - We now assume that our 2-step nilpotent Lie algebra A/" is equipped
with a positive definite inner product ( , ). Let Z denote the center of A/", and let V denote
the orthogonal complement of Z in J\f relative to { , }. For each element Z in Z we define
a skew symmetric linear transformation j (Z) : V —> V by

j (Z) X = (ad X)' Z for all X G V

where (ad X)* denotes the adjoint of ad X. Equivalently one has the following more
useful characterization:

(1.5) ( j { Z ) X , Y ) = ( [ X , V], Z ) forallX, V G V, all Z G Z

The transformations {j (Z) : Z G Z} capture all of the geometry of N equipped with the
left invariant metric determined by ( , ). The notation j (Z) was apparently first introduced
by A. Kaplan in [Kl] to study 2-step nilpotent groups N of Heisenberg type.

Given a pair of positive integers m, n, each linear map j : R71 —^ so (m] determines
a metric, 2-step nilpotent Lie algebra AT. Define At to be the orthogonal direct sum
J\[~ = R^ 9 R^ where each factor has the standard metric. Then equip Af with the Lie
bracket determined by (1.5), where ̂  = Z and IR771 = V.
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(1.6) DEFINITION. - A 2-step metric nilpotent Lie algebra [J\T^ ( , )} is of Heisenberg
type if

j ( Z ) 2 = - I Z ^ I d onV

for every choice of Z G 2. A simply connected 2-step nilpotent Lie group {N, ( , )} with a
left invariant metric is of Heisenberg type if its Lie algebra {.V, ( , )} is of Heisenberg type.

If {A/\ ( , )} is of Heisenberg type, then from the definitions we immediately obtain
the following facts.

a) ( j ( Z ) X J ( Z ^ X ) = ( Z , Z ^ \ X \ 2 for all Z, Z* G Z, a l l X c V
n ^ / & ) { H Z ) X J ( Z ) Y ) = \ Z \ 2 { X ^ Y ) for all Z G Z, allX, Y G V
^•^ ]c) \j(Z)X\= \X\\Z\ f o r a l I Z G Z , a l l X e V

[ri) j ( Z ) o j ( Z * ) + j ( Z * ) o j ( Z ) = - 2 ( Z , Z * ) I d f o r a l l Z , Z * G Z .

The 2-step nilpotent groups [N, { , )} of Heisenberg type may be regarded as the model
spaces for the class of 2-step nilpotent groups {TV, ( , )} with a left invariant metric. The
groups of Heisenberg type have especially large groups of isometries and have a special
status analogous to that of the Riemannian symmetric spaces in the class of Riemannian
manifolds. See [Kl,2] as well as the discussion below in Example 4 of (2.11).

The Heisenberg and quatemionic Heisenberg algebras equipped with a natural inner
product become 2-step nilpotent Lie algebras of Heisenberg type. In general, for any
positive integer m there exist infinitely many nonisometric Lie algebras {At, ( , )} of
Heisenberg type whose centers Z have dimension m. See [K2], p. 36.

We now define natural inner products on the Heisenberg and quatemionic Heisenberg
Lie algebras and describe the maps {j (Z) : Z G 2} in each case.

Example 1. - Let JV = V 0 Z be the Heisenberg algebra of dimension 2n + 1,
where as above V = span{Xi, Vi, . . . , Xn, Yn} and Z = span{Z}. Identify V
with C71 as follows: if zj = aj + \^i /3j G C, where aj, (3j; C R, then identify

n

(^i, . . . , Zn) G C" with V {aj Xj + f3j Yj} G V. Give Af the inner product such that the
j=i

vectors {X^, Y^, Z : 1 ̂  %, j ^ n} form an orthonormal basis. With these identifications
it follows that for any real number a,

j(aZ)(^i, ..., Zn) = (aV^I)^!, ..., Zn) = (aV^l^i, ..., aV^izn).

Clearly j '(aZ)2 = -a2 Id == - |aZ|2ld.

Example 2. - Let A/" = V 9 ̂  be the quatemionic Heisenberg algebra of dimension
4n + 3, and let [X,, Y^ V^ W, : 1 ^ i ^ n} and {Zi, Z^ Z^} be the bases of
V, Z defined above. Give J\f the inner product such that these basis vectors form an
orthonormal basis for Af.

Generalizing the previous example, we show that the action on V of a map j (Z), Z G Z^
corresponds to left quaternion multiplication on H77' w V by a purely imaginary quaternion
([K2], p. 39).
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Recall that H is R4 with a basis {1, %, j, k} and noncommutative multiplication given
by ij -==. —ji •==. fc; jk = —kj = % ; & % = = —%fc = j and %2 = j2 == fc2 = —1. Identify V with
IH"' as follows: if hr = Or -h /3r i + 7rJ^ + ^r ^? 1 ̂  r ^ n, then identify (/ii, . . . , hn)

n 3

with ̂  {a^ Xy. + A Yr + 7r ^r + Sr Wr}. If Z = ̂  c^ ̂  is any element of Z, then it
r=l s=l

is routine to show that j (Z) (/ii, . . . , hn) = £, • (^i, . . . , ^n) = (^ /ii, . . . , <^ hn), where
^ = d i + C2j + C3 k <E H. It follows that j (Z)2 = -(c2 + c| + cj) Id = -| Z |2 Id
for all Z (E Z.

We conclude this section with a useful characterization of nonsingular 2-step nilpotent
Lie algebras.

(1.8) LEMMA. - Let AT be a 2-step nilpotent Lie algebra. Then J\f is nonsingular if and
on^ if f01" ^Y positive definite inner product { , ) on J\T the maps {j (Z) : Z G Z} are
nonsingular on V = Z1' for every nonzero Z G Z.

Proof. - If Z G Z and X € V are any elements, then it follows from the definitions that
j (Z) X = 0 if and only if Z is orthogonal to ad X (A/") = [X, At]. D

2. Geometry of 2-step nilpotent groups with a left invariant metric

Let {A^, ( , )} denote a 2-step nilpotent Lie algebra with a positive definite inner product.
Let {TV, ( , )} denote the simply connected 2-step nilpotent group N with Lie algebra M
and left invariant metric { , ); that is, the left translations Ln, n G N, are isometries of
{TV, ( , )}. In this section we derive some basic formulas for the curvature and Ricci
tensors of N. We also give examples of complete, totally geodesic submanifolds of TV.

In this section and in the sequel we shall sometimes regard the elements X of J\T as left
invariant vector fields on N determined by their values at the identity e of TV.

Covariant derivative and curvature ([CE], p. 64).
If X, y are elements of M regarded as left invariant vector fields on TV, then the function

n —> ( X (n), y (n)) is a constant function on TV. The formula for the covariant derivative
Vjc Y of smooth vector fields on a Riemannian manifold normally contains 6 terms
(cf. [Hel], p. 48), but in this case 3 of them vanish since (X, Y ) is constant. One obtains

(2.1) VxV = \ {[X, V] - (adX)* (V) - (adV)* (X)}

where (ad X)*, (ad V)* denote the adjoints of ad X, ad Y. We may regard V as a bilinear
mapping from A/" x A/" into At since V^ Y is a left invariant vector field if X, Y are
left invariant vector fields.

From (2.1) one obtains routinely

(a) VxV = ^ [X, V] forall X, Y G V
^ -<

^ b) Vx Z = Vz X = -- j (Z) X for all X G V, Z € Z
, c) Vz Z* = 0 for all Z, Z* C 2'.
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Curvature tensor.
If $i? ^2? $3 are vector fields on At then recall that the curvature tensor is given by

R^i. 6)^3 = -v^,] ̂ 3 + v^ (v^ 6) - v^ (v^ ^3).
If $1^2, $3 are left invariant vector fields, then R (^i, ^2) ^3 is also left invariant, and we
may regard R as a multilinear map from Af x J\T x J\f to AT. From (2.2) we obtain

a) R (x, Y) x* = | j ([x, y]) x* - ̂  ([y, x*]) x + ̂  ([x, x*]) y
for all X, r, X* G V. In particular

3^(x,y)x=^([x,y])x
b) R(X, Z ) y = - l [ X , J ( Z ) y ] forallX, V G V, all Z £ Z

(2.3) . R (x, Y) z = - ̂  [x, j (z) y] + ̂  [v, j (z) x]

c) ^ (X,Z)Z*=- ^ { j (Z )o j (Z* )X}

JZ(Z ,Z* )X=-^ { j (Z* )o j (Z )X}+ ^{ j (Z)o j (Z*)X}

for all X G V, all Z, Z* G 2^

d) ^ (Zi, ^2) ^3=0 for all Zi, ^2, ^3 e Z

The entire curvature tensor can be computed from these formulas and the Bianchi
identities.

Sectional Curvature.
Let II <= Tn N be a 2-dimensional subspace, and let X, Y be orthonormal elements

of A/" such that span{X(n), Y(n)} = n. The sectional curvature K (II) equals
AT(X, V) = <J?(X, y)V, X). From (2.3) we immediately obtain

' a) If X, y are orthonormal elements of V, then

iW Y) = - 1 1 [x, y] |2

(2.4) < b) If X G V and Z G Z are orthonormal, then

K ( X ^ Z ) = - ^ \ j ( Z ) X \ 2

[c) If Z, Z* are orthonormal elements of Z, then ̂  (Z, Z*) = 0.

7?rcri tensor.
For arbitrary elements X, Y of A/" we recall that the Ricci tensor of N is given by

Ric (X, V) = trace {^ -^ R (^ X) V, ^ G A/"). Symmetries of the curvature tensor imply
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that Ric is a symmetric, bilinear form on J\f x A/", and hence there exists a symmetric
linear transformation T : Af -^ At such that Ric (^i, 6) = < ̂ 1^2 ) for all ^i, ^2 ^ A^.

(2.5) PROPOSITION. - a) Ric (X, Z) = 0 /or ^ZZ X G V, Z G Z.
In particular T leaves V and Z invariant
b) If {Zi, . . . , Z-m} is an orthonormal basis of Z, then

. m

^v-^E^)2 'A;=i
In particular, T|v /5' negative definite, and

Ric (X, X) < 0 for all nonzero X G V.

c) Ric (Z, Z*) = - , rmc6? {j (Z) o j (Z*)} /or all Z, Z* G 2. In particular T \z is

positive semidefinite. The kernel ofT in M = [Z G Z : j (Z) = 0} = [Z G Z : Z is
orthogonal to [At, A/]}.

(2.6) COROLLARY. - (c/ [Kl], p. 134.) - Let {N, { , ) } be a simply connected 2-step
nilpotent Lie group with a left invariant metric. Then the left invariant distributions V and
Z in N are left invariant by every isometry of N.

Proof of the Corollary. - At any point n of N the distribution V is the subspace of
Tn N spanned by the eigenvectors of the Ricci transformation T corresponding to negative
eigenvalues of T. The distribution Z is similarly described by the nonnegative eigenvalues
of T. D

Proof of the Proposition. - Assertions a) and c) follow routinely from (2.3). We prove
b). Let X, V be arbitrary elements of V, and let {Vi, . . . , KJ and {Zi, . . . , Zm} be
orthonormal bases of V and Z respectively. From (2.3), the skew symmetry ofj ( Z k ) and

m

the fact that [V,, X} = ̂  {j (Zj,) V,, X) Zj, we obtain
k=l

n o n ^ m

(*) ^{R(V,,X)Y,Vi}=-^{j([Vi,X])Vi,Y}= - ^ { j ( Z ^ X , Y ) } .
%=1 1=1 fc=l

By (2.3)

^ ( R ( Z ^ X ) Y ^ Z , ) = - l ^ ( j { Z , ) 2 X ^ Y ) )
k=l k=l

and b) now follows from (^). D

Euclidean de Rham factor of N.
The next result explains the geometric significance of the nullity of the Ricci tensor.

(2.7) PROPOSITION. - Let {TV, ( , )} be a simply connected 2-step nilpotent Lie group -with
a left invariant metric. IfAf denotes the Lie algebra ofN let £ = {Z G Z : j (Z) = 0},
and let A/"* denote the orthogonal complement of£ in At relative to { , ). Then
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1) £ and A/"* are commuting ideals in A/\ and N is the direct product of the subgroups
TV* = exp(A/"*) and E = exp(f).

2) N is isometric to the Riemannian product of the totally geodesic submanifolds TV*, £',
and E is the Euclidean de Rham factor of N.

Proof. - Assertion 1) follows immediately from the definition of £. We prove 2). Let
<f, .V* also denote the left invariant distributions in N determined by the subspaces <f, A/"*
of AV = TeN. The subgroups TV* = exp(A/"*) and E = exp (<?) are maximal integral
manifolds of .V*, £.

The distributions A/"*, £ are not integrable but parallel (i.e. invariant under parallel
translation along arbitrary curves). It suffices to verify this for £ since the orthogonal
complement of a parallel distribution is also parallel. From the definition of £ and (2.2)
we see that V^ ^ = 0 if ^ e £ and ^* C A/", and hence £ is parallel. It now follows from
the de Rham theorem (see for example Theorem 6.1 of [KN], p. 187) that N is isometric
to the Riemannian product TV* x E. The totally geodesic submanifold E is flat by (2.3)
and the fact that £ C Z. If Z is a nonzero element of ./V* H Z, then j (Z) ^ 0 by the
definition of <? and A/"*. The subgroup TV* is totally geodesic [cf. (2.9) below], and the
Ricci tensor of TV* is nondegenerate by (2.5c). In particular TV* has no Euclidean de Rham
factor, and we conclude that E is the Euclidean de Rham factor of TV. D

Isometry group of TV.
(2.8) PROPOSITION. - Let {TV, (, )} be a simply connected, nilpotent Lie group -with

a left invariant metric, and let I (N) denote the isometry group of TV. Let A (TV) =
I (TV) D Aut (TV), -where Aut (TV) denotes the automorphism group of TV. Let TV also
denote the subgroup of I {N) consisting of left translations by elements of N. Then TV is a
normal subgroup of I (TV); TV U A (TV) = {e} and I (TV) = TV • A (TV) = A (TV) • TV.

Proof. - See Theorem 4.2 of [Wo2] and Theorem 2 of [Wi]. A simple direct proof of
this result for 2-step nilpotent groups of Heisenberg type can be found in [Kl], and this
proof is valid without change in the general 2-step nilpotent case in view of Corollary
(2.6) above. D

Totally geodesic submanifolds and subgroups.
Let {TV, (, )} be a simply connected 2-step nilpotent Lie group with a left invariant

metric. A connected subgroup TV* of TV with Lie algebra A^* C J\f is a totally geodesic
submanifold of TV if and only if it is totally geodesic at the identity; left translations by
elements of TV* are isometries of TV that leave TV* invariant. Hence

(2.9) A connected subgroup TV* of TV is a totally geodesic submanifold of TV if and
only if V^ ^2 ^ A/"* whenever ^i, ^2 ^ •A/'*» where A/"* C J\f is the Lie algebra of TV*.

(2.10) DEFINITION. - A Lie algebra A/"* C A/" is totally geodesic if V^ ^2 € A/'* whenever
^2 C M\

(2.11) EXAMPLES OF TOTALLY GEODESIC SUBGROUPS.- A complete, connected totally
geodesic submanifold of TV need not be a connected, totally geodesic subgroup of TV,
but a 2-step group {TV, (, )} admits many totally geodesic subgroups. Many of these are
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flat, which is not too surprising since {TV, (, )} should be similar in some sense to flat
Euclidean space. We list some basic examples.

Example 1. - Let $ G M be arbitrary. The 1-parameter subgroup exp {t^) is a geodesic
of N if and only if (ad$)* ^ = 0 by (2.1). This condition holds if and only if ^ is
orthogonal to [^ A/]. In particular if $ € V or ^ G Z, then ^ -^ exp (^) is a geodesic of
N that starts at the identity. These are the only possibilities for a 1-parameter subgroup
to be a geodesic if Af is nonsingular.

Example 2. - Let A/'* be an abelian subspace of V; that is, [X, Y] = 0 for all X, V G A/\
Then A/"* is a totally geodesic subalgebra in view of (2.1) since Vjc Y = - [X, Y] for all
X, Y G V. Moreover, AT (X, V) = 0 for all X, Y e A/"* by (2.4). Hence TV* = exp (A/'*)
is a complete, flat, totally geodesic subgroup of TV that contains the identity.

