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BOUNDARY COHOMOLOGY OF SHIMURA VARIETIES
I. - COHERENT COHOMOLOGY

ON TOROIDAL COMPACTIFICATIONS

BY MICHAEL HARRIS (') AND STEVEN ZUCKER (2)

ABSTRACT. - We study the coherent cohomology of automorphic vector bundles, restricted to the toroidal
boundary strata of Shimura varieties associated to maximal rational parabolic subgroups. The cohomology is
computed in terms of coherent cohomology of the Shimura varieties attached to the boundary components. The
main result concerns the restriction of a global coherent cohomology class to the boundary stratum associated
with the maximal parabolic P; it is shown that, in terms of Dolbeault cohomology with growth conditions, this
restriction is given by taking the constant term along the unipotent radical of P. This result is used to show
that certain non-holomorphic, absolutely convergent Eisenstein series define rational global (coherent) cohomology
classes. The main technical construction is a comparison between the (simplicial) Dolbeault complex associated to
a complex torus embedding and the (simplicial) de Rham complex associated to its "real part".

Introduction

This paper is the first in a series devoted to analyzing the mixed Hodge structure
on the cohomology of a non-compact Shimura variety Sh, with coefficients in a locally
homogeneous variation of Hodge structure V. The mixed Hodge structure consists of two
filtrations, the Hodge filtration and the weight filtration. Of these, the Hodge filtration is
easier to understand concretely, since the associated graded object is the direct sum of
spaces of coherent cohomology of automorphic vector bundles, canonically extended to
toroidal compactifications (cf. [H4], and § 3 below). These coherent cohomology spaces
have natural restriction maps to the boundary of the toroidal compactifications, and the
kernels of these are reasonably well understood: they consist of spaces of square-integrable
automorphic forms, usually (but not always) cusp forms [H5]. Furthermore, the kernels
of the restrictions themselves comprise the Hodge components of what Harder (see [Ha2])
calls the interior cohomology of V, namely the image of H^ (Sh, V) in H' (Sh, V), where
H^ denotes cohomology with compact support. The natural mixed Hodge structure of the
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250 M. HARRIS AND S. ZUCKER

interior cohomology is known to be pure, so for our purposes it is reasonable to concentrate
initially on the cohomology supported on the boundary.

The present article proves basic results on the coherent cohomology of automorphic
vector bundles, restricted to the toroidal boundary strata of Shimura varieties associated
to maximal rational parabolic subgroups. We give a formula for the cohomology of these
boundary strata, first in classical, then adelic, language (Corollaries 3.7.6, 3.13.6, and
4.1.14). Our main result (Theorems 3.10.3 and 3.12.7) computes the restriction of a
global cohomology class on the compactification, given by a differential form (Dolbeault
cohomology with growth conditions), to the boundary stratum associated to a maximal
parabolic P, and to its closure, and shows that it is obtained by taking the constant
term along the unipotent radical of P. In Section 4, we show that these computations are
compatible with the rational structures provided by canonical models of the boundary and
of the automorphic vector bundles (Theorem 4.8.1).

These considerations correspond roughly to Ch. I, Sections 1 and 2 of Schwermer's
book on Eisenstein cohomology [Sch], which covers the analogous material for the
topological (or de Rham) cohomology of local systems on arithmetic quotients of (not
necessarily hermitian) symmetric spaces. There, the much simpler and nicer Borel-Serre
compactification [BS] could be used, which realizes the space as the interior of a manifold-
with-comers. As such, the space has the same homotopy type as its compactification.
Moreover, all closed faces of the boundary-in natural correspondence with rational
parabolic subgroups P of all types-are themselves the Borel-Serre compactifications of
their interiors, denoted e' (P). For quite general reasons, these faces admit collars (though
one must avoid a well-known pitfall when one writes them down in terms of the group
theory; see our 3.11.3). Thus, any e' (P) can be moved in from the boundary, allowing
for an easy description of restriction of a cohomology class to a boundary face, and this
plays an important role in the topological theory.

Our treatment of coherent cohomology, although it eventually arrives at similar-looking
results (esp. 3.12.7 and 3.13.6), takes much longer to work out. The main reason
for this is that the toroidal compactifications, which play the role of the Borel-Serre
compactifications in the holomorphic category, are topologically quite different, and are
not homotopy equivalent to anything directly related to group theory. The theory of [H5]
computes the coherent cohomology of a toroidal compactification of a Shimura variety in
terms of C°°-differential forms having moderate singularities along the boundary. Although
coherent cohomology admits an obvious restriction to the toroidal boundary, it was by
no means clear how to express it in terms of these singular forms. In fact, most of
the techniques in Sections 2 and 3 were developed in order to find a substitute for the
deformation retraction of the Borel-Serre boundary into the locally symmetric space. The
main construction is an identification of the (simplicial) Dolbeault complexes associated
to a complex torus embedding with the (simplicial) de Rham complexes associated to
its "real part" (Prop. 2.7.3), which we subsequently see as the "fine resolution" version
of something more basic (2.8). This construction, which we have not seen elsewhere,
allows us, more or less, to retract coherent cohomology classes from the boundary to
the interior of a partially holomorphic, partially C°° quotient of a neighborhood of the
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BOUNDARY COHOMOLOGY OF SHIMURA VARIETIES, I 251

boundary stratum, which retains the means for computing the coherent cohomology of
that stratum (see 3.9-3.10).

The technical difficulties do not end there. In the topological case, e' (P) is fibered
by compact nilmanifolds associated to the unipotent radical of P, with base an arithmetic
quotient of the lower-rank symmetric space of the Levi quotient, and it is integration
over the fiber that produces the constant term. In the toroidal setting, (for P maximal) the
geometric structure near the boundary comes from the Siegel domain picture associated
to P [see our (1.2.5)]: a part of the unipotent radical gives rise to a family of abelian
varieties, which is stuck as the middle term of a two-step fibration over the corresponding
(holomorphic) boundary stratum of the Baily-Borel Satake compactification, and is itself
covered by something of a purely topological nature, coming from the "link subgroup" G/
[see (1.2.1)]; and an arithmetic subgroup of the link group acts on the whole fibration. The
most natural way that emerged to deal with this problem is to use equivariant cohomology
(2.9, 3.7, 3.9, 3.12, 4.8), which circumvents some technical issues arising in the hybrid
de Rham/Dolbeault calculations suggested above, and simultaneously returns us to the
purely algebraic category.

At several points we make reference to Pink's work on mixed Shimura varieties and
their canonical models, which allows us to replace growth conditions on non-reductive
groups by geometric constructions. We understand that Pink is in the process of working
out the theory of automorphic vector bundles on mixed Shimura varieties, a part of which
we have developed ad hoc in paragraph 4. The availability of a systematic theory along
these lines may simplify a number of our constructions; more significantly, it will provide
a unified framework for considering the boundary strata of toroidal compactifications
corresponding to non-maximal rational parabolic subgroups. We hint at this theory at
several points, especially in our treatment of growth conditions along the boundary of
the chosen boundary stratum, and the general answer is described during the proof of
Lemma 5.3.12. We have decided to defer consideration of non-maximal strata because the
paper is already long enough, and because the general result will require a purely geometric
proof of our key formula, Corollary 3.13.6, that eliminates the use of differential forms
with growth conditions.

Section 5 contains a construction of certain Eisenstein cohomology classes lifting cusp
forms on (Levi factors of) maximal parabolic subgroups, along the lines sketched in
section 6 of [H4], and a proof of their rationality in the range of absolute convergence
(Theorem 5.3.11). That construction requires the embedding of discrete series modules
in induced modules, the classification of which in general remains an open problem.
J. Schwermer and J. Franke have both advised us to bypass this embedding problem
by computing the (9-cohomology of the space of Eisenstein series directly; Franke has
in fact calculated the 9-cohomology of induced representations. We agree in principle,
but computing the restriction to the boundary of these cohomology classes requires a
substantial understanding of intertwining operators. In the long run, and as in recent work
of Harder, we expect that these intertwining operators, which are closely related to special
values of L-functions, will be essential to describing the "mixed motives" of which the
Eisenstein cohomology classes form a part. Among other things, we consider the present
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252 M. HARRIS AND S. ZUCKER

work to be a contribution to the elucidation of these mixed motives, especially their de
Rham realizations.

Some of the results of the present paper were announced at the conference on
Cohomology of Arithmetic Groups at Luminy in 1989. In Part II of this paper, we
will generalize the results of Part I to arbitrary (non-maximal) boundary strata, and will
take up the problem of describing the mixed Hodge structure of the boundary cohomology
in terms of automorphic forms.

Acknowledgments. - At various stages of this project, we have been helped or inspired
by comments and suggestions of J. Arthur, A. Ash, J.-L. Brylinski, L. Clozel, R.-T. Dong,
J. Franke, M. Goresky, M. Kameko, J. Levine, M. Levine, R. MacPherson, J. Milne,
M. Rapoport, J. Schwermer, M. Stem, and N. Wallach.

We also wish to thank the referee for corrections and valuable suggestions, and to thank
R. Pink for his advice during the revision of this paper.

Notation

By A (resp. A-0 we mean the ring of rational adeles (resp. of rational finite adeles).
If B is any Q-algebra, then AB =A 0q B. By Q we always mean the algebraic closure of Q
in C; Q^ is the maximal abelian extension of Q in Q.

If V and T are schemes over the scheme S, then V(T) denotes the set of T-valued
points of V; VT=V XsT. If T is Spec (A) for some ring A, we often write V(A) and VA
in place of V(T) and VT. If S=Spec^, where k is a finite field extension of the field k,
then Rfc/ / fcV is the scheme over k obtained by Well's restriction of scalars functor. The
structure sheaf of V is denoted Oy.

If G is an algebraic group, then G^, G^, G^, and ZG are the adjoint group, the derived
subgroup, the abelianization G/G^, and the center, respectively, of G. The unipotent radical
of G is denoted Ru (G). If G is a topological group, then G° is its connected component
containing the identity; the same notation is used for algebraic groups. The group schemes
GL(n) and Gm are denoted as usual. By X(G) we denote the group Hom(G, Gy^).

If /: X —^ Y is a continuous map of topological spaces and T is a sheaf on X, we denote
by R f^ y the total direct image of T (in the derived category). If £ is a sheaf on Y,
then f~1 £ denotes the pullback in the category of sheaves; if X and Y are schemes and £
is a sheaf of Oy-modules then /* £ denotes Ox ^>OY S- If ^* and ^F9 are complexes of
abelian sheaves on X then "<?' ^ T 9 " means that £* and T9 are quasi-isomorphic. The
case where Y is a point (/ is thus the unique map from X to Y) produces RF(X, <?),
whose cohomology is the hypercohomology of <?*, denoted H' (X, <?').

Unavoidably, an enormous quantity of special notation is used in this paper. Here is
a list of the most frequently used notation, preceded by the number of the section or
subsection in which it first appears.

1 . 1 . 5, (G, X), Sh(G, X), KSh(G, X), E(G, X), fl.
1 . 2 .D , G(Hy, S\ r, Mr.
1 . 2 . 1 . F , Pp. LF, Wp, G,=G,,p, up.
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1.2.2. A, A, WF, F'h, W^ 3, 0\ fl;, flt, G,, flfc(O), G/,(0), G/,=G,,,p, 0,,, a.
1.2.3-1.2.5. Cp, G^p, r;=r;,F, Pu, P' = PF, Fp, Dp, Fp, Mp, Tp, X(Tp), v^ TTI,

Ap, Mp.
1.3. a, T,, Ts, 9Ts, S°, S^ Op, (Mr),. Dp,., (Mp)^, DF,{^}. (Mp)s, DF,E,

7I"2,E. 7TF,E> X, (T).

1.4. Sp, Mr,s. 3Mr,s, VF,<7, yF,s, SNC.
1.5.7TE, Mr, 9Mr, Mp, Z,,.
ZF,S. >ZF^. "^E' ̂ F.E. ̂ F,S, >^ZF^, <9ZF,s, Z-,, <ZF,S, $F,S, ^F,S. Z^, ̂ .

1.6. 71-2, 71-1, MF^S), AF,E, MF,E, Zp,s(s), 9ZF,S(S), >9'iF,•Z(S), <^ZF,S(2).

1.7.KSh(G,X)s, Sh(G,X)~, Sh(G,X)*, KSh(G,X)*, TT-, B(D), B(F),
(GA,F.X(F)), (G/,,p,Fp), Sh(G^,N), Sh(G,X)F, S^X)^, Sh(G,X)^,
Sh(G,X)~•F , Sh(G,X)~•p ' . Sh(G,X)~•P F .

1.8. Kp, -Pp, t^c, f+, y ~ , K/,, K/, (G(2\ A(Pp)), A(PF)°. T^, D,, K^, K,, Np, cp,
P^ QF,P, Vp, OF, t^, 0^, p^. ?^ J = J^-".

2.1. CT = <7/R^, S, T+, TJ-, T^, T6, 3T^.
2.2. Sk'(<T), S0, 9S, S', S(1). S(l)•c, X(r,).
2.3.U<,, Us, e,. (a'), U,(R).
2.4. 9U<,, Star^), Con(<7'), Y, (CF)S, 9(C^, 9^.
2.6.^-(T^).
2.7..4°''(TE).
2.9.Hr, Rr.
3.1.^I=^I(G,X), [VA].
3.2.^ VA, VF,S. Vr,s, [V]s.
3.3.JA.
3.4. q^, •pa.
3.5.A.,, rv, Sp,p, J', J^ $<„ SF,p.
3.6. H. (). R+, P, Pc, HA, H,, R4-^21, W^, Z(w). W^r^), X(h, w), \(l, w).
3.8. A^,, A^, .A ,̂ A^g, -Pp-
3.9.^, ^ Zi, Zz, Z3, $, ^.
3.10. rp, 7?F,_ -Pj» Ph P<-
3.12.p, g. i, i^, VF,E-

4. 1. My, AF, K^p. K-4F. ^.K. 7Ti,K. K-^F E. sh^ X(G')' H* (^can). H* (^sub)'
H', V^, V^, A, Ao. Ai, n'(w), P.

4.2.^, K,, Ip.
4.3. V, [V], ^, I(G. X), Per(p^), E(V, A), 93t(x), p(A, x).
4.4. Is = KI(G, X)s, I(G, X)r, W(N), W(N, w), W(NrelW*).
4.5.I^,,I^.
4.6.1^,,<,,^,,l2,ri.
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254 M. HARRIS AND S. ZUCKER

4.7. W(F), n^F)^ TT-I.
5.1. Sp, ip(n, ^), E(/, s, g), jp(n,, ^), j'ai,, s), r(n, ̂ .
5.3. A Q . C I ^ ^ PO,^ Ao,p, A(G)Q.

1. Shimura varieties and Toroidal compactifications

1.1. SHIMURA VARIETIES. - Let 5 be the real algebraic torus RC/R G^. Let (G, X) be a
pair consisting of a connected reductive algebraic group G defined over Q and a G (R)-
conjugacy class of homomorphisms h: S_ —>• GR, satisfying the following conditions ([D3];
cf. [Mi]):

(1.1.1) The Hodge structure on the Lie algebra Q of G, given by

Ad oh: 5^GL(f l ) , is of type (1, -1) + (0,0) + (-1,1);

(1.1.2) The automorphism Ad(A(0) of G(R) induces a Cartan involution on G^R)0;

(1.1.3) Let w: Gm,n —^ S_ be the canonical conorm map. The weight map h o w :
Gm,n —^ GR, whose image is (by (1.1.1)) central in Gp, is defined over Q;

(1.1.4) Let ZQ be the maximal Q-split torus of ZG. Then ZQ (R)/ZG (R) is compact.
We call such a (G, X) a basic pair. The space X has a natural G (R)-invariant complex

structure.
The associated Shimura variety is defined as follows: if K c G (A^) is an open compact

subgroup, then

KSh (G, X) (C) - G (Q)\X x G (A^)/K
def

is a (non-connected) quasi-projective complex algebraic variety, as follows from [BB]. Then

Sh(G ,X) (C)=^KSh(G,X) (C)
r\.

is a pro-algebraic complex variety with continuous G (A-^)-action. Then Sh(G, X)(C) is
the set of complex points of the Shimura variety Sh(G, X) associated to (G, X); Sh(G, X)
has a canonical model over a certain number field E(G, X) (the reflex field) cf. [D3].

1.1.5. For simplicity, we assume throughout the paper that G^ is Q-simple; however,
all substantial assertions are valid as stated for general G. Similarly, (1.1.4) is imposed
only for convenience, and the results of the paper have natural generalizations in the
absence of this hypothesis, cf. ([H2], Remark 4.9.2).

1.2. We recall the construction in [AMRT] of the toroidal compactifications of the
connected components of ^Sh(G, X)^, and return to the adelic setting in 1.7.

Let D be a connected component of X; let G (R)"^ c G (R) be the group that stabilizes D.
For any subgroups Sc G (R) let S-^- = S H G (R)^ Let Go=Gde^(R)o. The action of Go
on D identifies D with the Riemannian symmetric space associated to Go.

Let r C 0(0)"^ be an arithmetic subgroup, and let M=Mr be the quotient F\D;
every connected component of KSh(G, X)^ is of the form Mr for some F. We assume
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BOUNDARY COHOMOLOGY OF SHIMURA VARIETIES, I 255

for convenience that T is neat ([Bl], Sec. 17): whenever p:G—»GL(V) is a faithful
representation, and 7 C F, none of the eigenvalues of ^(7) is a root of unity other than 1.
Then F is, in particular, torsion-free, so Mr is a smooth quasi-projective complex variety.

1.2.1. To the pair (D, GCQ)'^) is associated, as in [BB], the collection of rational
boundary components F. For each F, let Pp C G be the maximal Q-parabolic subgroup
such that PF (R)"^ stabilizes F. Choose a Levi decomposition Pp = Lp • Wp, and let Up
be the center of the unipotent radical Wp. Let G; = G^p C Lp be the subgroup described
in chapter III, paragraph 4 of [AMRT], which can be characterized as the maximal Q-
rational connected reductive subgroup of Lp which (i) contains the identity component
ofZo, (ii) acts trivially on F, and (iii) modulo Z Q - { finite subgroup}, acts faithfully (by
conjugation) on Up. The logarithm map identifies the abelian Up with the vector space
UF=Lie(Up) as group schemes over Q.

1.2.2. Let A be the split component of the center of Gi D G^, A = A • Z^. Then A
is a Q-rational torus, and modulo Z^ is one-dimensional and split; A = A H G^. We let
WF : Gm —> A be an admissible Cayley morphism in the sense of Deligne ([D2], 3.1),
cf. ([Br2], 4.1; [H2], § 5). It is uniquely determined by the following properties:

(1.2.2.1) mp := wy • (ho w)~1, (w as in 1.1.3), which is actually independent of
h E X ([D3], 2.1.1), maps G>m to G^.

(1.2.2.2) For any h € X and any rational representation /9:G—^GL(V), the pair
(F^, W^) defines a mixed Hodge structure on V.

(1.2.2.3) When p is the adjoint representation, W^ g = Lie (Pp).
In (1.2.2.2-3), F^ is the filtration induced by p o h, whereas W^ is defined in terms

of the weight space decomposition under wp:

WfV^^ V,,̂  where V,,^ = {v G Vipowp (t)v = i-3 v, t G G^}.
j^i

It follows easily from (1.2.2.2) and (1.1.1) that the weight filtration on g is of the form

(1.2.2.4) {0} = W^ 8 CW^ S C • • • C W^ s = S.

We let ^ C s be the ^-eigenspace of wp(0, t G G^. Then we have

(1.2.2.5) s-2 = Lie (Up), S-2 C 0-1 = Lie (Wp), S° = Lie (Lp).

The following notation will be used throughout. Let 3=Lie(Zo),

fly ^fl-2^2] 03= Lie (GO.

Let Qt = Q~2 9 0^ 9 S2, and 0/1 (0)=the orthogonal complement of ^ in fl° H s^ with
respect to the Killing form of g. Denote by G^ and G/,(0) the corresponding connected
subgroups of G; note that G/, (0) contains all compact factors of Lp (R). Let Qh = Qh (0) 9 a,
where a = Lie (A), and let G/, be the corresponding connected subgroup of Lp. (Note that,
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256 M. HARRIS AND S. ZUCKER

with our notational conventions-which differ a little from those of [AMRT], where "G//9

refers to our G/;(0), modulo its compact factors -Gy and G/, intersect in A; we want Gh
to determine the basic pair for a Shimura variety, as in 1.7, below. Note esp. (1.1.3)).
When necessary, we write G^p instead of Gh.

1.2.3. (For details and definitions in what follows, see [AMRT], III, § 4.) There is a
natural Q-rational positive-definite quadratic form ( , ) on Up. Inside Up (R) is an open
convex cone Cp, self-adjoint with respect to ( , ), on which G? = Gi (R)° acts transitively.

def
Let Fi = r^ F = F n G?. Then Fi acts freely on Cp. Let Fu = Up (Q) H F; Fu is a lattice
in Up(R). '

Let P' = Pp c PF denote the largest connected subgroup whose adjoint action on Up
is given by homotheties; thus P' = GH • Wp. Let Dp = Up (C) • /? (D) CM(C), where /?
is the Borel imbedding of D in its compact dual M(C), see 3 A. Then D has the structure
of a Siegel domain of the third kind over F:

(1.2.4) D c Dp ^ {(^ v, t)\z e Up (C), v e C^t e F}

is defined by a well-known inequality [cf. (2.5.2), below]; here 2a=dim(Wp/Up). The
(transitive) action of Pp(R)° on D extends to an action of PF(R)°-UF(C) on Dp. By
choosing a base-point for Dp lying on the boundary component opposite to F [see our
(1.8)], one finds G/ in the corresponding isotropy subgroup, which implies that Dp is
homogeneous under P^R^Up^). Let Fp = F n P' (Q), Mp = rp\Dp, and let Tp be

def

the Q-split torus with character group X(Tp)=Hom(ru, 1). Thus Tp (C)^Up (C)/I\j acts
holomorphically on Mp, and F/ acts on Tp.

It was proved by Brylinski ([Bri]; cf. [P], § 10), that Mp has the structure of an algebraic
variety. More precisely, Mp fits into a tower of fibrations, corresponding to (1.2.4):

(1.2.5)

Dp ^ Mp
^ j, TT^

DF/UF (C) -^ AF
i l^
F ^-MF

where
(a) Mp is of the form Fp\F, for some neat arithmetic group Fp, and in particular is a

smooth quasi-projective algebraic variety;
(b) 71-1 represents Ap as an abelian scheme over Mp;
(c) 7T2 is a principal algebraic torus fibration over Ap, with structure group Tp.
The discrete group F^ p acts on both Mp and Ap over Mp. The action on Mp is proper

and discontinuous in the classical topology, whereas the action on Ap does not admit a
nice quotient (unless Ap=Mp).

4s SfiRIE - TOME 27 - 1994 - N° 3



BOUNDARY COHOMOLOGY OF SHIMURA VARIETIES, I 257

1.3. Let <7 C UF (R) be a closed rational polyhedral cone (rpc); i.e., a subset of

the form < ̂  A, Vi \i ^ 0 >, where ^ G Up (Q), i = 1, .... a. The dual space
^1=1 J

X (Tp) (g) R ^ Horn (Up (R), R) contains the dual cone

a== {A(EX(TF)(8)R|A(^) ^ O V ^ C d } .

Suppose a contains no non-trivial linear subspace of Up(R). As in ([KKMS], I, § 1), let
T^ = Spec Q [X (Tp) H a]; then Tp embeds naturally in T^, and the action of T on itself
extends to an action on T^. In this way one defines a 1-1 correspondence between rpc's
a C Up (R) and normal equivariant affine embeddings Tp ̂  Ta- One puts 9Tcr == T^—T.
If a == |j a ' is a finite simplicial decomposition, then the T^/ patch together to an
equivariant torus embedding T^/}, and the natural maps T^/ —> To- patch together to a
proper surjective T-equivariant morphism T { a ' } —^ T^.

More generally, define Sifan (rppd in [AMRT]) in Up(R), as in [O], [Mi]: if E is a fan,
then each a G S is an rpc in the closure Cp of Cp, and the intersections of the different a
satisfy certain natural axioms. One obtains thereby an equivariant torus embedding Ts,
constructed by patching together the T^ for a G E; we write 9Ts = Ts — T.

Given a fan S, there are two distinguished subfans:

(1.3.1) E ° = { a G S | a n C F / 0 } ,

(1.3.2) S0 = {a G S|a - {0} C Cp};

the latter is a subcomplex.
For any rpc a C Up (R), let

(1.3.3) (Mp), = Mp x ^T,,

and let DF,(T denote the interior of the closure in (Mp^a of r'p\D. We let

7T2,(7 '' DF,(T ̂  AF

be the natural projection. If a = |j a ' is a decomposition as above, define (Mp)^/}
and Dp,^} analogously; then there is a proper morphism Dp,^} —^ DF,<r of analytic
spaces over Ap. Finally, if S is a fan, then we define (Mp)s == Mp x TFTs and Dp,s
in analogy with the above. The morphism TT^ : Mp —> Ap extends to a morphism
7T2,s ^ (Mp)s ̂  AF. Let

(1.3.4) TTF, E == TTl 0 '7T2, S ; (M^S ̂  Mp.

The pullbacks to DF,E of (the analytic morphisms corresponding to) 7T2,s and TTF,E will
be denoted by the same symbols.

It will be useful to consider the following slight generalization of torus embeddings.
Let TI and T^ be split algebraic tori over the field k with cocharacter groups
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X, =X^(T,) =Hom(G^ T,), /=1,2. Let S, C X, 0 R be fans. A morphism
/i:(Ti, Si)-»(T2, £2) is a homomorphism /^Ti—^ of algebraic groups such that the
induced map h^: Xi —^ X^ has the property that, for each o-i G Si, there exists 0-2 G £2 such
that h^ (o-i) C 02 (c/1 [O], § 1.5). This condition easily implies that the homomorphism h
extends to a Ti-equivariant morphism

l^a^,c^2 : L I ,<TI —^ T2,<72-

These maps patch together to define a Ti-equivariant map of torus embeddings
(cf. [H3],§3;P,5.4)

^Ei,S2 : TI^EI -^ T2,S2-

When T 2 = { 1}, any (Ti, Si) gives a morphism trivially. When Ti=T2, we obtain the
notion of refinement (cf. 1.4, below).

Until the end of 1.3, we assume Si and £2 to be finite complexes; the generalization
to locally finite torus embeddings is easy.

1.3.5. LEMMA. - The morphism ^Ei, S2 ls proper if and only if, for all a G £2, the set
|Si| := {|J^ e Sil/i,^') C a} equals h^ (a).

Proof. - This is proved in the same way as Theorem 8 of ([KKMS], § 2).
If the hypothesis of the lemma is satisfied, we call the morphism h: (Ti, Ei) —^ (T2, £2)

proper.
Write Y, = T^s, • Oi = OY, • 9i = 9Y, with reduced scheme structure i= 1, 2.

(N.B.: one need not have that the support of (/^i,^)* ^2 equals <9i, nor, when one does
have it, that (^Ei,S2)*^2 is reduced, i.e. equals c?i.)

Assume Y, smooth, and 9i is a divisor with normal crossings on Y,, ;=1, 2. Let <9i
denote the union of the irreducible components of 9i whose image is contained in 9^. Let
Ki = Oi (-9i), K2 = 02 (-92).

1.3.6. LEMMA. - Suppose h: (Ti, Ei) —»(T2, £2) is proper, with the map of tori surjective.
Then (a) R1 ̂ £2,* (Oi) = K1 ̂ ,£2,* (Ki) = O/^ <>0; (^) /i^,E2,* (Oi) ^ 02 and
^-Si,S2,*(Ki) ^ K2, canonically.

Proof. - The assertions are local on Y2. Thus we may assume Y2 affine, i.e., £2=0
is a single cone. We do this throughout. There are canonical adjunction morphisms
^2 —^ ^Si,E2,* (^i)» ^2 -^ ^Si,E2,* (Ki). The second part of the lemma is the statement
that these morphisms are isomorphisms, i.e.

(1.3.6.1) The natural adjunction maps

H° (Y2, 02) ̂  H° (Yi, Oi) and H° (Y2, K2) -. H° (Yi, Ki)

are isomorphisms.
Similarly, the first part of the lemma is the statement that

(1.3.6.2) H^Y^Oi^H^Y^KO^O for i>0.
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The vanishing of IP(Yi, Oi) follows directly from ([KKMS], p. 44, Cor. 2), by the
hypothesis of propemess, since h^1 (a) is in particular convex (cf. 1.3.5). Let <?i = OQ ,
so that we have the short exact sequence

(1.3.6.3) 0 -^ Ki -^ Oi -^ <?i -> 0.

It is enough to show that

(1.3.6.4) IP (Yi, 5i) = 0 for % > 0;

(1.3.6.5) H° (Yi, Oi) -^ H0 (Yi, 5i) is surjective;

The sheaf <?i is supported on the closed divisor 9i. Write 9i = \J9a as the union of
its irreducible components; then the 9a are in one-to one correspondence with the set of
one-dimensional cones a^ € Si such that h^ (ac,) 7^ 0. More generally, for any T E Si,
let &T be the closure of the corresponding Ti-orbit in Yi, and let ir : 9r —> Yi be its
canonical closed immersion. Define

(1.3.6.6) f = T - {0}//R^ Si = {f|r e Si}.

Then Ei is a polyhedral complex. Let

(1.3.6.7) ^Si = {f|r G ^Si},

where ^Si = {r e Si[r D Ker(/i^) = {0}}- The normal crossings hypothesis means
that Si is actually a simplicial complex; i. e., every polyhedron in Si of dimension k has
exactly fc+1 vertices.

We compute EP (Yi, <Si) = H1 (9i, <?i) using the spectral sequence for the closed
covering by the c^. The nerve J\f of this closed covering is evidently PL-homeomorphic
to /iSi. Now for all r e ^Si,

(1.3.6.8) H1 (<9^ z; (<?i)) ^ H^ (9^ OaJ = 0 for % > 0

([KKMS], p. 44, Cor. 2).

Define systems of coefficients L ( « , <?i) on At ^= /^Si by the formula

L(T,<?i)=H°(c^O^) .

By (1.3.6.8), the spectral sequence degenerates at Ei and yields

(1.3.6.9) H-(Yi, <?i) = H^Si, L(., <Si)), i = 0, 1, ...
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We compute the terms L (f, <?i) by direct calculation, decomposing it into weight spaces
L(f , \) for the action ofTi, where ^ runs through the character group X^ ofTi. For
any ^ e X^, let

R(X) = [x G Xi 0 R\x{x) ̂  0}; HQO = Ker(x) C Xi (g) R.

Recalling that <9r is taken to be a closed Ti-invariant subset, it follows from the definitions
of affine torus embeddings (cf. also 2.4.3, below) that

(1.3.6.10) K°{9r,OQ^=k'^ (canonically) if r C H ( ^ ) and r ' cR(x) for
every r ' containing r as a face; otherwise H° {9r, OQ^Y ^ 0.
We determine the support A(^) of L(., \). Recall from 1.3.5 that |Si| = h^ (cr).
Thus |Si| = F|R(^), where the rji in the character group X^ ofTz, now identified as a
subgroup of X^ via /i*, define the boundary hyperplanes of a. It is easy to see that if r as
in (1.3.6.10) exists, i. e. with A (^) / 0, then (with additive notation in X^):

(1.3.6.11) If \=^Ci'r]i G X ^ with c, ^ 0, then

A(x)={|Ei|n n. H(^)-Ker(^)}/R^.
c^ positive

In every case A(^) is either empty or contractible, and (1.3.6.4) thus follows from
(1.3.6.9). The proofs of (1.3.6.5) and (1.3.6.1) are similar and are omitted.

1.3.7. Remark. - The above argument also shows that EP (Yi, Ki) does not change
(up to canonical isomorphism) if Si is replaced by a refinement.

1.4. TOROIDAL COMPACTIFICATIONS. - A toroidal compactification Mr '—^M^s is
associated to a collection S = {Sp I F a rational boundary component} where each Ep
is a fan in Up(R), satisfying a list of hypotheses to ensure compatibility (cf. [AMRT],
p. 252), which we recall as we need them. We refer to such S as a T-admissible family
of fans. The S's are partially ordered by the relation of refinement: S' is a refinement
of S if every a ' G S' is contained in some a G S, such that, for each a G S, the set
{a' G S'ICT' C a} is a finite simplicial decomposition of a. The spaces Mr,s are in
general only algebraic spaces over C. Let <9Mr,s = Mr,s — Mr.

For a complete picture of the structure of Mr, s, we refer the reader to ([AMRT], Ch. Ill,
§ 5). For our present purposes, it suffices to note the following:

(1.4.1) For each F and each a G Sp, the natural map rp\D —> Mr extends to an
analytic local isomorphism y?r, a- '- DF, a- —> Mr, s; these patch to yield a local isomorphism
(^F,S '' DF,S —^ Mr,E.
(1.4.2) The union of the images of the y?F,<r form an open covering of Mr,s-

(1.4.3) Any S has a refinement S' such that the toroidal compactification Mp.s7 is
smooth and projective, and such that 9Mr, s7 is a divisor with normal crossings, each of
whose irreducible components is smooth. Such a compactification will be called SNC.

1.4.4. Remark. - A toroidal compactification (or torus embedding) with the normal
crossings property mentioned in (1.4.3) necessarily has the property that every a in E is
simplicial, in the sense that the number of its 1-dimensional faces equals its dimension.
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If E' is a refinement of S, then there is a natural proper surjective morphism
7Ts/,E '' MI^E' —^ Mr,E» consistent with (1.4.1) and (1.4.2).

1.5. STRUCTURE OF THE BOUNDARY. - The variety Mr also has a natural compactification
as a normal projective variety. This compactification, due to Satake and Baily-Borel
([Sl], [BB]), will be called the minimal compactification, and denoted M^. For any
r-admissible S, there is a unique proper morphism of algebraic spaces

TTE : Mr, s —^ M^

which restricts to the identity on Mr.
The complement <9M^ := M^ — Mr decomposes as the disjoint union of locally closed

subvarieties lIMp, where the union is taken over the set of rational boundary components F
modulo the action of F. For each F, there is a commutative diagram:

(1.5.1)
DF,EP-D^ 9Mr,sCMr,s

i i i^
Mr ^ Mr C: <9M^ c M^

Let ZF,S denote the closure in Mr,s of 7r^1 (Mp).
By refining S, we can arrange that, for each F, (i) Zp,s is a subdivisor with normal

crossings of <9Mr,s with

9Mr^=\J^^
F

and (ii) the irreducible components Za of ZF,S are smooth and in one-to-one
correspondence with the set of 1-dimensional cones a in Sp, modulo the action of Fy. In
this case, we say Mr, s is SNC. The same terminology will be used without comment for
torus embeddings (here Ti is of course irrelevant) and for partial toroidal compactifications.
We assume henceforward that Mr, s is SNC.

Whenever F' is a rational boundary component of containing F in its closure (one writes
F' ^ F), then CF' is a boundary component of Cp, and one of the conditions on S requires
that SF H Cp7 = SF/. This provides the means for determining Zp.s H Zp'.s from the
data in Sp, when F'>F. Define

(1.5.2) >Zp ^ = ZF.E - U ^s, >9Z^ = ZF,S - >^^
F^F^odr)

Z F ^ S ^ ^ S — U ZF'.S? ^ Z F ^ = Z F , S — ZFS;
F /<F(mod^)

^F,S = >r^¥,T, n <^F,s5 ^ZF,E = ZF,S - ZF s = >^F^ u <^ZF s-

Then >9ZF ^, <9ZF ^, and ^Zp.s are all divisors with normal crossings on ZF,E-
Said in words, Zp, s is the union of the complete divisors corresponding to the one-

dimensional cones in Ep- To get <^ ^ (the ¥-stratum of <9Mr, s). one removes from Zp, s
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all points coming from S^ but not Sp» which thus are really associated to smaller boundary
components; these are precisely the points that map to the boundary of Mp under TI-E. To
produce >riv ̂  one removes from ZF,E those points that serve to compactify divisors
associated to larger boundary components (these still map to Mp).

For any cone r C Sp, write

z. = n z-
O-CT, dimcr=l

Via (1.3.3) and (1.4.1), it comes from the (closed) T-orbit in Tr associated to r.
Note that ^p ^ = 7r^1 (Mp) and that ZF,S is the closure in Mr,s of °Zp ^. We note

the following description of "^Zp ^:

1.5.3. LEMMA. - Let <9Tp, Sp denote the closure ofQTp^ ^c in ^TF, Sp- Let

<ZF,E = MF X^ 9TF,E^ °ZF,S - MF X^ 9TF,E^.

Then

<^^v ^ ̂  ^^\<ZF,E5 °ZF s ̂  r^\°ZF,s as algebraic varieties.

Proof. - Everything is clear but the algebraicity, which follows from ([P], Prop. 9.36).
Let ^F,S : "^ZF^ ~> <ZF s ^e ̂  P^J^ction determined by the Lemma. For any

cone T € SF let Z^ C "^Zp^ be the stratum corresponding to r. Then assuming S is
sufficiently fine or F is sufficiently small, which we do, ^p, s restricts to an algebraic
isomorphism Z^- -^ Z^- ?= Z^- H ̂ p ^. Define

'0r = '7T2,E ° ̂ S : ZT ̂  ̂ ^F.

1.5.4. COROLLARY. - For each T, the morphism ^r defined above is algebraic.

1.6. STRUCTURE OF THE BOUNDARY (CONTINUED). - In order to extend Lemma 1.5.3 to
something directly related to the boundary stratum ZF,S attached to F, we must take a
detour through the theory of mixed Shimura varieties ([Mi], P). These are attached to pairs
(Q, X), where Q is an algebraic group with a three step-filtration by normal subgroups

(1.6.1) {1} c W_2 Q C W_i Q = R, Q c Wo Q = Q,

and X is a homogeneous space for Q(R) -W_2Q(C) . It is assumed that W_2Q is
commutative, and for any arithmetic subgroup F C Q the quotient

Tr (Q, X) := r n W_2 Q (Q)\W_2 Q (C)

is viewed as the set of complex points of the split torus with character group
Hom(rnW_2Q, T). The remaining axioms satisfied by the pair (Q, X) are listed
in ([P], Definition 2.1). The mixed Shimura variety is denoted Sh(Q, X)\ its connected
components at finite level are of the form Ap = I^A^, with X^ a connected component
of X. In what follows, by "connected component" we mean "connected component at
finite level".

4° S^RIE - TOME 27 - 1994 - N° 3



BOUNDARY COHOMOLOGY OF SHIMURA VARIETIES, I 263

Now, the spaces on the right-hand side of diagram (1.2.5) are all (connected components
of) mixed Shimura varieties: Mp is attached to the pair (P', X(Dp)), with W_2P'=U,
W-i P'=W, and X(Dp) is a certain P' (R) • Up (C)-homogeneous space containing Dp as
a connected component; Ap is attached to the pair (P'/U, X (DF)/UF (C)), with filtration
induced from that on P'; and Mp is the (pure) Shimura variety attached to (G^, X(F)),
where X (F) will be discussed in 1.7, below.

More generally. Pink defines ([P], § 4) a set of rational boundary components
(Q (%), X (%)) of (Q, X), consisting of a "canonical subgroup" Q(%) of an "admissible
parabolic subgroup" of Q, and a space X (%), such that (Q (%), X (%)) is a pair defining
a mixed Shimura variety, and such that

(1.6.2) W_2 Q (7Z) D W_2 Q, Tr (Q, X) c Tr (Q (7Z), X (%)).

For each % there is also an open cone C(%) C W _ 2 Q ( % ) ( R ) , which is invariant
under translation by the vector space (W_2 Q (T^DW-i Q) (R). He then constructs
partial toroidal compactifications, associated to families of fans in the various C (%), just
as in 1.4. A rational polyhedral cone a c W-2Q(%)(R) defines a torus embedding
Tr (Q (%), X (Tt))a for any arithmetic subgroup F C Q, and the connected component
I^A^T?^ is a principal Tr (Q(%), X (%))-bundle over a connected component of
the mixed Shimura variety attached to (Q (7Z)/W_2 Q (%), X (7Z)/W_2 Q (%) (C)); one
defines (T\X (U)^~)o- as in the pure case.

Now consider the case (Q, X) = (P', X (Dp)) of a rational boundary component of (G, X).
Pink shows ([P], Cor. 4.20) that each rational boundary component of (P', X(Dp)) is of
the form (P[, X(Dpj), where Fi is a rational boundary component ofF and Pi is its
normalizer in G. Furthermore, he shows ([P], Corollary 7.17) that the closed divisor
Za C TL\ (notation from 1.5) is the toroidal compactification, attached to an explicitly
determined family of fans, of (a connected component of) the mixed Shimura variety
attached to the pair (P'/U «cr)), Dp/U «a))), where U ((cr)) c Up is the one-dimensional
subgroup whose Lie algebra is spanned by a.

1.6.3. Examples.
(a) The rational boundary components (Q (7?.^), X (%c0) of Mp correspond exactly to

the rational boundary components Fc, ofF. Then the torus Tr(Q(%cO, ^(%a)) is the
corresponding Tp,, which contains Tp [as in (1.6.2)], and the cone C (%a) = Cp,.

(b) The rational boundary components of Ap, which we denote ((^A (%c0, A^ (%c,)),
correspond as in (a) to the rational boundary components Fc, of F, but now the
corresponding torus Tr ((^A (%a), ^A (^a)) equals Tp./Tp. Denote the corresponding
open cone C^ CW_2 (Q (7Z^))/W_2 (Q), and let (p^a : Cp, -^ C^ be the natural map.

(c) Finally, we denote by TF^F the torus attached to the boundary component Fc, of F
for the pure Shimura variety Mp^pYF, and CF^F the corresponding homogeneous cone.
Then there are natural homomorphisms Tr (C^ (T^a\ X^ (T^a)) —^ TF^F, inducing
maps ^^ : C^ -^ CF,,F.

Let M^s be ihe toroidal embedding of Mp, in the sense of [P], associated to the
partial cone decomposition inherited from S. Then Mp s is SNC and contains as an
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open subset (Mp^Sp (notation 1.3). Let ZF,S denote the closure in Mp s °f °ZF s- ^ ̂
is sufficiently small, there is a natural isomorphism, extending those of Lemma 1.5.3
(c/:[P], 7.13, 7.17):

(1.6.4) rAZF,s^ZF,s.

We assume henceforward that F is chosen sufficiently small so that (1.6.4) holds; this
is always possible (cf. [loc. cit.}\ alternatively, we could replace S by an appropriate
refinement).

According to ([P], Prop. 6.25 (b)), after replacing S by a suitable refinement, we
can construct complete SNC toroidal compactifications Ap,5 and Mp,s ofAp and Mp,
respectively, such that the morphism 71-1 of (1.2.5) extends to a r/-equivariant morphism
TTi '- AF,S —> MF,S- To be more precise, one constructs families of fans {5a C Cp^r}
and {5^ C C^}, with the property that, for all a e 2^, there exists ^ C 5a such that
^i,a (^) C $, and such that Ap,2 := AF,SA (for simplicity) and Mp,2 are SNC.

1.6.5. LEMMA. - W^n S ^ sufficiently fine, the morphism TT^ of (1.2.5) extends to
a Y i-equivariant morphism 71-2 : Mp ^ —>• A ^,. Furthermore, given AF,S ^^ MF,S as

above for each rational boundary component F (modulo the action ofT), S can be chosen
to work for all ¥ ' s simultaneously.

Proof. - This is essentially due to Pink. We first consider a fixed F, and let
{<5[SF],a c GF^} denote the induced family of fans, defined by analogy with ([P], 7.7):

(1.6.6) <5[SF],a = {r G SF^ IT has a face in Ep}-

The one-dimensional cones in <?[Sp],a correspond to the divisors in Zp^s that have
non-empty intersections with Zp,s- Let S = {So} be a refinement of {<5[sF],a} ̂ ^ fhat:

(1.6.7) For all r G So, there exists a G 2^ such that y?2, a (r) C a. Then we can define
the morphism 7T2, as in ([P], 6.25).

Since (1.6.7) is stable under refinement, we can find a global refinement S of E such
that <5rspi a satlsrles (1.6.7) for all F and all a. Replacing S by such a E, we obtain
the lemma.

Henceforward, we assume S to be sufficiently fine in the sense of the lemma.
Let ^ZF^S) denote the inverse image under (1.6.7) of >9Zp ^\ it is the closed

subvariety corresponding to cones in the boundary of Cp. Define ^Zp, s (2) ^d ^ZF, s (H)
analogously. For any r e S^, let 71-2, r '' Z-r —> AF,H be the morphism deduced from 71-2
via (1.6.7), 7T2,T its restriction to Z^- := Z^ n <^ ^. We record the following facts
for future reference:

1.6.8. LEMMA.
(i) c)Zp, s (s) == ^ZF, s (s) U ^ZF, s (s) ^ a divisor with normal crossings on Zp, s (5)-

Mor^ precisely, for any non-empty intersection of components of Zp, s (s). E = H^. ^^
closure of [9Zp, s (2) — U^cJ induces on E a divisor with normal crossings.
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(ii) For any r G S^, the morphism TT^ : Z^- —» Ap is a smooth fibration. The morphism
71-2, r f- T^r —^ A?, 5 is proper.

(iii) For any r e S^, fcr >^r =Zr^ >9Zy ^, and let 9^ = Ap,5 - Ap. T/^n
R ^7^2,*(C )z.)=R ^7^2,*(Oz.(->9r))=0 for i > 0;

an<3? r/^r^ <3r^ canonical isomorphisms

OA?,. ̂  7T2,. (OzJ, OAp,. (-9=) ̂  7T2,* (Oz. (->^)).

Pwo/. - Part (i) is just the hereditary property of divisors with normal crossings. The
first statement in (ii) is standard, and the second is obvious. Finally, GAGA reduces (iii)
to the corresponding analytic statement. Write T^ =Tp ((^A (%a), ^A (%a)) ^ TF./TF
[notation (1.6.3) (&)]. The assertions being local on Ap, s. we may restrict our attention to
a neighborhood of the stratum on Ap, s corresponding to the boundary component A^ (T^a).
Thus we may replace Ap by a T^-fibration over a certain mixed Shimura variety M^,
and AF,S by the partial toroidal compactification M^ x^ (T^)<y, for some a e 5^.
Let T (r) C TF be the torus generated by the images of {A (G^)|A e X» (Tp) H R • r},
and let T^-^a = TF^/T(T); this is the torus associated to the stratum Z«r in a partial
compactification of the mixed Shimura variety Mp^, cf. ([P], § 7). Let

S(O-) = {^e<5[SF],ah2(^) CO}.

Localizing further, we can replace the morphism 71-2^ by

^ x IB : T^,s(a) x B -^ (T^), x B
[notation (1.6.3) (&)]

where B is a complex ball in M^, and ha is a proper surjective morphism of torus
embeddings. In this form, (iii) is an easy consequence of Lemma 1.3.6.

1.6.9. Remark. - The condition 1.6.8 (i) for >9Zp s c <^F s can ^e wrltten ln terms
of SF: for all T € SF,

Zr H {closure of (^Zp^ s - U z^)}
crCr, dim (<r)=l

is a divisor with normal crossings on Zr-
1.7. We still have to discuss the adelic toroidal compactifications. Choose a minimal

rational parabolic Po C G. A rational boundary component F of D will be called standard
ifPp is standard, i.e. contains Po. Fix an open compact subgroup K C G(A^), which
is neat in the ad hoc sense of [H5] or the more canonical sense of [P]. The toroidal
compactifications KSh(G, X)s of ^Sh(G, X) are associated to adelic fans S = IJ^F,

F
where F runs through the standard rational boundary components. Each Sp is now a fan in

(1.7.1) G (Q)+ x^ ̂ + (CF x G (A^/K),

where Pp (Q)"1" acts on the left on the last two factors and on the right on G (Q)4", satisfying
the axioms of ([H3], 2.5). It is proved in [toe. cit.. Prop. 2.8] that, if S is moreover
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projective and equivariant (definitions in [loc. cit.]), then KSh(G, X)s has a model over
E(G, X) which is compatible with the canonical model of p^M^ x)- pink [P] has
proved a more precise result: he has defined canonical models of toroidal compactifications
with good functorial properties, and proved that p^Sh (G, X)s, and more generally toroidal
compactifications of mixed Shimura varieties, (see also 3.1.2.2) possess canonical models.

The toroidal compactifications of ^Sh(G, X) associated to projective equivariant fans
will be called admissible toroidal compactifications if the restriction to any connected
component is an SNC toroidal compactification. As remarked in ([H3], 2.8), the
admissible toroidal compactifications are cofinal in the projective system of all toroidal
compactifications, ordered by the relation of refinement on fans. Thus the following ugly
object:

si^xr^KSMG^x)^
where the limit is taken over all (compact open) K and (fans) S, has a canonical model over
E(G, X), which is respected by the canonical extension of the G (A^)-action on Sh(G, X).

The minimal (Baily-Borel Satake) compactification Sh(G,X)* of Sh(G,X) is
constructed as ^m p^Sh (G, X)*, the limit being taken over compact open K c G (A^). Here
p^Sh (G, X) = IIMr^ is the disjoint union of a finite set of locally symmetric varieties Mr^,
and KSh(G, X)* is simply IIM^. The morphisms TIE : ^{G, X)s -^ K^^ xf*.
defined on connected components in 1.5, define in the limit a canonical G (A^)-equivariant
morphism

(1.7.2) TT-: Sh(G,Xr-^Sh(G,X)*

The Baily-Borel compactification Sh(G, X)* is naturally stratified as follows (c/. [P],
§ 6). A rational boundary component of Sh (G, X) is a connected component of the set

(1.7.3) G W\B (D) x G (A^) = G (Q)\B (X) x G (A^),

where B (D) (resp. B (X)) is the set of rational boundary components of D (resp. X), and
the equality is a consequence of real approximation [D3]. Then Sh (G, X)* can be written
as the disjoint union of connected (pro-algebraic) varieties of the form

M ($, g) =^ g-1 Kg H G,, „ (Q)\<& . ̂

where $ G B(D), G/,^ is the corresponding group defined in 1.2, g G G(A^), and K
runs through compact open subgroups of G(A /).

Let F be a standard rational boundary component. The F-stratum Sl^G^X)1^ of
Sh (G, X)* is the set of M($, g) with $ G G (Q)+ • F. Then the F-stratum of Sh (G, X)"
is (7T~)-1 (Sh(G, X)1') c Sh(G, X)-, and, for any compact open K C G(A^) and any
admissible fan S, the F-stratum of p^M0^ X)s is the image in p^M^ X)s of fhe
F-stratum of Sh(G, X)".

At this point it is necessary to correct a misunderstanding which has led to incorrect
(or at least incomplete) formulations in much of the literature, including a number of
papers of the first author. Proposition 5.1.11 of [H2] associates to F a basic pair (G/,, Fp)

4° SfiRIE - TOME 27 - 1994 - N° 3



BOUNDARY COHOMOLOGY OF SHIMURA VARIETIES, I 267

(denoted there (Gp, Fpj, where F is a connected component ofFp, and the F-stratum
Sh (G, X)17 is implicitly viewed as the disjoint union of a family of Shimura varieties
isomorphic to Sh(G^, Fp). This is done in order to identify the Fourier-Jacobi expansion,
and especially the constant term, of an automorphic form along F, in terms of sections
of automorphic vector bundles (cf. 3.1, below) on Sh(G/,, Fp). Unfortunately, Fp may
have fewer connected components than X. The result is that Sh (G, X)17 is actually the
disjoint union of a family of finite Galois coverings Sh' of Sh(G/,, Fp), with Galois group a
subquotient TT of 71-0 (G^, F (W). These Galois coverings also have canonical models, as we
see presently, and admit a theory of automorphic vector bundles, all of which are naturally
homogeneous with respect to TT x Gh (A^).

This issue has been addressed by Pink, whose formulation seems to be the most natural
possible. Instead of the pair (G/i, Fp), Pink introduces a slightly more general pair, which
we denote (G/i, X(F)). Here X(F) is a homogeneous space for G/,(R), which admits a
finite-to-one equivariant map X (F) —> Fp, which makes X (F) a finite Galois covering of Fp,
with Galois group TT as above. However, X (F) is not a conjugacy class of homomorphisms
S_ —^ Gh,n. The Shimura variety is defined as before:

Sh (G^, X (F)) =^ Gh (Q)\X (F)xGh (A^/Kp, Kp C G/, (A^)

and there is evidently a natural Galois covering

(1.7.4) Sh(G^X(F) ) -^Sh(G^Fp)

with Galois group TT = Stab (F)/Stab (X (P)°), for any connected component X(F)° of
X(F) which maps to F. This construction is taken from ([P], 4.11, Prop. 2.9). In
Proposition 12.1, Pink shows that the reflex field E(G/,, X(F)) equals E(G, X) (cf. [H2],
Corollary 6.1.4), and in paragraph 11 Pink defines and constructs the canonical model of
Sh(G/,, X(F)) and proves the expected functoriality properties; in particular, the covering
(1.7.4) and the action ofpr are defined over E(G, X). Automorphic vector bundles on
Sh(G^, Fp) thus pull back to TT x Gh (A^)-equivariant vector bundles on Sh(G^, X(F)),
which we also call automorphic.

Moreover, let T^G/,)^, and let t : S, -^ TR be the image of any element of Fp; let T'
be the maximal Q-split quotient of T, and let (T', t ' ) be the corresponding basic pair.
By our hypothesis (1.1.4), the natural map T (R)/T (R)° -^ T7 (R)/T' (R)° is injective.
It then follows from Proposition 2.3 of [P] that (1.7.4) is the pullback, via the map
(G/,,F, Fp)-^(T', ^), of a Galois covering

shcr'J'^shcr',^)
where f is some T' (R)-equivariant cover of the point { i f }. In particular, if one adds the
double cover of Sh(Gyn, N), where N :S_ —> Gm,n is the norm map:

(1.7.5) SI^G^TTC^))
= Q X \ R > < xA^^R^^CTV^ x A f - x / R X =Sh(G^N)

then every Shimura variety in Pink's sense can be obtained from the old ones and
Sh(Gyn, 71-0 (R^) by taking fiber products and pullbacks.
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Now in the case of the boundary component F, X (F) has the property that, if X (F)°
is a connected component of X (F),

(1.7.6) Stabc, (R) (X (F)°) = G, (R) n G (R)+,

which in general is smaller than Stabc^ (R) (F). Of course, X(F)° may be identified with
the boundary component F of D, and this identification is equivariant with respect to the
actions of G/, (R) H G (R)+. Thus

(1.7.7) Sh(G,, X(F)) ^G/^^FXG^A^/KF.