This example generalizes a part of the first example. Abelian subspaces A/"* of V of
dimension at least 2 arise whenever dimV ^ 2 + dimZ. In such a case the map adX:
V -^ J7 has a kernel of dimension at least 2 for every nonzero X G V, and we define
A/"* = span {X, Xi}, where Xi is any element of ker (ad X) that is not collinear with X.
More generally, if dim V ^ 1 + r + r dim Z, for some integer r ^ 2, then every nonzero
element X of V lies in an abelian subspace A/"* of V of dimension r+1. One may construct
A/"* as follows. Define Vo = ker (ad X), a subspace of V of dimension ^ v - z ^ 2, where
v = dim(V) and z = dim(Z). Let Xi be any nonzero element of Vo that is linearly
independent from X and define Vi = Vo D ker (adXi). Continuing in this fashion we let
Xj be any nonzero element of Vj_i that is linearly independent from {X, X i , . . . , Xj_i}
and define Vj = Vj-i H ker (adXj). If 1 ̂  j ^ r, then this construction is possible since
dimVj-i ^ v - jz ^ v - rz ^ r + 1 ̂  j + 1. Hence Xy. exists, and by construction the
subspace A/"* = span {X, X i , . . . , Xy.} is abelian and has dimension r + 1.

Example 3. -If Z denotes the center of N, then it follows easily from (2.2) and (2.3)
that the orbits of Z in TV under left multiplication are complete, flat, totally geodesic
submanifolds of TV.

If TV is of Heisenberg type, then one can find many additional totally geodesic
submanifolds of TV.

Example 4. - Let {TV, { , )} be a 2-step nilpotent Lie group of Heisenberg type. Then
every unit speed geodesic 7 of TV is contained in a complete, 3-dimensional totally geodesic
subgroup TV* of TV. After rescaling the metric of TV* by a positive constant depending on
the geodesic 7, the group {TV, (, )} is isometric to the 3-dimensional Heisenberg group
corresponding to the 3-dimensional Heisenberg algebra {A/\ (, }} constructed above in
section 1.

We verify the assertions of the example above. It suffices to consider the case that
the geodesic 7 satisfies 7 (0) = e, the identity of TV. Let 7' (0) = Xo + Zo, where
Xo G V and ZQ e Z. We first consider the case that Xo and ZQ are both nonzero.
Let A/"* = span{Xo, ZQ, j (Zo) Xo} and let TV* = exp (A/"*). We assert that A/'* is a
3-dimensional, totally geodesic subalgebra of A/", and it will then follow that TV* is a
complete, 3-dimensional, totally geodesic subgroup of TV that contains 7.
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From (1.7) we obtain the following

LEMMA. - Let N be a 2-step nilpotent group of Heisenberg type. Then

[X, j{Z)X}= I X I 2 Z for all elements X <E V, Z G Z.

It follows from the lemma that the subspace A/"* defined above is a subalgebra of A/". From
(2.2) we see that A/"* contains V^o Zo = Vzo x^ v^ J (^o) -^o = -Vj (Zo)Xo -^o and
Vz, j (Zo) ̂ o = Vj (Zo) Xo ^o. It follows that V^ ^2 e A/"* for all ^i, ̂  e A/"*, and hence
A/"* is a totally geodesic subalgebra of A/", provided that both Xo and Zo are nonzero. If
y (0) = Xo + Zo, where either Xo or Zo is zero.then 7' (0) lies in infinitely many totally
geodesic subalgebras of the type A/"* above. The group TV* = exp (A/"*) is of Heisenberg
type since A/"* H V is invariant under j (Zo). It is easy to see that there is a unique
3-dimensional, 2-step Lie algebra of Heisenberg type up to isometry and multiplication of
the metric by a positive constant. This completes the discussion of Example 4.

Remark. - The property of example 4 characterizes groups of Heisenberg type in the
class of all 2-step, simply connected nilpotent Lie groups N with a left invariant metric
( , ). More precisely we have

(2.12) THEOREM. - Let {N, { , )} be a simply connected 2-step nilpotent Lie group with
a left invariant metric. Suppose that every unit speed geodesic through the identity e of N
is tangent to at least one 3-dimensional totally geodesic submanifold of N that intersects
the center Z in a submanifold of positive dimension at e. Then N is of Heisenberg type if
one replaces { , ) by c2 ( , ) for a suitable positive constant c.

We omit the proof, which will appear in [El].

3. Geodesies

To describe the geodesies of {N, ( , }} it suffices to describe those geodesies that begin
at the identity of N. Let 7 (t) be a curve with 7 (0) = e, and let 7' (0) = Xo + Zo G A/",
where Xo e V and Zo G Z. In exponential coordinates we write

7 ^ ) = e x p ( X ( t ) ) + Z ( t ) , where X (t) G V, Z (t) C Z for all t

and
X'{Q}=X^ ZfW=Zo

(3.1) PROPOSITION. - The curve 7 (t) is a geodesic if and only if the following equations
are satisfied:

a) X" (t) = j {Zo) X ' {t} for all t G R

b) Z ' {t) + 1 [X' (t), X (t)\ =E Zo for all t G R
z^

Proof. - These equations were derived by A. Kaplan in [Kl] to study 2-step nilpotent
groups N of Heisenberg type, but the proof is valid without change in the general 2-step
nilpotent case. These equations can be completely integrated if N is of Heisenberg type
(cf. (3.8) below, [Kl, 2] and [Ko]). In the general 2-step case the equations can also be
integrated but the answer involves the eigenvalues of j (Zo) as we show in (3.5).
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The next result will show that the geodesic flow in {N, (, )} has dimZ linearly
independent first integrals, a fact reminiscent of the geodesic flow in flat Euclidean spaces.

(3.2) PROPOSITION. - Let {N, (, )} be a simply connected 2-step nilpotent Lie group with a
left invariant metric, and let 7 (t) be a geodesic ofN with 7 (0) = e. Write 7' (0) = XQ + ZQ,
where XQ C V C M, ZQ G Z C M and Af = Te N. Then

Y (t) = dL^ (,) (e^'(zo) Xo + Zo) for all t G R
00

where e^'^0) = ̂  (^j (Zo)")/^!
71=0

Pwo/. - Write 7 (^) = exp (X (t) + Z (t)), where Z (t) e V, and Z (^) G 2 for all
t C R. Using the result and the notation of (1.3) and the second equation of (3.1) we obtain

7' {t) = dexp^^z^ {X' {f} + Z ' %)x(t)+z(t)

= dL,^ ̂  + Z ' + J [{X' + Z'), (X + Z)}\

= d£^) (x7 + Z ' + ̂  [X7, X]') = rf£^) (Z' + Zo).

By integrating the first equation of (3.1) we obtain X' (t) = g^'^o) ̂  which completes
the proof. D

(3.3) COROLLARY. - Let {^} denote the geodesic flow in TN. Let n G N and
XQ, ZQ G At = Te N be given, where XQ G V and ZQ e Z. Then

gt {dL^Xo + Zo)) = rî d) (e^^ XQ + Zo),

where 7 {t) is the unique geodesic with 7' (0) = dLn (XQ + Zo).
Proof. - Straightforward. D

(3.4) COROLLARY. - Define f : TN ^ Z by f (dLn X) = H^ X, where T^z : At -^ Z
is the projection map and n G N, X e Af = Te N are arbitrary. Then f o (^ = f for all
t G R. If F C TV is any discrete subgroup acting on N by left translations, then f induces
a function F : T (T\N) -^ Z such that F o gt = F for all t <E R.

Proof. - These assertions follow routinely from (3.3). D
By choosing a basis for Z we can define m = dim Z linearly independent first integrals

from the Z-valued first integrals /, F above. Alternatively, [Ba] if F C TV is any discrete
subgroup, then each nonzero element Z of Z defines a Noether first integral (cf. [A],
pp. 88-91) h: S(T\N) —^ R as follows: Extend Z to a biinvariant vector field on N and
define H : SN —^ R by H (v) = (v, Z{p{v))}, where p : SN —^ N is the projection
map. The flow transformations of Z are isometries of N, and hence the restriction of Z to
any geodesic 7^ of N is a Jacobi vector field of constant length. It follows that for each
v G SN the function H{gt v) = (^ {t), Z (7^ t)) is a bounded affine linear function on R
and must therefore be constant. The function H is invariant under dL^ for all n G N, and
hence H induces a first integral h: S {T\N) -^ R for any discrete subgroup F of N.
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Integration of the geodesic equations.
We give a solution to the equations (3.1), but the equations obtained are expressed in

terms of eigenvalues of the transformation j {Zo) as well as the initial data Xo, Zo. These
equations simplify if [N, ( , )} is nonsingular, especially if {TV, ( , )} is of Heisenberg
type, but do not simplify further in the general case.

Again, it suffices to consider the case that 7 is a geodesic of N with 7 (0) = e. We
write 77 (0) = Xo + Zo, where Xo e V and Zo ^ Z. Let J : V -^ V denote the skew
symmetric transformation j (Zo)» and write V as a direct sum Vi © 1̂  where Vi is the
kernel of J and ^2 is the orthogonal complement of Vi in V. Note that J leaves ^2
invariant and is nonsingular on V'z.

Let {% 0i, -z 0 i , . . . , i O N , -i 07v } be the distinct nonzero eigenvalues of J, where 0^ > 0
N

for all %, and write V^ as an orthogonal direct sum (j) Wp where J leaves invariant each
j=i

W, and J2 = -6^Id on Wj. We write

Xo = Xi + X2, where X, G Vi for j = 1, 2.

N

X2 = ̂  ^-, where ^ (E W, for 1 ̂  j ̂  N
j=i

(3.5) PROPOSITION. - Let {TV, ( , )} be a simply connected 2-step nilpotent Lie group with
a left invariant metric. Let 7 (t) be a geodesic with 7 (0) = e. Write 7' (0) = XQ + ZQ, where
Xo G V and ZQ G Z. Write 7 (t) = exp (X (t) + ̂  (^)), w^^ X (^) G V and Z {t) G Zfor
all t G R ^mrf X' (0) = Xo, Z ' (0) = Zo- T^i with respect to the notation above we have

1)X(t) = tXi+^-Id^-1^)
2) Z(T) = ^Zi + ^2 (^), where

1 1 N

a) Zi % = Zo + 3 [̂ i, (^J + Id) (J-1 X2)] + ̂  [J-1 ̂ , ^-]
j=i

b) Z^ (t] is a function of uniformly bounded absolute value given by

Z2 {t) = [Xi, (Id - e^) (J-2 X2)] + 1 [e^ J-1 X^ J-1 X^\
Zt

1 N

-- E ̂ /(^-^{^^^e^J-1^-^^,,^7^}
' W=i

+| E { l/(^2-0?)}{[ l7^-J" l^-K-^}i
^j=i

Proof. - We verify that the expressions for X (t) and Z (^) given above satisfy the
equations in (3.1) together with the initial conditions X (0) = Z(0) = 0; X'(0) == Xo
and Z ' (ff) == Zo- First we note

a) J commutes with ei3 for all i e R and -,-(etJ} = Je^ = etJ J .dt
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b) J2 = -9] Id and J == -6^ J-1 on W, for each l ^ j ^ N .
It is now straightforward to verify that X (t) satisfies the first equation of (3.1) and the
initial conditions X (0) = 0 and X' (0) = Xo. Moreover it is routine to show

c) [X' (^ X (t)} = [Xi, (e^ - Id) (J-1 ̂ 2)] + t [e^X^ X,}

+[e t JZ2,(e t t 7-Id)(J- lX2)]
Next we observe that the derivative of [e*17^, e^J"1^] is zero by a) and b) for all
t e R and 1 $ j^ $ TV. Hence we obtain

rf) [e^ ̂  e^ J"1 ̂ ] = [Q, J~1 ^j] for all ^ <E R and 1 ̂  j ^ N
N

From rf) and the fact that X^ = V^ we obtain
j==i

.U^^e^J-1^]^ E [et^-et'l7-l^+E^'J-l^
i^==l j=l

From a) and Z?) we obtain

1 1 ^y/ /-i.\ _ ry ,,tJ T—l v 1 i \otJ\r 7-1 V 1 Y^ \^tJ /- _ t J 7-! ^ i
^(^-" [^ l^6 J ^2] -+- ^ [e A2, J 2J ~ 9 / . ̂  ^5 e l/ ^J

z^'=l

Combining this with e) we obtain

/) Z, {t) = -[X,, e^ J-1 X,\ - J [e^Xa, (e*7 -Id) (J-1 X,)} - J ̂  [J-1 ̂  ^]
J=l

Next we compute Z ' (t) = Zi (t) + ^ Z^ (t) + Z^ (t) and from f) we obtain

^^(t) = Z o - j [e^^^^J-1^]

-J [Zi, e^ - Id) (J-1^)] + J [e^X^ J-1^] - J ^[6^X2, Xi]

Finally from c) and g) we see that Z' (t) + , [X7 (^), X (t)] ^ Zo, which is the second
equation of (3.1). It is evident that Z (0) = 0 and from g) we see that Z ' (0) = Zo. D

(3.6) Remark. - Using assertion b) above it follows that

e t J=cos( t^•)Id+{sm^^•) /^•}J on W^ ^ ^ J ^ N .

From this it follows that Z^ (t) is uniformly bounded in absolute value for all t € R.
N

(3.7) Remark. - Using (3.6) and the fact that X^ = V^ ^ we can rewrite the equation
j=i

for X {t} in (3.5) in the following form:
N

X(t)=tX^^X^{t)^
^l

4° SERIE - TOME 27 - 1994 - N° 5



GEOMETRY OF 2-STEP NILPOTENT GROUPS 629

where

X] (t) = (e^ - Id) (J-1 ̂ ) = {cos(^) - 1} J-1^. + {sm(^)/^K,.

Each curve X* (t) is a circle in Wj with center —J~1 ̂ , radius | J~1 ̂  | and period —.
^

(3.8) Remark. - If the Lie algebra At is nonsingular [cf. (1.4)] and if Zo / 0, then
J = j'(Zo) is invertible by (1.8), and it follows that Xi = 0 and X^ = XQ in the notation
of (3.5). The equations of (3.5) simplify in this case. If in addition N is of Heisenberg
type, then i \ Zo \ and -i ZQ \ are the only eigenvalues of J, and with the help of (3.6)
and (3.7) the equations in (3.5) become

1) X (t) = (e^-ld) (J-1 Xo) = {cos(t Zo I ) - 1} J~1 Xo+{sin (t \ Zo I ) / I Zo \} XQ
2) Z (t) == tZ^ (t) + Z2 (t), where

a) Z, {t) EE Zo + ^ [J~1 Xo, Xo] = (l + l x o 1 2 ) Zo by (1.7) and the lemma in
2 \ 2 Zo | /

example 4 of (2.11).

b ) Z ^ ( t ) = J [ e ^ J ^ X o ^ J ^ X o ] = J { s m ^ l Z o D / I Z o l H X o . J ^ X o ] =
r - sin (t | Zo | ) | Xo | -i ^ ̂  ^ ̂  ̂  ̂  lemma in example 4 of (2.11).
I z j Z/Q -J

I "V
-KT-.L- ^1 -_^ 17- /jA •- - - • - - 1 - _ - ' ^1 - --—^.-.- T—1 \r ^--l'-- I T—1 V I I 0Note that X (t) is a circle with center J 1 XQ, radius | J 1 XQ\ = and period

I ZQ
-. Moreover Z (t) is a multiple of Zo for all ^ G R.

Zo I
(3.9) Remark. - If Xo = 0 or Zo = 0» then the geodesic equations in (3.1) or (3.5)

become respectively ^{t) == exp(tZo) or 7(^) = exp(tXo). More generally, it follows
from the equations in (3.1) that if 7 {t) is the unique geodesic with 7' (0) = XQ + Zo, then
7 (t) = exp (t (Xo + Zo)) if and only if j {Zo) Xo = 0 if and only if Zo is orthogonal to
[Xo, At}. This fact can also be deduced from (2.1).

We conclude this section with two results about the behavior of geodesies in N that are
tangent to the left invariant distributions V and Z in N.

(3.10) PROPOSITION. - Let {N, ( , )} be a simply connected 2-step nilpotent Lie group with
a left invariant metric. Let 7 (t) be a unit speed geodesic of the form 7 (t) = a • exp (t Z*),
"where a G N is arbitrary and Z* is any unit vector in Z. Then J (Z*) =: 0 if and only if no
two points 0/7 are conjugate. Ifj (Z*) ^ 0, then 7 (0) is conjugate to 7 (6) for some b > 0.

Remark. -If N has no Euclidean factor, then j (Z*) ^ 0 if Z* / 0 by (2.7).

(3.11) PROPOSITION. - Let {TV, ( , )} be a simply connected 2-step nilpotent Lie group
with a left invariant metric. Let V* be a nonzero element ofV, and let d ( , ) denote the left
invariant metric of N. Then d (e, exp (V* + Z*)) ^ | V* | for all Z* G Z "with equality if
and only if Z * = 0. Hence if^y (t) is a unit speed geodesic of the form 7 (t) = a • exp (t V*),
where a G N is arbitrary and V* is any unit vector in V, then 7 minimises the distance
between any two of its points.

Proof of Proposition 3.10. - Since left translations are isometries it suffices to consider
the case that a = e and 7 (t) = exp (t Z*), where Z* is a unit vector in Z. If j (Z*) ^ 0,

ANNALES SCIENTIFIQUES DE L'^COLE NORMALE SUPERIEURE



630 P. EBERLEIN

then the sectional curvature formulas in (2.4) imply that the sectional curvature of any
2-plane containing 7' (t) is zero for any t G R. Standard arguments then show that no
two points of 7 are conjugate.

Conversely, if j (Z*) ^ 0, then by (2.5) Ric(Z*) = Ric(Y(0) = c > 0. It follows
that Ric^'^t)) = c > 0 since 7' (t) = d^exp(tz*) V (0)» which proves that 7(0) and
7(6) are conjugate for some number b > 0 (see Theorem 1.26 of [CE]). This completes
the proof of Proposition (3.10). D

Proof of Proposition 3.11. - Let V* G V and Z* G Z be arbitrary elements, where
V* / 0. Let 7: [0, 1] -^ N be a shortest geodesic from e = 7 (0) to exp (V*+Z*) = 7 (1),
and let 7' (0) = XQ+ZO, where Xo G V and Zo ^ ^. We write 7 (^) = exp {X (t) + Z (t)),
where X (t) e V and Z (t) G ^ and X (0) = Z (0) = 0. By (1.3) or (3.2) and the geodesic
equations in Proposition 3.1 we see that

Y W = dL^^ ( x ' + Z ' + J [X', X]') = d^(,) [X' + Zo).

Hence

d(e,exp(V*+Z*))= / | 7'M ^= /l ( | X ' (t) 2 + \ Zo\2)1/2 dt
Jo Jo

^ ( \X'(t}\ dt^d(0, V*)
Jo

= | V* | since Z (0) = 0 and X (1) = V\

It is now routine to complete the proof. D

4. Isometry invariant geodesies

Let {TV, ( , )} be a simply connected 2-step nilpotent Lie group with a left invariant
metric, and let (f) be an arbitrary nonidentity element of N . We say that (f) translates a unit
speed geodesic 7 (t) in N by an amount uj if (/) • 7 (t) = 7 {t + ci;) for all t G R.

The number c<; is called a period of <^. If (f) belongs to a discrete group F C TV, then the
periods of ( / ) are precisely the lengths of the closed geodesies in r\7V that belong to the free
homotopy class of closed curves in r\7V determined by (/). Elements of F that are conjugate
in r have the same periods and determine the same free homotopy classes in r\7V.

In this section we show that every nonidentity element (f) in N translates some geodesic
of N. Moreover (f) has both a minimal and a maximal period, which coincide if J\f is
nonsingular and (/) does not lie in the center of N. For each period uj of (f) let N^ {(/))
denote the union of all unit speed geodesies of TV that are translated an amount uj by
(f). Let SN^ (0) denote the set of unit vectors in N that are tangent to a unit speed
geodesic of TV that is translated an amount uj by (f). Each set N^ (<^) is invariant under
Z (^>) = [^ e N : (f)^ == '0^)}, and N^ ((f)) is a single Z (^) orbit if and only if cc; is
the maximal period ^ of (f). Moreover, for any period uj of <f) the dimension of the set
SN^ (cf)) is at least equal to the dimension ofSN^ ((/)) with equality if and only if uj = a;*.
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By the dimension of a set we mean the largest integer k such that the set contains an
imbedded open fc-disk.

Remark. - Some of the results of this section were obtained earlier by C. Gordon
[G3]. In particular she essentially obtained the first three equivalences of Proposition 4.3
and showed (in the notation of Proposition 4.5) that (f) = exp(V* + Z*) translates the

1-parameter group t —^ exp ( — (V* + Z**) ) .
\^* /

(4.1) PROPOSITION. - Let (j) G N be a nonidentity element, and let d^ : N —>• R be the
displacement function defined by d^ (n) == d(n, (f)n). Then d^ assumes a minimum value
uj > 0 on N, and (f) translates some unit speed geodesic 7 of N by an amount uj. The
number uj is the smallest period of (f).

Proof. - Choose V* C V and Z* G^sotha t^>=exp(y*+Z*) . I fZy* ={exp[V*, ^]:
^ G A/'}, then Zy* is a closed subgroup of Z that equals the identity if and only if V* = 0.
Therefore the set (f) • Zy* = Zy* ' ( / ) is closed in N , and we may choose an element
'0* e (f)'Zv- such that d (e, ^*) ^ d (e, ^) for all ̂  G ^ ' Z y . . We assert that uj = d (e, '0*)
is the minimum value of d^ and that d^ assumes its minimum value at exp(^*), where
^* G Af is any element such that '0* = ( / ) • exp ([V*, f]) = exp (V* + Z* + [V*, <^*]).
Moreover, 0 translates any minimizing geodesic from ^* to 0^*.

Let ^* G A/' be chosen as above. If ^ G .V is arbitrary, then ^ = exp(—^) • (f) '
exp (0 = exp(V* + Z* + [V*, ^]) = ^ • exp ([V*, ^]) G ^ • Zy*. Hence ^ (exp^*) =
d(e, exp(-^*)-<^exp(^*)) =d(e , ^*) ^ d(e, ^) = ̂  (exp ̂ ) by the choice of ^*. This
proves that d^ assumes its minimum value uj = d(e, ^*) at exp^*. Standard arguments
now show that uj is the smallest period of (f), and (f) translates any minimizing geodesic
from exp($*) to (f) • exp(^*). D

Next we define a number a;* which later will turn out to be the maximal period of
(f) = exp(V* + Z*).

(4.2) PROPOSITION. - Let ( / ) G N be an arbitrary element and write (f) = exp (V* + Z*)
for suitable elements V* G V and Z* G Z. Let Z** te ̂  component of Z* orthogonal to
[V\ A/], 6mJ /^ a;* = { | V* | 2 + | Z** | 2}1/2 = | V* + Z** I . Let ^ G M be chosen so

that Z** = Z* + [V*, ^], ^nd /^ 7 (t) = exp (Q • exp [^- (V* + Z**)]. Then 7 (t) ^ a

unit speed geodesic such that (f) • 7 (t) = 7(1 + c<;*) /or all t G 1R.

Pwo/. - If a = exp(0 we define ^ = a-1 • 0 • a = exp(V* + Z* + [V*, ^]) =
exp (V* + Z**). The condition that (f) • 7 (t) = 7 (t + a;*) for all 1 G R is equivalent to
the condition that ^ ' 7* (t) = 7* (t + cc;*) for all 1 e R, where 7* (t) = a~1 ' 7 (t) =

exp ( — (V* + Z**) ) . This latter condition is routine to verify.
V^* /y* + ^**

Note that 7*7 (0) == ————— is a unit vector by the definition of cc;*. The condition that
CJ*

Z** be orthogonal to [V*, A/I is equivalent to the condition that j (Z**) V* = 0. It follows
immediately that 7* (t) satisfies the geodesic equations in (3.1), and hence 7 (t) =• 0-7* (t)
is a unit speed geodesic. See also (3.9). D

Now we describe some general criteria for an element (j) to translate a geodesic 7.
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(4.3) PROPOSITION. - Let (f) G N be an arbitrary element and write (f) = exp (V* + Z*)
for suitable elements V* G V and Z* G Z. Let 7 (t) te a unit speed geodesic with 7 (0) = a
and^ (w) = <f)'a, andlet^' (0) = dLa (Xo-^-Zo) for suitable elements XQ G V and Zo G Z.
Let J denote j (Zo). Let a~1 • 7 (t) = exp (X (f) + Z (^)), where X (t) G V 6mrf Z (t) G Z
/or all t ^ R and X (0) == Z (0) = 0. Then the following assertions are equivalent.

i. x(t) +y* = x(t^uo)
Z {t) + Z* + 1 [V*, X (t)] = Z (t + uj) for all t G R

2. ^ • 7 (^) = 7 (t + a;) for all t G R
3. 7' (0) is orthogonal to the orbit Zy* • a, where Zy* = exp ([V*, A/]) C Z
4. 77 (c<;) is orthogonal to the orbit Zy* ' (f) ' a
5. e^7 fixes XQ
Proof. - By straightforward arguments similar to those used in the proof of (4.2) it

suffices to consider the case that a = e, the identity in N. Assertions 1) and 2) are
equivalent by the multiplication law (1.1). To prove the other equivalences we proceed in
the cyclic order 2) => 3) => 4) ^ 5) => 2).

We prove 2) => 3). Write V as an orthogonal direct sum V = Vi (B ^2^ where Vi is the
kernel of J = j {Zo). Write XQ = X^ + ^2, where Xi e Vi and X^ G ^2.

LEMMA. - V* = a; Xi 6md e^J fixes X^.
Suppose for the moment that the lemma has been proved. The lemma implies that

J (V*) == 0, which is equivalent to Zo being orthogonal to [V*, A/] = TeZy*. Since
Y (0) = XQ+ ZQ we conclude that 7' (0) is orthogonal to Zy* at e = 7 (0), which proves
the assertion 2) =^ 3).

Proof of the lemma. - By Proposition 3.5 we have

(i) X (no;) = nc<;Xi + (e^7 - Id)(J~1 ̂ 2) for every positive integer n.
By induction we obtain from the equations above in 1) of the proposition

(ii) X {nuj^ = nV* for every positive integer n.
If we write V* = V^ + V^, where V^ e Vi and V^ G V^, then from (i) and (ii) we obtain

(iii) n V^ = n uj X^ for every positive integer n
(iv) nV^ = (e^^3 — Id) (J""1 X^) for every positive integer n.

The right hand side of (iv) is uniformly bounded in norm for all n since en^J is an
orthogonal transformation. This implies that V^ == 0 and hence V* = V^ = ujX^ by
(iii). From (iv) in the case n = 1 we see that euJJ fixes J~1 X^ and hence e^J fixes ^2
since e^17 commutes with J. D

We prove 3) => 4). Since 7' (0) = Xo + Zo the hypothesis 3) is equivalent
to ZQ being orthogonal to [V*, A/"] = TeZy.. By Proposition 3.2 we see that
7' (o;) = dL^ („) (e" J Xo + Zo), where J = j (Zo). Now (^ = 7 (^) and ̂  (Zy* . ̂ ) =
dL^, Tg (Zy*). Since Zo is orthogonal to Tg (Zy*) we conclude that 7' (a;) is orthogonal
to T^ (Zy* • (f>). D

We prove 4) => 5). Since 7(0;) = (f) = exp(V* + Z*) it follows that Z* = Z (ci;)
and V* = X (a;). Write V as an orthogonal direct sum V = Vi (B ^2, where Vi is the
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kernel of J == j (Zo), and write XQ = Xi + ^2, where Xi G Vi and ^2 G V2. By (3.5)
Z (a;) = a;Xi + (e^17 - Id) (J~1 X^) and hence we obtain

M V* - a; Xi = (e^ J - Id) (J-1 X^)

From the description of 7' (ci;) in the proof of 3) => 4) we see that Zo is orthogonal to
[V*, A/I if 4) holds. Hence JV* = 0. We conclude that e^3 fixes J~1 X^ and hence
also X-z since the left hand side of (*) lies in Vi while the right hand side lies in V^.
Finally eu;J XQ = e^ J Xi + e^ J ^2 = Xi + X^ = XQ since JXi = 0 and e^J fixes
X2. D

We prove 5) =^ 2). Assertion 2) is equivalent to the assertion dL^ 7' (0) = V (ci;); in this
case the geodesies <f) • 7 (f) and 7 (t + c<;) would be equal since they would have the same
velocity at t = 0. By Proposition 3.2 and 5) we see that 7' (a;) = dL^ ̂  (e^ J XQ + Zo) =
dL^, (Xo + Zo) = dL^ 7' (0). This completes the proof of Proposition 4.3. D

The next result follows directly from (4.3).

(4.4) COROLLARY. - Let (f) G N be an arbitrary element and write (j) = exp (V* + Z*)
for unique elements V* G V and Z* G Z. Let a G N be given and write a = exp (^) for
a unique ^ G A/". TTi^n ^^ following are equivalent:

1) There exists a unit speed geodesic 7 of N with 7 (0) = a such that (/>-7 (t) = 7 (t + a;)
for all t G R and some uj > 0.

2) There exists a unit speed geodesic 7* of N with 7* (0) == e, 7*' (0) orthogonal to
[V\ At] and 7* (a;) = exp ([V*, ^]) • (^ for some a; > 0.

Proof. - Suppose first that 1) holds. If 0* = a~1 • (^ • a and 7* (t) = a~1 • 7 (t), then
7* is a unit speed geodesic such that 7* (0) = e and <y ' 7* (t) = 7* (t + ̂ ) for all
t G ff^. From Proposition 4.3 it follows that 7*' (0) is orthogonal to Te Zy- = [V*, A/"].
Moreover, 7* (a;) = ^ • 7* (0) = ^ = exp (V* + Z* + [V*, ^]) = exp([V*, ^]) • (^ by
the definition of 0*.

Conversely suppose that 2) holds. Let <^* = exp([V*, $ ] ) • ( ? ' ) == a~1 • (f> • a. Then
^* • 7* W = 7* (t + €<;) for all ^ G R by the equivalences of 2) and 3) in Proposition 4.3,
and it follows that ( / ) ' 7 (t) = 7 (t + a;) for all t G R, where 7 (t) = a • 7* (t). D

We now prove that the constant ^* defined in Proposition 4.2 is the largest possible
period for ^ = exp(V* + Z*).

(4.5) PROPOSITION. - Let <f) be an arbitrary element ofN and write (f) = exp (V* + Z*)
for unique elements V* G V and Z* G Z. L^? Z** Z?^ the component of Z* orthogonal to
[V*, A/]. L^ 7 (t) te a MmY speed geodesic such that ( / ) - 7 (t) = 7 (t + a;) /or all t ^ R and
some uj > 0. L^ a = 7 (0) and a;* = { | V* | 2 + | Z** 2}1/2. 77^

i) | y* | ^ uj ^ ^
2) a; = a;* if and only if the following conditions hold

(i) 7 (f) = a ' exp f^- (V* + Z**)) for all t <E
V^* /

(ii) Z** = Z* + [V*, $], where a = exp(Q.
/ ^y* \

3) cj = V* | if and only if Z* = 0 if and only if 7 (t) = a ' exp -—— for all t e
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(4.6) COROLLARY. - Let (f) be a nonidentity element of N that does not lie in the center
of N. Assume that Z* is contained in [V*, A/]. Then

1) (f) has a unique period | V* |.
2) Let 7 (^) be a unit speed geodesic in N with 7 (0) = a = exp (^) for ^ G A/'. Then

/^y*\
^ . 7 (^) = 7 (t + a;) for all t G R if and only if [^ V*] = Z* and 7 (t) = a • exp ——

\ u} )
for all t G R.