Now the action on F extends naturally to Stabo/^+(F) = P (R)4'. Recall the group P'
introduced in (1.2.3). Then the ^-stratum of Sh(G, X)*, defined by

(1.7.8) Sh (G, Xf' ='^ P (Q)+\F x P (Q)+ . P' (A^) . K/K, K cG (A^),

is the image of Sh(G/,, X(F)) under its natural map to Sh(G, X)*. Indeed, the map
Sh(G^ X(F)) -^ Sh(G, X)1", the natural one from the right-hand side of (1.7.7) to
the right hand side of (1.7.8), is surjective, by strong approximation in the unipotent
group Wp. Whether or not it is an isomorphism appears to depend on whether or not the
commutative algebraic group G/nG/i satisfies the Hasse principle. In any case, Sh (G, X)15

is the quotient of Sh(G/,, X(F)) by a subgroup of P(Q)+, acting by conjugation. This
action is given by an automorphism of the data (G/i, X (F)), hence respects the canonical
model by functoriality (cf. [P], Prop. 11.10).

More generally, the F-stratum of Sh(G, X)* is given by

(1.7.9) Sh (G, X)F =^ P (Q)+\F x G (A^/K

= Sh (G^, X (F)) x^^'^ (A/) G (A^),

where P(Q)+ is the closure of P (Q)+ in G (A-Q.
The equality (1.7.9) imposes a canonical model on Sl^G^X)^ It is proved

in paragraph 12 of [P] that this model is compatible with the canonical model of
Sh(G, X)* defined (for example) by the universal properties of the latter among normal
compactifications of Sh(G, X).

It follows from (1.7.9) that the F-stratum Sh(G, X)-^ of Sh(G, X)~ is

(1.7.10) (7T~)-1 (Sh (G, Xf) = (7T~)-1 (Sh (G/,, F, X (F))) x1^^ <A') G (AQ.

We define the P-stratum Sh(G, X)1' of Sh(G, X)* to be the set of M(F, g) with
g e P (A^). The P- and P'-strata of Sh (G, X)" or ^Sh (G, X)s are defined analogously.
The P'- and P-strata of Sh(G, X)" are given simply by

(1.7.11)
Sh(G, X)-^ := (TT^-^SI^G, X)^)

.St^G^X)-^ := (^-^(Sl^G^X)1") X^^^-^CA^) G(A^).
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The difference between these two notions is that Sh(G, X)^513 maps naturally to (a
quotient of) Sh(G/i, X(F)), whereas Sh(G, X)^115 is more natural with respect to the
adeles of G/. Here is the picture: (1.7.12)> 01 o/. nere is me piciure: ^i./.iz;

(G, X)^ D Sh(G, X)^ D Sh(G, X)^ ̂  Sh(G, X)^ ^ Sh(G^ X(F)).

}. CAYLEY TRANSFORMS. - We collect here some of the basic facts about Cayl(

Sh

1.8. CAYLEY TRANSFORMS. - We collect here some of the basic facts about Cay ley
transforms and canonical automorphy factors that will be used in subsequent sections.
We introduce the auxiliary basic pair (G^, A(Pp)) as in [H2], 5.1, where G^ was
denoted G6™. Here G^ is the connected algebraic subgroup of G with Lie algebra
9~2 9 S° ̂  S2^ m ^e notation of 1.2.2, and a connected component A (Pp)0 C A (Pp)
is given, in the coordinates (1.2.4), by the subset ofD for which v = 0. There is a
product decomposition

A ( P F ) ° ^ D , X F ,

where Dy is the tube domain over the cone Cp, corresponding to an isogeny

j : dx Gf, (0) ̂  G^

(notation in the domain as in 1.2.2). The symmetric domain F is then a boundary
component of A (Pp)0. More precisely, Pp,t = G/ • Up is a rational maximal parabolic
subgroup of Gf, the stabilizer of a point boundary component { q } of the tube domain D/;
then { q } x F is naturally a boundary component of A (Pp)0. In particular, Gf D Z^.

Let NF = Gi • WF; NF (R) acts trivially on F. Fix a point p e D; Q = tp C pp be the
corresponding Cartan decomposition of the Lie algebra Q of G (R), and let

d.8.1) sc = Ep,c ei^ ep~ = s^ W15-^ W-1'^
be the Hodge decomposition ( I . I . I ) . Let Kp (resp.Pp) C Gc be the connected
subgroups with Lie algebra Ep,c (resp.^Pp := Ep,c 6P~). Then Kp is defined over R,
and we frequently write Kp for the subgroup of G(R) which stabilizes?; Kp contains a
maximal compact subgroup of G(R)°, and also contains ZG(R) . We may assume that
p G A (Pp), so that Kh = Kp Ft Gh (R) contains a maximal compact subgroup of Gh (R)°,
Gh (R)°/A (R) • Kh is hermitian symmetnc, and Ki = Kp n G; (R) contains a maximal
compact subgroup of Gi (R)° (cf. [H2], § 5). Note that K^ is smaller than the stabilizer in
Gk (R) of a point in X(F), since Kh does not contain A (R). Let K^ = Kp H G^ (R);
it is isogenous modulo Z^ (R) to K^ x K^, where Kf = Kp2) H j (G^), withy as above.
Again, we frequently use K», * = h, Z, to denote the connected R-algebraic group with
Lie algebra Lie(K^).

The point p € D is a CM point if there is an algebraic torus H C G such that
p : S_ —> GR factors through HR; then the basic pair (H, p) is called a CM pair, with reflex
field E(H,p). There are many CM pairs; indeed

f E ( G , X ) = H E ( H , p ) ,
[where {(H, p)} runs over CM pairs in(G, X) ([D5], 5.1).
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We assume henceforward that p is a CM point. In ([H2], 5.2.3), we construct an
element CF C G^^E^, p)) with the following properties:

(1.8.3) { Ad (CF) (SC2) = ̂  c p+5 Ad (CF) (GO = Kt? Ad ^CF) (Kt) = Gf;

[ CF commutes with Ki

This corresponds to the element denoted (Cp, P)~1 in [loc. cit.], and we call it the inverse
Cayley transform. The purely analytic theory of the (inverse) Cayley transform was
developed in [WK]. The point cp(p) is in the U(C)-orbit ofp and lies on the boundary
component opposite to F, i. e., the one whose normalizer is the parabolic subgroup opposite
to PF (relative to our choice of Levi factor).

The composite Ad (cp) o wp : Gm —^ Kp determines a parabolic subgroup

QF,P C Kp : QF,P = {x G Kp\ lim Ad (Ad (cp) o WF {t)) {x) exists in Kp}.

Let Vp denote the vector group Wp/Up, vp = Lie (Vp) = Gr^ s, relative to the weight
filtration (1.2.2.4). Thus Vp is the unipotent radical of PTUp. By (1.2.2.2), vp has a
pure Hodge structure of weight -1, (with Hodge filtration Fp, and one verifies easily that
it is of type (-1, 0)+(0, -1) (cf. [Br2], [D2], [P]):

d.8.4) t)F,c ^ (t^c)^1'^ e (D^c)^'-^ := ̂  e t);.
When D is realized, a la Harish-Chandra, as a bounded domain in p4', cp ' D becomes

a Siegel domain of the third kind inside the complex vector space p^~ with respect to a
certain K^-invariant decomposition ([WK]: 7.1):

(1.8.5) ^-^e^ep^
with p^ as in (1.8.3) and p^ = p^ D fl^c-

1.8.6. LEMMA. - Ad(cp) induces a Kh-equivariant identification t)^ ^ p^. Furthermore,
Qy,p is a maximal parabolic subgroup of Kp with Levi component K^ and
Lie (Ru Qp,p) ^t^. Alternatively, Qp^ ^ ̂  projection on Kp = Pp/Ry, Pp o/ Pp H P.

Proof. - See ([WK]: 6.3,7.4) for the first two assertions. Now Pp D P has Lie algebra
s := F°fl HWoS. Since W-2 S is purely of type (-1, -1) [D2], s is an extension of
F° s H Gr^ S = F° (Lie (Lp)) by F° s H Gr^ s = F° Gr^ s = t),. Similarly,

L i e (PnR,Pp)^F l snG^^=p , :=p -n^ , c .
The third assertion follows immediately.

1.8.7. A canonical automorphy factor for the pair (Pp, p) is a morphism
J : G (R)° x D —> Kp (C) satisfying the following seven conditions:

(1.8.7.1) 3(g .</, x) = J(^ ^(.r)) . J(^, rr), ^, ^/ G G (R)°, x C D;

(1.8.7.2) J(fc, p) = fc, Vfc e K^(R);
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(1.8.7.3) For any g G G (R)°, the function J (^ •) : D -> Kp (C) is holomorphic;

(1.8.7.4) The map J (•, x) : Np (R) HG (R)° -> Kp (C) comes from an E (H, ^-rational
homomorphism Np —)> Kp of algebraic groups that is trivial on Up, and is independent
of x C D.

(1.8.7.5) The restriction J^ of J to G^ (R)° x A (Pp)0 takes values in the subgroup
K^ (C) C Kp (C). Then the homomorphism

J^kwo: G,(R)°-K^(C)
takes values in Kf (C), and comes from the isomorphism (1.8.3) CF : Gi^Kt of
algebraic groups.

(1.8.7.6) The restriction of J to Pp (R)° x D takes values in Qp,p (C).

(1.8.7.7) There is an automorphy factor J/, : Gh (R)° x F -^ K^ (C), satisfy-
ing the analogues of (1.8.7.1-3), such that, for g E Gh (R)°, z e A (Pp)0,
J^ ((7, z} = SH (^ ^F)» where zp is the projection of z onto F.

1.8.8. PROPOSITION. - A canonical automorphy factor J = J^'^ for (Pp, p) exists.

Proof. - J was constructed in ([H2], 5.2) in terms of the Cay ley transform cp. With the
exception of (1.8.7.6), which follows easily from Lemma 1.8.6 and the definitions, the
above properties were verified there, following [WK]. It is essentially uniquely determined
by these properties.

2. Differential forms on torus embeddings and their real quotients

2.1. Let T be the torus G^, and let Ts be a non-singular torus embedding, associated
to a fan S in R71. Recall that if S° denotes the set of n-dimensional cones of S, and S1

the set of cones of codimension one, we have
(i) TS = U T- (with T- (c) ^ cn)'

aes0

(ii) T^ n T^/ '= Tr whenever a n a ' = r G E1 (with Tr (C) ^ C71-1 x Cx),
and so on for intersections of higher dimension (assuming, as of course we always do, that
every T in S is a face of some top-dimensional cone). Since each a in S is a cone, one
can define a = {a - {0})/R^, and S = {a\a G S}, as in (1.3.6.6).

In what follows, we use the analytic topology on Ts (C). The data contained in S also
gives rise to a real "connected torus embedding" T^ as follows. Inside T(C) = (C><)n

we have T(R) ^ (R^, a group with T connected components. We take its identity
component T(R)° ^ (R^, which we denote T-". The construction of Tj: C T\, (R)
can be described abstractly as the adjoining of the usual boundary (with comers when
n>l ) to T^ viz.

T'+ r^1 /O \f^ ' ( r- VO1 .̂ = [H^o) it a 6 2j .
(See also 2.3 below.) This is a natural process: if a^\af = r, as above, then

T+ n rp+ 21 T^ ^1 /P \n—l v . pX ,-C rr r r ' CL V°a " ^ a ' ~ ^r — V^^oJ X K^_, It (7, (7 G Li ,

ANNALES SCIENTinQUES DE L'ECOLE NORMALE SUP^RIEURE



272 M. HARRIS AND S. ZUCKER

the intersection taking place inside Ts, and so on. We put

T^ = U T^.
<7€S0

It is a manifold with comers, equipped with a closed embedding in Ts, as the closure
ofT^ inTs.

One can also regard T^ as a quotient of Ts, as follows (see [O], § 1.3). Note first that
the pair (T, T-") acts on the pair (TE, T^). Let T° ^ (S1)71 denote the maximal compact
subgroup ofT (this is written c-T in [AMRT]). The following is evident:

2.1.1. PROPOSITION. - The composite mapping

T^ TS ̂  Ts/T-

is a homeomorphism.
Let 9T^ = T^ - T-^-. We have:

2.1.2. COROLLARY. - The composite mapping

9T^ ̂  9Ts ̂  {QT^/T0

is a homeomorphism.

2.1.3. PROPOSITION. - The space 9T^ is PL-isomorphic to the polyhedral complex dual
tot.

Proof. - We have:

9^= u9^- u ̂ (^
o-€E <7€E

where orb (a) denotes the unique closed T^orbit in Tj", a cell whose dimension is the
codimension of a inIR71. Moreover, one has that a ' C a if and only if orb {a') D orb (cr).
These are the data that define the dual of S.

2.2. THE SIMPLICIAL COMPLEXES ASSOCIATED TO THE TORUS EMBEDDINGS. - In the remainder
of this section, we fix F and study the topology of the boundary of Mr,s near <riv ̂
Thus we drop the subscript F until section 2.5.

Let S = EF be as in Section 1.3. For a € S, let Sk1 (a) denote the set of one-
dimensional faces of a. In order to simplify the exposition, we assume from now on that
the elements of S are simplicial cones (as can always be arranged by subdivision), viz.

(2.2.1) For all a € S, dim (a) = Card Sk1 (a).

The condition (2.2.1) implies that E is a simplicial complex, whose (-simplices are in
natural one-to-one correspondence with the O'+l)-dimensional cones of E. Also, let 1°
denote the subcomplex of S given by

(2.2.2) {a € t\a € E'}.

Both S and E" are Fy-equivariant.
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We need to study more closely the topology of the simplicial complexes

(2.2.3) r^s D r^s0,

and their relation to the boundary divisor Zp,s via 2.1.3. It turns out that, under mild
additional hypotheses, these spaces actually contain the most essential information about the
topology of the boundary; to be precise, it is possible to construct a homotopy equivalence
from the "real quotient" [cf. (2.1)] of ^p s to fiber bundles with fiber the simplicial
complexes in (2.2.3), in terms of the coordinates of the cone Cp. We now set:

r e )
(2.2.4) ^ (ii)

l(iii)

9S = {a e S|a C OOp}
9t = {a\a € <9S}

E' = S - <9S

(N.B. - S' is not a simplicial subcomplex of S), and note that

(2.2.5) S° C S7 C S.

2.2.6. DEFINITION. - S is said to have full boundary if every cone in S, all of whose
edges are in <9S, is itself in <9S (cf. [ES], II, 9.2).

When S has full boundary, one can describe S° as the set of cones a C Cp for which
some edge (L e., one-dimensional face) lies in the interior. It is always the case that ^c is
the subfan of cones in S such that every edge lies in the interior.

It is clear that (2.2.6) induces a corresponding notion for S, expressible in terms of its
simplices and vertices, and conversely, so the two are equivalent. We observe that given
any S, the process of barycentric subdivision produces a rrequivariant refinement S^
ofS having full boundary (cf. [ES], II, 9.4). Thus:

(2.2.7) One can always assume without loss that S has full boundary.

2.2.8. PROPOSITION. - If (2.2.7) holds, the simplicial complex I^\S is a (piecewise-
linear) deformation retract of r^\S'.

Proof. - Since S has full boundary, it follows that <9S has a regular neighborhood in
S^ (see [loc. cit.], Ch. II, § 9). We claim that our assertion is a variant of that; indeed
it is a case of the following construction.

First, let a be a simplex, and r any face of a. Then one has canonically that a = r * a,
where a is the face opposite to T, and * denotes join (by convention, r*0 = r). Whenever
a^0 , this displays a as the quotient of r x I x a, where I is the closed interval [0, I],
in which r x {0} x a projects onto r in a and r x {1} x a projects onto a.

Next, let K be a simplicial complex, and L a full subcomplex ([ES], II, 9.2). Let

N = |j Star (r) (notation recalled in 2 .4 , below).
r(SL
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For any simplex a- of N, put r == a D L, which is non-empty by hypothesis, and a face of
a by fullness; then write a = r ^ a (cr, r) as above. By mild abuse of notation, we put

<9N = \J a (a, r), N= N - <9N.
r€L

Compare the two assertions:
(i) The linear retraction of I onto { 0 } (for simplices not contained in L) generates a

deformation retraction of N onto L (regular neighborhood property);
(ii) The linear retraction of I onto { 1 } generates a deformation retraction of N-L onto

<9N (hence of K-L onto K-N). Then (ii) always holds (whereas (i) requires that the
retraction be well-defined at the boundary, i.e.

a (a, r) = a (a', r') =^ r = r

and this can be arranged by barycentric subdivision using the "I" of the original
triangulation). For Proposition 2.2.8, we take

K = r^\E, L - FA^E, K-N= r^,
and apply (ii).

Thus, if we impose (2.2.7), we may assume without loss that S has the property:

(2.2.9) r;\E° is a deformation retract of F^\E'.

Since we are assuming that Cp = \J{o n Cp) ([AMRT], p. 117, Hyp. 5), we
have that S' - {0} is homeomorphic to Cp - {0}, hence F^E' ^ F^E^5' (non-
canonical homeomorphism) is topologically the quotient X (F/) of the symmetric space of
(G^F H G^) (R)°/A(R) by the arithmetic group F/. Moreover, it is a consequence of
reduction theory (see loc. cit.. Hyp. 4) that F^E0 is a compact simplicial complex (with
boundary), and by (2.2.8) a deformation retract of r/\E'. We thereby get

2.2.10. COROLLARY. - The simplicial complexes F^E0 and F/\E^'c are triangulations
of compact topological deformation retracts of the locally symmetric space X(F^).

2.2.11. Remark. - E^^ can be seen as a triangulation of the complex dual to E
(c/2.1.1).

2.3. We recall some of the terminology from ([AMRT], I). We have

(2.3.1) T^ruWC^T0 x % U ( R ) ,

where T'' is now the compact torus Fu\U(R). Identifying % U ( R ) with U(R) in the
obvious way, let

(2.3.2) ord : T ^U (R)

be the projection onto the second factor. This induces a homeomorphism

(2.3.3) T^T/T^I^R).
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This permits one to realize the real torus embedding T^/T0 in terms of the ambient
space for S, as follows.

For a € S, one has a continuous extension of ord to a mapping

ord<, : T^ ->U^

where U^ is the partial compactification of U (R) to be described below, which factors
through a homeomorphism T^/T° ^ U^. These mappings patch together to define a
homeomorphism

(2.3.4) ords: Ts/T0 ^Us.

We use this to provide explicit coordinate charts. Let Q (a) be the (unique) minimal set of
generators of a H I\j. With our running hypothesis that <9Mr,s is a divisor with normal
crossings, Q(a) is a subset of a basis of Fy (see [KKMS], p. 14, Thm. 4). First, suppose
that a is a cone of top dimension. Let Q (a) be the basis dual to Q(a). For q e Q (a),
put Cq {x) = e"271"9^); these define canonical coordinates:

(2.3.5) 6,: ^R^RX))^,

a real analytic isomorphism. One obtains U^ as the partial compactification of U (R)
corresponding under e^ to (R^o)^^-

2.3.6. Remark. - One should keep in mind the elementary fact that Cq (rr) ^ 1 if and
only if q {x) ^ 0. Thus, the closure of e^ (a) is the closed unit hypercube.

If a ' is a lower-dimensional cone in E, let a be any top-dimensional cone having <j'
as a face. Then a ' is defined in a as the locus of zeros of some subset Q'(o-) of Q (a).
Using e_y again, let U^ a ' be the (dense) subset of Va corresponding to

(2.3.7) (R^o)0 (<T)-Q/ (<T) x (RX))^ (<7).

One checks that (2.3.7) is independent of a in the following sense:

2.3.8. LEMMA. - If a\ and a^ are top-dimensional cones containing o ' as a face, then
the identity mapping ofV (R) extends to a diffeomorphism U^^/ '=- U^,^7.

Proof. - Let Q<y (cr') denote the set of restrictions of Q^-Q^a) to the linear span
(a') of a ' . These give generators of the non-negative Z-valued functionals on (a') nU (Z),
so this set is independent of a. It follows that for each q^ G Qai (crQ, there are a unique
Q2 € Q^ (^') and ^' in the Z-span of Q' (02) with q\ =q^ -\-q'. With this said, the composite
diffeomorphism e_^ e^ is seen to extend to the boundaries in (2.3.7), as desired.

(2.3.9) Remark. - By the above, we have canonical coordinates e^ on (cr'), determined
by an intrinsic set Q^').

We can now write simply U^/, and patch together the U^/ (cr' e S) to obtain Us.
Furthermore, we have the canonical homeomorphisms T^/T0 != U<y, which likewise patch
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together to define (2.3.4). Note that we can apply the same construction to E^ and we
get T^c/T0 ^V^c by restricting ords. See the figure below for a picture in dimension 2.

(2.3.10)

2.4. We write 9Va for the complement of U (R) in U^; by a mild abuse of notation,
we can say that it is defined as the locus where at least one ^-coordinate vanishes. Let a
denote the closure of a in U^. Note that

(2.4.1) a = [x € a\eq (rr) > 0 for all q € Q (a)}.

If (T1 is a face of a-say then that a € Star (a'), -put

(2.4.2) 9V^ (a) = 9V^ n a.

It is useful to keep in mind the following hereditary feature of torus embeddings, which
also passes naturally to their real quotients:

2.4.3. PROPOSITION (see [O], 1.3).- Let S be a fan in R". The T-orbit in Ts associated
to cr (the unique closed T'-orbit in T^) is itself a torus. Its dimension equals the codimension
of a in R"', and its closure in Ts is the torus embedding determined by the fan in R" /{a}
consisting of the projections of the elements of Star (a).

2.4.4. COROLLARY. - If dim a' = 1, the closure of 9V af m Us is the real torus embedding
determined by the projection of Star (a') in ̂  / ( a ' } .

It is also convenient to introduce the constellation of a ' ' .

Con (a') = {a € S|a H a' ^ 0} = U {Star (r)|r is an edge of cr'}.

2.4.5. LEMMA.
(i) 9V^ (ai) n 9V^ (02) = 9V^ (ai H 02).

(ii) For any a ' G S°, we have |j QVa' (^) = 9Vcr'j where a runs over the (finite) set of
top-dimensional cones in Con (cr7). Thus, 9V^c c |j a.

o-es
Proof. - It is easy to see that whenever a is a face of r, a [defined by (2.4.1)] is

closed in U^-. Then (i) follows directly from (2.4.2). To prove (ii), one must verify that
9V a ' C [j a, where the union is as above. Since a ' e S", this union is finite. Also,
the union of {9V\.\r a 1-dimensional face of a'} is dense in 9Vyi. It thus suffices to
consider the case where dim a ' = 1; then Con^^Star^') is just the union of the closed
top-dimensional cones of which a ' is an edge. Our assumptions on a ' imply that in U (R),
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o•f is in the interior of its star, i.e., a ' C Int((Ja). The desired assertion now follows
from 2.4.4.

For each top-dimensional a € S, we use the corresponding canonical coordinates to
define the linear homotopy:

(2.4.6)
f ha- : [0, 1] x a -^ a
\e, (^ (^ x)) = te, (0) + (1 - t)e, {x).

(N.B., Cq (0) = 1 for all q.) For t<\, its restriction hy^ to {t} x a is one-to-one; for
r>0, the image of hy^ is contained in U (R). Note that if q vanishes on a face of a, then
£q o her = 1 on that face, hence q o ha =. 0. It follows that

(2.4.7) The homotopy respects the simplicial structure of a.
Moreover, to each proper subset I C Q (a), let pi e 9Va- be the vertex of the hypercube
such that Cq (pi) = 1 for q € I, Eq (pi) = 0 for q ^ I, and let a (I) be the face of a defined
by the vanishing of all q G I. Then it is clear that

(2.4.8) For each I, ha (i^ pi) traces the barycentric ray in a (I) for t € (0, 1).
Let (Cr)s denote |j a, endowed with the weak topology, and do likewise for other

<res
fans; let IS I denote the support of S. Then (Cp)E admits a continuous injection into Us.
However, it is usually not an embedding, for the induced topology on

(CF)S,^-{O}= u^-W)-^-^}
o-es

is, in fact, a Satake topology (this fact, to be proved in a forthcoming paper of the two
authors, will not be used here), generally finer than the one induced from U(R). We
repeat that the topology on the union above is the weak topology; this is also the topology
imposed on S in 2.4.11, below. On the other hand, things are nicer at the boundary:

(2.4.9) 9 (CF)S := (CF)E - |S| is embedded in <9Us.

To be precise, after reminding ourselves that

9a := 9U<, f-1 a S 9U^

we have [cf. (2.4.5, (ii)]

9Usc ca(CF)sC9Us,

and the inclusions are proper unless E^S. Moreover, the inclusions are embeddings, for
the topology of 9Us is the weak topology. From 2.1.3, we have that

9Usc = U 9Vr
res0

is the dual complex of S°, and is realized inside S as S^10 [cf. (2.3.10)]. Finally, it is
clear that the Fraction on Cp extends continuously to (CF)E-
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The argument used in the proof of Lemma 2.3.8 shows that the /i</s patch together
to define a continuous homotopy

^ : [0, 1] X (CF)E ̂  (CF)S,

which tautologically respects the cone decomposition.
From (2.4.6), we see at once:

2.4.10. PROPOSITION. - The homotopy h^ is piecewise linear and T i-equivariant. For
0<t<\, /is,* moves <9(CF)s homeomorphically into (CF)E,J — {0}-

Henceforth, we write 9(Cp)^(t) for h^,t (9(Cp)^), etc. Let QTj0 be the boundary
of S0 as a PL manifold with boundary.

2.4.11. PROPOSITION. - The projection of 9{Cp)^{t) for 0<t<l, onto
((CF)^,/ — {0})/R^ defines a Ti-equivariant homeomorphism of the triples
(3(CF)E, 9U^, 9{C^c) and (S, S^, S0), with 9{Cp)a^ going to 9S, etc.

Proof. - We first verify that 9 (CF)S (,t) is transverse to the lines of dilation in Cp.
In terms of canonical coordinates, we need to check that on any face of the boundary,
the equations

[t + (1 - t)e, {x)} = [t + (1 - t)e, {y)Y q G Q (a)
imply that r== 1. But there is some q for which Cq = 0 on that face, which gives f=f , thus
yields the desired conclusion for 9(Cp)^, 9{Cp)^c, and 9{Cp)g^.