In particular the corollary applies to all elements (f) of N if At is nonsingular.
Proof of the corollary. - The hypothesis of the corollary says that Z** = 0 in the

notation of Proposition 4.5. The first assertion of the corollary now follows from 1) of
Proposition 4.5. Next let 7 (t) be a unit speed geodesic with 7 (0) = a = exp (^) such
that (f) • 7 (^) = 7 (^ + a;) for all ^ G R, where uj = | V* |. Since Z** = 0 it follows that

[^ y*] = Z* and 7 (t) = a • exp ( t — — ) for all t G R by 2) and 3) of Proposition 4.5.
\ ^ /

/ t V * \ ftV*\Conversely, if [^ V*] = Z* and 7 (^) = a • exp —— = exp (^) • exp | —— ) , then
\ ^ / V ^ /

it follows immediately that 7 (t) is a unit speed geodesic of N with 7 (0) = a such that
^ . 7 (t) = 7 (t + a;) for all t e R. D

Proof of Proposition 4.5. - We first note that 2(ii) follows from 2(i). If uj = a;* and
2(i) holds, then

exp fv* + Z* + ^ + x [V*, ̂  = exp (V* + Z*) . exp (Q = ^ > . a = 7 (^*)
\ z /

=a-exp(V*+^**)

=exp( 'y*+z**+^+^[^y*]V
This proves 2(ii). Conversely, if 2(i) and 2(ii) hold, then (/) • 7 (t) = 7 (t + a;*) for all t G R
by Proposition 4.2, and it follows that uj = a;*.

It remains to prove assertions 1) and 3) and the part of 2) which says that if uj = ci;*
then 2(i) holds. By arguing as in the proof of (4.2) it suffices to consider the case that
7 (0) = a = e, the identity of TV. We let 7' (0) = XQ + ZQ, where XQ G V and Zo ^ ^.
By assertion 3) of Proposition 4.3 it follows that Zo is orthogonal to [V*, At] = Te Zy*,
where Zy. = exp ([V*, A/I).

We now proceed as in the proof of Proposition 4.3, and we write V as an orthogonal
direct sum V = Vi 9 V^ where Vi is the kernel of J = j (Zo). Write Xo = Xi + Xs,

N
where Xi e Vi and X^ G ^2. Let ^2 be written as an orthogonal direct sum V^ = Q) Wj

j=i
N

as in the discussion preceding the statement of Proposition 3.5. Write X^ = V^ ^j, where

^ G M^ for 1 ^ j ^ N.
N

(4.7) LEMMA. Z* - a; Zo + [^*, J-1 ̂ 2] + I ̂  [J-10, ^-]
j=i
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Proof. — By hypothesis 7(0;) = (f) • 7 (0) = cf) = exp(V* + Z*). If we write
7(t) = exp(X( t )+Z( t ) ) , where X (t) G V and Z(f) G Z for all t e H, then we
obtain

(i) X (^) = V* and Z (uj) = Z*
By the lemma in the proof of 2) => 3) of Proposition 4.3 we have

(ii) V* = cjXi and e^17 fixes J^, where J = j (Zo). Hence e^'7 fixes each ^,
1 ^ j ^ N.

We write Z (t) = tZi (t) + Z^ (t), where Zi (t) and Z^ (t) are given explicitly in the
statement of Proposition 3.5. Using (ii) and the formula for Z^ {t) we find that Z<z (a;) = 0.
Hence from (i), (ii) and Proposition 3.5 we obtain

r 1 i ^ i
Z* = Z ̂ ) = a;. Zi (a;) - a; ^ Zo + . [̂ i, (^ J + Id) (J-1 X,)} + , ̂  [J-1 ̂  ^-]

1 j=i J
: O ; < Z O + ^ [ A I , ^-+ld^J 'A2) j+^^ [J ^,,^J

v j=l
N

^ Y~^ r T-1 ^ ^ i r-,^^Zo+^^-'^+^IJ-1^,^]. D
' j=i

We now prove statement 1) of Proposition 4.5. By the definition of Z** we may write
Z** = Z* + [V*, ^] for some ^ G At. We observed at the beginning of the proof that Zo
is orthogonal to [V*, A/]. Hence from the lemma above we obtain

(i) (Z^Zo^Z^Zo^lZo^+ll^l 2

Now let ZQ be any 2-dimensional subspace of Z that contains both Zo and Z**. Introduce
coordinates in ZQ so that Z** = (a, 0) and Zo = (rr, ^/). Equation i) then becomes

(ii) ax = uj (x2 + y2) + u- \ X^ \2

Since 1 = | Zo | 2 + | Xi | 2 + X-z \2 and V* = uj X^ equation ii) implies

/ Q / ^ sa \2 , | y * | 2 + ^ 2 _ ^ 2
^ - - + y = ———2———(iii) [ x - - ]\ a;/CJ/ C<;

Since the left hand side of iii) is nonnegative it follows that

(iv) c^a^ l y * ! 2 ^ |Z** ^ |y* 2 =(^*) 2 .

|y* |
Moreover 1 > \ Xi | = -——-, which impies uj ^ | V* . We have proved statement 1).

UL)
We prove statement 2) of Proposition 4.5. From the discussion above and (iii) we see

Q/

that uj = uj* if and only if re = — and y = 0, which is equivalent to the condition
y. ^

Zo = ——. Furthermore, if uj = c^* then by (ii) of (4.7) we obtain

1 l y | 2 i | y | 2 , | 7 | 2 _ I ^ I i a i | y | 2
1 = AI + A2 + ZQ — ———o—— i ~) i Ac!

l , } ^ !,^^ ^

( * \2
(^ J , | y | 2 _ - i , | y | 2
——„— + | AS | — 1 + | A2 | ,
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y*
which implies that X^ == 0. Hence XQ == Xi + X^ == Xi = —, and it follows that

y* + z** ^
Y(0) = Xo+Zo = \ .

/ t(y* -F ^**)\
The curve t —> exp ——————— is a geodesic in ^V by the equations in (3.1)

\ a; )
or (3.9) since Z** is orthogonal to [V*,A/1 or equivalently j(Z**)(V*) = 0. Hence

tv* ^y**7 (f) = exp (X {t) + Z (f)), where X (^) = —— G V and Z (t) = —— <E Z. We have
Cc^ Ct/shown that 2(i) holds if uj = cj*.

By the discussion at the beginning of the proof of Proposition 4.5 assertion 2(ii) now
follows, and conversely if 2(i) and 2(ii) hold then uj = a;*. This completes the proof of 2).

We prove statement 3). If Z* = 0, then uj = |Y*| by 1) of Proposition 4.5.
I y* I y*

Observe that 1 ^ Xi | = -[——'- with equality if and only if Y (0) = Xi = —.
( iV- \ UJ

The curve t —^ exp ( ) is a geodesic of A^ by (3.9), and hence if | V* | = u

( tV* \ ftV*\it follows that 7 {t) = exp ( ) == exp ( —— ). Moreover, Z* = 0 since

/ +V* \
exp(V* + Z*) = (^ = 7^) = exp(V*). Conversely, if -y(t) = exp ——— ), then

exp (V* + Z*) = (f) = 7 (a;) = exp [ -''——T ) • This implies that ^ = | V* | and Z* = 0

and concludes the proof of Proposition 4.5. D

(4.8) AN EXAMPLE OF NONUNIQUE PERIODS. - If N and At are nonsingular, and if
(f) = exp(V* + Z*) is an element that does not lie in the center of N (i.e. V* 7^ 0),
then Corollary 4.6 shows that (f) has a unique period uj = | V* |. If N fails to be
nonsingular, then the noncentral elements of N may have more than one period as the
following example shows.

Example. - Let M be a 5-dimensional real vector space with basis {X, Yi, Y^^ Zi, Z2}
and bracket relations as follows:

a) Zi lies in the center Z of Af for i = 1, 2.
^) [X, Vi] = Zi, [X, V2] = Z2.
c) [Yi, X] = -Zi, [Vi, V2] = 0.
)̂ [V2, X] = -Z2, [V2, Vl] = 0.

A routine argument shows that Z = span{Zi, Z2}. The Lie algebra At is 2-
step nilpotent but fails to be nonsingular since dim[y^A/'] = 1 for % = 1, 2. Note
that [X, A/] = span{Zi, Z2} = Z so the Lie algebra J\T has no Euclidean factor
[cf. (2.7)].

Let N denote the simply connected, 2-step nilpotent Lie group with Lie algebra A/*,
and equip N with the left invariant metric for which the set [X, Y^,Y^, Z^, Z^} forms
an orthonormal basis of At = Te N.
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Let a, /? be any nonzero constants and define /?* == 1 + ~/32. Define uj =

27r( l + a2 + /32)172 and cj* = 27r(a2 + /3*2)172. Let 7 and 7* be the unit speed
reparametrizations of the geodesies beginning at e with initial velocities (3 X + a Y^ + Zi
and a V2 + /?* Zi respectively. Let ^ = exp (2 TT a V2 + 2 TT /?* Zi).

ASSERTION. - (f) = 7(0^) = 7* (c^*) ^nd (^ translates the geodesies 7, 7* fry uj, ci;*
r^s7?^criv^/v.

To prove the assertion we begin by defining

a* (t) = exp {t {a Y^ + /T Zi}) and a (t) = exp (X (t) + Z (^)),

where

X(f) = = / 3 s m t X + / 3 ( l - c o s ^ ) y i + a t y 2

and

Z {t) = ^/r t - - (32 (sin ^) \ Zi + a/? ^ 1 - cos t - ̂  t sin t\ Z^
I L } I z J

The curve a* satisfies a* (0) = e, a*' (0) = aY^ + /?* Zi, and a* is a geodesic by
(3.9) since j (Zi) Y^ = 0. The curve a (t) satisfies a (0) = e, a' (0) = f3 X + 0^2 + Zi.
A routine computation shows that a(t) satisfies the geodesic equations of (3.1) since
j (Zi) X = Vi, j (Zi) Yi = -X and Zo = ^/ (0) = Zi. Hence the unit speed geodesies
7, 7* are reparametrizations of cr, a*. One computes that <f) = a(27r) = 7(0;) and
(f) = cr*(27r) = 7*(o;*).

Finally we conclude that (f) translates 7, 7* by a;, a;* using 3) of Proposition 4.3; note
that 7 (0) = 7* (0) == e and Y (0), 7*' (O) are both orthogonal to [Y^, AT\ = span {^2}.

Remark. - The 1-parameter subgroup 7* (t) is the natural "direct" route between
e = 7* (0) and (^ = 7* (a;*), but 7* | [0, a;*] is longer than the apparently circuituous
route 7 | [0, a;]. In fact uj* is the largest period of (f) as Proposition 4.5 shows.

Periods of central elements of N.

(4.9) PROPOSITION. - Let (f) be a nonidentity element of Z, the center of N. Let a G N be
arbitrary, and let 7 be any unit speed geodesic ofN such that 7 (0) = a and 7 (c^) = <f>' a
for some number uj > 0. Then ( f ) ' 7 (t) = 7 (t + a;) /or a// ^ G R.

Proof. - In the notation of Proposition 4.3 we write (f) = exp (V* + Z*), where V* G V
and Z* e Z. Note that V* = 0 since (p e Z. The assertion of (4.9) now follows from
3) of Proposition 4.3 since Zy* = exp([V*, A/'}) = e and the submanifold Zy* • a is
the point {a}. D

(4.10) COROLLARY. - There exists a neighborhood 0 of e in Z such that there exists a
unique geodesic in N from e to any point of 0. Moreover, if (f) is any element of 0, then
(f) has a unique period.
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Proof. - Let U be a metric ball centered at the origin in AT = Te N such that the
Riemannian exponential map of N at e is a diffeomorphism of ?7 onto its image W in N .
Let (7* be a metric ball centered at the origin in Af such that exp (£/*) C W and exp is
a diffeomorphism of [/* onto its image, where exp: AT —^ TV is the Lie group exponential
map. We show that 0 = exp (?7*) n Z satisfies the assertions of the corollary. Let (f) be
any element of 0 and write (f) = exp (Z*) for a unique element Z* of (7* H Z. The curve
7* (t) = exp (tZ*), 0 ^ t ^ 1, is a geodesic of N with length a;* = | Z* | by (3.9), and
7* is contained in VF by the definition of 0. By the choice of W it follows that 7* is
the unique geodesic in W and the unique shortest geodesic in N from e to (f). However,
the quantity a;* =- | Z* | is the largest possible period for (f) by Proposition 4.5. By (4.9)
( / ) translates any geodesic 7 in N from e to (^, and hence the length of 7, which is a
period of (/), must be at most a;*. It follows that 7* is the unique geodesic in N from e
to (f), and (/> has a unique period a;*. D

The result above shows that if | Z* | is sufficiently small for Z* G Z, then (^ = exp (Z*)
has a unique period | Z* |. This is no longer true if | Z* | is sufficiently large.

(4.11) PROPOSITION. - Let Z* ^ Z be an element such that j (Z*) ^ 0, anrf let
(/) = exp(Z*). Then there exists a positive integer No such that (f^ has at least two
periods for all n ^ No.

Remark. - We point out again that if N has no Euclidean factor, then j (Z*) ^ 0 if
Z* / 0 by (2.7).

( tZ* \Proof. - Let Z*, (f) be as above and define 7(t) == exp —— ) . The curve 7(t) is
l ^ l /

a unit speed geodesic of N by (3.9). By Proposition 3.10 there exists a number b > 0
such that 7 (0) = e and 7 (&) are conjugate along 7. Choose a positive integer NQ such
that 7Vo|Z* > b. If n ̂  No is any integer, then 7| [0, n|Z*| ] is not a shortest geodesic
in N between its endpoints by the choice of No. Hence there exists a minimizing unit
speed geodesic a : [0, to] —^ N with a(0) = 7(0) and cr(to) = 7(n|Z*|) = (^\ where
^o = d(e, (^n) < n|Z*|. By Proposition 4.9 ^ translates both 7 and a with periods n|Z*|
and to respectively. D

Resonance
We may regard R72 as a simply connected, additive abelian group, and the standard

metric of R71 is invariant under left (= right) translations by elements of R72. If 7^) is
any geodesic of R7' with the standard metric, then there exists an element (j) in R71 such
that (f) + 7 (t) = 7 (t + uj) for all ^ e R and some uj > 0; in fact, one can find such an
element (f) for any given u > 0. If { N, { , ) } is a simply connected 2-step nilpotent Lie
group with a left invariant metric, then there is an obstruction to the geometric property
just described. It seems appropriate to call this obstruction resonance; see (4.14) below.

(4.12.) PEFINITION. - If Z* is a nonzero element of Z, then -we say that j (Z*) is in
resonance if the ratio of any two nonzero eigenvalues ofj (Z*) is a rational real number.

Remark. - The eigenvalues ofj (Z*) are purely imaginary, and the nonzero ones occur
in conjugate pairs since j(Z*) is skew symmetric.
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The next observation is an easy exercise.

(4.13) LEMMA. - Let Z* be any nonzero element of Z. Then j (Z*) is in resonance if
and only if e^3 (<z^ is the identity on V for some number a; > 0.

The role that resonance plays is most easily described in the case that N and J\T are
nonsingular. We do not know to what extent the next result is true for an arbitrary 2-step
nilpotent group N.

(4.14) PROPOSITION. - Let N be a nonsingular, simply connected, 2-step nilpotent Lie
group with a left invariant metric { , ). Then the following properties are equivalent.

1. j (Z*) is in resonance for all nonzero elements Z* G Z.
2. Every unit speed geodesic of N is translated by some element (f) of N.
3. Every unit speed geodesic of N that is not tangent to the left invariant distribution V

in N is translated by some element (f) belonging to the center Z of N.
4. Every unit speed geodesic 7 of N that is not tangent to the left invariant distribution

V in N meets the orbit Z • 7 (0) infinitely often at 7 (t) for t > 0.

Remark. - If TV is of Heisenberg type, then j'(Z*) is in resonance for all nonzero
Z* G Z since j'(Z*) has eigenvalues %|Z*| and —%|Z*| .

Proof of the proposition. - We prove the equivalence of these assertions in the cyclic
order 1) ^ 2) => 3) ^ 4) => 1).

1) => 2). As usual it suffices to consider a unit speed geodesic 7 {t) with 7 (0) = e. Let
7 (t) be a unit speed geodesic with 7 (0) = e and write 7' (0) = Xo + Zo, where Xo G V
and ZQ G Z. If Xo = 0 or Zo == 0, then 7 (t) = exp ( t Z o ) or exp (tXo) respectively by
(3.9), and we may choose <f) = exp (a; Zo) or (f) = exp (a; Xo) respectively for any uj > 0.
Hence we need only consider the case that XQ and Zo are both nonzero. Let J denote
j (Zo)- By hypothesis J is in resonance, and by Lemma 4.13 there exists a positive number
uj such that e^3 is the identity on V. Write 7 {t) = exp (X{t) + Z {t)), where X (t) G V
and Z (t) C Z for all t C R. Since J\f is nonsingular it follows by the geodesic equations
in Proposition 3.5 that X (t) = (e^ - Id) (J-1 Zo). Hence X (a;) = 0 and it follows that
7 (a;) = (f) lies in Z. By Proposition 4.9 ( f > ' 7 (t) = 7 (t + cj) for all ^ G R.

2) =^ 3). As in the proof above it suffices to consider a unit speed geodesic 7 (t) such that
7 (0) = e and 7' (0) = Xo + Zo? where Xo G V, Zo G Z and Xo and Zo are both nonzero.
By hypothesis there exists (f) = exp(V* + Z*) and uj > 0 such that (^ • 7 (t) == 7 (^ + a;)
for all ^ G R; as usual V* e V and Z* G Z. By assertion 3) of Proposition 4.3 we note
that Zo is orthogonal to [V*, A/]. If V* were nonzero, then [V*, A/] would equal Z and
Zo would be zero by the nonsingularity of AT. Therefore V* = 0 and (f> lies in the center
of TV, which completes the proof of the assertion.

3) =^ 4). Let 7 {t) be a unit speed geodesic not tangent to V. By hypothesis there
exists Z* ^ 0 in Z and a; > 0 such that ^ • 7 (t) = 7^ + a;) for all t C R, where
<^ = exp (Z*) e Z. Hence if n is any positive integer, then 7 (no;) = (j^ ' 7 (0) G Z • 7 (0).

4) =^ 1). Let Z* be any nonzero element of Z. Let J = J'(Z*) and let
{ ± % 0 i , • • • , d=%07v} be the distinct eigenvalues of J, where 0i > 0 for 1 ̂  % ^ N.
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N
Write V as an orthogonal direct sum ffilVfc, where each subspace Wk is invariant under

fc=i
J and J2 = -0j Id on Wk, 1 ̂  k ^ TV. Let X^ be any nonzero element of Vk and define

N
X* = ̂  X^. Let 7 (t) be the geodesic of TV such that 7 (0) = e and 7' (0) = X* + Z*.

j=i
If we write 7 (t) = exp (X (t) + Z(t)), where X {t) e V and Z (t) <E Z for all t e R,

then X(t) = (e*7 - Id^J-1^*) by (3.5). By hypothesis 7(0;) G Z for some positive
number uj, and it follows that X{uj) = 0. We conclude that ewJ fixes J~1 X*, X* and X^
for each fc, 1 ̂  k ^ TV. By (3.6) it follows that cc;^^ = 2-jr Nk for some positive integer
TV/c, 1 ̂  fc ^ -/V, which proves that j (Z*) is in resonance. D

The sets N^ (^) anJ SN^ ((/)).

(4.15) DEFINITION. - Given an element (f) ^ 1 in N we define
N^ (<^) =={ n G N : there exists a unit speed geodesic 7 of N such that 7 (0) = n

and (f)' 7 (t) = 7 (^ + a;) /or all t ^ R }.

5TV^ ((^) = { ̂  e 5TV : cf)'^(t)= 7^ (t + a;) /or a^ t G H},

w/z^r^ 51V denotes the unit tangent bundle of N and 7^ denotes the unique unit speed
geodesic of N with initial velocity ^.

Note that if ( / ) • 7 (t) == 7 (t + a;) for all t G R, then 7 {t) G A^, (^) for all t G R.
Hence N^ (^) may also be described as the union of all unit speed geodesies in N that
are translated an amount uj by (f),

If p : SN —» TV denotes the natural projection map of a unit vector onto its basepoint,
then clearly p(SN^(cf))) = A^(^). It is evident from the definition that SN^((f)) is
invariant under the geodesic flow in S N .

Let (f) be a nonidentity element of a discrete subgroup F of N and let TT : N —> F\N
denote the Riemannian covering projection onto the quotient manifold obtained by letting
r act on N by left multiplication. Then TT (N^ {(f))) is the union of all smoothly closed
geodesies of period uj that belong to the free homotopy class of closed curves in T\N
that is determined by (f).

We now investigate the structure and dimension of the sets N^ (0) and SN^ (^>), where
0 is a nonidentity element of TV and a; is a period of (f). If uj = a;*, the maximal period
of (f), then we show that Z (^)) = {^ G N : ^<f) = ̂  }, the centralizer of <^, acts simply
transitively by left multiplication on N^. ((/)). Hence N^ ((^) is a smooth submanifold of N
whose dimension is the same as Z {(f>). We also show that dZ (<^) acts simply transitively
on SN^ ((/)) and p : SN^ ((/)) -^ N^ (<^) is a diffeomorphism. If a; is a period of ( / )
strictly smaller than the maximal period ci;*, then SN^ ((/)) always has bigger dimension
than SN^ ((/)). However, it is not clear if N^ (^) or SN^ ((/)) is a smooth submanifold
of N or SN respectively when uj < uj*.

(4.16) LEMMA. - Let (f) be any nonidentity element of TV, and let uj > 0 be any period of
(j). Then N^ {(f>) is invariant under left multiplication L^ by any element ^ of the centralizer
Z ((/)). SN^ (cf)) is invariant under dL^ for any ^ G Z{0).
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Proof. - Straightforward. D

(4.17) PROPOSITION. - Let (f) be a nonidentity element ofN and write (f) = exp (V* + Z*),
where V* G V and Z* G 2^. L(^ Z** denote the component of Z* orthogonal to [V*, A/],
^zrf /^ c^* = (|y*|2 + |z**|2)1/2. 77^

1. For each n G A^,* (</)) there exists a unique geodesic 7 (t) such that 7 (0) = n and

^ . 7 (D = 7 (t + a;*) /or ̂  ^ (E R. /n/acr, 7 (T) = TZ • exp [-^ (V* + Z**)] .

2. Z(^) ac^ simply transitively on N^ (<^)); r/za? ;5', N^^ {(/)) = ^W • n /(9r <2n}7

n G N^ ((p) and the right translation Rn : Z (<^) —^ A^* (^) ^ <2 diffeomorphism.
3. dLz^) = { dL^ : ^ e Z ((,6) } <2c^ simply transitively on SN^ ((/)).

Proof. - Assertion 1) is part of assertion 2) of Proposition 4.5, and assertion 1) implies
that the projection p : SN^. (0) -^ N^. (0) is a bijection. Hence 3) follows from 1) and
2). We prove 2). Let n e N^ (^>) be given and write n = exp (^) for a unique element
$ G A/". From assertion 2) of Proposition 4.5 it follows that
(^) z**=z*+[y*^]

Next let n = exp (^) and n* == exp(^*) be any two elements of N^. (<^). By ( * )
above it follows that [V*, ^ - F] = 0. If 2^ = U' e A^: [V*, ^/] = 0}, then Z(^)

is the Lie algebra of Z ((/)) by (1.2). Hence f3 = exp K - ̂ * - ̂ [^f]) lies in Z (^).

We compute /3 • n* = exp[ ^ - ^* - - [^, <^*] ] • exp (^*) = exp (^) = n. This proves
\ z /

that Z ((/)) acts transitively on 7V^* (<^) since the elements n, n* were arbitrary. Clearly
Rn '. Z ((/)) —^ N^ ((/)) is a diffeomorphism. D

Thickness of SN^ ((/)).
A subset A of TV or SN will be said to have dimension k with respect to the induced

topology from TV or SN if A contains a homeomorphic image of an open fc-ball in IR^
but not of an open (fc + l)-ball in R^.

(4.18) PROPOSITION. - Let ( / ) be a nonidentity element of N with maximal period
^* = (|y*|2 + IZ**!2)1/^ defined in (4.17). Let a; be a period of (f) that is strictly
smaller than uj\ Then dim {SN^ (^)) > dim SN^. (<^)).

Proof. - Write (^ = exp(V* + Z*), where V* e V and Z* G Z, and let Z** be the
component of Z* orthogonal to [V*, A/]. Let uj be a period of <j) and let 7 (^) be a unit
speed geodesic of N such that ^ • ^{t) = 7 (^+04; ) for all t e R. By (4.16) and the
discussion following (4.15) we see that N^ (<^) contains the union of the Z (<^) orbits of
^ ( t ) for all t C R. The set SN^. ((/)) is a smooth manifold diffeomorphic to Z {(/)) by
(4.17). The assertion of (4.18) will now be a consequence of the following

LEMMA. - Let ^ C SN^ ((f)) be given arbitrarily, where uj < a;* is a period of (f),
and let 7^ denote the geodesic with initial velocity ^ Identify AT with Te N and write
^ = dL^(Xo + Zo), where n = 7^(0), XQ G V ^ Af and ZQ G Z ^ At. Then
j (Zo) XQ -^ 0 and exactly one of the following occurs:
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1. 7^ (t) is not tangent to the orbit Z ((/)) -7^ (t) for some t G R.
2. 7^ (t) G Z(^) • u for all t G R. In this case there exists a nonsingular curve

$ : [0, (jj\ —> Sn N (unit vectors at n) such that
aHW = ̂ ) = ^»
&) 7^(s) (0) = n ̂  7^(s) (c^) = ^ • n for all s G [0, uj}.
c)(t)'^^(t)=^{s}(t+uj)foralls,t^R',thatis, ^(s) C SN^ (^) for all s G [0,^].

Proof of the proposition. - Before proving the lemma we use it to prove (4.18). Let
^ € SN^ (<^) be an arbitrary element. Let Mo = dLzw (0 = {dL^ (^) : ^ e Z {(/)) }.
Then Mo is a smooth submanifold of the unit tangent bundle SN that is diffeomorphic
to Z {(/)) under the map T : Z(^) —^ Mo given by T(-0) == dL^(^). Note that the
projection p : SN —^ TV is a diffeomorphism of Mo onto the orbit Z ((^>) • (j?(0) since
p o T = Rp^) on Z (<^), where -Rp(^) denotes right translation by p (^). The submanifold
Mo is contained in SN^ ((/)) by (4.16).

Suppose that ^ satisfies case 1) of the lemma, and assume without loss of generality
that ^ = 7^(0) is not tangent to Z {(/)) ' (j?(0). If we define ^(t) = ̂ (t) for all t G R,
then the curve ^ (t) lies in SN^ {(/)) and is not tangent to Mo at t = 0 by hypothesis.
By (4.16) S N ^ { ( / ) ) contains the union of the submanifolds Mf = dLz^){^(t)) for
all t G R, and hence SN^ {(/)) contains an imbedded disk around $ of dimension
1 + dim(Mo) = 1 + dim(Z(^)). By (4.17) SN^. (^) is diffeomorphic to Z((f)), and
we conclude that dim {SN^ (^))) ^ 1 + dim{SN^ ((/))) in this case.

Now assume that ^ satisfies case 2) of the lemma. Let ^ : [0, uj\ —> SN^ (<^) be the
curve such that ^ (0) = ^ {uj) = ^ that is described in the statement of case 2). The curve
^ (t) is not tangent to Mo at t = 0 since the vectors tangent to ^ {t) lie in the kernel of
dp^ p : SN —> TV, while p is nonsingular on Mo. Using the same argument as above
we conclude that dim (SN^ (<^)) ^ 1 + dim (SN^ {(f>)) in this case also. This completes
the proof of the proposition. D

Proof of the lemma. - We prove first that j {Zo) XQ ^ 0 if u} < uj*. Note that
|Xo|2 + |Zo|2 = |^|2 = 1. We assume that j{Zo) Xo = 0 and obtain a contradiction. By
(3.9) it would follow that 7^ (t) = n ' exp(t{ Xo + Zo}) for all t G R. Write n = exp ($o)
for a unique element ^o ^ A^. We assert

(^) o;Zo=^*+[^*^o]

To prove this we observe that on the one hand 7^ {u;) = n • exp(uj{Xo + Zo}) =
ex? (^o) • exp (uj Xo + ̂  Zo) = exp ( uj XQ + a; Zo + Co + -^ [$o, XQ\ ) . On the other hand

7^ (a;) = (f>'n = exp(y*+Z*)-exp(^o) = exp (v* +Z* +$o+ ^ [^*, ^o] ). Comparing
\ " )

the V-components of the two expressions of log (7^ (a;)) we see that u XQ = V * . Using this
fact and comparing the Z-components of the two expressions of log (7^ (uj)} we obtain (^).

By (3) of Proposition 4.3 we see that Zo is orthogonal to [V*, J\T} since by hypothesis
( f ) . 7^ (^) = 7^ (^ + a;) for all ^ G R. Hence from ('*'). we obtain

(^) o;Zo=Z**
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where Z** is the component of Z* orthogonal to [V*, A/]. Finally from ( **) and the fact
that uj Xo =V* we obtain (a;*)2 = |V*|2 + |Z**|2 = ̂ \Xo\2 +a;2|Zo|2 =^2, which
contradicts our assumption that a; < a;*. We have proved that j (Zo) A^o / 0 if c<; < a;*.

Now let ^ G 5'TV^ (<^) be given and assume that case 1) of the lemma does not hold.
Then 7^ (t) is tangent to the orbit Z (^>) • 7^(t) for all t e R. Since the tangent spaces to
orbits of Z (<^) form an integrable distribution in N it follows that 7^ (R) lies in a single
integral manifold of this distribution, namely the orbit Z ((/)) • n, where n == 7^ (0).

Let J denote j(Zo). We define ^(t) = dLn^3Xo + Zo) ^ 5nTV, the unit vectors
of N at n. Clearly ^(0) = ^ and $(t) is nonsingular since J{Xo) / 0. The fact that (f)
translates 7^ by an amount uj implies that e^J fixes Xo by 5) of Proposition 4.3. Hence
^(o;) == ^, which proves 2 a).

We prove 2b) and 2c). If /? (t) = 7^ (t) • n~1, then since 7^ (R) ^ Z (0) • n we obtain
(1)/3(t) G Z(^) for all t G R

By (3.3) we have ̂  = 7^) = dL^ (,) (e^Xo + Zo) = d^{^ (t).n-i }^W =
d L ^ ^ ) ^ ( t ) . If we fix a number ^, then we conclude

(2) 7^,) (s) = f3 (t)-1 • 7^ + ^) tor all s e R
since both sides of the equation (2) are geodesies in the parameter s that have the same
initial velocity ^ (t). Assertions 2b) and 2c) of the lemma now follow immediately from
(1) and (2). D

5. Lattices and closed geodesies

Let N be a simply connected, nilpotent Lie group with a left invariant metric, and let
r ^ TV be a discrete subgroup of TV. The group F is said to be a lattice in TV if the
quotient manifold r\TV obtained by letting F act on TV by left translations is compact. In
this context this is not an oversimplification of the usual definition of lattice. Noncompact
lattices do not exist in TV; see for example Theorem 2.1 of [R].

In this section we discuss three problems related to the smoothly closed geodesies in
r\TV, where F is a lattice in TV and r\TV is equipped with the metric that makes the
projection TT : TV —^ F\N a Riemannian covering projection. We give partial answers
to the first two problems and a complete answer to a variation of the third, where one
considers the marked length spectrum instead of the length spectrum.

PROBLEM 1. - Are the vectors tangent to smoothly closed unit speed geodesies of r\TV
dense in the unit tangent bundle S (T\TV)?

PROBLEM 2 . - Can one describe the length spectrum of the smoothly closed geodesies
in r\TV in terms of log F ^ .V, where log : TV —> J\f is the inverse of exp : J\f —> TV?

PROBLEM 3 . - Given a lattice F in TV can one describe the automorphisms ^ of TV such
that r\TV and ^ (r)\TV have the same length spectrum of smoothly closed geodesies?

Existence of lattices.
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Not every simply connected, nilpotent Lie group N admits a lattice T ^ N\ see
section 2.14 of [R] for an example. A proof of the next result can be found in Theorem 2.12
of [R].

(5.1) THEOREM. - Let N be a simply connected, nilpotent Lie group, and let At be its Lie
algebra. Then N admits a lattice F if and only ifAf admits a basis { X^, • • • , Xn } such that

n

[Xi^ X j ] = ̂  C^ Xa for all %, j, where the constants { C^ } are all rational.
a=i

Extension properties of homomorphisms.

(5.2) PROPOSITION. - Let TV, TV* be simply connected, nilpotent groups, and let F, F*
be lattices in TV, TV*. Then any homomorphism (f) : F —^ F* has a unique extension to a
continuous homomorphism (j) : N —> TV*.