Now for any 1-dimensional a € S° and any top-dimensional a' G Star (a), let
B(a, a') cS^'0 be the hypercube whose vertices are the barycenters of all a" G S
such that a C a" C a ' . It follows from (2.4.8) that for 0<r<l , the projection of
fes (t x 9Va' (^)) onto ((CF)S^ - {0})/R^ is just B(a, a'). The assertion regarding
9\J^c now follows from Lemma 2.4.5.

The following is immediate:

2.4.12. COROLLARY. - Let Y denote any T [-invariant cross-section to the dilations of Cp.
Then there exists a T i-equivariant homeomorphism from Q (0?)^ — 9 (CF^E onto Y. TjfY
is such a cross-section for (CF)E» then there is a Y i-equivariant homeomorphism from
<9(CF)s onto\.

By 2.2.10, we also have:

2.4.13. COROLLARY. - Ti\9V^c has the homotopy type ofX(Ti).

2.5. We restore the subscript F in our notation. Recall the spaces DF,<T and DF,E
from 1.3. Let Y be as in 2.4.12, and put

(2.5.1) Op (Y) = [ry G CF^ > 1, y € Y}.

For t e F, let ht (', •) be the real-bilinear form on C" ^ Wp (R)/Up (R) given by
the theory of Siegel domains of the third kind (coordinates as in (1.2.4); cf. [AMRT],
p. 239), and let

(2.5.2) Dp (Y) = {{z, v, t) € D|Im {z) - ht (^ v) G Cp (Y)},
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Let DF,S (Y) C DF,S denote the interior of the closure of F^DF (Y) in (Mp)s.
The morphism TTF.S : (Mp)s —^ Mp of (1.3.2) restricts to a mapping

Try : DF,S(Y) ^MF.

When Y is understood, we omit the "Y", writing DF,E(^) for DF,S(^Y), etc. The
following is well-known, deduced in ([AMRT]: Ch. 2, § 5) from the theory of cores:

2.5.3. LEMMA. - Let (^F, s '- DF, s —^ Mr, s be as in (1.4.1). There exists Y as above,
such that the set of interiors of the closures in Mr, s of

W(a)=^F,s(I \F\DF.s(^Y))

for a>l, is a fundamental system of neighborhoods ofZp^p in Mr,s.

2.6. We next return to the setting of 2.1, and discuss the C00 de Rham sheaves for T^
and <9T^, from all angles suggested therein. We begin with T^. Let A* (T^) denote
its intrinsic de Rham complex as a manifold with comers, and A* (Ts/T0) denote its de
Rham complex as a quotient, in the sense of Koszul [Ko] (see also [Sj]). The latter is,
by definition, the subcomplex of TT^ A9 (Ts) consisting of forms which are both invariant
under the action of T*^ and annihilated by contraction with vectors tangent to the Traction.
Clearly, the diagram in 2.1.1 defines a diagram

(2.6.1) A (TE/T") ̂  TT, A (Ts) ̂  A (T^).

Since we shall be making local statements, we can restrict our attention to a single a G S°:

T^ T, -^ T./T^

is just

(R^^C'-.C'/T0.

Let H denote the subgroup (Z/2Z)71 of T^ Then H acts on R" by the sign ±1 on
each factor.

2.6.2. PROPOSITION. - A9 (C^/T0) '= A9 (R^H) = {^A9 (R"))".

Proof. - It is enough to consider the case n=l , where the assertion can be checked
using the usual polar coordinates. Indeed, A* (R/{±1}) is generated at r=0 by 1 and
rdr over the even functions of r.

2.6.3. Remark. - Explicitly, this gives the following. For any subset S of {1, 2, . . . , n},
put

H^K^i, . . . , ^ ) e H : tj=iifj^s}
Fs = {(rri , . . . , Xn} € R71 : x, = 0 if and only ifj G S},

and the open faces of the comer,

Fs = Fsr^o)71.
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Then Hs = H/H8 acts on Fs, hence on A9 (Fs), and the restriction to Fs of
def

coker{^ (R'/H) ̂  A9 ((R^o)71)},

which is supported at the boundary, is isomorphic to

im{e(7^^•(Fs))x-^•(Fs)},
where the sum runs over the non-trivial characters of H5.

2.6.4. COROLLARY. - The inclusion

A' (C'/T6) -^ A9 ((R^o)")
is a quasi-isomorphism.

2.6.5. Remark. - When n= 1, this is asserting that at r=0, the germs of forms on the
r-line decompose into the complexes of odd and even forms (note that if / (r) is an even
function, then f(r)dr is odd, as (-l)*dr = -dr\ and that the little cohomology that
there is, is carried by the even summand.

2.7. We now turn our attention to the boundary, and consider

(2.7.1)
^•(TS/T^I^T./T-) ^^(T^)l^

i i
A^OT^/T0) ^ A^QT^)

For the bottom line, we can use the simplicial de Rham complex for a divisor with normal
crossings or a polyhedral complex (defined in terms of those of its components or faces)
and the corresponding Koszul construction. (Alternatively, the vertical arrows are seen to
be surjective.) That a is a quasi-isomorphism is a consequence of the following standard
spectral sequence argument (cf. [D6], § 5):

2.7.2. PROPOSITION. - Let {v4^}^s and {B^}ae^ define simplicial sheaves A9 and B9,
and let $ : A9 —^ B* be a morphism. Suppose that for all a, $^ is a quasi-isomorphism.
Then so is ^.

Now let A0'9 (Ts) be the Dolbeault resolution of 0^, and define A01 • (<9Ts) likewise.

2.7.3. PROPOSITION. - The projection

^•(TE/n-Tr.A0'-^)^

is an isomorphism of complexes. Moreover, the same is true of

A9 {QT^/T0) -^ TT, A0-9 (OTs)^.

Proof. - We consider only the case of Ts, for the assertion for 9T^ is just the simplicial
version. In terms of the usual coordinates of T^ ^ C71, the differentials

Zj dzj = TJ drj — ir^ d6j (1 ^ j^ n),

the (0, l)-component of rf lz /1 2 , are (T^-invariant, hence generate T r ^ A 0 ' 9 (Ts)^, as an
exterior algebra, over TT^ A° (Ts)^. By what we said earlier, along Fs the latter is given
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by smooth functions of the r/s that are even with respect to the variable rj whenever j € S
(hence are functions of r] if j € S). The isomorphism is effected simply by replacing
drj by 1/2 (drj-irjdffj).

2.8. We will need a relative and equivariant version of 2.7.3. It is useful to introduce
the following abstract setting. Let TT : E -^ B be a holomorphic fiber bundle, on which the
torus T acts vertically. We assume that the fiber is a SNC torus embedding for T. Let Z
be a ^-invariant subset of E that satisfies the conditions:

F (i) TT' = 7r|z is a fiber bundle,
\ (ii) Z is open in the closure of a union of T-orbits,

We decompose TT' as

(2.8.2) Z ̂  Z/T" -^ B.

By hypothesis, we have locally on B that

(2.8.3) E = Ts x B,

and then p is deduced from Ts —^ Ts/T0. Since we will be working locally on B,
we assume that (2.8.3) holds. For simplicity, assume that Z is open in Ts x B
(otherwise, we must argue simplicially, as in 2.7). Again, p is induced by the product
of n factors of C —^ R^o. But then for any (relatively) open cube K in standard position
in T/T° ^ (R^o)^ P~1 (K) is a product of discs, punctured discs and annuli, hence is
Stein. Thus we deduce:

2.8.4. PROPOSITION. - For all o0, Ri p^ Oz = 0.
Let £ be a locally-free sheaf on B, and put V = TT* £. Then:

2.8.5. COROLLARY. - For all i>0, R' p* V = 0. Thus the morphism p^V —^Hp^V is
a quasi-isomorphism.

If we represent Rp* V by the direct image of the Dolbeault complex for V, and take
invariants for the compact group T^ we obtain:

2.8.6. COROLLARY. - The natural mapping (p^ V)^ —> [p* (A0' • (Z) 0 V)]1" is a quasi-
isomorphism.

There is one more elementary ingredient:

2.8.7. PROPOSITION. - The natural inclusion
q-^e^^vr

is an isomorphism.

Proof. - We may assume that £ = OQ. The discussion preceding 2.8.4 shows that we
can reduce to issues about functions of one complex variable. The assertion here comes
down to the fact that a holomorphic function which is independent of 0 is necessarily
constant.
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2.8.8. COROLLARY. - The mapping q-1 (A°- • (B) 0 £)-^ [?„ (A0' • (Z) 0 V)]^ ^ a
quasi- isomorphism.

2.8.9. Remark. - If we write g~1 <f = p^ 7r~1 £, we see that 2.8.8 can be viewed as a
generalization of 2.7.3. Note that 7r~1 £ is the sheaf of relatively horizontal sections of
the natural relative connection (see [D]: I, 2.20) on V.

We will also have to permit TT : E —> B to degenerate. The kind of local structure that
occurs at the boundary is a surjective morphism of fiber bundles of torus embeddings:

Z* c E* -> B*

\ /

S

(i. e., locally the product of a morphism of torus embeddings with a parameter space). If
h: TI -^ T2 is the associated morphism of ton, then the torus in the preceding corresponds
to T=(Ker/0° here, and we assume Z* to satisfy (2.8.1) (ii) relative to Ti.

Let p : E* —^ E*/T0 be the quotient map, and TT = q o p the factorization of TT
[c/.(2.8.2)].

2.8.10. PROPOSITION. - For all i>0, R1^ Oz* = 0.

Proof. - The argument is similar to the one for 2.8.4. Since the question is
local on E^T0, we can quickly reduce to the case where S is a point, and then
to an affine torus embedding E* ^ C171. It is always possible to choose a basis
{^j; (1 ̂  J ^ n\ Si (1 ̂  % ^ m - n)} of the characters of Ti such that:

^o Q 1 n 1 \ I ^ each ^ is P011^ back from Ts,^z.o.lU.l^ ^
f (ii) Si defines a regular function on E*.

Then T = Q KeiSi, and the ^/s give a basis for the characters of T. The coordinates
on E* are of the form

(2.8.10.2) zj, = ̂  w vk (s) = n (t,Y-k. n (^)61- f c ,
with d j ^ k , bi^ e Z. This can be inverted, yielding

(2.8.10.3) t, = ]\W-\ s, = n(^)^

with c^fc, di^ G Z, and d,^ ^ 0.
Now, a set of the form p~1 (U) is the same as a T^-invariant neighborhood of a single

T^orbit. The T^orbit of z° e E* is given parametrically by:

(2.8.10.4) zk (0) = ̂ afe^ (0 G R71),
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where a^ is the vector with components a^ k, and is thus defined by the equations:

f 2 8 1 0 5 ) ( N =ko! ^^m)'v ; Irn^)^ -nw^ (i ^ ̂  m - n).
It follows from (2.8.10.5) that a set p"1 (U), with U "small", is given by specifying that
each rk = I z.k I belong to a small interval, and in addition, the values of the holomorphic
function fi (z) = ]~[ (2^)^ belongs to a small disc (for each f). Each condition separately
would define a domain of holomorphy; since the intersection of domains of holomorphy
is again a domain of holomorphy (see [Kr]: (3.4.5)), and domains of holomorphy have
no higher cohomology for coherent sheaves, we are done.

Let £ be a locally-free sheaf on B*, and put V = TT* £. Generalizing 2.8.5, we have:

2.8.11. COROLLARY. - For all i>0, R'p^V = 0. Thus, p^ V -> Rp* V is a quasi-
isomorphism.

We next verify that 2.8.7 carries over to the present setting:

2.8.12. PROPOSITION. - Consider the natural inclusion

i: q-^S^^Vf.

Suppose that for some complex sub variety V o/B*, the map i is an isomorphism outside
q~1 (V). Then L is an isomorphism.

Proof. - We use the notation of 2.8.7 for the restrictions over B =B* - V; there is no
loss in taking V to be a hypersurface. Let j : B —^B* denote the inclusion. It is clear
that every element of (p^eV)^ comes from an element of q~1 (j*£). If the latter had
singularities along V (relative to £), there would also be singularities along 7r~1 (V) C Z*.
This shows that i is surjective, as required.

2.9. EQUIVARIANT SHEAF COHOMOLOGY. - Although equivariant cohomology (in algebraic
topology) and sheaf cohomology have been around for a long time, we failed to find
a systematic treatment of equivariant sheaf cohomology in the literature. (A very brief
discussion can be found in [J].) We give a terse account here. We begin by bringing
in some customary terminology. Let B be a Hausdorff topological space on which the
discrete group F acts, and S a sheaf on B admitting an equivariant action of T.

2.9.1. DEFINITION. - The r-equivariant cohomology of S is the cohomology of the
complex RHomz[r] (Z, RF (B,<?)). It is denoted H^ (B, S).

There is a straightforward generalization of this notion to equivariant hypercohomology
for complexes of sheaves with equivariant F-action.

There are some choices to be made in the above definition. For RI\ one can simply
take the sections of the canonical resolution of Godement ([G], p. 167). However, because
"Horn" is a bi-functor, there are two alternatives for "RHom" that can be selected
according to purpose: use either

(i) a Z [r]-injective resolution of RF (B, <?), or
(ii) a Z [r]-projective resolution of Z.
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A typical choice for (ii) is a suitable chain complex with Z-coefficients on EF (a contractile
space on which F acts freely).

Equivariant cohomology is a cohomological functor with the following basic property:

(2.9.2) If the action of F on B is free, then H^ (B, S) ̂  H* (F\B, <?r), where Sr denotes
the sheaf ['0^ S]1' of r-invariants in V^ S and ^ : B —^ T\B is the quotient mapping.

As with ordinary sheaf cohomology, the definition gives rise to the spectral sequence
for the equivariant cohomology of a filtered complex. In particular, if TT : Q ->B is
r-equivariant, and Q is an equivariant sheaf on Q, the canonical filtration of RTT^G
determines the Leray spectral sequence:

(2.9.3) E^ = H^ (B, R^TT, G) ̂  H^ (Q, Q).

Thus we have:

2.9.4. PROPOSITION. - Let TT : Q -»B be a Y-equivariant mapping of topological spaces,
with r acting freely on Q. Then there is a mapping

H^B^-H-a^Q^Tr-1^).
It is an isomorphism whenever S —^ RTT^ (7r~1 <?) is a quasi-isomorphism.

2.9.5. Remarks.
(i) One often takes Q = B x E r in 2.9.3 (the Borel construction), one then has

isomorphism in 2.9.4. Indeed, one can use it to define equivariant cohomology (cf. [J]).
(ii) From 2.9.1, one obtains a spectral sequence

W^ = W (r, H9 (B, <?)) ̂  Hf^ (B, 5).

Consider next the case where r acts trivially on a space that we now call M. Then for
any r-equivariant sheaf T on M, we have

Hom^r] (Z, F(M, ^)) = F(M, ̂ f ^F(M, ^r) = F(M, ffomz[r] (ZM, ^)).

It follows that the r-equivariant hypercohomology of a complex of sheaves J^ can be
expressed as the cohomology of

Rr(M,Rfi9mz[r](ZM,^)).
This yields a variant of the canonical spectral sequence

(2.9.6) E^ = W (M, ̂  (^-)) =^ H^9 (M, ̂ ).

Suppose now that, in the situation of (2.8), we impose compatible actions of a discrete
group r, and assume further that F acts relative to a fibration p : B ->M (i.e., p i s
equivariant for the trivial F-action on M). From (2.9.6), we get another version of the
Leray spectral sequence:

(2.9.7) E^'9 = IP (M, R^-) => H^9 (B, ^-).
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The actions on Z and Z/T" will be assumed free. Let

<|> = p o TT, ^ == po g,

and let $ and ̂  denote the induced mappings on F\Z and r\(Z/T°) respectively. Assume,
finally, that V admits an equivariant F-action. We compute:

(2.9.8)

Then,

R1 $, Vr ^ RT ^* ̂  R'r ^* (?* ^)-

(2.9.9) R-r ̂  (p* VF ^ R'r (P ° 9)* (9-1 ̂

which equals R^ p>, <f whenever the fibers of q are contractible, or more generally whenever
£ —> Hq^ {q~1 £) is a quasi-isomorphism. It is to be noted that the last expression depends
only on B and f, and the action of F thereon, and is thus independent of Z. We will apply
this in Section 3 to B=Ap and M=Mp (from 1.2.5), and Z C(Mp)E (see 1.3.4), and
give cases where (2.9.8) and (2.9.9) are isomorphic.

2.10. The following will be needed for "adelization" in paragraph 4. Suppose that the
group r acts (on the left) on the space X, and acts transitively on the space Y. Choose a
point y C Y, and let Ty denote the isotropy subgroup of T at y.

We first recall a simple fact:

2.10.1. LEMMA. - In the above situation, the maps

X x Y ̂  X;
ft

a {x, 7 2/) = 7~1 x, f3 {x) = {x, y)

induce mutually inverse homeomorphisms
r\(x x Y) ^ r\,\x.

This has an analogue for equivariant cohomology. Let TTX : X x Y —^X be the projection,
and let T* be a complex of sheaves on X with equivariant F-action.

2.10.2. PROPOSITION. - Assume that Y is discrete. Then there is a canonical isomorphism

H^XxY^^-^H^X,^).

Proof. - It suffices to check this when T9 is a single sheaf <?; we must compare the
cohomology of the complexes

RHomz^r] (Z, RF (X x Y, TT^ (<?))) and RHomz[rj (Z, RF (X, 5))

Because these come by derived functor constructions, underlying this are the functors on
r-equivariant sheaves T on X:

[r (X, T} 0 r (Y, Z)^ and F (X, ^fv.
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We show that these two functors coincide. Indeed, this is a consequence of the same for
the following constructions on Z-modules A:

(A 01^ and A^;

this can be checked directly.
It is easy to eliminate the condition that F act transitively on Y by decomposing Y

into r-orbits. One obtains:

2.10.3. COROLLARY. - Let r act on the spaces X and Y, with Y discrete; let T9 be a
F-equivariant complex of sheaves on X. Then

H^XxY,^^))^ I] H^(X^).
2/er\Y

N.B.: If /=7^, then Tyi is a conjugate of Ty, and hence H^ , and H^ are canonically
isomorphic.

3. Boundary cohomology of automorphic vector bundles

3.1. AUTOMORPHIC VECTOR BUNDLES. - For what follows, a reference is [H2], especially
its paragraph 3. We define p, Kp, Pp, etc. as in 1.8.

Let M(C) be the compact dual symmetric space of X. We may define M(C) as
the set of complex points of the flag variety G/Pp, which has a natural rational
structure M = M(G, X) over the reflex field E(G, X), described in ([H2], § 3). Let
A : Kp —> GL (V\) be a finite-dimensional algebraic representation, and extend A trivially
to a representation of Pp. This defines, by the usual procedure, a G-homogeneous
vector bundle V\ on M, rational over some number field. More generally, let V be a
G-homogeneous vector bundle on M. Let /? : X ^M (C) be the Borel embedding, defined
as in ([H2], 3.1); it is the unique G (R)-equi variant mapping whose restriction to D is the
open immersion defined above. For any compact open subgroup K C G (A^),

(3.1.1) MK = G (Q)\/3* (V) x G (A^/K

is an algebraic vector bundle over KMc ([BB], § 10), and [V] =^ [V]K is a G(A-Q-
homogeneous algebraic vector bundle over Me. The restriction of [V] to the connected
component F\D of p^Mc will be denoted Vp.

3.1.2. DEFINITION. - A bundle of the form [V], with V a G-homogeneous vector bundle
on M, is called an automorphic vector bundle on M. When V is of the form V\, the
automorphic vector bundle [V\] is called fully decomposed.

One of the main theorems of [H2] is the following:

3.1.3. THEOREM. - The functor V —> [V], from G-homogeneous vector bundles on M to
G {A^-homogeneous vector bundles over Sh(G, X), is rational over E(G, X).

The algebraic construction underlying this theorem is recalled in paragraph 4.3.
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3.2. CANONICAL EXTENSIONS. - Let Ms be an admissible toroidal compactification of Me.
In this section we construct a "best possible" extension of [V\] to a vector bundle [V\\^
over Ms, following Mumford [Mu2].

It is simplest to construct the canonical extension over the connected components of Me.
Let r\D = Mr be such a connected component. For a rational boundary component F
of D, define Dp as in 1.2.3. Let Sp be a I\ p-admissible fan in Cp, as in 1.3, and recall
the local isomorphism

^F,S : DF,S —)> MF,S

from 1.4.1. One defines the canonical extension V\r,s of VA,F over Mr,s by first
defining it for Dp,s for each F, and then patching. For simplicity we write Vs = VA,S,
V = V\, etc.; denote by j's the embedding Mr '—^M^s.

We have Dp = Up (C) • D CM (C). Let Vp be the restriction of V to Dp, Vp be the

vector bundle I^VF over the space Mp (from 1.2). Define V^ to be the sheaf (^2, * Vp)^
of Tp-invariant sections in 7r2, * Vp over Ap- Then

(3.2.1) VF = 7T2* (l^)

(cf. [Mu2]). Let 7T2,s : (Mp)E -^ AF be the natural mapping. We let Vp,s = 7r^ (v^)-
The canonical extension of Vr is the unique subsheaf Vr, s of (j's)* V on Mr, s for which
there exist isomorphisms:

(3.2.2) /E: ^,E(Vr,s)^VF,s

extending the given isomorphism over Mp. The canonical extension is characterized up to
canonical isomorphism by (3.2.2). It is also characterized by a growth condition when
Mr,s is SNC (see 3.8.2, below).

More generally, if V is a G-homogeneous vector bundle over M, [V] the corresponding
automorphic vector bundle over Me = p^M0^ ^c^ and Ms is an admissible toroidal
compactification of Me, then a canonical extension [V]s of [V] over Me is a vector bundle
whose restriction to every connected component of ME satisfies conditions (3.2.2). A
purely algebraic construction of the canonical extension is given in [H3], and recalled
in Lemma 4.4.2.

We note the following special cases:

3.2.3. Examples (Mumford, [Mu2]).
(i) Let A be the trivial representation of Kp, so that V\ ^= 0^. Then [O^ls ^ 0Ms-

(ii) Let A be A7' (ad|p+)*, so that Vx ^ %. If Ms is SNC, then [^]s ^ %s (logZr),
where 0^ (logZr) is the logarithmic de Rham complex of Deligne [Del].

The following theorem is proved in [H3]; parts (i) and (ii) are due to Mumford.

3.2.4. THEOREM. - Assume K C G (A^) is neat, and let Ms be an admissible toroidal
compactification of Me == KSh(G, X)c.

(i) Any automorphic vector bundle [V] over Me has a canonical extension [V]s
over Ms.
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(ii) The functor [V] —> [V]s is exact and commutes with tensor products and Horn.
(iii) Suppose Ms is admissible (1.7), so that Ms is also defined over E(G, X). Then the

functor [V] -> [V]s preserves fields of definition. In other words, the functor V —> [V]s,
taking G-homogeneous vector bundles over f/l to vector bundles over Ms, is rational over
B(G,X).

3.3. DESCRIPTION VIA CANONICAL AUTOMORPHY FACTORS. - We now choose a rational
boundary component F, which will remain fixed until the end of paragraph 3. We drop F
from the notation whenever this is feasible; thus P=Pp, U=Up, W=Wp, VA =V^, and
so on; however, we continue to use Ap, Mp, Fp, Dp, and other symbols from which F
cannot be dropped.

In a neighborhood of Zp^s, we may construct Vr^s explicitly, using canonical
automorphy factors. Let J = J p f p be the canonical automorphy factor of Proposition 1.8.8,
and define

(3.3.1) JA = J^ = A o J : G (R)° x D -^ GL (VA (C)).

Then 3\ defines a holomorphic action:

(3.3.2) j : G (R)° ̂  Aut (D x V, (C)); j {g) . ̂  v) = {g {x\ J, (^ x) ̂

and it follows easily from (3.3.2) that there is a canonical isomorphism of vector bundles
over r\D (see [H2], 5.3):

(3-3.3) ^,r^j(r)\(DxV^(C)),

given by (p, v) -> (g, J^ (g, p) v) when both are trivialized on G (IR)°.
Thus, the pullback ofV^ r to r'F\D is isomorphic to j (rp)\(D x VA (C)). Furthermore,

j extends to an action of P(R)° on Dp x VA (C), and the action (3.3.2) gives rise to
a vector bundle j (Pp^D? x VA (C) on Mp which restricts to the preceding on rp\D,
and is likewise isomorphic to Vp.

Now, it follows from (1.8.7.4) that the restriction of j to P (R)° extends, trivially on
U(C), to P(R)° . U(C); there are actions

(334) [ j l : (u (RAP/ (R)0) ̂  Aut ((u (CADF) x VA (c))I fi: (ru\rp) - Aut ((ru\Dp) x v^ (C))
which lift to the corresponding restrictions ofy, denoted simply j and j'z, respectively.
Let ^A be the vector bundle j ' (rp)\((U (C)\Dp) x VA (C)) on rp\(U (C)\Dp) = Ap.
It follows from the above that there is a natural isomorphism ̂ A :=VA, and

(3.3.5) ^ (^A) ̂  Vp,

recovering (3.2.1). In fact, we have more:
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3.3.6. PROPOSITION. — For any sufficiently small open set U C Mp, the restriction to
7T~1 {U) C Mp of the automorphic vector bundle Vp is flat (i.e., is the vector bundle
attached to a local system), and is the pullback of such on Ap.

Proof. - From (3.3.2) and (3.3.5), we see that if U is contractible, the restriction
of VA to Ti-f1 (U) comes from the local system associated to the representation 3\ (•, x)
[cf. (1.8.7.4)] of its fundamental group F H W (Q)/Fu.

By (3.3.4), the action of Fp on (FU\DF) x V\ (C) extends to an action, again
denoted j'z, on (I\J\DF x^ T^) x VA (C), for any a € Sp. Then (3.2.2) and (3.3.5)
imply that there are isomorphisms

(3.3.7) j, : ^ (Vr,s) ̂  h (FF)\((ru\DF x^ T,) x V, (C))|DF,,,

compatible with inclusions of simplices. Finally, for 7 e F;, a G SF there is a commutative
diagram

(3.3.8) ^ (Vr,E) ^ ^z (rF)\((ru\Dp x^ T,) x V, (C))|D,,,

i J'(7) 1 J'(7)

^M (Vr,s) -^ jz (r'F)\((ru\DF x^ T^(,)) x V, (C))|Dp,,^

Thus we have the following extension of 3.3.6:

3.3.9. PROPOSITION. - Over any sufficiently small open subset of Mp, the restriction of
the bundle Vp ^ on (Mp)E is aflat vector bundle, and is the pullback of such on Ap.

3.4. CALCULATION OF BOUNDARY COHOMOLOGY (BEGINNING).- Fix (T G SF. Let

^a.: Zcr ~~^ AF be as in 1.5. Then ipa- is a proper, smooth morphism. Let Va- = ̂  (Vr, s)»
where icr : Z<y ^- Mr, s is the natural imbedding. Via (3.3.5), there is a canonical
morphism

ba : ^A ^ (^)* (C^) -^ R^,* (C^) = R^*V<r.

3.4.1. PROPOSITION. - T/?^ morphism b^ is a quasi-isomorphism. Moreover, this depends
naturally on a:

(i) If a ' is a face of a, let c (a, a') : R^r, * Va —» RV^, * Va7 ^ ̂  natural mapping;
then c(cr, a') o ba = b^/.