Proof. - See Theorem 2.11 of [R], p 33. D

Logarithm of a lattice.

(5.3) PROPOSITION. - Let N be a simply connected, 2-step nilpotent Lie group -with a
left invariant metric, and T be a lattice in TV. Let log : TV —> At denote the inverse of
exp : J\f —^ TV, and let Try : At —> V denote the projection onto V = Z^. Then

1. r n Z is a lattice in Z and log F D Z is a lattice in Z.
2. Let ^ € log r and $*, ^*, Q G log F H Z. Then
a) ̂  + ̂  € log r n Z.
& K + F G logF.
c) k ^ G log r for any integer k.
3. Try (log r) is a lattice in V.
4. r n z = z (r) = { ^ e r : ^ • ^ == ^ . ̂  for all ^ e r}.
Proof. - A lattice in a vector space W is a discrete additive subgroup F such

that W/F is compact in the quotient topology. Equivalently, a lattice F is the set of
integer linear combinations of some basis of W. The first assertion of 1) holds by [R,
Proposition 2.17], and the second assertion of 1) follows since exp : Z —> Z is an
isomorphism. The assertions in 2) follow easily from (1.2 d). We prove 3). By (1.2d) the
map TV = Try o log : TV —> V is a continuous surjective homomorphism with kernel Z, and
hence Ty(r) is a discrete subgroup of the additive group V. There exists a compact subset
A of TV such that F • A = TV, and hence V/Ty(r) is compact since V = ry (F) + Ty (A).
To prove 4) it suffices to show that Z (T) ^ Z D F. This follows from (5.2) since an inner
automorphism by an element of Z (F) is the identity on F and hence on all of TV. D

The associated tori TB and Tp.
Let { TV, ( , ) } be a simply connected 2-step nilpotent Lie group with a left invariant

metric, and let r be a lattice in TV. To the compact nilmanifold r\TV we associate two
flat tori TF = Z / ( log r n Z) and TB = V/TT^ log F. It is clear from (5.3) that Tp, TB
are tori. We shall see that the length spectrum of r\TV is closely related to the length
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spectra of Tp and Tp. Moreover, we shall show that T\N is a Riemannian submersion
over TB with fibers isometric to Tp. For this reason we regard Tp, Tp as the fiber torus,
base torus respectively.

Remark. - Palais and Stewart in [PS] showed that the total spaces of principal torus
bundles over a torus are precisely the compact 2-step nilmanifolds F\N.

We need a preliminary result to prove the submersion assertion above. This result holds
also in the case that N is nilpotent with an arbitrary number of steps.

(5.4) PROPOSITION. - Let N be a simply connected, nilpotent Lie group with a left invariant
metric, and let F be a lattice in N. Let T771 denote the m-torus Z / ( T D Z), where m is
the dimension of Z. Let k : Z —> Z / ( T D Z) and p : N —^ T\N denote the projection
maps. Let F : T^ -^ IQ (T\N) be the map defined by F (k (z)) (p (n)) = p {z ' n) for
every z G Z^ n G N. Then

1. F is an isomorphism of T771 onto IQ (T\7V).
2. Jo (r\A^) acts freely on r\7V, and the orbits of IQ (T\N) are flat, totally geodesic

imbedded m-tori isometric to Tp.

Proof. - We recall that T n Z is a lattice in Z by (5.3) so that T^ == Z / ( T n Z) is indeed
an m-torus. It is easy to show that the map F ( k { z ) ) : F\N —^ F\N is a well defined
map on T\N for each element z G Z, and F { k { z ) ) has an inverse F{k{z~1)). Each
map F (k (z)) is an isometry of F\N since the maps p : N —^ F\N and Lz : N —^ N
are local isometries. Hence F (T^) is a connected subgroup of I (r\7V), and it is routine
to show that F : T171 —> IQ (r\7V) is an injective homomorphism. To prove 1) it remains
only to show that F is surjective.

LEMMA. - Let N be a connected, nilpotent Lie group with a left invariant metric. Any
inner automorphism of N that is also an isometry of N must be the identity.

Proof of the lemma. - We actually only need this result in the special case that N
is simply connected. Let (j) an isometry of N that is also an inner automorphism of N
determined by an element g of N. Then Ad (g) : J\f —> J\f is a linear isometry since Ad {g)
is the differential map (d(f))e '' TeN —> TeN. Since N is nilpotent the exponential map
exp : A/" —^ N is surjective (cf. [Hel], p. 229) and we may choose X G At such that
exp (X) = g . Hence d<j) = Ad {g) z^e^^ is unipotent since adX is nilpotent. A unipotent
linear isometry must be the identity. D

We now complete the proof of 1) by showing that F : T^ -^ IQ (T\N) is surjective. Let
an element a of Jo (r\A^) be given, and let (p : [0, 1] —^ Jo (r\7V) be a continuous curve
such that (p (0) = Id and (p (1) = a. Let ^ : [0, 1] -^ IQ (N) be a continuous lift of (p
starting at Id; that is, y?* (0) = Id and p o y?* (t) == (p {t) op for all t, where p : N —^ F\N
is the projection. By (2.8) we can find elements g {t) in N and A (t) in Aut {N) n J {N)
such that (p* {t) = Lg^ o A (t) for all t. Since F is discrete it is easy to see ^ {t)
commutes with L^ for all t in [0, 1] and all 7 in F. It follows that A (t) acting on F is
the inner automorphism by g (t)~1 for every t. By (5.2) and the lemma above A (t) = Id,
g (t) G Z and (p* (t) == Lg ̂  for all t. Hence p o Lg ̂  = p o (p* (1) = (p (1) o p = a o p ,
which is equivalent to the assertion that F { k ( g { l ) ) ) = a.
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We prove 2). From 1) it is easy to see that Jo (T\^) acts freely on F\N, and hence the
orbits of Jo (T\^0 are imbedded m-tori. It follows immediately from (2.1) that Vz Z* = 0
for all elements Z, Z* of Z, regardless of the number of steps of Af. Hence the orbits of
Z in N are flat, totally geodesic submanifolds of N. It follows that the orbits of Jo (r\7V)
are flat, totally geodesic submanifolds of F\N since by 1) they are projections of orbits
of Z in N under the local isometry p : N —^ F\N.

It remains only to show that the orbits of Jo (r\7V) are isometric to Tp = ̂ 7 (log FnZ).
For each point n G N we define a map In : Z —^ F\N by In = p o Ln o exp . Note that
In is a local isometry since p : N -^ F\N is a local isometry while Ln : N -^ N and
exp : Z -^ Z are isometries. It is routine to show that In (0 = In (^*) for elements ^,
^* e i? if and only if ^* = ^ + log 7 for some element 7 G F n Z. Hence J^ induces an
isometry J^ from Tp = Z/{\og F H Z) into r\7V. The image of J^ is the orbit of p {n)
under Jo (T\N) by 1), and hence J^ is an isometry onto this orbit. D

(5.5) PROPOSITION. - Let r be a lattice in a simply connected, 2-step nilpotentLie group N
with a left invariant metric. Let At = V 9 Z be the Lie algebra of N, and let Try : At —> V
denote the projection. Let TB = V/TTy (log F). Then

1. TB is a flat torus of dimenion n^ where n = dim V.
2. There exists a Riemannian submersion TT : F\N —> TB whose fibers are the orbits of

Jo (r\7V). Hence T\N is a principal torus bundle over TB whose fibers are flat, totally
geodesic imbedded tori isometric to Tp.

Proof. - The first assertion is obvious since Try (log F) is a vector lattice in V by
Proposition (5.3). We prove 2). By d) of (1.2) the map TV = Try o log : N -^ V is
a group homomorphism whose kernel is Z, where V is regarded as an additive abelian
group. Define TT : T\N -^ TB by

( * ) 7T Op = Q 0 TV

where Q : V —» TB is the projection homomorphism. The projection TT is well defined
and since Q o TV : N -» TB is a homomorphism with kernel = Z • F it follows from (^)
and 1) of (5.4) that the fibers of TT are the orbits of Jo (T\N).

It remains only to prove that TT : F\N -^ TB is a Riemannian submersion. If
^ e J^)(r\7V) is orthogonal to Jo (r\7V) (p(n)), the fiber of TT through j?(n), then
it is easy to see from 1) of (5.4) that ^ = (dp o dLn) {X) for some X G V. Hence by
(^r) d7T (<^) = (dJ^7r (p (n)) ° dQ o dry) (X) since 7 r o p = Q o r } ; i s Q . homomorphism. The
maps p, Ln, J^7r(p(n)) and Q are local isometries, and dry is the identity on V. Hence
IMOl = 1^1 = 1 ^ 1 . n

We now consider the behavior of closed geodesies in F\N, where F is a lattice in a
simply connected, 2-step nilpotent Lie group with a left invariant metric.

Density of smoothly closed geodesies.

In this section we show that the vectors tangent to smoothy closed unit speed geodesies
are not always dense in the unit tangent bundle S (T\N), where F is a lattice in a simply
connected, 2-step nilpotent Lie group N with a left invariant metric. In particular, if N has
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1-dimensional center we find necessary and sufficient conditions for this density property
to hold. However, if N is of Heisenberg type, then this density property always holds.

(5.6) PROPOSITION. - Let N be a simply connected, 2-step nilpotent Lie group of
Heisenberg type, and let F be any lattice in N. Then the vectors tangent to smoothly
closed unit speed geodesies in T\N are dense in S (T\7V).

Remark. - Mast has recently shown in [Ma] that the density result above holds under
the weaker condition that N be nonsingular and in resonance. The proof in [Ma] is a
generalization of the one given here.

Proof. - Let N be of Heisenberg type, and let F be a lattice in N. Let U be any open
subset of J\T = Te N. We will show that there exist a nonzero element ^ G U and a
nonidentity element (p of F H Z such that y? • 7^ (t) = 7^ (t + <-<;) for all t G 1R and some
uj > 0, where 7^ denotes the geodesic with 7^ (0) = e and 7^ / (0) = ^. Since ^p e Z it
then follows that (p • (Ln o 7^ (t)) = (Ln o 7^ {t + cc;)) for all t G R and all n G TV.
This will complete the proof of (5.6).

Let ^ be any nonzero vector of Af-V, and write ^ = Xo + Zo» where -Xo G V and
Zo ^ Z. By (3.8) we have

(1) 7^ H = exp (F (0) G Z, where u = 2— and F (Q - -^ fl + ̂ ^) ^o
I ^o | I ̂ o | \ z ^o | /

Further inspection of (3.8) shows
(2) uj is the first positive number for which 7^ (t) lies in Z.
(3) 7^ (nc<;) = exp(nF (^)) for every positive integer n.

It is straightforward to verify that F : Af-V —^ Z has maximal rank m = dim Z at
all points ^ of A/"-V; in fact, for every ^ € A/"-V the differential map dF is nonsingular
on the m-dimensional subspace Z^ = { Z^ G T^ J\T : Z G 2 }, where Z^ denotes the
initial velocity of Z (t) = ^ + tZ.

Now let U be any open subset of AT. Since F has maximal rank on Uo = U H {Af-
V) it follows that F (J7o) contains an open subset TV of Z. Let n be a positive integer
such that for any integer m ^ n the set mW = {ma : a e W } contains a nonzero
element of the vector lattice log F n Z. Let ^ = Xo + ZQ be an element of UQ such that
nF (^) G log r n Z. By (3) we see that ip = 7^ (nc^) is a nonidentity element of F n Z,

27T
where a; = ——.. Hence (^ • 7^ (t) = 7^ (^ + nuj) for all ^ e R by (4.9). D

I ^o |
Groups N with 1-dimensional center.
If N is a simply connected, 2-step nilpotent group with a 1-dimensional center, then we

can give a complete answer to the density of closed geodesies problem.

(5.7) PROPOSITION. - Let N be a simply connected, 2-step nilpotent group with a
1-dimensional center and a left invariant metric. Then the following properties are
equivalent:

1) For any lattice T in N the vectors tangent to smoothly closed unit speed geodesies
in F\N are dense in S (T\N).
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2) For some lattice F in N the vectors tangent to smoothly closed unit speed geodesies
in F\N are dense in S (T\N).

3) The linear transformations j (Z) : V -^ V are in resonance/or all nonzero elements Z
in Z [see (4.12)].

Proof. - We prove these assertions in the cyclic order 1) => 2) => 3) =^ 1). The assertion
1) => 2) is obvious. We prove 2) => 3). Let Z* be one of the two unit vectors in Z, and
let V = W^ 9 ... 9 Wk be an orthogonal direct sum decomposition of V into distinct
eigenspaces W, ofj (Z*)2 that are invariant under j (Z*). We may assume that k ^ 2 for
otherwise j (Z*) is clearly in resonance. Hence ifA/i denotes the set of unit vectors in A/",
then there exists a dense open subset A/i * ofA/i with the following properties: Let ^* be
an element of A/i * with V, Z components X, Z. Then

(a) X, Z are both nonzero.
(b) For 1 ̂  % ^ fc the component JQ of X in T^ is nonzero.
Since Z is 1-dimensional it suffices to prove that j (Zo) is in resonance for a single

nonzero vector Zo m Z. Let ^ G A/i * be given. By hypothesis there exists a lattice F
in TV such that the vectors in S (F\TV) tangent to smoothly closed geodesies of F\N are
dense in S (T\N). Hence there exists a nonidentity element (p in F, a point n in TV close
to ^ and a vector <^o G A/i * close to ^ such that (p • 7 (f) = 7 (^ + c^) for all t G R and
some uj > 0, where 7 (t) is the unit speed geodesic in TV such that 7' (0) = dLn (<^o). If
we write ^o = ^o + Zo, where Xo G V and Zo ^ Z. then Xo, Zo are both nonzero by
a), and e^ ̂ 0) fixes Xo by 5) of (4.3). If Xr is the component of XQ in Wr, then X^ / 0
for 1 ̂  r ^ fc by b). Moreover, we note that

M e^'(zo) fixes X, for 1 ̂  r ^ fc

since j (Zo) leaves each subspace Wr invariant. Since j (Zo)2 =-0r2 Id on TVy, for some
positive number Or it follows from (^) and (3.6) that (9^ = 27rNr/cj for some nonzero
integer Nr, 1 ̂  r ^ fc. Hence j(Zo) is in resonance since {d=%(9 i , ..., ±i0k} are the
eigenvalues of j (Zo)-

We prove 3) =^> 1). We begin by examining the geodesic equations in (3.5) in the
case that TV has 1-dimensional center Z. Let ^ be a nonzero vector in Af-V and write
^o = ^o + Zo, where Xo G V and Zo ^ ^. The group TV is nonsingular since Z is
1-dimensional, and hence in the terminology of (3.5) we have

a) Xi = 0
In the expression for Zi (^) in Id) of (3.5) the third term is collinear with Zn since Z is

1 I X I 2

1-dimensional, and hence it equals - —— Zo- From 2a) we now obtainz I ZQ \2

b) Z, (t) = (l + 1 ̂ ^} Zo for all t e R
\ z \^o /

Now let Z* be any unit vector in Z. By hypothesis j(Z*) is in resonance, and by
(4.13) there exists a positive number ̂  such that e^ j{z^ = Id. We proceed as in the
proof of (5.6). For a nonzero vector $ = XQ + Zo in N-V we define a; (^) = a—. From

ZQ
the definition of a;* we obtain
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^^(Qj(Zo) = Id

In the notation of (3.5), from (c) we obtain
d) e^^3^ = Id and Z^ {nuj (^)) = 0 for every positive integer n

If we define F : Af-V -^ Z by

fw-—(^^}^\ZQ \ 2 Zop
then from a), b), c), ri) and (3.5) we obtain

e) 7^ (no; (^)) == exp (nF (^)) for every positive integer n, where 7^ is the geodesic
in N with initial velocity ^.
As in the proof of (5.6) it is routine to show that F has maximal rank at every point
of Af-V. We now proceed exactly as in the last paragraph of the proof of (5.6) to show
that for any lattice F in N the vectors in S {T\N) tangent to smoothly closed geodesies
of T\N are dense in S(T\N). D

(5.8) AN EXAMPLE OF NONRESONANT BEHAVIOR. - Examples of nonresonaut behavior are
easy to construct. We construct a 5-dimensional, simply connected, 2-step nilpotent Lie
group N with 1-dimensional center such that the linear transformations j {Z) : V —> V are
not in resonance for any nonzero Z in Z. Moreover, the group N admits lattices F, one
of which we describe explicitly. It follows from Proposition 5.7 that the vectors tangent
to smoothly closed unit speed geodesies in T\N are not dense in S (r\7V) for any choice
of lattice F in N.