(ii) 7/"7 G r^p, fcr 0(7) : R'0^*V^ -^ R^(^)^ V^(^) fc^ the isomorphism induced
by 7(7); r/i6?n 0(7) o 6^ = b^^.

Proof. - We have to check that the map VA —^ ^a, * Vcr is an isomorphism, and that
R^a,*^ = 0 for ;>0; the remaining statements are obvious. The mapping ̂  is a
proper, smooth fibration, whose fiber is a rational variety (torus embedding) which we
denote by Y^. The desired assertion comes down to the fact that H* (Y<y, OY^) = C.

3.4.2. Remark. - We can view the preceding as a case of the projection formula:
R^<r,* 0^ S>VA —> R^<T,* (^ ̂ A) is a quasi-isomorphism.
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3.4.3. COROLLARY. - ir (Z^, Va) ^ H* (AF, V^.
At this point, it is convenient to make use of the decomposition of ̂  as qa o p a , as

in (2.8.2). Consider

VA ̂  R^.Va ^ Rg^,* {pa,. V.\
where the last quasi-isomorphism is by (2.8.5); and from (2.8.7):

R^,*^*^)^ ^R^O?,1^),
which is quasi-isomorphic to VA, as the fibers of qa are contractible. We thus further obtain:

3.4.4. PROPOSITION. - For any a € Sp, the inclusion {pa^Va)^ ^ Pa^Va induces
an isomorphism on sheaf cohomology.

3.5. In this section, we fix a point p G D. Let ^(p) be the F-coordinate ofp in the
Siegel domain realization (1.2.4), and let x be the image of TTpCp) in Mp. Write A^ for
Trf1 (rr), and let V^ denote the restriction of VA to A;c; by (3.3.5), this bundle has an
underlying flat structure.

Define V=Vp as in 1.8, and put Fy = (W (Q) H r)/:Tu. The point x e MF determines
a complex structure c^ on V (R), as in 1.8, and A^ is, by construction, isomorphic to the
complex torus Fv\V(R), with this complex structure (see [Bri]). Then

(3.5.1) V^jz(rv)\(V(R)xV,(C)).

To be explicit, let a =1/2 (dim V), as in 1.2, and let Sp denote the unipotent radical of
Q^=QF,P [from (1.8.7.6)]. Then dim Sp=a. The homomorphism

(3.5.2) J ' : U\N-^Kp,

deduced from (1.8.7.4), takes V (C) onto Sp (C); moreover, if we decompose

(3.5.3) V(C)=t^et^.

as in (1.8.4), then ̂  is mapped by J' onto Sp (C) (1.8.6).
Let J'̂  : U\N -^ GL(VA) be the homomorphism induced [cf. (3.3.1) by (3.5.2)].

Then:

3.5.4. Observation.- The restriction of J^ to V(R) is a unipotent representation;
i.e., there is a V (R)-invariant filtration uj of \\ such that Vp (R) acts trivially on each
Gr^ VA. This induces a filtration uj of the flat vector bundle V^ such that each Gr^, V^
is flatly trivial.

Denote by A0'9 (V^) the Dolbeault complex of V^ on A,,. Then we have canonical
isomorphisms for all q

(3.5.5) A0^ (V^) ̂  Horn (A^ (t);), C00 (V (R), V^).
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We define an isomorphism as in ([BW], VII, § 2):

(3.5.6) C00 (V (R), V^)^ ̂  C00 (rv\V (R), V^) ^ C00 (rv\V (R))0VA,

by sending (^ e C°° (V (R), V^v to ^0 (^) = J^ (^)-1 ̂  ((/). Then, just as in ([BW],
Ch. VII; [0-0]), (3.5.5) and (3.5.6) define an isomorphism of complexes

(3.5.7) A0-9 (V^) ̂  C- (t);, C00 (rv\V(R))0V;Q

where the right-hand side is the usual complex for computing the cohomology of the
(abelian) Lie algebra b^ with the indicated coefficients. The following is quite standard:

3.5.8. PROPOSITION. - The imbedding VA = C 0 VA c-^ C00 (Fv\V (R)) 0 VA, ̂  ̂
space of constant functions on Fv\V (R), induces a quasi-isomorphism of complexes

(3.5.8.1) C- (t^V;0 -> C- (t),, C00 (rv\V (R))0V;0.

Proof. - The morphism of complexes (3.5.8.1) is compatible with the filtrations induced
by cj (3.5.4) on both sides. Applying the comparison theorem for spectral sequences, it
thus suffices to verify (3.5.8.1) for V\ = C. In this case, the assertion can be found
in ([Mul]: p. 8).

3.5.9. COROLLARY. - There is a natural isomorphism

H-^V^H^A^).

3.5.10. PROPOSITION. - Let ^a '' ^a —^ MF be the restriction to Za of the morphism TI-E
(notation 1.5).

(i) For each x € Mp, there are natural isomorphisms

(3.5.10.1) (R9 ̂  V^ ^ H9 (s^, V^),

"where Sp = Lie (Sp) C 6p acts on V\ via the differential of A.
(ii) The Leray spectral sequence:

(3.5.10.2) E^ = W (Mr, R9 ̂  V,) ̂  H^ (Z,, V,)

is independent of a (up to canonical isomorphism).

Proof. - Since $0- = TTI ° V^ we obtain from 3.4.1 that

(3.5.10.3) R9 ̂ , V^ ^ R9 TTI, ̂  (c/. 3 . 4 . 3 ) .

Now, the homomorphism J' identifies Sp isomorphically with t)^. Thus, (i) is a direct
consequence of 3.5.9. To see (ii), we use (3.5.10.3) to identify the spectral sequence
(3.5.10.2) with the one for 71-1 : Ap —> Mp and the sheaf VA:

(3.5.10.4) E^9 =IP(MF, R^TTI,^) ^IP-^AF, VA).

We can make a sharper statement. The Levi factor K^ ' of Q^ acts naturally on the
right-hand side of (3.5.10.1). Consider the action ^ of K/, x Gi on (R9^*^)^
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defined by (3.5.10.1) and the isogeny K^ x Gi -^ K^ induced by CF : Gi ^ K^ of
(1.8.7.5). First we have:

3.5.11. LEMMA.
(i) R9 <I>^ Vcr is the automorphic vector bundle on Mp defined by the restriction /^

of^ toKh •A;
(ii) For every 7 € F;, we have a commutative diagram

(R^.V,) ^H^(s^V^)
I J (7) I cp (7)

(R^^,).^^)^H^(^,V,).

Pwo/. - These assertions follow immediately from the properties of the automorphy
factor and from (3.3.8).

We next prove a sort of relative analogue of 3.5.8:

3.5.12. PROPOSITION. - The spectral sequence (3.5.10.4) degenerates at E^.

Proof. - We follow a line of reasoning from ([Sch]: Thm. 2.7) that is attributed to
Borel. As in [loc. cit.}, we can express the cohomology groups appearing in (3.5.10.4),
via Dolbeault cohomology, as relative Lie algebra cohomology, coming from complexes:

(3.5.12.1) C- OP/,, K^; C00 (rF\G^) 0 H9 (^, V^))
^ [A- (p,)* 0 C00 (rF\G,)0H9 (^ V^)]^

and

(3.5.12.2) C- {Vh 0 s^ K^; C00 (r'F\(P7U) (R)) 0 VA)
^ [A- (p, e s,)* 0 c00 ((r'F\(P7u) (R))0V,]^,

where p^ = p~ H fl/i (0), and ^P/^p^ 9 E/i,c. Via a suitable K^-equivariant embedding
H9 (Sp, V^) c^ A9 (Sp)* 0 VA, we regard the direct sum of the complexes (3.5.12.1) for
all q as a subcomplex of (3.5.12.2), inducing the identity on cohomology. This splits
the spectral sequence, from which the asserted degeneration follows.

3.6. The structure of H9 (5p, V^) as a module over K^ is determined by a well-known
theorem of Kostant, and goes as follows. As before, we use cp to identify Ky\ up to
isogeny, with Kh -Gi. Let H be a maximal torus of Kp, f)= Lie (H), and choose a set R+

of positive roots for (0c?t)c) such that the holomorphic tangent space P4" ofD at the
base point p is the sum of the root spaces corresponding to the subset R^ of positive
non-compact roots; let R^ be the set of positive compact roots in R^ Let p (resp. pc)
be the corresponding half-sum of positive (resp. positive compact) roots. We assume that
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H/i == H n Kh is a maximal toms of K/,, and that H^ = c?1 (H n K^) is a maximal torus
ofG/. Then be = t)/z,c + CF(t )^c) ^ ^,c + th,c, where 1)^= Lie(H^), ^= Lie(HQ.
If ^ ^ (l)c)* let [^]h and [^]/ denote its restrictions to f)^c and f)^c, respectively. Of
course f)^c H l)^c = Lie(ZG)c.

Let R^(2) be the set of positive roots of f)c in 6^ = Lie (K^), and define

W^ = {w G W(^c, l)c)|w-1 (a) > 0, Va € R^2)}.
Then W^ is a set of representatives of shortest length for the left cosets
W(E^\ l)c)\W(Ep,c, l)c). Denote by / the length function on W(6p,c, l)c) (N.B.-nor
W (sc, be)), and let W^ (9) c W^^^ be the set of elements of length q, for ^=0, 1, ....

Let A G (I)c)* be the highest weight of the representation A of Kp, relative to R^.
For w € W^, let
(3.6.1) ^ (w) = [w (A + pc) - pc}h, P'1 (w) = [w (A + pc) - Pc}i,

Then ^(w) and /^/(w) are the respective highest weights of finite-dimensional
representations of KH and G/, denoted (A(/i, w), V^w)) and (A(^ w), V A ( Z , W ) ) ,
respectively.

3.6.2. PROPOSITION (Kostant [K]). - For every q ^ dim(Sp), r/i^r^ is an isomorphism
of Kh x Gi modules

H9 (fip, VA) ̂  9 VA(/,^) 0VA(^).
wew1'^ (g)

The representation of K/, x G; on the right-hand side factors through its quotient
Kh ' Gi c G. Combining this result with Proposition 3.5.10 gives:

3.6.3. COROLLARY.
(0 for every a G Sp and all q, -we have isomorphisms

rq (a) : R^ ̂  V, ̂  R^ ̂  ̂ A ̂  ® VA (,, w) 0 YX (^ w)
wew11''^)

o/ automorphic vector bundles on Mp, w/i^r^ V^ (^ u,) ^ r/z^ automorphic vector bundle
associated to the representation A (h, w) of Kh (cf. Remark 3.6.3.1)

(li) For all a and q as above, and 7 G Ti, there is a commutative diagram

(R^V,) r^(^T)) ® VA(^)0V,(^)
wew1"^^)

I .7(7) [ ©l<g)A(^,w)(7)

(R^^V^))'9^ ® VA(.,w)0V^^)
wew1'^^)

3.6.3.1. Remark. - The use of the terminology "automorphic vector bundle" with
regard to V\(/i,w) does not quite conform to the definition in paragraph 3.1, because
with our conventions K/, is not the stabilizer in Gh (R) of a point in X(F). This abuse
of language, which is only of importance for the arithmetic theory of paragraph 4, will
be corrected in paragraph 4.1.
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If we now feed this into 3.5.12, we obtain:

3.6.4. COROLLARY. - One can decompose H5 (Z^, Va) as:

H^V^H^AF,^)^ © ^-^(MF^^^V^),
wew1^

compatibly with all restriction mappings, and with the action of F/.

3.7. CALCULATION OF BOUNDARY COHOMOLOGY (END). - Denote by Divp (S) the set of
divisors at infinity in (Mp^Ep (notation as in 1.3), and let DivF(Mr,s) be the set of
irreducible components of <Zp ^, or equivalently ZF,E (notation as in 1.5). Then

DivF (Mr,s) ^ Ff\DivF (S)
is the set of vertices of the simplicial complex F^Ep (from 2.2).

Consider the closed covering of <^ ^ given by

(3.7.1) ^p={ZGDivF(Ms)} .

The following is evident:

3.7.2. LEMMA. - The nerve 9T (-Zsp) of the closed covering Z^p is isomorphic to F^Sp.
Our hypothesis that F is neat implies that F/ is torsion-free, hence F^Sp is a PL-

manifold (a similar observation appears already in the work of Looijenga [L]). Under the
mild additional hypothesis (2.2.9) on the simplicial complex Sp, we saw (recall 2.2.10)
that F^\SF has the homotopy type of the locally symmetric space X(F/).

Let %F '' ZF, s —^ Mr, s denote the inclusion; i^ Vr, E restricts to a coherent sheaf on
"^Zp ^, also denoted i^ Vr,s;- We can now compute H* ^Zp ^;, i^ Vr,s)- Define systems
of coefficients L5 (., V) on 9T (^sp) by the formula L8 (a, V) = IP (Z^, V^). Then there
is the spectral sequence

(3.7.3) E^ =W(V\{Z^\ L^., V)) ̂ H^Zp^^E).

It follows from Corollary 3.6.4 that L8 (•, V) defines a locally constant sheaf on
^t (^Ep) ^ F^Sp, the quotient by F/ of the constant sheaf on Sp wlt^ coefficients

(3.7.4) H^Ap,^)^ © ^-^(MF^^W^V^),
wew1'^

where F/ acts only on the second factor of the tensor product.

3.7.5. LEMMA. - For all t, H* ̂ Zp ̂ ^Vr,s) ^H^ (Ap, VA).

Proof. - We have that <^ ^ ^ ^^\<ZF,E, by Lemma 1.5.3, and F/ acts freely on
"^ZF.E [here we are using hypothesis (1.1.4)]. Let%p ; ZF,E —> (M^s be the natural
embedding. It follows from (2.9.2) that

(3.7.5.1) H^^ZF^^^r^)^^^^,^^^)-
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It will be shown [see (3.9.4)], as part of something more general, that the projection
of ^F E oi^o Ap induces an isomorphism between the right-hand side of (3.7.5.1)
and H^ (Ap, V^.

3.7.6. Remark. - Note that we can rewrite the spectral sequence (3.7.3) as

E^ = W (IV W (AF, ^A)) ̂  H^5 (AF, V^,
which is just an instance of 2 .9 .4 (iii).

3.7.7. PROPOSITION. - The spectral sequence (3.7.3) degenerates at E^.

Proof. - By 3.5.12, the spectral sequence

E^9 = W (Mr, R9 TTI, ^A) ̂  H^9 (AF, ^A)
degenerates at E^. After noting that the embedding of (3.5.12.1) in (3.5.12.2) is
ry-equivariant, we see that

(3.7.7.1) E^ =H^ (Mr, R^i.^) ^H^(AF, V^)

likewise degenerates at E^. It now follows that the degeneration of (3.7.3) is equivalent
to that of

E^ = W (F^ H* (MF, R9 TTI, ^A)) ̂  H^ (Mr, R9 TTI, VA)
for all q. But here, 1̂  acts trivially on Mp, and on R9 TTI* VA the action factors off (recall
3.6.3 and 3.6.4), so the above spectral sequence is a direct sum of ones of the form

E^ = W (F,, VQ 0 S* => H^ (Mr, V 0 VQ
with S* = H* (MF, V), and F/ acts trivially on V. The E2-degeneration of the latter
spectral sequence is just the Kunneth theorem.

3.7.8. COROLLARY. - With hypotheses as above, for each integer t, there is a natural
isomorphism

H^Zp^z^E)^® © H t- r-^w)(MF,VA(^w))0H r(X(^0,VA(^)) ,
r w^W^

where V;\(;,w) is the local system on X(F/) defined by the representation \ (?, w)|r;.

3.7.9. Remark. - Of course, the right-hand factor in the above is isomorphic to
H^r^, V A ( ^ W ) ) (i'e., group cohomology).

3.8. CONDITIONS OF GROWTH AND DECAY. - Except in the case where F is a minimal
boundary component, the space Mp is non-compact, not to mention anything lying over
it, such as <Zp ^. It would therefore be useful to extend the results of 3.5-3.7 to some
compactification of Mp; or, failing that, to prove versions of those results for forms with
growth conditions.

We recall three types of growth conditions.

3.8.1. For any locally G-homogeneous vector bundle (not necessarily holomorphic)
associated to a finite-dimensional representation (r, V) of Ky, on an arithmetic quotient
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Mr = r\D, its sections can be described as functions / : F\G (R)"^ —^ V that are invariant
under the action of Kp; i. e^ these are r-invariant functions on G (R)"^ with

/(^- l)=T(fc)/(^).

Choose any KpHG (R)^ -invariant norm on V (which determines a metric in the bundle);
let || • |[ denote the measure of size on G (R)4" induced by matrix norm under some
essentially-faithful finite-dimensional representation of G. The function / is said to have
moderate growth (or, is slowly increasing) if

I/ (^)l ^ C|Hr for some C > 0, m e Z.
We rewrite this as: for some m e Z,

(3.8.1.D i / ^ i^Nr .
Analogously, one says that / is rapidly decreasing if (3.8.1.1) holds for every m e Z.
More generally, we say that / is slowly increasing (resp., rapidly decreasing) to all
orders if Q f satisfies (3.8.1.1) for every invariant differential operator® in the
enveloping algebra U(@c) and some (resp. all) m e Z. If T c G(R)4 ' is an arithmetic
subgroup, we let C°° (F\G (R)-^,, (resp. C00 (F\G (R)^, resp. C°° (F\G(R)+)sia
resp. C^H^R)"^^) denote the space of smooth functions on [^(R)"^ which
are slowly increasing (resp. rapidly decreasing, resp. slowly increasing to all orders,
resp. rapidly decreasing to all orders).

3.8.2. Let M be a complex manifold, Z a divisor with normal crossings on M, and
(£, h) an Hermitian vector bundle on M - Z. Let A = [z G C[ \z\ < 1/2}, A* = A - {0}.
Locally on M, the inclusion i: M - Z -^ M is (A*^ x A'1"^ ^ A", with Z defined
by the equation

k

m {z) = M Zj = 0.
j=i

One says that a section s of £ on (A*)71 has logarithmic growth if for some m € Z,

(3.8.2.1) h{s, s) ^ llogm^)^.

In case M =Mr,s and Z =Zr,s, so that M — Z = Mr, and £ is locally homogeneous
with a standard metric, the argument in [Mu2]: Prop. 3.3 (which does not require the
holomorphy of the bundle) shows that (3.8.1.1) and (3.8.2.1) are equivalent. It follows
that the notions of logarithmic growth, defined for different toroidal compactifications
of Mr, all actually coincide. Furthermore, it was shown in [Mu2]: Thm. 3.1 that the
subsheaf of i^ £ consisting of those local sections with logarithmic growth is locally-free
and gives the canonical extension <£r,s-

3.8.3. We return to the general situation of the beginning of 3.8.2. Start with the
sheaf of functions of logarithmic growth in %„ ̂ _z, i' e. those for which there is some
m G Z such that the condition (3.8.2.1) is satisfied, and form the tensor product over the
anti-holomorphic functions on M with the conjugate of the holomorphic log-complex. The
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largest subcomplex of this under 9 is denoted A9^ (Xfog in [HP]); explicitly, A9^ consists of
forms (p such that (i) the coefficient functions, in the sense of 3.8.1, are slowly increasing,
and (ii) the same holds for Q^p. In [HP], A^ is shown to be a resolution of OM- If one
starts instead with functions satisfying (3.8.2.1) for all m G Z, and continues as before,
one obtains a resolution A9^ of OM (-Z) [H5], (3.1.4). Thus:

3.8.3.1. PROPOSITION. - For any locally-free sheaf £ on M,

A^(M,£}=A^^£

(tensor product here over OM) is a fine resolution of £. Likewise, the subcomplex A^ 0 £
is a fine resolution of £ (-Z).

This gets applied on M=Mr,s to £ = [V]s, where the growth conditions can be
seen to coincide with those of 3.8.1 and 3.8.2 (see [H5], (3.3.4); note 3.2.3 (ii),
and be willing to take the complex conjugate). In order to make comparisons with
Lie algebra cohomology, it is more convenient to replace the complexes A^ and A^
with subcomplexes A^ and A^, corresponding to forms which are slowly increasing
(resp. rapidly decreasing) to all orders in the sense defined above. If ^p =• Lie (Pp}
and Kp are as in 1.8, there are natural isomorphisms of complexes

(3.8.3.2) C- (^, K^; C°° (F\G (R)-^). (g) V^) ̂  A: 0 l\ n * = sia or rda,

where the left-hand side is the relative Lie algebra complex.
For emphasis, we state the result from [H4]: 2.4.1:

3.8.3.3. PROPOSITION. - A^ (Mp ^, Ms) is a fine resolution of the canonical extension
bundle Ms- Likewise, A^ (Mp ^, Ms) is a fine resolution of the subcanonical extension
bundle Ms(-Zr,s).

3.8.3.4. Remark. - The notions sia and rda have purely local geometric definitions,
independent of the group-theoretic context, cf. [H4], p. 54.

3.9. We now apply the results of (2.8) and (2.9) to subsets of the partial toroidal
compactification (Mp)s of Mp [see (1.2.5) and (1.3.4) for notation]. We take in (2.9)

B = A F , M = M F , ^=7r i ; £=VA, V = ( V F , s ) l z

(in the last one, we mean bundle, not sheaf, restriction). Finally, we take for Z in (2.8.1)
any of the following:

(i) Zi ^ZF^ as in Lemma 1.5.3,

(3.9.1) (ii) Z2 =a Tp-invariant neighborhood of Zi in (Mp)s
admitting a deformation retract onto Zi over Ap,

(iii) Zs = Z2 — Zi, a deleted neighborhood of Zi.
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We have a tower of spaces

,—Z
l p

Z/T'—
(3.9.2) $ i i

AF ^
i wl

L^MF^-I
on which F; acts.

Recall, from 2.8, that we have in all three cases:

(3.9.3) R (q op), V ̂  R(?, (p, V) "̂  Rg, (p, Vf' = Rg, (<?-1 ^A) = VA•,

it is not hard to see that these mappings are all rrequivariant. In the case ofZi, inv
induces an isomorphism on sheaf cohomology (3.4.4), which yields

(3.9.4) Hr, (Zi, V) ̂  Hr, (Ap, V^

(recall Lemma 3.7.5 and its proof).
From (2.9.8) and (2.9.9) we also have in all three cases:

(3.9.5) R1 ̂  (Vp, s)r, = R'r, ^* h* ̂ F, s) ̂  Kr, ^* (?* Vp, s;)TC = Rr, ^i, VA,

where the mapping is the one induced by the projection

P.V^-iP.V^
and the restriction to Z is understood. In the case of Zi, where ((Vp s)|z)ri = i'fVr,'s,
we can see that inv is an isomorphism again as follows. Recall from
(3.5.10.3) that for any a (S Sp, R1 $^,, V<, ^ R1 TTI, * ̂ A. From 3.7 , we see that
R* $* {i'p Vr, s)ri = R^i ^i* ̂ A' ;-e-' the first and last terms in (3.9.5) are isomorphic.

We obtain towers of spectral sequences associated to (3.9.2), for each of Z=Zi, Z=Z2,
and Z=Z3:

IF(MF,R^V|Z) ^ H^(Z,V|z)

T ( T <
H^(MF,R^^,(^V|Z)) ^ Hr^Z/T^VIz)

^ mt, ^ ini,(3.9.6)

H^ (Mr. R^, ̂ , (p, VIz)^) ̂  H^9 (Z/T0, (p* Viz)7 ')

n r ?
H^MF.Rr,^^) H^^AF,^)

which are compatible with the restrictions from Zz to Zi and Zy. The mappings denoted
"inv" are projections onto T'-invariants, and, as has already been noted, are isomorphisms
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for Z=Zi. As we remarked at the end of Section 2, the lower half of (3.9.6) is the
same in all three cases. By analogues of 3.7.7, the spectral sequences in (3.9.6) all
degenerate at Ez.

3.9.7. Remark.
(i)It is not hard to see that one can use "H^M^R9" and "H^M^R^"

interchangeably; the latter displays the fact that the action of F/ on Mp is trivial. In
particular, the bottom line in (3.9.6) is the same as (3.7.7.1).

(ii) For Z=Z3 (or Z=Z2), classes in Hp^ (Z, V|z) can be represented by 9-closed Fy-
invariant C°°-forms on Z (with growth conditions), with values in V. This follows from
(2.9.2) and the appropriate version of the Dolbeault lemma.

3.10. MAIN THEOREM. - We can now state and prove a provisional form of our main
result. Start with a 9-closed (0, Q-form T] on Mr belonging to the complex A9^ 0 VA,F-
The isomorphism (3.8.3.2) identifies rj as an element of

(3.10.1) (C°° (r\G (F^sia 0 A1 (p-)* 0 V^)^.

By Prop. 3.8.3.1, rj determines a cohomology class [rf] G H1 (Mp ^, Vr, s). This admits
a natural "boundary value", by restriction:

(3.10.2) r-p M G W ̂ Zp^z^E) ̂  H^ (Zi, V[zJ

^H-r^Zi/T^p.VIzJ^H-r^AF,^).

On the other hand, we can take the constant term rfp of rj with respect to Pp, producing a
(9-closed form on F^\D, where T^ = F n P (Q)"^, by averaging the coefficient functions
in (3.10.1) over Fw\W (R), where Fw = F n W (Q). This can be restricted to Z^ which
can be viewed as a subset of F^\D by reduction theory. We have been leading up to
the following:

3.10.3. THEOREM. - Under the identifications available from (3.9.4), we have
Mz3]=^M mH^AF,^).

Proof. - If one writes 77 as an element of (3.10.1), then r]p is by definition

(3.10.3.1) r j p = I r7e[COO(^^\G(R)+/W(R))0A•(p-)*0V^K^
JFw\W(R)

where Fw\W(R) has total measure one. This can be restricted to P(R)"1" (which acts
transitively on D), yielding an element

(3.10.3.2) Res{rjp) £ [C°° (I^\P (R)+/W (R)) 0 A9 (p-)* 0 V^^W,

^ [C°° ((I^/FwAL (R)^) 0 A- p+ 0 y^-^,
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where L = Gh ' Gi is the Levi subgroup of P as in 1.2. Now, it follows from 1.8.3 and
Lemma 1.8.6 that there is a K/i • K^-equivariant isomorphism

(3.10.3.3) Ad (cr) : ^+ ̂  uc C t)+ C p^

preserving p^". When inserted in (3.10.3.2), we get

(3.10.3.4) Res (^) C [C°° ((Fp/FwAL (R)+)0A- (uc 9 p^)* 0A- (tr^V^^,

since Uc is self-dual as Kh • K^module; this (double) complex is quasi-isomorphic to
(compare the proof of 3.5.12)

(3.10.3.5) [C°° ((Fp/Fw)\L (R)+) 0 A- (uc ® pj* 0 H- (t)-, V^)]^-^.