Define At to be the 5-dimensional real vector space with basis { Xi, Xs, Xa, ̂ 4, Z }, and
make Af into a 2-step nilpotent Lie algebra by defining a bracket operation characterized
by the relations [X^ X^} =-[X^ Xi] = Z, and [X^ XJ =-[X^ X^} = AZ, where
A 7^ 0 is irrational; all other brackets between basis elements are zero. It is easy to check
that J\r is 2-step nilpotent with a 1-dimensional center spanned by Z. Now give Af the
inner product that makes {Xi , ^2, X^, X^ Z } into an orthonormal basis and give N
the corresponding left invariant metric, where N is the simply connected, 2-step nilpotent
Lie group with Lie algebra At. It is routine to calculate

j { Z ) X , = X ^ j ( Z ) X ^ = - X ,

j (Z) Xs = \X^ j (Z) X4 = -AXa

Hence j (Z)2 = -Id on W^ = span { Xi, X^ } and -A2 Id on W-z = span { Xs, X^} so
the eigenvalues of j (Z) are { ±%, ±A%}. It follows that j (Z) is not in resonance since A
is irrational. Therefore j (Z*) is not in resonance for any nonzero Z* G Z.

Next we show that N admits a lattice F. Consider the basis
S = {Xi , X-z, (I/A) Xs, X^ (1/2) Z} of M. Observe that

W JKi^2] e 5 U { 0 } forall $1^2 e 5

It follows by the rationality criterion (5.1) that N admits a lattice F. We construct a
lattice r explicity as follows. Let 5* denote the set of all integer linear combinations of
elements of S, and let F = exp (5*). The property (^) implies that $ + T] + - [^ rj\ G 5*

^
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whenever ^ 77 G 5'*. It follows by (1.1) that F is a discrete subgroup of TV, and it is easy
to see that F is a lattice in N since 5* is a lattice in J\f. D

Length spectrum and maximal length spectrum.

(5.9) DEFINITION. - Let M be a compact Riemannian manifold. For each nontrivial free
homotopy class C of closed curves in M (i.e. C does not contain the constant curves) "we
define l(C) to be the collection of all lengths of smoothly closed geodesies that belong to C.

If M is nonsimply connected, then one may write M as a quotient manifold M/T,
where M is simply connected and F is a nonidentity discrete subgroup of isometries
of M. A free homotopy class of closed curves in M corresponds to a conjugacy class of
an element (j) in F as we observed at the beginning of section 4. The collection I (C) is then
precisely the set of periods of (f)\ note that conjugate elements of F have the same periods.

If Mi = Mi/Fi for i = 1, 2 are compact Riemannian manifolds, and if T : Fi -^ I^
is a homomorphism of the fundamental group of Mi into the fundamental group of M^,
then T maps conjugacy classes in Fi into conjugacy classes in Fa and hence induces a
map 7* from the set of free homotopy classes of closed curves in Mi into the set of free
homotopy classes of closed curves in M^.

(5.10) DEFINITION. - The length spectrum of a compact Riemannian manifold M is the
collection of all ordered pairs (£, m), where L is the length of a closed geodesic in M
and m is the multiplicity of L, i.e. m is the number of free homotopy classes C of closed
curves in M that contain a closed geodesic of length L.

(5.11) DEFINITION. - Two compact Riemannian manifolds Mi, Ms are said to have
the same marked length spectrum if there exists an isomorphism T from the fundamental
group of Mi onto the fundamental group of M^ such that I (7^ (C)) = I (C) for all nontrivial
free homotopy classes of closed curves in Mi, where T^ denotes the induced map on free
homotopy classes.

Let M = F\N, where N is a simply connected, 2-step nilpotent Lie group with a
left invariant metric and F is a lattice in N. We have seen in Proposition 4.5 that for
each free homotopy class C of closed curves in M there is a maximum value c<;* in the
collection I (C). We let F (C) denote this maximum value c^*.

(5.12) DEFINITION. - Let M = T\N, where N is a simply connected, 2-step nilpotent Lie
group with a left invariant metric and F is a lattice in N. The maximal length spectrum
ofM is the collection of all ordered pairs (£, m), where L = /* (C) for some free homotopy
class C of closed curves in M and m is the number of free homotopy classes C for which
L = r (C).

(5.13) DEFINITION. - Let Mi = Ti\Ni for i = 1,2, where Yi is a lattice in a simply
connected, 2-step nilpotent Lie group Ni with a left invariant metric. We say that Mi
and Ms have the same marked maximal length spectrum if there exists an isomorphism
T : FI —^ Fs such F (TK C) = Z* (C) for every nontrivial free homotopy class of closed
curves in Mi.

(5.14) Remarks. - 1. Manifolds Mi = r^\A^, i = 1,2, with the same marked length
spectrum have the same marked maximal length spectrum.
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2. Manifolds Mi = I^\TV^ i = 1,2, with isomorphic fundamental groups 1̂  are
homeomorphic. Moreover, any abstract isomorphism of Fi onto F^ is the restriction of an
isomorphism of TVi onto N^. See (5.2) and Corollary 2 of [R], p. 34.

Calculation of the length spectrum.
For the rest of this section we consider only compact manifolds M = r\TV, where T is

a lattice in a simply connected, 2-step nilpotent Lie group with a left invariant metric. In
principle one would like to describe the length spectrum of T\N in terms of log F C At.
This can be done for flat tori T71 = R^F, where F is a lattice of translations in R" [BGM],
but this is rarely possible in our context for r\TV, except when N is of Heisenberg type; see
(5.16). C. Gordon has calculated the length spectrum in the case that N has a 1-dimensional
center [Gl]. In the case that N is nonsingular with a center of arbitrary dimension we have
the following partial result that is an immediate consequence of Corollary (4.6) and (5.12).

(5.15) PROPOSITION. - Let M = F\N, where N is nonsingular. The length spectrum
of TB = V/TI-V log r is precisely the length spectrum of those free homotopy classes C
of closed curves in F\N that do not contain an element in the center of F = 71-1 (r\TV).
The length spectrum of Tp = 27 (log F D Z) is precisely the maximal length spectrum
of those free homotopy classes C of closed curves in T\N that contain an element in the
center of T = TTi (r\TV).

If (f) is an element of F H Z and | log (f)\ is sufficiently large, then ^ will have more than
one period by Proposition 4.11, or equivalently I (C) will contain more than one number,
where the free homotopy class C corresponds to the element (f) in F. In general one may
calculate only the largest of the numbers in I (C), namely, F (C) = \ log ^ | (cf. (4.5)).
However, if N is of Heisenberg type, then one may calculate I (C) completely. We omit
the proof of the next result, which follows from (3.8).

(5 .16) PROPOSITION. - Let M = F\TV, where F is a lattice in a simply connected, 2-step
nilpotent Lie group of Heisenberg type. Let (j) be a nonidentity element of Y D Z, and let
Z* = log (f) G Z. Then <j) has the following periods:

{|Z*|, (47^fc) l/2(|Z*| -Trfc)1 /2 , where k is an integer such that <jl ^ k < 1 |Z*|}.

In particular (f) has only finitely many periods and a unique period if \ Z* | ^ 2 TV.

(5.17) COROLLARY. - Let N, N * be simply connected, 2-step nilpotent Lie groups of
Heisenberg type, and let F, F* be lattices in N, TV*. Let { TB, Tp } and { TB* , Tp. } be
the pairs of flat tori associated to T\N and r*\7V* respectively. Assume that { TB-, TB^ }
have the same length spectrum, and {Tp, Tp* } have the same length spectrum. Then F\N
and r*\7V* have the same length spectrum.

Proof. - By (5.16) the maximal length spectrum determines the length spectrum for
those nontrivial free homotopy classes of closed curves in F\N (respectively r*\7V*) that
contain an element from the center of F = 71-1 (T\N) (respectively F* = 71-1 (r*\7V*)).
The result now follows immediately from (5.15). D

Lattices with the same marked length spectrum.
Let TV, N * be simply connected, 2-step nilpotent Lie groups, and let ^ be an isomorphism

of TV onto TV*. Given a lattice T in TV we consider F* = ̂  (F), which is a lattice in TV*.
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Suppose now that N and TV* have left invariant metrics such that F\N and r*\TV* have
the same marked length spectmm (respectively marked maximal length spectrum) relative
to the isomorphism ^ : F -^ F*. What, if anything, can one say about the isomorphism ^ ?
In what follows we give a complete description of the isomorphisms ^ with this length
spectrum preserving property.

We recall from (5.14) that if F, F* are isomorphic lattices in simply connected, 2-step
nilpotent Lie groups N, TV*, then the isomorphism between F and F* is the restriction of
an isomorphism ^ of N onto TV*.

In the case that TV = TV* we describe two examples of length spectrum preserving
automorphisms ^ of N. We shall then show that these two examples are essentially the
only examples.

Example 1. - Let N be a simply connected, 2-step nilpotent group with a left invariant
metric. Let ^ be an element of Aut {N) H ^(TV), where Aut (N) denotes the group of
automorphisms of N and I (N) denotes the isometry group of N. Clearly if F is any
lattice in TV, then r\TV and ^ (F)\TV are isometric and hence have the same marked length
spectrum and marked maximal length spectrum.

Example 2. - Let F be a lattice in TV, and let ^ be an automorphism of TV that is
r- almost inner; that is, for every element 7 C F there exists an element a e TV,
possibly depending on 7, such that ^(7) = a~1 ' 7 • a. Then r\TV and ^ (T)\N also
have the same marked length spectrum and marked maximal length spectrum. Moreover,
by [DG1] they have the same spectrum of the Laplacian acting on either functions or
p-forms, 1 ^ p ^ dim TV.

(5.18) Remarks. - 1. An automorphism ^ of TV (simply connected, nilpotent with an
arbitrary number of steps) is almost inner if for every element 7 e TV (not necessarily
lying in some lattice F) there exists an element a e TV, possibly depending on 7, such
that -0 (7) = a~1 • 7 • a. Clearly an almost inner automorphism ^ of TV is F- almost inner
for every lattice F of TV. The collection of almost inner automorphisms of TV is a closed,
normal Lie subgroup of Aut (TV) ([GW1], Theorem 2.3), and is abelian if TV has 2 steps
([DG1], pp. 368-369). The importance of almost inner automorphisms was discovered by
C. Gordon and E. Wilson. They proved in [GW1] that if F is a lattice in TV, then r\TV
and ^ (r)\TV have the same spectrum of the Laplacian acting on functions if ^ is almost
inner. Actually the proof is valid if ^ is only F- almost inner. They also showed that in
general the group of almost inner automorphisms of TV has a larger dimension than the
group of inner automorphisms of TV. Later C. Gordon and D. de Turck showed in [DG1]
that r\TV and -0 (r)\TV have the same spectrum of the Laplacian acting onp-forms if F
is any lattice in TV and if ^ is a F- almost inner automorphism of TV. C. Gordon proved
in [Gl] that aF- almost inner automorphism ^ of TV preserves the marked length spectra
ofT\TV and ^(r)\TV.

2. If '0 is an inner automorphism of TV, then r\TV and ^ (r)\TV are isometric, but this is
not necessarily the case if ^ is an almost inner automorphism. In Theorem 5.5 of [GW1]
Gordon and Wilson completely described the isometry classes of lattices ^ (F), where F
is a fixed lattice in TV and ^ ranges over the group of almost inner automorphisms of TV.
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3. Recently, there has been much research by R. Brooks, D. de Turck, C. Gordon,
H. Gluck, D. Webb and others on isospectral but nonisometric deformations of metrics on
r\7V, where F is a lattice in a simply connected, 2-step nilpotent group with a left invariant
metric. See for example [BG], [D], [DGGW1-5], [DG1-3], [Gl, 2] and [GW1, 2].

For the sake of completeness we give a short proof of the assertion in Example 2
regarding length spectra. See also Lemma 1.7 of [Gl].

(5.19) PROPOSITION. - Let N be any simply connected, 2-step nilpotent Lie group \vith
a left invariant metric. Let F be any lattice ofN, and let ^ be any T— almost inner
automorphism of N. Then F\N and ^ (T)\7V have the same marked length spectrum and
marked maximal length spectrum relative to the isomorphism ̂  : Y —^ ^ (T).

Proof. - Let TV, Y and ^ be as above. If (f) is any nonidentity element of F,
then (/) and '0 (<^) have the same periods since they are conjugate. More precisely, if
(f). ̂  (t) = 7 (t + uj) for all t G 1R, some uj > 0 and some unit speed geodesic 7 of TV, then
^ {(/)) ' 7* {t) = 7* {t + cc;) for all t G ^, where 7* (t) = a-1 • 7 (t) and ^ {(/)) = a~1 • ( / ) • a
for some element a G F. Hence if C and ^ (C) denote the free homotopy classes
of closed curves in F\N and ^ (r)\7V determined by (j) and ^ (0) respectively, then
/ (C) = < (^ (C)) and F (C) = F (^ (C)). D

Our main result of this section is that the two examples above determine essentially all
of the examples of lattices with the same marked length or marked maximal length spectra.
A priori the marked maximal length spectrum seems to carry less information than the
marked length spectrum, but in fact the two spectra are equivalent.

(5.20) THEOREM. - Let r, r* be lattices in simply connected, 2-step nilpotent Lie groups
N^ N * with left invariant metrics. Assume that T\N and r*\TV* have the same marked
maximal length spectrum, and let ̂  : F —^ r* be an isomorphism that induces this marking.
Then ̂  == ('01 o ̂ ) |r, where ^2 is aY— almost inner automorphism ofN and '0i is an
automorphism ofN onto N * that is also an isometry. In particular T\N and r*\7V* have
the same marked length spectrum and the same spectrum of the Laplacian on functions
and differential forms.

(5.21) Remarks. - 1. The last statement of the theorem follows from the earlier
statements, the two examples above and the first remark following those examples.

2. Recall that an automorphism ^ of N defines a Lie algebra automorphism d^ of At
that is characterized by the equation ^ (exp ^) = exp [d^ (^)) for all ^ G A/". Let F be
any lattice of N. Using the multiplication law (1.1) for 2-step nilpotent groups it is easy
to show that ^ is a F- almost inner automorphism of N if and only if for any element
^ G log r there is an element ^* G At such that d^ (^) = ^ + [$*, ^].

If '0 is a r- almost inner automorphism of TV, where N is simply connected and
nilpotent with an arbitrary number of steps, then we assert that d^ : AT —> AT is unipotent.
It follows from the definition in (5.18) that if ^ € log F, then there exists an element
a = a (0 in N such that d^ (Q = Ad (a) (Q. If X = log a G M, then Ad (a) == e^W
is a unipotent linear transformation of J\f since ad X is nilpotent. The set log F spans
J\f linearly (see for example (5.3) or [R, p. 36]), and hence (ri^ — Id)71 = 0 for some
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integer n. If A/" has 2 steps, then it follows that (d^ - Id)2 = 0 by the description of
d^ in the previous paragraph.

Before proving the theorem we discuss two corollaries.

(5.22) COROLLARY. - Let r, r* be lattices in simply connected, 2-step nilpotent Lie groups
TV, TV* with left invariant metrics. Assume that T\N and r*\TV* have the same marked
maximal length spectrum. If{TB, Tp} and {TB- , Tp^} are the associated pairs of flat tori
for r\TV and r*\TV* respectively, then TB is isometric to TB- and Tp is isometric to Tp-.

Proof. - Let ^ : F —> F* be an isomorphism that induces the marking of the maximal
length spectra of F and F*. By theorem (5.20) we need only prove the corollary in the
cases 1) '0 is an isometry of N onto TV* that is also an isomorphism 2) F* = ̂  (F), where ̂
is a r- almost inner automorphism of N. The corollary is obviously true in the first case. In
the second case assertion 2) of (5.21) shows that Try logF = Try d^ (logF) = Try log'0 (F)
and log r n Z = dip (log F) n Z = log ̂  (F) H Z since d^ (log F) = log '0 (F). Hence
the corollary is also true in this case. Assertions 1 and 5 of the proof of Theorem (5.20)
also give a direct proof of the corollary that avoids consideration of the two separate
cases above. D

(5.23) COROLLARY. - There exist examples of simply connected, nonsingular, 2-step
nilpotent Lie groups TV, TV* with left invariant metrics and lattices F, F* in TV, TV*
that have the following properties:

1) r\TV and jT*\TV* are homeomorphic manifolds with the same maximal length spectra
but there exists no isomorphism of T onto F* that preserves the marked maximal length
spectra.