3.10.3.6. Remark.
(i) Let fl = Lie (Kp) ® pp be the usual Cartan decomposition, where

^ = s ( R ) n ( p + e p - ) ,
and let pi =pp n Lie (G/). Recall [AMRT], III, 4.2, Thm. 1 that the adjoint action of G/
on U presents the cone Cp as a model of the symmetric space of G/ (R)°. Thus, let pi
be a fixed point in Cp of Ky; then pi ^ Tcp,pi ^ u. Here we are implicitly identifying
differentials on % u ( R ) (or 2 7 r % u ( R ) ) with differentials on p;. We return to this point
in 4.9.

(ii) Let G^ = G^ (0) (R)°, G? = Gi (R)°. We can replace LF (R)-^ in (3.10.3.5) first
by LF(R)°, Aen its derived group G^ -G^6', and finally by the latter's finite cover
G^ x G^^, by adjusting K/, and K/ correspondingly and eliminating the Lie algebra
of the contractible central factor of G^. Specifically, let K/, and Ky denote maximal
compact subgroups of the respective factors. Assume first that I\ • Yi = Fp/Fw, where
I\ = rnG^ . Then (3.10.3.5) is quasi-isomorphic to

[c00 ((r,\G°j x (rAG^61-) 0 A- (p,,c e p,)* 0 H- (D-, v,)]^-^,
where fi ==pp n Lie(Gfe^), and then to

{C00 (r,\G°J 0 A- (p,)* 0 [C00 (FAG?'^) 0 A- (^*c) 0 H- (t)-, V,)]^}^

and then to

{C00 (r\\G^) 0 A- (p,)* 0 H- (1̂  H- (t)-, V^))}^,
whose cohomology is

(3.10.2) H- (Mr, R^ TTI, VA) ^ H^ (AF, VA).

One can always reduce to the preceding case by finding F^, a normal subgroup of finite
index in F/,, such that F'̂  • Fi c Fp/rw. This generates a finite covering ofAp of the
preceding type, without changing F/.
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We break up the process that defines y^p in (3.10.3.1) into two steps. First, take the
average over Up (R) only, yielding

(3.10.3.7) rf^ ( ^[C^rp^RV^R^A^rr^VA]1^
Jru\UF (R)

which can be restricted, as in (3.10.3.2), to give an element of

(3.10.3.8) [C°° (Fp\P (R)/U (R)) 0 A* (p-)* 0 V^'^
= [C00 (rp\P (R)/U (R)) 0 A- (uc C p^)* 0 A- (t)-)* 0 V^-^,

which is, in turn, quasi-isomorphic to (3.10.3.5). Then, averaging rf with respect to
(W/U) (R) results in rjp, for the Haar measure of W (R) decomposes.

From (3.10.2) and (3.9.4), we have that

rp M = rp [rj0] inH^ (Zi, V|zJ ^ H^ (Ap,^)
so we may replace rj by ^c, also an "570" form. Then rf\^ represents

[rfU € H^ (AF, ^A) C H^ (Z2, V|zJ (sic).
Thus both T-F \rf\ and [^Izs] are restrictions of \rf\^ € Hp^ (Z2, VIzs). so

rF[^]=[^|z3] mH^AF^).

Finally [^^^Izs] == [wizsl^ because averaging a form over a compact torus preserves its
cohomology class in Lie algebra cohomology (see also 3.5.12). Thus, the desired
assertion follows.

3.11. INCORPORATING GROWTH CONDITIONS. - In 3.10, we considered 9-closed (0, Q-forms
with logarithmic growth and with values in VA, r» from the point of view of a fixed boundary
component F. However, these forms have moderate growth in all directions. Therefore,
we can expect to control the behavior of the forms and cohomology classes that entered
in 3.10 as one approaches the boundary ofF, i.e., F'<F.

To get started, we can improve upon (3.10.2). Recall that the closure of "^Zp ^ in
Mr,s is Zp,s; let ip denote the inclusion of Zp,s in Mr,s» as in 3.7. Then we have
the restriction

(3.11.1) r F H ^ H ' ( Z F , E , ^ V r , s ) ,

whose restriction to "^Zp ^ is rr^].
After refining S, if necessary, we can construct the diagram (1.6.4). We need to specify

small neighborhoods Z?> of Zp,s m Mp a- To this end, it is convenient to abandon the
Siegel domain picture of D, and revert to the real one (the one that would make sense even
for non-Hermitian groups), though the answer is equivalent to what is given in (2.5.2).
Their intersection with Mr is conveniently described in terms of the face e (P) on the
manifold-with-comers D of Borel-Serre [BS]. Consider the orbit ofp under (°P (R))°, the
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identity component of the kernel in P (R) n G^ (R) of the determinant of the canonical
action of P (R) on W (R) (°P is as in [BS], § 1.1; it has the same identity component
as P(R)/A(R)). This is a cross-section to the so-called geodesic action [BS], § 3 (see
also [Z2], (1.2)) of A (R)° = A (R)° n G^ (R) (notation 1.2.2), so is diffeomorphic to
the face e(P) =(°P (R))°/Kp n (°P (R))°. These two commuting actions determine a
decomposition of D:

(3.11.2) D ^ A x e ( P ) ,

with respect to which all (°P (R))°-orbits are of the form {t} x e(P).

3.11.3. PROPOSITION (cf. [Z2]: (3.19)). - There is a W (R)- and Y p-invariant function g
in W4^a(e(p)) (cf. Remark 3.8.3.4), such that the desired neighborhoods Z^ are the
interiors of the closures of the images of

Y, = {(a, x) 6 A (R)° x e (P)[a^ > tg {x)} (t ̂  1)

in My ^, where /3 denotes the one simple ^-root that is nonzero on A.

3.11.4. Remarks.
(i) It is only for products of Q-rank one groups that the °P (R)-orbits define such

neighborhoods.
(ii) One places e (P) at the boundary of D in the manifold-with-corners by letting

oP = oo.

(iii) One can view g as a function on (°P (R))°. Then in (2.5.3), the dependence on G/,
appears as the dependence of the defining condition for Dp on the F-coordinate, and the
dependence on G/ is reflected in the choice of Y (or core).

We can change variables and write

(3.11.5) Y, = {r G R\t < r < 00} x e(P) (r = a ^ / g { x ) ) .

From 3.11.3, we easily deduce:

3.11.6. LEMMA. - If a function on Y^ is sia in the sense 0/3.8.1, then it is sia as a
function of r and (°P (R))°. The corresponding assertion holds for ^functions.

Next, we observe that since taking the constant term involves only averaging over
Pw\W(R), it follows from 3.11.6 that rjy is slowly increasing with respect to (r and)
(°P(R))°. Likewise, the argument that reduces this to cohomology on Mp (3.5.12)
involves only K^-equi variant projections, which certainly preserve the growth condition.
We conclude:

3.11.7. PROPOSITION. - Ifrj is slowly increasing, then the class

M e ® e H^- r-^(w)(MF,VA(.,w))0H r(x(^o,v^^))
r ^wF,p

is represented by a collection of slowly increasing forms on Mp.
Combining this with 3.8.2, we deduce:
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3.11.8. COROLLARY. - Iff] is slowly increasing, then T]^ defines a class

MECC ® H^-r-^(w)(MF,H,VA(.,w),H)0Hr(X(^0,V^^)),
r wGW17^

for any toroidal compactification Mp, 2 of Mp.

3.12. MAIN THEOREM WITH CONDITIONS AT INFINITY. - It remains to compare the classes
[y^ls and T-F [r]}. As in (1.6.3), the tower (3.9.2) extends:

I—Z*
K

Z*/^—
(3.12.1) <!> [ q

AF,= ^
i "1

L^MF,s^-1

for all of Z* =Z^ = ZF,E, Z* =Z^, Z* =Z^ = Z^ - Z^, and Z* =Z^ = Mp^(s)' inside

of which Z^ is a neighborhood of Z^.
Let Vp E denote the canonical extension of Vp, E to z^ (for simplicity of notation, we

use the same symbols here for the restrictions to Z^, ;'=1, 2, 3), and, for any cr C Sp,
write V^ for its restriction to Z^; likewise for ̂ , p^, and g^. For /= 1, Vp ^ is isomorphic
to the pullback to Zp, s of 4 Vr, s (notation 3.11). Extending 3.2.1, 3.4.1, and 2.8.7,
we have:

3.12.2. PROPOSITION.
(i) Vp ^ ^ TT^ (V^s /or ^m6? vector bundle (1^)5 on AF,S whose restriction to Ap

^ V^.
(ii) For ^ny component Za ofZ^ R^,* (Va) ^ (V^s.

(iii) For an^ a, the natural mappings

q.1 (V^H - {P^W; F1 (VA)s - (P. VF,^
ar^ isomorphisms.

Proof. - Assertion (i) is proved locally. As recalled above, every rational boundary
component of (P', Dp) is of the form (P'i, Dpj, for some rational boundary component Fi
of F. In a neighborhood of the corresponding boundary stratum Mp^ of Mp,s, it follows
from (3.3.5) that Vp s ls even ̂  Fallback of a vector bundle on Api, which is the
quotient of (the degenerating family of abelian varieties) Ap, s near M^.

Lemma 1.6.8 (iii) enables us to prove assertion (ii) by the same arguments used to
prove Proposition 3.4.1. With the description of the boundary given in 1.6, assertion (iii)
follows from Propositions 2.8.7 and 2.8.12.

To put us in the setting of Proposition 2.9.4 and (2.9.9), we also need:

3.12.3. LEMMA. - In all four cases of (3.12.1), we have

(V^RM^O^}.
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Proof. - The local structure of 71-2 is a morphism of torus embeddings (see the end
of 1.6). Using 1.3.6 and 2.8.11, we have for the higher direct images

0 = R-TT^ (Vp.s) = ̂  (M), (Vp^) ̂  R- ̂  {^ CP^)} = 0

^ R1 g* [p. C^s)}^ = 0 ̂  R1 g, {g-1 {V^} = 0,

and similarly (V^s —> 9* {^-1 (^^s} is an isomorphism.

3.12.4. PROPOSITION (cf. 3.9.5). - In all four cases, we have mappings

R1 ̂  C^s)^ = Rn ^*(p* VF,E) m? Rn lf*(^ ̂ F^)^
Rn (^i o 9)* {g-1 (V^s} ^ Rn TTI. (VA)H.

We obtain, as in (3.9.6), towers of spectral sequences associated to (3.12.1), in each
of the four cases:

IP(MF,2, R^VF^) ^ H^(Z*, Vp^)

T ? T ?
^(MF^^R9^^?^)) ^ H^ZVT^VF^)

(3.12.5) t l mv f ^ mv

H^ (MF,E, R9 ^* (^ Vp^D ̂  H^9 (Z*/^, (^ VF,^)

T ? T ?
H^ (MF,H, R^i. (VA)s) ^ H^ (AF,E, 0^)=)

which are compatible with the restrictions from Z^ to Z^ and Z^. Moreover, in the case
of Z^, we again have that on both sides the first and last terms are isomorphic, which
implies that inv is an isomorphism. It follows immediately from (3.12.2) that [cf. (3.7.5)]

(3.12.6) W (ZF,S, (VF,s)rJ ̂  H^ (AF,E, (V^s).

3.12.7. THEOREM. - Under the identifications available from (3.12.4), [r]v\v = TF [r/]
in Hi^Ar^C^).

Pwo/. - Now that we are down to AF,S, we can use 3.8 to revert to complexes of
slowly increasing forms to compute the cohomology groups. The idea is to repeat the
argument used for 3.10.3, making sure that whenever we asserted before that an inclusion
of complexes induces an isomorphism on cohomology, the isomorphism can be effected
by means of a projection and a homotopy operator under which the growth condition
is preserved.
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It is convenient to write C* (Ap, V^si, etc., for the Dolbeault complex of ^A-valued
forms of moderate growth in the sense of Borel [B2], cf. (3.8.1), and H^ (Ap, V^s'i forks
IVequivariant cohomology. More precisely, there is a complex of sheaves C9 (AF, 2, V^si
on AF,S» and we take its Fy-equivariant hypercohomology. By a small generalization
of 3.8.3, this complex is seen to coincide with A^ (Ap, 2? (V^s), -in view of 3.8.2,
we sometimes write (V^si for (V^s- hence

(3.12.7.1) H^ (AF,S, (V^s) ^ H^ (AF, V^si.

We had defined [y^s as an element of the right-hand side. Indeed, if rj is slowly
increasing, then so are rf (the T^-invariant projection of T]) and ?7p, as we have already
observed. As before, rp [77] and [r]0} are equal in H^ (Ap^ (V^z), for they are both
restrictions of [?7|z*]-

On the other hand, rfp is obtained from rf by averaging over a compact torus, which
has an L°° -bounded homotopy operator that thus respects our growth condition. It follows
that T^F and rf define the same class in H^ (Ap^V^s^ and we are done.

3.12.8. Remark. - The construction of (V^s (essentially Lemma 1.6.8) shows that
it can be viewed as a canonical extension of l^, in a sense which can be made more
precise using the methods of paragraph 4.6 below.

3.13. REDUCTION TO COHOMOLOGY ON Mp (WITH GROWTH CONDITION). - We begin by noting
that (3.12.5) and (3.12.7.1) can be combined to give

(3.13.1) H-(ZF,s,(VF,s)rJ ^H^ (AF, V^si.

We wish to express the right-hand side as cohomology on Mp, as we did in 3.7. Recall
from (3.6.3) that

(3.13.2) Rq^^VA:^ ® VA(^W)^V^,W),
wOW^^g)

with r/ acting on the right-hand factor. This gives at once on (Mr) 5,

(3.13.3) (R^.V^si^ ® (VA(/z,w))si0V^(^).
wew17'^)

We have the following version of the results in 3.5 and 3.7, which pays attention to
the growth conditions:

3.13.4. PROPOSITION.
©^^^((^^^(R^TTi,.^),;

(ii) The following spectral sequences degenerate at E^:

(3.13.4.1) W^ = W (MF, R^TTI,, V^si ̂  IP+9 (AF, V^si,
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(3.13.4.2) E^ = H^ (MF, R^i,.^), ̂  H^(AF, V^si,

(3.13.4.3) E^ = IT (r,, IP (AF, V^si) ̂  H^ (Ap, V^sn

(3.13.4.4) E^ ^H^r,, H*(MF, R^i,^),) ^H^(MF, R^i,^),,

<2^ A? their restrictions over subsets of (M^s.

Proof. - Recall that the main point in the proof of Proposition 3.5.12 was the F/-
equivariant embedding of the complex (3.5.12.1) in (3.5.12.2), which induced an
isomorphism on cohomology. One actually knows much more: we claim it is induced by
the composite of r/-equivariant, quasi-isomorphic embeddings of complexes of sheaves

(3.13.4.5) C- (Mp,E, ̂  (^ VA))si ̂  C- (MF,H, A- (^)* 0 Vx)s. ̂  C9 (AF,=, VA)si,

given by averaging over the fibers of 71-1, and by K-equivariant projection respectively.
These operations respect the growth conditions, and moreover, they come with cochain
homotopy operators that also respect the growth conditions. Thus we have (3.13.4.5)
(cf. proof of 3.12.7). Now, this and (3.13.3) give (i) and the degeneration of the first
two spectral sequences in (ii). As in the proof of Proposition 3.7.7, the degeneration of
the last two become equivalent; they do in fact degenerate, for the same reason as before.

Rewriting the above assertions in the alternate notation, we obtain:

3.13.5. COROLLARY.
(i) R^TTI, ((V^s) ^ © (VA(/.,W))= 0 V^(^),

wew^ (g)
(ii) The following spectral sequences degenerate at E2;

(3.13.5.1) E^ = W (MF,H, R^TTI,. (1^)5) ̂  IP+9 (AF,E, (V^s),

(3.13.5.2) E^ = H^ (MF,E, R^i,. (V^) ̂  H^ (AF,=, {V^)^

(3.13.5.3) E^ = IT (r,, W (AF,H, (VA)s)) ̂  H^5 (AF,S, (VA)s),

(3.13.5.4) E^ = H' (F^ H* (MF,S, R^i,, (^^ ̂  H^ (MF,S, R^TTI, (VA)5).

Finally, (3.13.1) can now be expressed as:

3.13.6. COROLLARY. - IP (ZF,S, (^F,s)n) ^ isomorphic to
e © ^-^^(MF^^A^^^^H^X^O^V^^)).
r wew1'^

3.14. COHOMOLOGY OF RAPIDLY DECREASING FORMS. - We continue the discussion of the last
two sections, with Z^ == Zp, s» which we denote simply Z; write 9 = QZp, s. >^ = ^Zp E,
<^ == <9ZF,s, in the notation of 1.5, 1.6. Let TQ. I>a, I<a be the corresponding
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(invertible) sheaves of ideals in 0^\ they are the pullbacks from Zp, s of invertible sheaves
IQ, I>Q, I<Q, defined in the obvious way. As in 3.12, we let Vp s d^ote th6 pullback
to Z of ^Vr,s, and let Vp,E (-9) O^P- ^F,E (-^ ^P- ^F,S (-<9)) be ̂ s ^^a
(resp. Vp E ^2'>a» resP• VF E ^^<o)- Note that Vp s (—^) ls ̂  pullback from ZF,S of
the vector bundle ^Vr,s(—<9) = ^Vr,s €><)%•

On the other hand, let 9Ap^ = Ap,2 — Ap, <9MF,s = MF,5 — Mp. These are again
divisors with normal crossings on Ap,5 and Mp^s, defined respectively by invertible
sheaves of ideals JaAp,s, %Mp,- we kt (^^{-9) = (VA)5^%AF,=; if ^5 is
the canonical extension to MF, 5 of an automorphic vector bundle W on Mp, we let
y^sub ^ WE 02aMp,2 fthe subcanonical extension, as in [H5]). In view of Lemma 1.6.8
and Proposition 3.12.2, we have

(3.14.1) R7^2,*VF,s(-9)^[(VA)5(-9)]^R7^2,*(Z>a)

In the last two sections we made no use of conditions of moderate growth on G/, since
they are not necessary in the computation of the cohomology of its associated locally
symmetric spaces. When we consider the coherent cohomology of Z with coefficients in
Vp s (—^) or ^F s (""^^ however, the condition of rapid decrease along G/ becomes
relevant. Indeed, Z is a toroidal compactification of °ZF,S and Vp ^ is a canonical
extension, in the sense of 3.2, of its restriction to °ZF, s- Thus the considerations of 3.8
apply to this situation. In analogy with Corollary 3.7.8, we have

3.14.2. PROPOSITION. - In the notation of Corollary 3.7.8, for each integer t, there is
a natural isomorphism

H*(ZF,E^Vr^(^))^e © ^—^(MF,^ (Vr^w)))^H:(X(rO, V^,,)),
r w^W^

where H^ denotes cohomology with compact supports.

Remark. - A combinatorial analysis of the left-hand side, along the lines of 3.7, will
be carried out in Part II (in greater generality).

Proof. - We argue as in 3.9. We need to compute

H t(ZF,E,^V^,i;(^))^H^(Z,VF,E(-9))
{cf. 3.7). By (3.14.1), this can be identified with

(3.14.1) H^(AF,=, [(^(-^R^^a).

To compute R7T2,*2'>a, we factor 71-2 = q o p, as in (3.12.1). Let Y = Z/T",
^Y = ^/T0, ^Y = Y-^Y; let j : ̂  -^ Y be the open immersion. At this
point we make use of the quasi-isomorphism

I>9 w Cone{0z -^ O>Q} [-1].
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It will be convenient to view 0^ and 0> 9 (resp. Cy and C> 9^) as simplicial sheaves on Z
(resp. Y) as in 2.7, corresponding to the closed covers by smooth irreducible components
(resp. quotients by T' of smooth irreducible components). Then

R7T2, * T> 9^ Cone {RT^, * 0^ -^ RT^, * 0> 9} [-1]
^ Cone {Rg, (p, C^) -^ R^ (^ 0> 9)} [-1]

by (2.9.6). By Proposition 3.12.2 (ii), the assertion of Proposition 3.4.4 remains valid
with p replaced by p. Thus, by Proposition 3.12.2 (iii), and the five-lemma, this gives
the same equivariant cohomology as

Cone{R9, (^ 0^ -. Rg, (^ 0>^} [-1]

^ Cone {R^ (g-1 OAR.^Y ̂  Rg* (g~1 0Ap,n)>aY} [-1]

^ OAF,= ^ Cone {Rg, Cy ̂  R^ C>w)} [-1] ^ OAF,E ^ R9* J' C>y.
We obtain that

(3.14.1) H* (ZF,E, ̂  Vr^ (^))^ (AF^, (V^s (-3) 0 Rg,j, C>Y).

The latter is the abutment of the Leray spectral sequence for 71-1, whose E^ term is

(3.14.3) E^ = W (Mp,2, R^ TTI,, (V^s (-9) 0 R^j. C>Y)

^ H^ (MF,S, R^ TTi,. (V^a 0 R^! C>y)

where as in (3.12.7.1) we have replaced (V^s (-9) by the canonically quasi-isomorphic
Dolbeault complex on Ap of forms which are rda near 9Ap^. As in 3.13, the last line
is isomorphic to:

^® ® ^-^^(MF^^Vr^^^^H^X^O^V^^)).
r wew11'^

Finally, the spectral sequence (3.14.3) is seen to degenerate, and be canonically split, by
the argument of 3.5.12 (applied to rda forms).

4. Adelization and canonical models

The constructions in the previous sections have been purely complex analytic, and have
made no reference to the arithmetic structure of canonical models for the Shimura varieties
and automorphic vector bundles in question. For applications to Eisenstein cohomology
classes and the eventual construction of mixed motives, it is necessary to take this arithmetic
structure into account. The most convenient language for this purpose is that of adelic
Shimura varieties, which was briefly introduced in Sections 1.1, 1.7, and 3.1-2. The
boundary cohomology groups computed in 3.13 will first be replaced by their adelic
versions. We then show how to construct the canonical models of automorphic vector

4® sfiRffi - TOME 27 - 1994 - N° 3



BOUNDARY COHOMOLOGY OF SHIMURA VARIETIES, I 309

bundles and their canonical extensions, and show how each of the steps in the computation
of cohomology in paragraph 3 respects the arithmetic structures.

4.1. ADELIC COMPUTATION OF BOUNDARY COHOMOLOGY.

Fix a rational boundary component F and the corresponding maximal parabolic subgroup
PF C G as in 1.2.1. In order to compute, as painlessly as possible, the cohomology of
the adelic F-stratum of Sh(G, X)^ (notation 1.7), we introduce several mixed Shimura
varieties treated by Pink [P], which arise at intermediate stages of the computation. We do
so informally, without recalling Pink's formalism, much of which is devoted to problems
arising from disconnectedness of the symmetric spaces; in particular, our symmetric spaces
will in (4.1.1) and (4.1.2) be taken to be connected components of those used by Pink.
For us it will only be necessary to recall that the mixed Shimura varieties have natural
algebraic structures and canonical models over the reflex field E(G, X), compatible with
all morphisms introduced and with the actions of the various adele groups.

We fix F for the remainder of paragraph 4, and abbreviate U=Up, W=Wp, V=Vp,
Gk=Gh,F, Gi=Gi^, P=Pp, etc. Define

(4.1.1) .Mr =hm P' (Q)^ x P (A^/Kp;

(4.1.2) Ap =^ P' (qO^pDF/U (C) x P (A^))/U (A^)]/K^;

Here (4.1.1) and (4.1.2) are slightly modified versions of the mixed Shimura varieties
Sh (P', Dp) and Sh (P'/U, Dp/U (C)) defined by Pink (this is a slight abuse of notation,
since Dp and Dp/U (C) are connected). The modifications are adapted to the P-stratum
of Sh(G,X)*, see below.

The inverse limits in (4.1.1-2) are taken with respect to the indicated families of compact
open subgroups of the relevant adele group, which are intrinsically defined. However, it
will be necessary to work with these objects at finite level. Thus, let K C G (A^) be a
neat compact open subgroup, and let

Kp == K n P (A^), KA = K H P (A-O/K n U (A^) c (P/U) (A^),
KF = K n P (A-Q/K n W (A-Q c L (A-Q

We make the simplifying assumption that the given Levi decomposition of P induces a
product decomposition

(4.1.3) K p ^ K p X (KnW(A^) ) .

It is easy to see that the set of K's with this property are cofinal; we leave it to the reader
to reduce the arguments in this Section to this case.

Now define

(4.1.4) K^G^^^^G^^SI^G^XVKF (for typographical rea-
sons), K^F = A^F/KP, K^F = ^F/K^.

ANNALES SCIENTIFIQUES DE L'^COLE NORMALE SUP^RIEURE



310 M. HARRIS AND S. ZUCKER

Then there are natural morphisms (at "level K"):

(4.1.5) 7T2,K: K-^F-^K^F; 7r!, K : K^F ̂  I<Sh (G, X)15;

Under the hypothesis (4.1.3), the map 71-1 K makes p^p an abelian scheme over
KSMG,^; let

CK: KSMG^-K^F

be the zero section.
If S = |j SF is an adelic family of fans as in 1.7, then the (partial) toroidal

compactification K-^F s ls defined just as in the connected case (see [H3] for details). The
results of Pink cited in 1.6 are actually adelic, and imply that, possibly after refining E,
we may extend (4.1.5) to

(4.1.6) 7T2,S: K-^S -^K^F^ 7ri,S: K^F, 5^-^ K811 (G^ x)^

where 5"4 and 5 are families of fans defined for the corresponding mixed Shimura varieties.
Furthermore, these fans may be chosen in such a way that the spaces K-^F E» K^F VA'>
and ^Sh(G, X)£ are smooth varieties defined over E(G, X), the latter two projective;
the boundaries are divisors with normal crossings, each of whose irreducible components
is smooth; and the morphisms 7T2,E and TT^S are E(G, X)-rational. We also assume
hypotheses (2.2.7) and (2.2.9) (in their adelic versions).

In most cases we will be content to work with the partial toroidal compactifications
relative to |j Sp/ for F' ^ F, as in 1.5 (actually, all information is already contained
in Sp); in other words, boundary divisors corresponding to the boundary components of F
are removed.

Until further notice, we fix a neat level subgroup K, and let Sh =i<Sh (G, X). Let Shs
be an admissible toroidal compactification of Sh which admits the morphisms (4.1.6),
and let Shs (F) be the partial toroidal compactification relative to |j Ep/ for F' ^ F. Let
<9Shs = Shs - Sh, and let Sh^ denote its P-stratum (1.7.11), which is the same as the

—P
P-stratum of Shs (F). Let Sh^; be the closure in ^Mp ^ - ̂ Mp of

(^so^Er^KSMG^X)1^
-^p

via (4.1.6). Then Sh^; is, at least analytically, an etale covering of Sh^:

(4.1.7) Sh^(P(Q)+/P /(Q)+)\Sh^.

Indeed, over the connected component Mr this is essentially Lemma 1.5.3. It is proved
by Pink ([P], Theorem 12.4) that the natural map Sh^ —^ Sh^ is a local isomorphism in
the Zariski topology, compatible with the E(G, X)-rational structures on both sides.

The computation of cohomology in paragraph 3 immediately extends to the adelic
setting. It is most easily written down for the inverse limit (with respect to K) over the
P-strata. We let

(4.1.8) X (GQ =^1 Gi (Q)\G< (A)/K,. A (R) . K,, f
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be the adelic locally symmetric space for G/; the limit is taken with respect to open
compact subgroups K^y c Gi (A-^). The local systems VA(^) on X(G/) are defined
as in Corollary 3.7.8, and the cohomology groups ir'(X(G^), V\(^w)) are defined as
direct limits overK^y:

(4.1.9) H^GO, V^)) ̂ H-WGO/K^ V^,,)).

These have "topologicaF rational structures over the fields of definition of the algebraic
representations (A ((, w), V^w)) of G/.

Next, for any Shimura variety Sh (G, X) and any automorphic vector bundle V, we
define as in [H5], § 2 the admissible G (A^)-modules

H- (V—) -^ H- G<Sh (G, X)s, V^),
K., 2-1

H- (V-b) _ - y. ̂ h(G, X)s, V8^);
K., 2-1

H- (Sh (G, X), V) = Im (IP (V^) -^ H- (V^)).

Write V|? (resp. V^) for the pullback of V^" to the P- (resp. F-) stratum [from (1.7.10)
and (1.7.11)]. Now we compute -"? IP (Sh^, V^) by the spectral sequence of the

K, S

closed cover Z^ by its irreducible components, as in 3.7. For any fixed K, Sp (resp. Sp)
is a fan in G(Q)+ x^^ (Cp x G(A^)/K) (resp. G(Q)+ x1^)4' (Cp x G(A^)/K)),
by (1.7.1). The P-stratum corresponds to the subcomplex of the fan given by
Sp = SF H (CF x P (A^) • K/K), and two simplices in this subcomplex define the same
divisor in Sh^; if and only if they are in the same orbit under P(Q)+. If we let
Sp = {a\a € Sp} (c/. 2.2), it follows that the nerve of Z^ is just P (Q)+\Sp (cf. 3.7.2).
Then the reasoning of paragraph 3 applies. Let Ai be the kernel of the natural map
G, (AQ x G, (A^ - G, (Af) . G, (AQ, Ao = L (qQ-^G, (Q)+ . G, (Q)+), A =
Ao x Ai. Then Ai acts naturally on

(4.1.10) H9 (w) := H-^) ((VA^W))"") 0 H- (X(GQ, VA(^))

for each w, through the natural G/i (A^) x Gi (A-^) action on the tensor product. Moreover
6 G Ao acts on the left on the space Sh(G^ X(F)) x X(G^) by

.4.^ f 6^x^)={6{x)^8^8-1)^
[ x G F x [G, (R)/K, . ZG, (R)], 7 ^ G, (A^) . G, (A^),

and the sheaves VA(/ I ,W) x V A ( / , W ) are equivariant for this action. Thus Ao also acts on
H9 (w), and we have

4.1.12. COROLLARY. - -lr? IT (Sh^;, V^) is isomorphic to
K, S

® ® IP{H^- r-^^((VA(.,.))can)0H r(X(G,),V,(^))}.
r wCW1'^
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Here (V^^w))0'111 ls viewed as a (family of) automorphic vector bundle(s) on toroidal
compactification(s) of Sh(G^ X(F)), with X(F) as in (1.7.4). Here

(4.1.13) f {H9 (w)} := Ind^;^.^ ̂ ^{H9 (w)^}.

This is easy to see on the level of Lie algebra cohomology [cf. (4.2.9), (4.2.10),
below]. A direct topological proof is sketched in 4.8, below. Similarly, we can compute
the cohomology of the F-stratum. Let Sh^ be the closure of the F-stratum of Shs
(cf. 1.7.9). Then

4.1.14. COROLLARY. - llr? IP (Sh^, V^) is G (A^-equivariantly isomorphic to
K., S

I^^[© © IP{H^-r-^w)((V,(,^))can)0Hr(X(GO,V,(^))}].
r w^w^

The G(A•f)-equivariance of the isomorphism follows by comparing the descriptions of
the F- and P-strata, and using the description ([H5], 2.5.6) of the G (A-Q-action on
the cohomology.

__F
Finally, we have the analogous fact for the cohomology of Sh^ relative to its boundary.

Let 9= U (Sh^nSh^) C Sh^, and define V^{-9) as in 3.14. Then the adelic
F/^F

version of Proposition 3.14.2 is

4.1.15. COROLLARY. - ln? H' (Sh^, V^ (-9)) is G (A^-equivariantly isomorphic to
K, S

^(^[e e IP{H^-r-^^((vA(.^))sub)0H;(x(Go,v,(^))}].
r wew^

4.2. RELATION WITH ADELIC AUTOMORPHISM FORMS.

We also need an adelic version of our main theorem 3.10.3/3.12.7^ Fix a point p G D,
and define Kp and ^p = Lie {Pp) as in 1.8. Let K^ = K^ • A (R), Ki = Ki • A (R). As
in 3.10, there is an isomorphism ([H5], Cor. 3.4)

(4.2.1) rj -. W : H- Wp. K,; C00 (G (Q)\G (A))sia 0 V,)) -^ H- (V-),

with V = V\, where C00 means locally constant with respect to G (A^) and smooth with
respect to G (R). On the other hand, for each w G W^, there are isomorphisms

(4.2.2) /3^[ /3] :

H- (^ K,, C°° (G, (Q)\G, (A))sia 0 V^,,))) ̂  H- ((^(^w))^)

(4.2.3) 7 ̂  M ^
H- (s,, K^ C00 (G, (Q)\G, (A))sia 0 V^^,))) -^ H- (X(GQ, V^(^));

the isomorphism (4.2.3) is due to Borel [B2], whereas (4.2.2) is a special case of (4.2.1).
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Denote the left-hand side of (4.2.1) by 7-̂  (G, Kp; VA)sia, and the left-hand side
of (4.2.3) by U^ (G^ Kj; VA(A,w) ) s i a ; the left-hand side of (4.2.2) is denoted
^(Gh, Kh; VA(/ , ,w))sia , in conformity with the notation for (4.2. 1). We write ig [•]
for Ind0^^-], and recall the definition of I15 {•} (4.1.13). Then the proof of
Corollary 3.13.6 provides the existence of a commutative diagram

(4.2.4)

^-(G,K^VA).a^I^[®IP{^^^w)(G^K^VM^-))sla0^(G^K,;VA(A,.)
w

j rj^[T]} | ®/?07^C[/3]0[7]

H- (V-n^ ^ ^ [^{H-^) ((VA^W))^) ̂  H- (X(GO, VAO,.))}]
w

The first line needs to be clarified. Starting with an element
rj G C- (^ K,; C00 (G (Q)\G (A)),a ̂  VA))

= [C00 (G (Q)\G (A)),a ® A- (p-) 0 VA]^
one first defines its constant term

(4.2.5) 77F = / r] G [C00 (P (Q) • W (A)\G (A)),a 0 A- (p-)* ̂  VA]^
JW(Q)\W(A)

where the measure, which is applied to the coefficient functions of 77, is normalized to
have total volume 1. One then restricts 77? as in (3.10.3.2) to an element of

(4.2.6) Res (^)G [C°° (P (Q) • W (A)\P (R) x G (AQ)^ 0 A- (p-)* 0 y^p^W.

Applying the Cayley transform, as in (3.10.3.3), we rewrite Res(?7F) as an element
of the complex

[C°° (LF (Q) • W (A)\LF (R) x G (AQ)^ 0 A- (p^ C u- 0 uc)* 0 VA^^ (R).

which is quasi-isomorphic to the double complex

(4.2.7) [C^I^Q^V^AAI^R)
xG (AQ),a ̂  A- (p, 0 uc)* 0 (A- (0-)* 0 VA)]^ .

As in [3.10.3.6 (i)], we let pi be a point in Cp fixed by K/, ^ = fp H 0^, [notation
(1.2.2)] and identity Uc ^ Tcp,?; ^ ^,c. Recall that A is not contained in K/.

Since the G (A^)-action commutes with the differentials in the complex, this last
complex is canonically quasi-isomorphic to the complex

(4.2.8) 1̂  [[C00 (LF (Q)\LF (A)),a ® A- (p, C PO* ® H- (t)-, VA)]^-^].
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We write p , = a ® p ; , with a = Lie (A)np; = Lie (A} [notation (1.2.2)] and
P; = Vi n flf®'". Then the complex in (4.2.8) is canonically quasi-isomorphic to

(4.2.9) Ip1 [[A- (p, ® p,)* ® H- (a, C00 (LF (Q)\LF (A))^ ® H* (t)-, V^))]^]

^ 1̂  [[A- (Pft ® P;)* ® C00 (Lp (Q)\LF (A)),,, ® H* (D-, v^)]^'-^)]

(4.2.10) ^[ei^GKG/., Kft;V,(/,,,))^®C;(G,, K,;VA(A,»)W],
W

by Kostanfs theorem, since H2 (a, C00 (LF (Q)\LF (A))sia 0 •) is trivial for />0. Here
we have written

C^- (G,, K,;V^,,)),a = C- (^ K,, C00 (G, (Q)\G, (A)),, 0 V^,,))),

C; (G^ K,; V, (A, .))s.a = C-(0,, K,, C00 (G, (Q)\G, (A)),, 0 VA (.,.))).

4.3. AUTOMORPHIC VECTOR BUNDLES AND PERIODS OF CM MOTIVES. - It follows from
Theorem 3.2.4 that the cohomology restriction map rp is defined over the field of
definition of [V\], and the computation of the target cohomology groups in terms of
automorphic vector bundles on Sh(G/,, X(F)) is also purely algebraic. On the other
hand, the latter cohomology groups likewise have canonical rational structures, and it is
necessary to verify that the restriction maps on the bottom line of (4.2.4) are compatible
with the canonical models on both sides. (Here we need to observe that the action of Ao on
the cohomology, defined by (4.1.11), preserves the rational structure (cf. Remark 4.8.4,
below). Indeed, our automorphic vector bundles are given with canonical families of
trivializations over CM points (in terms of the canonical local systems of [H2], or the
period torsor, as in [Mi]), and it has to be shown that the commutative diagram (4.2.4)
respects these trivializations. To this end, we need to recall how Theorem 3.1.3 is proved.
We use a language halfway between those of [H2] and [Mi].

Let (/?, V) be a faithful Q-rational representation of G. Then V = M x V is naturally
a homogeneous vector bundle over M, hence defines (by Theorem 3.1.3) an E (G, X)-
rational automorphic vector bundle [V] over Sh(G, X). The bundle [V] is endowed with
the following additional structure:

(4.3.1) (i) A G (A f) -invariant flat connection V.
(ii) A G(A/^invariant filtration (Hodge filtration) by G-homogeneous vector

subbundles, corresponding to the filtration on V which, at the point p G M, is the
natural filtration defined by the restriction of p to the maximal parabolic Pp (notation 3.1).

(iii) For every G-invariant tensor 7 e V^ 0 (V*)0" and corresponding line sub-bundle
C (7) C [V]^ 0 [V*]0", a G (A^)-equivariant isomorphism ^ : Osh(G,x) ̂  C (7).

The verification of this fact, which is a simple consequence of Theorem 3.1.3, is actually
the main step in the latter9 s proof. Using this structure, we construct a principal G-bundle
I(G, X) over Sh(G, X), rational over E(G, X): over any open subset U C Sh (G, X),

(4.3.2) I (G, X) (U) = {/ G Isom ,̂ (V ® 0^ [V]^) |/ (7) = ̂  (1)}.
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This can be defined without reference to a particular V, by using tensor categories, and
one then sees that I(G, X) is independent of the choice of V; however, this concrete
realization will be useful.

The action of G (A-^) on [V] defines an action on I(G, X), and the canonical morphism
d: I(G, X)—^ Sh(G, X) is G (A ̂ -equivariant. On the other hand, at any geometric point /
of I(G, X), with d(f)=x, the Hodge filtration on the fiber [VL induces a filtration on V
via /-1, and one verifies that the stabilizer of this filtration is conjugate to Pp for p G X,
hence defines a point ?r(/) G M = M(G, X) (notation 3.1). It is easy to show that
TT : I (G, X) —» M is also E(G, X) rational, and equivariant with respect to G x G (A-^).

Now the functor of Theorem 3.1.3 is easily made explicit. Given V as in the statement
of the theorem, TT* (V) is a G x G( A f) -homogeneous vector bundle on I(G, X), hence
descends to a bundle

(4.3.3) [V] = TT* (V)/G

on Sh(G, X). On the other hand, the set of complex points of I(G, X) may be identified
([H2], (3.4.2.4)) with

(4.3.4) ^m G (Q)\G (C) x X x G (A^/K,

such that the map TT takes (g , p , g ' } G G(C) x X x G(A• f) to g~1 • f3(p). Denote
the class of the image in Sh(G, X)(C) (resp. I (G, X) (C)) of (p, g ' } C X x G(A^)
(resp. {g, p, g9) € G(C) x X x G(A /)) by [p, g ' } (resp. [g, p, g ' } . Now over the point
[p, g ' } G Sh (G, X) (C), for any fixed g\ there is a canonical lifting

f{p.gf)=[^p,9f}^^G,x)(c),
whose image under TT is /?(?), corresponding to the choice of local flat framings of V.
This is well-defined in the inverse limit, because hypotheses (1.1.3-4) imply that
^lm (G(Q)nK) = {1} ([Mi], p. 324); otherwise the point would only be well-defined
in the quotient of I(G, X) by the Zariski-closure of this inverse limit in G (C). There is
a canonical composite "periods" isomorphism

L3.5) P^O,^) : ^(p) ̂  ̂ ^(p,^) -^ Mb^]-

If 7 e G(Q) then [7?, 7 g ' } = [p, g^ but f (p, g1} ^ f(jp, 7^), so Per^,^/) and
Per(p^/) are not identical. For example, if V == V, with (/?, V) as above, then Per^p^/)
and Per(p^/) differ by translation by/? (7).

Suppose (H, h) C (G, X) is a CM pair, with H a torus. Then M (H, h) is the E (H, h)-
rational point /? (A) E M . The fiber V^ (/i) is the space of a representation \ = ̂ y ̂  of H.
Let E (V, h) denote the field of definition of \\ and let Vp^h) (E (V, h)) denote the space
of E(V, /^-rational points. Then (4.3.5) defines an H^A^) -equivariant local system of
E(V, A)-vector spaces:

HBWx)/Sh(H, h))^^ :=Per(,,,/)(^(,)(E(V, h))) C [V][^/] (C).
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(Here WZ stands for "motive", for reasons explained in [H2], §3.15.) Then there is an
element p ( h , ^) G Aut([V]|sh(H,/Q (C)), which depends only on (H, h) and \, and is
canonical mod^(H(Q)), such that

(4.3.6) HDR (9Jt (x)/Sh (H, h)\^ ̂  := p (A, ̂  . HB (37t (x)/Sh (H, h))^ ̂

is the canonical E(V, /^-rational structure on [V]|sh(H,/o [H2], 3.15; [Mi], p. 314. As
(H, h) varies, the intersection of the E (V, h) is just the field of definition E (V) of V, and
the union of the G (A^)-translates of Sh(H, h) in Sh(G, X) is dense [De3]. In particular,
the space of rational (meromorphic) sections of [V] over any field containing E (V) is
completely determined by (4.3.3) and (4.3.4). We return to this point when we discuss
canonical trivializations below.

4.4. LIMIT HODGE THEORY FOR FLAT AUTOMORPHIC VECTOR BUNDLES. - Define (/?, V) and

[V] as in 4.3. Then [V] extends canonically over Shs to a vector bundle [V]s in such a
way that the flat connection V extends to a connection with regular singularities [Del]:

(4.4.1) Vs : [V]s -^ [V]s ̂ o n1 (log (<9Shs)) (0 = Osh^, etc.)

This extension can be shown to coincide with the one entering in 3.8.2 [H3], (4.2.2);
together with Vs, it is defined over E(G, X) (since [V] is). We may define Is = pJ (G, X)s
analogously to (4.3.2), relative to [V]s. For that, one needs to check that for all 7, £ (7)
and z\: Osh ^^ (7) extend over Shs; but this follows from the functoriality of the
canonical extension. Thus, we have in Is an E(G, X)-rational principal G-bundle over
the entire space.

4.4.2. LEMMA. - Let V be any G-homogeneous vector bundle over M. Then:
(i) the mapping TT : I (G, X) -^ M extends to a G-equivariant mapping

TI-s : IE -̂  M.

(ii) there is a canonical isomorphism

[V]s^[V]s:=^(V)/G

over Shs, rational over the field of definition ofV, whose restriction to Sh is the isomorphism
defined above.

Proof.
(i) The Hodge filtration of [V] extends to [V]s, as the former is given by G-homogeneous

bundles [see (4.3.1), (ii)], and one just takes their canonical extensions. One then
defines TT^ by the same prescription used to define TT.

(ii) When V is of the form V, this is a tautology. Since V is a faithful representation
and the functor V i-̂  [V]s commutes with tensor products, it follows that the theorem is
true for flat vector bundles. From here the proof is a paraphrase of the argument used
to prove [H3], Theorem 4.2, (iii): one represents the general V as a subquotient of some
flat W and then the assertion for V follows from that for W.
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It is useful to put (4.4.2), (i) and other particulars in the context of general asymptotic
Hodge theory. First, we de-adelize (4.3.4) to give

(4.4.3) d : I (G, X)r = F\(G (C) x X) -. F\X, TT : I (G, X)r -^ M.

Recall that the variation of Hodge structure of Vr is induced from the "tautological" one
on Xx V, where the Hodge filtrations (4.3.1), (ii) satisfy

F;/=pQ7)F;,
whenever g • p == j/, corresponding to (1, p ' ) in (4.4.3).

We now use the Siegel domain coordinates associated to the boundary component F,
coming from the group H = P' (R) • U (C). The projection

H -̂  P' (R)/U (R)
gives rise to the torus fibration (1.2.5), and by using local cross-sections, one sees that
the essential issue is to treat a single fiber.

As in 2.3, let a- be a top-dimensional cone in the fan Sp. Let {e i , . . . , en} be the
generators of a n Fu, and let {gi , . . . , q-a} be the dual basis. At first, we identify Uc and
U (C), as is customary, and use only additive notation. The functions

0(n)=(g,^) (ueuc)
define coordinates on Uc ^ U(C), and

(4.4.4) tj(u)=e2^^ l ^ j ^ n

induces an isomorphism TF ^ (C*^ [cf. (2.3.5)]. One notes that
n

^=^ (0=^0^5
J=l

If we now take care to make explicit the identification exp : Uc —^ U (C) and let
Nj = log €j G u, then we have

/ n \

(4.4.5) ^ ( C ) = e x p ( ^ O N , j .
^=1 /

Of course, aj = {ej) is an edge of a. The part of the corresponding boundary divisor,
which we denote here Zy, that comes from a is the locus of points where tj=0 in (4.4.4);
it is achieved in the limit as Im^j -^ oo. It follows that d/?(Ny) is the nilpotent logarithm
of the local monodromy transformation around Z/, for notational convenience, we use N;
to also denote the monodromy logarithm, here or in any variation of Hodge structure.

In general, frames for the Deligne canonical extension on a product of punctured discs,
when the monodromy is unipotent, are given by the translates of flat frames by (4.4.5),
and the extension of the Hodge filtration follows from the deep Nilpotent Orbit Theorem
of Schmid [Sc], (4.12). In the case of a flat G-homogeneous bundle on a fiber of TT^
over AF, one is taking the equivalence class of the point (u((), u(()xo) in (4.4.3), for
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some XQ, and thus the image underTT is independent ofC, (for Im(Cy) sufficiently large),
thus giving the limit. (This was explained in another way for (4.4.2), (i).) Note that the
limit depends on the choice ofjco in its U(C)-orbit (this recovers the usual ambiguity in
the definition of the "limit Hodge filtration").

Next, a nilpotent endomorphism N of a finite-dimensional vector space V admits a
weight filtration W(N), characterized by:

(4.4.6) ( i ) N W ( N ) , C W ( N ) , _ 2 ,
(ii) N^ induces an isomorphism G^ w V ^ Gr^V.

There is also the more elementary kernel filtration K(N), with

(4.4.7) K ( N ) / V = k e r N ^ 1 ;

whenever V is J-dimensional and indecomposable under N,

K ( N ) / V = W ( N ) 2 ^ V .
One can define, likewise, the image filtration, by

(4.4.8) I_^V=NmV,

and W(N) admits the simple algebraic description as the convolution of K and I (see
[SZ], (2.3)). If a "weight" w G ~S- is attached to V, one recenters W(N) by putting
W(N, w)=W(N)[-w] (the shift of W(N) by w).

Recall that the Cayley morphism wp determines mp [see (1.2.2.1)], which (see [D2])
is the restriction of a group homomorphism hs (defined over Q), given by the composite

(4.4.9) SL (2) ̂  SL (2)' -^ G

for some s ^ r, where 6s is the partial diagonal whose components are the identity mapping
for the first s factors and are trivial for the rest. Let

(4.4.10) Vo=dh, M M € CF.

Then the weight filtration of No is split by the weight spaces for wp. Since G/ centralizes
wp, and acts transitively on Cp, the same holds for any N G CF. Thus,

4.4.11. PROPOSITION. - Let V be of weight w. For all N G CF, the -weight filtration
W(N, w) is the same, viz. W17.

According to [Sc], § 6, for a local monodromy logarithm the filtrations W(N) and the
limit (in the above sense) of the Hodge filtration define a mixed Hodge structure on V;
moreover, if the type of Hodge structure involved has a locally-symmetric classifying
space, one can replace the limit Hodge filtration by that of any sufficiently nearby point.
In the homogeneous case, the latter assertion is contained in the axioms that define an
admissible Cayley morphism (1.2.2), and the assertion about the limit follows from that,
as (4.4.5) acts trivially on GF^WV.
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For general degenerations of Hodge structure, the weight filtrations of the monodromy
logarithms N, can differ, and the relations among them are quite complicated. A theorem
of Cattani and Kaplan (see [SZ], (3.12)) asserts:

4.4.13. THEOREM. - For each non-empty subset J of {1, . . . , n}, let

Tj = {N = ̂  ̂  N, : A, > 0 for allj}.
jeJ

Then (i) for any J, W(N) is a single filtration for all N G TJ; denote it by W1;
(ii) if N G Tj, then for any J7, V^NrelW^) = W^.
To explain the last assertion, we recall:

4.4.14. DEFINITION [D4], (1.6).- Let W be an increasing filtration of the finite-
dimensional vector space V, and N a nilpotent endomorphism of V that respects W7.
The increasing filtration M of\ is the weight filtration o/N relative to W if:

(i) NMfc C Mfc_2,
(ii) N^ mJMC^ an isomorphism Gr^ Gr^ V ^ Gr^ Gr^ V/or ^ZZ /, i e., M ;WMC^

on Gr^ V ̂  filtration W (Gr^ N, Q.

4.4.15. Remark. - There is at most one filtration M of V satisfying these conditions
[D4], (1.6.13). The criteria for its existence are given in [SZ], §2. One writes
M=W(NrelW /).

We consider the conclusions of 4.4.13 in the homogeneous case, returning to the
consideration of a top-dimensional cone in Sp. In light of 4.4.11, there is nothing serious
in 4.4.14 when a G ^p: one simply takes M = V^ ^V^ (convolution of filtrations, as
in [SZ], (1.4)). Thus, one should have in mind that a has at least one edge in ^SF. We
may assume that the boundary component F is F,, having Cay ley morphism coming from
(4.4.9), and that we are considering, for j G J, o'j C Cp,.. It is clear that Tj C Cp^,
where ^ = max{^ : j G J}, and then W^ = W^ in 4.4.13. Note that i fW(Q denotes
the weight filtration of the ;-th factor of SL(2) in (4.4.9), we have

(4.4.16) W^ = W ( 1 ) ^ . . . ^ W ( ^ )

(distributive in the sense of [Ka], (1.6.3)), L e. the total weight under (4.4.9) is the sum
of those of the individual non-trivial factors.

To make (4.4.13, (ii)) explicit, we may take J = {1, 2} and assume that s^ < 53,
F(1)=F^, F (2 )=F^ . Then the non-vacuous statement is that for W^W^^,
M = W^^ satisfies [4.4.14, (ii)]. If we use (4.4.16) to write

VyF(2)^^F(l)^

where R is the weight filtration for the complementary factors, it follows formally (see
[SZ], (1.5)) that

Gr^Gr^V^Gr^Gr^V,

and the rest is easy.
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4.5. REDUCTION OF THE STRUCTURE GROUP. - We now want to compare the canonically
extended automorphic vector bundles on Shs to automorphic vector bundles on
Sh(G/^ X(F)) . We restrict our attention, until further notice, to the open subvariety
Shs(F).

4.5.1. PROPOSITION. - Over the P-stratum Sh^, the structure group ofl^ can be reduced
to Pf = Pp; there is an E(G, X)-rational principal P-bundle 1̂  over Sh^ and an
isomorphism Islsh1' ^ 1̂  xp/ G.

Proof. - In this section we reduce the proof of the Lemma to Lemma 4.6.9
of the following section. Parts of the following argument are probably familiar to
many people, but it does not seem to be in print. Recall that Sp is a fan in
G(<Q)+ x^^ (CF x G(A^)/K). Let a be a 1-simplex in Ep. Let Z, c Shj; be the
corresponding complete divisor, and let [V]<, == [V]s 0 (0/T^) be the restriction of [V]s
to Z^ (0 denotes the structure sheaf of Sh^). Let T (-log (Z^)) be the logarithmic tangent
bundle relative to Z a,;. e., the vector fields that preserves the ideal sheaf of Z<^; it is the dual
of O1 (log (Z<^)). The logarithmic normal bundle ̂  is the quotient of T (-log (Z<,)) |z by
the tangent bundle to Z^. The regular connection Vs of (4.3.5) determines a residue map

(4.5.2) Res : 9T, ̂  [V], -^ [V],

by the contraction:

(4.5.3) X ® v ̂  (X7, Vs «1) (mod 1^)

where v ' (resp. X7) is any extension ofv (resp. X) to a section of [V]s (resp. T (-log (Z<,)))
near Z<j. Since X7 has a zero along Z^, the map (4.5.2) is Oz -linear.

We can see that for any (local) section X of 9T^, the operator Res (X 0 .) is essentially
a multiple of N<, [recall the paragraphs following (4.4.5)]. In fact, we can make the
identification natural by describing the Deligne extension and the residue map concretely
in a complex analytic neighborhood of Z<, (c/. [H3], p. 19). We return temporarily to
the notation of paragraph 1: F is an arithmetic subgroup of G(Q), etc. Then Dp, star (<z)
is locally isomorphic to both an open neighborhood of Z<, in (M^Sp and an open
neighborhood ofZcr in Shs. Now the pullback of [V]s to DF,star(<7) extends as follows
to (MF)SF. First, let [V]r be the local system FF\(V x Dp) over Mp = FF\DF, where
the action of Fp on V is by p. It follows from reduction theory (cf. 1.4 and 3.3) that
[V]r ^ [V] in a deleted neighborhood of Z<, in (Mp^Sp. I f ^ C A p is an open ball and

U9 = 7T2-1 (U) ^ TF (C) X U C MF,

the restriction of [V]p to U1 is just isomorphic to A (V) = (Fu\V x U (C)) x U, a local
system over TF (C) x U (cf. Prop. 3.3.6). Then the restriction of [V]s to the closure U'
oiU1 in DF,star(<7) is isomorphic to the Deligne canonical extension of A(V) to U1.