2) r\TV and r*\TV* have the same maximal length spectra but have nonisomorphic
fundamental groups. In particular they cannot have the same marked maximal length
spectra. However, if {TB, Tp} and {TB--, Tp-} are the associated pairs of flat tori for
r\TV and r*\TV* respectively, then TB is isometric to TB- and Tp is isometric to Tp-
[cf. Corollary (5.22)].

Remark. - Carolyn Gordon has informed me that in example d) on pages 75 and 79 of
[Gl] the manifolds r\TV and r*\TV* have the same length spectra but different marked
length spectra.

Proof. - Let T and T* be 2 n-dimensional flat tori that have the same length spectrum but
are not isometric. (Milnor has given an example of 16-dimensional tori with this property;
see [BGM, pp. 154-158]). Write T = R^/L and T* = R271/!/* where L and £* are
vector lattices in R271. Let {Xi, . . . . X,, Vi, . . . . V,} and [X^ . . . , X^ Y^ . . . , V,*}
be generating sets for L and L* respectively. Let Z, Z* be 1-dimensional vector spaces
with basis elements Z, Z*. Let Af = R271 C Z and A/"* = R271 C Z * . Define a bracket
operation in J\[ such that [Xi, Y,] = -[V^ Xi] = Z for 1 ̂  i ̂  n with all other brackets of
basis vectors {Xi, Yj, Z} being zero. Define a bracket operation in ./V* in similar fashion.
The Lie algebras AT and A/"* are 2-step nilpotent. Define an inner product in A/" such that
R271 has its canonical inner product, Z has length 1 in Z and R271 is orthogonal to Z.
Define the analogous inner product in ./V*. Let TV, TV* denote the simply connected, 2-step
nilpotent groups with Lie algebras A/", A/"*, and equip TV, TV* with the left invariant metrics
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determined by the inner products on A/", A/"*. The Lie algebras A/", A/"* are nonsingular
with 1-dimensional center.

We construct lattices F, F* in TV, TV*. Let 5 denote the Z-span of

^Xi,...,x,,yi,...,y,, jzl inA^,
and let 5* denote the Z-span of

^*,...,x;:,y,*,...,y,*, jz*l in A/-*.< X^, ..., X^, Vi*, ..., Vy*. ^ Z* ^

Let r = exp (5) ^ TV and let F* = exp (5*) ^ TV*. Note that if ^ rj are arbitrary
elements of 5, then ^ + 77 + - [^, 77] lies in 5. An analogous statement holds for 5'*. From
these observations and (1.1) it is easy to verify that F, F* are lattice subgroups in TV, TV*.
Let (f) : Af -^ A/"* be the linear transformation such that <^(Z) = Z*, <^(X,) = X^ and
(f)(Yi) = y^* for 1 ̂  % ^ n. The bracket relations in A/" and A/"* show that (^ is a Lie
algebra isomorphism of At onto A/"* that carries 5 onto 5*. Hence <^ is the differential
map of an isomorphism ^ of TV onto TV* that carries F onto F*. The nilmanifolds r\TV
and r*\TV* are homeomorphic by 2) of (5.14). By hypothesis the flat tori TB = T and
TB* = T* have the same length spectrum. By construction the 1-dimensional tori Tp and

TF* both have length spectrum- Z = = < - n : n G Z ^ . Hence r\TV and r*\TV* have the2 (2 )
same maximal length spectrum by (5.15). However, the manifolds r\TV and r*\TV* cannot
have the same marked maximal length spectrum by (5.22) since the flat tori TB = T and
TB* = T* by hypothesis are not isometric. This completes the discussion of 1).

We construct nilmanifolds r\TV and r*\TV* satisfying the conditions in 2) above. Let
M == span {Xi, . . . , Xn^ Yi, . . . , Yn, Z} be the 2-step nilpotent Lie algebra in which
[Xi, Yi\ = -[Yi, Xi] = Z for 1 ̂  i ̂  n and all other brackets of basis vectors {X,, Yj, Z}
are zero. Let A/"* -==- spa.n{X^ . . . , X^, Y^, . . . , Y^, Z*} be the 2-step nilpotent Lie
algebra in which [X,*, V,*] = -[V,*, X^} = 2Z* for 1 ̂  i ^ n and all other brackets
of basis vectors {X^ Y^*, Z*} are zero. Give AT and A^* the inner products for which
{Xi, . . . , X^ Yi, . . . , Y^ Z } and {X^ . . . , X;, Y^ . . . , V,*, Z* } are orthonormal
bases. Let TV, TV* be the simply connected, 2-step nilpotent Lie groups with Lie algebras
A^, A^* and equip TV, TV* with the left invariant metrics determined by the metrics on
A/", A^*. Define 5, 5* and F, F* as in the example in 1). Then F, F* are lattices in
TV, TV*, and it is easy to see that the corresponding associated rectangular tori {TB, TB*}
and {TF, TF*} are isometric. On the other hand it is not difficult to see that F is not
isomorphic to F*. To verify this let ^ = exp ( - Z ) and ^* = exp ( - Z* ) denote the

V^ 7 V^ /
generators for the centers of T and F*. Let Fi and F* denote the quotient groups r/( ^ )
and r*/(^*4) respectively, where (^4) and (^*4) denote the infinite cyclic subgroups of
r, r* generated by ^4 and ^*4. If there existed an isomorphism (f) of F onto F*, then
<^ would carry (^4) onto (^*4) and hence would induce an isomorphism of Fi onto F*.
This however is impossible since F* is abelian while Fi is nonabelian. To see that Fi is
nonabelian note that [exp(X,), exp (Y,)] == exp {[Xi, Y,]) = ^2 for every i by (1.26).
Hence the projections of exp(J^) and exp (Yi) into Fi do not commute in Fi. On the
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other hand [exp (X,*), exp (V,*)] = exp ([X,*, V,*]) = ^*4 for every %, and it follows that
r* is abelian. This completes the discussion of 2). D

Remark . - The example just constructed in 2) is a special case of a much more general
phenomenon described in Theorem 2.4 of [GW2].

Proof of the theorem 5.20. - We first prove the uniqueness of the decomposition
'0 = (^i o '02) |r.

LEMMA. - Let '0i o '02 = '0^ o '0^, ^here '0i, '0* ar^ isomorphisms of N onto TV* rtor
ar^ also isometrics, and '02, ̂  are Y-almost inner automorphisms of N. Then '01 = -0*
and '02 == ^-

Pwo/. - If 0 = -02 o ^2"\ then d(f) : JV -^ At is unipotent by 2) of (5.21). However
0 = ̂ -1 o '0i also, and hence d0 is orthogonal. Therefore 0 is the identity, and the proof
of the Lemma is complete. D

To prove the existence of the decomposition '0 = (^i o ^2) |r m the statement of the
theorem will require several further steps. We now extend -0 to be an isomorphism of N
onto TV*, which is possible by (5.14). We decompose d'0 : At -^ A/"* as follows: given
V e V and Z e Z we write

M d^ (y + z) = A (Y) + 5 (Y) + c (z)
where C : Z —> Z* is the restriction of d'0 to Z and A : V -^ V*, B : V -^ Z* are
the linear transformations obtained by projecting d'0 (V) onto V* and Z* respectively
for all V (E V.

We outline briefly the rest of the proof. We show first that C : Z —> Z* and A : V -^ V*
are isometries and there exists an isomorphism and isometry '0i of N onto TV* such
that G^i (V + Z) = A (V) + C7 (Z) for all V (E V and Z e Z. We then define a linear
isomorphism r : A / ' - ^ A / ' b y r ( y + Z ) = V + Z + (C-1 o B) (V) for all V e V
and Z e Z, and we show that a) T = d^ for some F-almost inner automorphism ^2
of TV and b) d^ = d^i o ch/^- Finally we conclude that '0 = '0i o '02, completing the
proof of the theorem.

(1) C : Z —^ Z* is an isometry.

Proof. - By hypothesis r\TV and ^(r)\TV have the same marked maximal length
spectrum and by the discussion following (5.11) this means that 0 and ^ (0) have the same
maximal period for every 0 e F. If 0 e F n Z, then '0 (0) e Z*, the center of TV*, and
0, '0 (0) have maximal periods | log 0 | and | log -0 (0) | respectively by Proposition 4.5.
Therefore | d^ (^) | = | ^ | for every ^ G log F H Z since log o ̂  = d^ o log. It follows
that | d'0 (Z) = | Z | for every unit vector Z e Z of the form -L- , ^ G log F H Z. The
set of such unit vectors is dense in the unit sphere of Z since log F D Z is a lattice in
Z, and hence | d'0 (Z) | = | Z for every unit vector Z e Z. It follows that C = d^ z
is an isometry of Z onto Z*. D

We begin the proof that A : V -^ V* is an isometry. From the definitions of A and
C we obtain

(2) [A(V), A(V*)] = C([y, V*]) for all V, V* e V.
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The fact that d^ is an isomorphism of J\f onto A/"* implies that A is an isomorphism
of V onto V*. Hence from (1) and (2) we obtain

(3) Let V* + Z* be an arbitrary element of At. If Z** is the component of Z* orthogonal
to [V*, A/I, then C(Z**) is the component of C(Z*) orthogonal to [A(T*), A/"*].

Next we assert
(4) Let V be any element of Try log F. Then | A (V) | ̂  | V \ with equality if and only

if B(V} € [A(V), A/"*].

Proofof(4). - Let J? be the diameter of some fundamental domain for the vector lattice
r H Z in Z. Let V be any element of Try log F. By (5.3) we can find an element ^ G log F
such that $ = V + Z, where Z (E 2 and | Z \ ̂  .R. By (5.3) n V G Try log F for each
positive integer n, and hence we can find an element ^n e logF such that ̂  = n V + Zy,,
where Zn € Z and | Z^ | ^ .R. Let ̂  = exp(^). Then '0(^n) = exp(d^(^)) and
d^ (^) = nA (V) + nB (V) + C (Zn). By Proposition 4.5 and (3) the maximal period
ujn of ^((f>n) is given by

(a) ^ = n2 | A (V) |2 + | n B (V^ + C (Z^ |2

^^lA^l^n2!^^)^ 2+ |C(^) 2

+2^(5(^,07^)),

where B {V)-L, C (Z^ are the components of B (V), C (Z^) orthogonal to [A (V), A/"*]
and Zy^- is the component of Zn orthogonal to [V, A/].

By hypothesis the maximal period of (f>n is also Un since '0 preserves the marked
maximal length spectrum. Hence we have

(6) o^= nV\2+\Z^\2=n2\V\2+\Z^\2

Since (7 : Z —» -Z* is a linear isometry, from (a) and (b) we obtain

(c) n 2!^ 2^ 2 A(V)2+n2\B(V)^\2+2n{B(V)±,C(Z^}

from which we obtain

W I A (V) |2 = | V |2 - | B (^ |2 - 2 (B (V)^, C (Z^))
i b

Now I (B (V)^ C (Z^-)) I ^ ̂  I B (V)1- for every n by the choice of ̂  and Zn. Hence
the third term on the right hand side of (d) —^ 0 as n —» oo. Since the other terms in
(d) do not depend on n we obtain

(e) |A(V) ^lyF-iBC^i2.
The assertion of (4) is now clear. D

(5) A : V -> V* is an isometry and J3 (V) G [A (V), A/"*] for every V G Try (log F).

Pwo/. - We show first that | A (V) | ̂  | V | for all V e V. By (4) this assertion is true
for all unit vectors in V of the form —— for $ e Try log F. Such vectors are dense in the
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unit sphere of V since Try log F is a lattice in V. Hence | A (V) | ̂  | V | for all V e V
by the linearity and continuity of A.

By the observation above and (4) it suffices to prove that | A (V) \ = \ V \ for all V G V.
If V e V is arbitrary, then it is routine to show that d (^-1) (A (V)) = V + Z for some
element Z ^ Z. Applying (4) and the observation above to ^-1 : TV* —^ N we obtain
|V | ^ |A(V) | ^ |V|. D

(6) There exists an isomorphism ^^ : N —^ N * which is also an isometry such that
6^1 (V + Z) = A (V) + C (Z) for all V e V and all Z G Z.

Pwo/. - We define a vector space isomorphism S : At —^ A/"* by 5' (V + Z) =
A {V) + C (Z) for all V G V and all Z ^ Z. The isomorphism 5 is a linear isometry since
A and C are linear isometrics by (1) and (5). Moreover, S is a Lie algebra isomorphism
by (2). Define a map ^i : TV -> TV* by ^i (exp ^) = exp (S (^)) for every ^ G A/\ It is
easy to verify that i^\ is a Lie group isomorphism and d^i == S. Hence ^i is also an
isometry since S : A/" —^ A/"* is an isometry. D

We are now ready to complete the proof of Theorem 5.20. We define a linear isomorphism
T : AT -^ M by setting T ( y + Z ) = y + Z + (C-1 o B) (V) for all V G V and Z ^ Z.
It is routine to verify that

(a) (c^i o T) (V + Z) = ̂  (V + Z) for all V G V and Z G Z.
Next, by (2) and (5) we obtain
(b) {C-1 o B) (V) e [V, A/"*] for all V G ̂  (logF).
From (fc) and the definition of T we obtain
(c) If ^ is any element of log F, then there exists an element ^* G A/" such that

T(O - ^+[e, n
The definition of T : J\f —^ J\T shows that T is the identity on Z, and hence T is a Lie

algebra automorphism ofAf.lf^'.N—^N is the map defined by ^2 (exp ̂ ) = exp (T (^))
for all ^ G A/", then it is routine to verify that ^2 is an automorphism of N such that
d/02 = T. Hence form (c) and 2) of Remark 5.21 we conclude that

(d) d'02 = T and ^2 is a F- almost inner automorphism of N.
Finally from (d) and (d) we conclude that d^ = d^^ o d^ = d (^i o '^2), which proves

that ^ = ^i o '02 and concludes the proof of Theorem 5.20. D

Conjugacy of geodesic flows.

An important special case where two compact 2-step nilmanifolds r\7V and r*\7V*
have the same marked length spectrum occurs when there is a conjugacy between the
geodesic flows in the unit tangent bundles S (T\N) and S^r^TV*); that is, there exists
a homeomorphism F : S CT\N) -^ S (r*\7V*) such that F o gt = g^ o F, where {^}
denotes the geodesic flow in S (T\N) and {g^} denotes the geodesic flow in 5' (T*\7V*).

(5.24) PROPOSITION. - Let r, r* denote lattices in simply connected, 2-step nilpotent
Lie groups N, TV* with left invariant metrics, and let F : S (T\N) -^ 5(r*\JV*) be a
conjugacy of the geodesic flows. Then F\N and r*\7V* have the same marked length
spectrum.
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Proof. - The unit tangent bundle S (r\7V) admits a section since any left invariant
unit vector field X on N induces a unit vector field X* on T\N. Since dim N ^ 3
it follows by Theorem 17.7 of [St, p. 92] that the projection p : S (T\N) -^ F\N
induces an isomorphism j?i : TT-I {S (T\N)) —^ 71-1 (F\N). Similarly the projection
j9* : 5(r*VV*) -^ r*VV* induces an isomorphism ̂  : TTI (5(r*\7V*)) -^ TTI (r*\7V*).
Let Fi : 7Ti5'(r\7V) -^ Ti-i (5(r*\7V*)) denote the isomorphism induced by the
homeomorphism F^ and let ^ : 71-1 (r\7V) —^ 71-1 (r*\7V*) denote the isomorphism such
that (p o j?i = p\ o Fi. It is now routine to show that I (C) == I ((p * (C)) in the notation of
(5.9) and (5.11), where C is any free homotopy class of closed curves in F\N. D

Remark. - It is an interesting open problem whether two compact 2-step nilmanifolds
F\N and r*\7V* are isometric if they have conjugate geodesic flows.
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