The reduction of stucture group over C is easy in this model. Let I(G, Dp) be the
G-torsor over Mp defined by (4.3.2) relative to [V]p. Then locally on Mp (C) (in
the analytic topology), I(G, Dp) defines isomorphisms between [V^F and the constant
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sheaf V'xMp^C), for any representation (//, V7) of G. We take/?' to be the adjoint
representation on 0, and let

(4.5.4) I? = {/ 6 I(G, DF)|/ respects W1' and is the standard

flat isomorphism on W^ = u} ̂  F^P' (C) x Dp.
This construction is Tp = T D P-equivariant when Fp acts by conjugation on P' (C) and
through its natural action on Dp. It then follows from (4.3.4) that Ip does give rise to
I(G, X) (C) in a deleted neighborhood ofF on Mr,s by extending the structure group
from P' (C) to G(C). The extension of Ip to a P^C^-torsor on (Mp)sF is carried out
as in the discussion preceding Lemma 4.4.2; taking quotients by Fp then provides the
reduction of structure group analytically on ^p ^ (notation 1.5). Since Pp D Pp/ f01"
F>F, this reduction extends to the closure Zp, s of °Zp ^ in Mp, s. hence is algebraic by
GAGA. We let 1̂  c ^e trle corresponding P^torsor over Sh^.

An integral generator a of the simplex a corresponds to a 1-parameter subgroup
P'a : G'm -^ Tp (C), given by the formula

p,^ (z) = (2 TT i)~1 log (z) • a (mod Fu) (any branch of log).
Let X^ denote the invariant vector field on Tp (C) whose value at the identity is
dp.ff (x - [d/dx)). Then X^r defines a local section of ̂  on U 1 ' . It follows from [H3],
(4.2.3) that

(4.5.5) N<, :=Res(X^(g)-) |^/ = (27rz)-1 dp (a).

Although the formula (4.5.5) depends on our choice of trivialization of LI'\ because ̂
is a line bundle, the 1-dimensional space of operators (N^) is well-defined on Z^. This
induces a weight filtration W. [V]^ of [V]<^.

We now define a subfunctor 1̂  of the functor represented by Is. First, let

(4.5.6) °I^ {U) = {f G Is (U) : / (W, V (g) Ou) = W, [V], (^)};

this is clearly a principal P-bundle over Z^. We next take

(4.5.7) 1̂  (U) = {f G °I^ (^) : / o ̂  (7<r) e (N^) for all 7 € FJ.

Since F/ is Zariski-dense in Gy, which acts transitively on Cp, it follows that 1̂  is a
principal P"-bundle over Z^, where P" is the largest subgroup whose adjoint action on Up
is given by homotheties; P' is the identity component ofP". Furthermore, for any two
simplices a and cr7, the functors (4.5.7) coincide on the intersection Z<j H Z^/ , so the 1̂
patch together to define a principal P"-bundle J^ over Sh^. It is rational over E(G, X)
because the functor (4.5.7) is defined over E(G, X). Since J^ is defined as a subfunctor
of Is, the isomorphism Islsh17 ^ J^ xp G is automatic. Also, when we replace (/?, V)
by the adjoint representation as above, the condition in (4.5.7) specifies the isomorphism
on u, and this is as required by (4.5.4), giving that over C, J^ is given by 1̂  ^.

It remains to reduce the structure group from P^ to P^ This has already been
accomplished over C. Now R;, (PQ=R^ (P'^W. Thus it suffices to show that the quotient

ANNALES SCIENTIFIQUES DE L'fiCOLE NORMALE SUP^RIEURE



322 M. HARRIS AND S. ZUCKER

1̂  i of 1̂  by W is rational over E(G, X), as a subfunctor of the functor represented by
J^/W. But this is immediate from Lemma 4.6.9, below.

4.5.8. LEMMA.
(i) There is an E(G, X)-rational, Pf-equivariant morphism TT^ : 1̂  -^ M such that

TT^ xp G : I^\^F—^M coincides with the restriction of7r^ to Sh^.
(ii) The image of^ equals M (F) = P' • p C M, and is thus independent ofT^.

(iii) There is a P1'-equivariant isomorphism

W\M(F)^M(G,,X(F)),

induced by passing from V to Gr^ V, where the last space is the compact dual of F.

Proof. - The first statement is trivial: since 1̂  is defined by a subfunctor of Is,
TT^ : 1̂  -^ M is just the restriction of Ti-s. Let (/?, V) be as in 4.3, and view M as a
family of filtrations of the category of representations of G. Then the image of TT^ equals
the P7 (C)-invariant set of filtrations of V induced by the Hodge filtration on [V]s at the
points of Sh^. Thus, to prove (ii), it is enough to see that /?(?) is in the image of TT^. For
this, we simply take XQ =p in 4.4. Assertion (iii) is clear.

4.6. COMPARISON OF RATIONAL STRUCTURES. - The normal subgroup W acts freely on 1 ;̂
let 1̂  i (resp. 1̂  3) denote the quotient of 1̂  by W (resp. U). Then 1̂  is a principal
GH -bundle on Sh^, and 1̂  3 is a principal P^-bundle, and there are natural morphisms

(4.6.1) TTJ^: I ^ ,2^U\M(F) , T T ^ i : l j ^^W\M(F) -M(G, ,X(F) )

defined by Lemma 4.5.8, which are P7-equivariant. We let 1̂  denote the pullback of
-—p7 ~ ^

I^ls^p7 to Sh^ by the map (4.1.7), and define 1̂  i and 1̂  3 analogously.
E ' '

It is clear that, on any Z^, the formula (4.5.7) identifies the restriction of 1̂  with
the principal P7-bundle attached [as in (4.3.1)] to [V]r; in other words, to the (Deligne
extension of the) flat bundle defined by the faithful representation p of the fundamental
group Fp ofMp. Similarly, 1̂  3 (resp. 1̂  i) is the principal I^/U-bundle (resp. G/r
bundle) attached by the same sequence of constructions to a representation of Fp which
factors through a faithful rational representation (p^, ¥2) of P'/U (resp. a faithful rational
representation (pi, Vi) ofG/,). Let ^(¥2), ^(Vi) be the corresponding flat vector
bundles over y^My, let T'(¥3)2, ̂ (Vjs denote their Deligne canonical extensions, and
let r(y^ ^(Vi)^ denote the pullbacks to Sh^.

But now p2 and p\ already define the flat vector bundles

[V^] ̂ nQ)-^^) x (DF/U(C)) x (P(A^)/U(AQ)/K^

(notation as in 4.1) and [V]i, on the mixed Shimura variety Ay and on Sh(G/;, X(F)),
respectively. It is clear that, at least analytically, in the notation of 4.1

(4.6.2) ^(V^ ̂  ̂ K (K.[V2]), ^(Vi)^ - T^K 0 <K (Kp[Vi]).
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The isomorphisms in (4.6.2) respect the algebraic structures on both sides determined by
Deligne's existence theorem [Dl], hence extend to isomorphisms of canonical extensions.'-̂ -"P
It follows that, over Sh^,

(4.6.3) ^2 ̂  <K (l2). lju ^ ^,K o <K (I'l).

for some principal G/rbundle 1[ (resp. P'/Up-bundle I^) on Sh(G/,, X(F)) (resp. .4r), with
W\l2 ^ TT^K (I'l)^ Furthermore, the computations of 3.4 and 3.5 show that

(4.6.4) 7T2, K, * (^ (V2)^) ̂  K^ [V2], (7^0 ̂  p)* (^ (Vi)^) ^ Kp [Vi]

(zeroth direct image). We thus obtain canonical E(G, X)-rational structures on K^[V2]
and Kp[Vi], hence on I^, 1^, which are compatible with the isomorphisms (4.6.3) and
(4.6.4), and the morphisms of (4.6.1) factor through

(4.6.5) 7T2 : 12 -^ U\M(F), 7r[ : 1[ -^ W\M(F) ^ M(G^ X(F))

via (4.6.3). We trivially have the E(G, X)-rational isomorphism

(4.6.6) WV^^K^i).

With the zero section CK '- KSh(G, X)15 ̂  ^^1? defined as in 4.1, there is an
isomorphism

CK^,K,*(^(Vi)^Kp[Vi]

which is compatible with the E(G, X)-structures on both sides; this follows from the trivial
isomorphism CK ° ̂ K (^i) ^ ^K, * 02, where Oi and 0^ are the structure sheaves of
KSh(G/i ,F, X(F)) and K^F' respectively. Thus

(4.6.7) CK (W\l2) ^ ̂  (rationally over E (G, X)).

On the other hand, there is an obvious isomorphism

(4.6.8) I^q-KFnG.^F))^)

compatible with (4.3.2) and (4.6.5) for the pair (G^, X(F)).

4.6.9. LEMMA. - The isomorphism (4.6.8) is rational over E(G, X).

Proof. - We drop the subscripts K in this proof. We use the strategy of [H2], § 6.
First, define (G^, A (Pp)) as in 1.8, and let rj : Sh (G^\ A (Pp)) -^ Sh (G, X) be the
natural map (cf. [H2], § 5). This extends to maps

T/*) : Sh(G<2), A(PF))* -Sh*, ^ : Sh(G(2), A(Pp))s(2) -Shs

of minimal and toroidal compactification, respectively, for some admissible E^ [H3],
Prop. 3.4. Since F is still a rational boundary component of A (Pp) and Cp is again
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the corresponding cone, we may even assume Sp2" = Sp- It follows easily from the
construction (4.3.1) that, in the obvious notation,

(4.6.9.1) ^I| -I(G(2), A(PF))^) x0^ G.

Let 7T2, Sh^. A^\ Sh(G, X)^2), I'^, and I^ be the objects corresponding to TT;,
Shj;, AF, Sh(G, X)P, ri and I^ for Sh(G<2), A (PF))SW. Then (cf. [H2], § 6)

(4.6.9.2) A^w = Sh (G, X)P ̂  ̂  C (Sh (G, X)P),

and

Sh^^ - Sh^
(4.6.9.3) T2 [ T2 i

Sh(Gh,X(F)) ( 2 )^ Ar
/f)\

is Cartesian, since Wp / == UF . Hence

(4.6.9.4) I'^ = I^ ^ <* (WVs) ^ 1̂

where the last isomorphism is (4.6.7). Thus we may assume (G, X) = {G^\ A(Pr)).
Now the argument used to prove [H2], Corollary 6.4.3 shows that we may "factor out" the
pair (GH, X(F)) and assume F to be a point and D to be a rational tube domain; the reduction
in [loc. cit., § 6.5] shows further that we may assume G^ = Gm, Gh = Gm x Gm.

Finally, [H2], Lemma 6.5.1 shows that we may "approach" the boundary component
Sh (G^ x G^, {pt}) along an embedded Sh (GL (2), ^±) in Sh(G, X), where ̂ ± is the
union of the upper and lower half-planes in C. Thus we may replace (G, X) by the pair
(GL(2), ^±). If for V we take the dual of the standard two-dimensional representation
of GL(2), then [V] is canonically isomorphic to the relative de Rham H1 of the universal
family of elliptic curves with level structure over Sh(GL(2), ^±). The lemma in this
case is then a simple consequence of the theory of the Tate elliptic curve (cf. [H2], § 6.6).

4.7. COHOMOLOGY OF THE ABELIAN SCHEME. - In what follows, we let W be a homogeneous
vector bundle on M as in 3.1 and let [W] be the corresponding automorphic vector
bundle, [W]s its canonical extension to Shs, [W]^ its restriction to the P-stratum. Let
7 : Sh^ -^ Sh^ be the map (4.1.7). We first observe:

4.7.1. LEMMA. - Let W (F) denote the pullback of W to the P'-orbit M(F). Then
YV (F) descends to a V ^-homogeneous vector bundle W (F)A on V\M (F), and there
are canonical isomorphisms

[w]^ ̂  T^'* (W(F))/P^ 7* [>< ̂  (Tr^r (^'* (mWApyu)).
Proof. - It follows from 4.5.8 (ii) that the vector group U acts freely on M (F), so the

first assertion is clear. The isomorphisms are then tautological.
For clarity, we let Q' = P'/U, M (F)A = U\M (F), so that W (F)A is a Q7-homogeneous

vector bundle over M(F)A and I^ = I^K^r) is a principal Q'-bundle over p^F. Let
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Ay •.=^- K^F, the limit taken over K [or rather over K A , cf. (4.1.4)]. If K7 C K and
f3 : ^iAv —^ K-^F is the natural projection, then one verifies easily (using [H3], 4.3.2)
that I'2 (p^r) ^ /?* l2 (K^r). In the limit, we obtain the diagram

, ^
(4.7.2) "2 ̂  \

M(F)A ^F

from which we can construct a theory of automorphic vector bundles on Ay, starting from
Q7-homogeneous vector bundles on M (F)^ Namely, let q = Cp1 (?) G M (F), q its image
in JV^F)^ let;c be the projection ofp (or q) on F, let V^ C G^ denote its stabilizer,
and let V^ be the algebraic subgroup ofVp with Lie algebra U^. Then the category
of Q'-homogeneous vector bundles on the Q7-homogeneous space M (F)A is naturally
equivalent to the category of representations of

Stabq/ {q) = [Ad(cF)-1 (Pp) H P' • U]/U = PJ • V;,

where the last equality follows as in 1.8.6; note that cp centralizes G^, hence commutes
withPj. If £ is a Q7-homogeneous vector bundle on M (F)A we let (T£ denote the
corresponding representation of Pj -Vj . Let

(4.7.3) [S]=^(S)/Qf

be the corresponding automorphic vector bundle over the mixed Shimura variety Ap.
One verifies as in the pure case that the morphism I^ —^ Ap is Q/(A^)-equivariant
-this follows already from the corresponding fact for Sh and the equivariance properties
of the canonical extension- so [£} is naturally Q7 (A-^-homogeneous. For any pair
(q, g) C Dr/U^xQ^A^), let [q, g] be the corresponding point ofAp (C). Then there
is an isomorphism

(4.7.4) Per(,,,): ^ ̂  [<?][,,,]

defined as in (4.3 .3), where we identify q with its image in M (F)A under the obvious map.
Now £ is of the form TT^ (y), for some G/, -homogeneous vector bundle V on

M (Gh, X (F)), if and only if o-e is trivial on V^. In that case, let [V] be the corresponding
automorphic vector bundle on Sh(G/i, X(F)). It follows from 4.6.9 that the canonical
isomorphism (4.6.6)

(4.7.5) [£]^<[y],
where 71-1 : Ap -^ Sh(G/^ X(F)) is the limit of the morphisms 71-1^ K at finite level,
respects the rational structures on both sides.

Since V^ is unipotent, every £ has a filtration 0 = y > o £ C y ] , £ c . . . y r S = £ by
homogeneous subbundles such that Grf^^7r^(y,) , which induces a corresponding
filtration <^ [<?]. On the other hand, the inverse limit over K^ of the zero section
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CK : KSh(G/,, X(F)) -^ K^F (cf. 4.1) is a morphism C : Sh(G/,, X(F)) -> Ay. There
is also a section

C : M ( G , , X ( F ) ) ^ M ( F ) A

of 71-1, which, like C, corresponds by functoriality to the inclusion of the pair (G^\ A (Pp))
in (G, X). Evidently, Stabq/ (g) H G/, = Stabo^ (g) = Pj if q is in the image of <; in
particular,

(4.7.6) C* (<?) ̂  ®C* (Grf ^) ̂  ®y,.
i i

4.7.7. LEMMA. - Let (H, a?) C (G/,,F, X(F)) be a CM p^r, with H ^ ron^. L^ £ be
a Q1-homogeneous vector bundle over M (F)^ and let (y^.x denote the restriction ofo-s to
H C StabQ/ (C(^))/ denote by E(<?, x) the field of definition of (T£ ̂ . Define the period
element p ( x , o-e,x) € Aut ([^(sh(H,:r))) as in 4.3. For any g E Q^A^), w^ identify
Sh(H, ^) w^A ̂  g-translate C (Sh (H, a*)) • ^ C ^IF, ^^ ̂  P {x, (T£^\ 9) be the element
of Aut {[£} [^ (sh (H, x)} •g) defined by transport of structure. Then

p{x^e^ g) -Per(^)(^(E(^ x))) =[^(sh(H,.))., (E(^, .r)),
w/i^r^ rA^ right-hand side is the rational structure defined by (4.7.3).

Proof. - Since both sides are homogeneous with respect to Q' (A-^), it suffices to verify
this for ^=1, where it is a consequence of Lemma 4.6.9.

Now the representation (T£ : Pj • V^ -^ GL(^) defines a Pj-equivariant homomor-
phism

(4.7.8) t); 0 Gr^ (^) ^Gr^.i (^)

Let V~ be the G/rhomogeneous vector bundle on M/^F associated to the adjoint
representation of Pj on 0^"; then (4.7.8) defines a homomorphism

®-0Grr(^)-Grr_i(<?),
thus a homomorphism of automorphic vector bundles

(4.7.9) Gr^ [£} -. [%-'*](g)G^_i [<?].

Now for any .r G X(F), g ^ Gh (A-^), define [a*, ^] G Sh/,,F as in 4.3. Then t^'* is
canonically isomorphic as Pj-module, in the notation 3.5, to

Grf HDR (A^,,]) = HDR (A[,, ,])/H° (A[,, ,3, fl^ ̂  - H1 (A[,, ,], OA^, „)

(cf. [P, 3.22]); thus there is a canonical isomorphism over C

(4.7.10) pr'I^R1^^?.
4.7.11. LEMMA. - The isomorphism (4.7.10) respects the E(G, ̂ -rational structures

on both sides. More precisely, if(R, x) C (G/,, X(F)) is a CM point, g G GH (A^), and
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a^ : H —> GL(t5^ '*) is induced by the restriction of the adjoint representation then [in
the notation of (4.3 .5)]

p { x , or;; g) .Pertly* (E(H, x))) = H1 (A^, OA^)(E(H, x)))^^

Proof. - We may replace the pair (Gh, X (F)) by (H, x), and write Ax instead of Av.
We identify the vector groups V and U with rational vector spaces. Now the adjoint
representation H -^ GL (V) factors through a representation

(4.7.11.1) H - > G S p ( V , ( . , . ) A ) ,

where (• , ' ) \ is a symplectic form defined by composing the Lie bracket V 0 V -^ V with
some rational linear form A G U*. If A is positive on the homogeneous cone Cp, then
the map (4.7.11.1) defines a morphism of basic pairs (H, x) —» (GSp (V, (• , -}\), ̂ ±),
where ^± is the Siegel double space, and Ax is the pullback to Sh(H, x) of the universal
abelian scheme (with level N structure for all N) over Sh (GSp (V, (• , -)\), ̂ ±) (For all
this, cf. [Bri], or [P], 3.20, 10.7).

Now the period invariant p {x, (T;; g) depends only on the representation a^ of H. We
have just shown that this is the representation associated to the (0, l)-part of the Hodge
structure associated to the isogeny class of abelian varieties obtained by restricting the
universal abelian scheme to Sh(H, x), which is none other than Ax. But by construction
[H2], 3.15 p ( x , (T^\ g} is the period invariant associated to the (0, l)-part of the Hodge
structure associated to the isogeny class of abelian varieties. Now the lemma is a tautology.

Let q C ^(F)^ and let x=x(q) denote its image in M/^F. For ;=0, 1, .... we let
£^ be the Gh -homogeneous vector bundle on M/^p associated to the representation of
P^ on IP (u;, ^), with q and x as above. We now restrict our attention to £ of the
form W (F)^ as at the beginning of this section, where W is moreover attached to a
representation A of Kp. In 3.5 we have constructed canonical isomorphisms over C:

(4.7.12) R^i^ [H^F)^ ^ [H^F)^')].

The same argument works word for word for the subquotients GrJ3 \W (F)^:

(4.7.13) R2 TTi,, Gr; [W (F)^ ^ [(Gr^ W (F)^')], z, j ̂  0.

I f ^ = W ( F ) A or GrJ [W(F)A], (H, x) C (G/,, X(F)) is a CM pair, and g C G/, (AQ,
the isomorphism (4.7.12/13) is defined as in Proposition 3.5.8: we let

C- (t);, £,} = A- (t);)* 0 £, c A- (t);)* ̂  C00 (V (Q)\V (A)) 0 £^

where the differential on the last term is defined by the complex structure on VF(R).
Then the composite map

H- (t);, £,} = W (C- (o;. ^)) - H- (A- (u;)*

^COO(V(Q)\V(A)^)^^)-R^7^^[^^
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is an isomorphism. Denote this composite ip^\ and let a^ ^ be the representation of Pj
on IP (t5^, Sq). Let E(W) be the field of definition of the G-homogeneous bundle W,
and let E (W, x) be the field of definition of W (F)^, which depends only on x(q).

4.7.14. LEMMA. - The isomorphisms (4.7.12) and (4.7.13) respect the E (W)-rational
structures on both sides. More precisely, for any CM pair (H, x) as above, and with
£ = W (F)A ^r GrJ3 W (F)A, we have

(4.7.14.1) p(^ (T^) .^(H^t);, ^(E(W, .r)))) = R^i,, [^,] (E(W, .r)).

Proof. - The fact that (4.7.14.1) is a more precise version of the first statement is a
consequence of (1.8.2). We first assume £ = GrJ" W (F)^ Then [£} = ̂  [^], so

(4.7.14.2) R2 TTI, , [£} ̂  R1 ̂  [0] 0 [V,] ̂  ^ R1TT^ [0] 0 [y,],

with 0 = OA? [Mul], § 1. In this case, the Lemma is an immediate consequence
of4.7.11.

Now to treat the general case, we consider the spectral sequence for the filtration y.

(4.7.14.3) E^'5 = R5 TTI,, [Gr^U^F)^ ̂  E^5 = G^R^8 ̂ ^ [^(F)^

^^^[^(F)^^^].

By our hypothesis on W, [>V(F)A '(^)] is associated to a representation of P^ which
factors through K^, for each ; (Corollary 3.6.3). There is thus a canonical isomorphism
Gr^H^F)^2)] ̂  [W(F)A '^)] splitting the filtration. Furthermore, the differentials in
the spectral sequence respect this rational structure; indeed, they are all derived by tensor
operations from the morphism (4.7.9), and the isomorphisms (4.7.10) and (4.7.14.2),
all of which respect the rational structure. Since (as we have already seen) the rational
structure on the Ei-term is given by (4.7.14.1), we are done.

4.8. RATIONALITY OF THE CONSTANT TERM.

We are now ready to prove the main result of this section. Let Q^P'/U, as before,
and let Q=P/U. Let V be an automorphic vector bundle on Sh(G, X), attached to a
representation of Kp, and let E (V) be its field of definition. The two sides of the bottom
line of diagram (4.2.4) have canonical E (V)-rational structures, which are determined
as explained before. In the first place, V and V A ( / I , W ) , for all w, have canonical models
relative to their restrictions to CM Shimura subvarieties Sh (H, x), determined by the
condition that the right-hand side of (4.3.6) define the E(V, x) -rational structure on the
restriction to G (A^)-translates (resp. Gh (A/)-translates) of Sh(H, x). On the other hand,
the local system V\(j ̂ ) is associated to the vector space V A ( ? , W ) » which has a unique
E (V)-rational structure compatible with its realization, for every pair (H, x) as above, as a
direct summand of H' (o^, Vq). Here Vq, defined (relative to V) as in 4.7, above, has a
natural E(V, ^-rational structure, as does t)^; this defines an E(V, a?)-rational structure

4° SERIE - TOME 27 - 1994 - N° 3



BOUNDARY COHOMOLOGY OF SHIMURA VARIETIES, I 329

on V A ( ? , W ) for each (H, x), and these are obviously compatible and descend to define an
E(V)-rational structure on V A ( ^ W ) -

4 . 8 . 1 . THEOREM. - The homomorphism rp of diagram (4.2.4) is rational with respect
to the E (V) -rational structures just defined on the two sides.

Proof. - It suffices to consider the restriction to the P-stratum, since the action of
G(A• f) preserves the rational structures. The cohomology of the P-stratum is given by
Corollary 4.1.12.

Now the discrete group LF (Q)"1' acts naturally on Dp/U (C) and by conjugation on
P (Q)"^^7 (A^); thus there is a holomorphic action ofLp (Q)"^ on Ay [notation (4.1.2)].
By [P], Prop. 11.10, this action respects the canonical model of Ay. Furthermore, Lp acts
algebraically on M (F) (e.g., by the concrete description given in 4.5.8). Say V = [W],
for some homogeneous vector bundle W on M. Since W is homogeneous with respect
to G, it is afortiori homogeneous with respect to Lp. We have the following Lemma:

4.8.3. LEMMA. - The action ofLp (Q)"1" on Ay lifts to an E(G, ̂ -rational action on
12, with respect to which the morphism TT^ of (4.7.2) is equivariant.

Proof. - It is clear how to define the action over C: writing

r, (C) =^ Pf (Q)^ (C) x (DF/U (C)) x Q (AQ/K^ (cf. 4.6),
the action of Lp (Q)'1" is defined by conjugation, and it is obvious that this action commutes
with 71-2. It has to be verified that the action respects the rational structure on I^. Now the
natural right action of G(Q)xG(A-Q on I(G, X) =^ G(Q)\G(C) x X x G(A /)/K
restricts to an E(G, X)-rational action of Lp (Q)"^ which is equivalent to the (right)-action:

^o . . f [Q^^f} - 7 = [7~1^ 7~1 -^ 7-1^7L
V4•o•4/ U G G ( C ) , x^ ^ € G ( A Q , 7 ^ L r ( Q ) + .

In the limit (over K), (4.8.4) evidently preserves the P'-stratum, hence descends to
an E(G, X)-rational action of LF (Q)'^ on I^. One verifies directly that this action is the
one defined analytically above.

4.8.5. Remark. - It follows easily from 4.8.3 that the action of Ao, defined by
(4.1.11), preserves the rational structure on the cohomology groups T~L9 (w).

The morphism TT^ K of (4.1.5) is a torus fibration with fiber T which may vary
from one connected component to another (cf. [H3], 2.5). Let VA denote the bundle
^2, K, * {V^ over ^F fthe adelic version of the definition in 3 .2). In what follows, we let
r = P (Q)4'/?' (Q)+. For any G-equivariant sheaf W on M, let W (F)A be as in 4.7.1.
The automorphic vector bundle [H^F)^ on Ap, defined by 4.7.3, is endowed with a
F-action which preserves the rational structure. Let V = [W] as before. By comparing
(3.2.1) with 4.7.1 one sees that [H^F)^ ^ VA. We may thus define F-equivariant
cohomology H^ (Ap, l^). Now we can factor the isomorphism (4.1.12):

(4.8.6) -^ H- (ShJ:, V^) ̂  H?. (^ V^ ̂  ® ? {H9 (w)^}.
K's w
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Here the first isomorphism is defined as in the proof of Lemma 3.7.5, using (4.1.7).
The relation between H^ (Sh^, ^A) and the H^ ^Zp^, ^F,s) of paragraph 3 can
be derived from Corollary 2.10.3, but the derivation of the first isomorphism can be
carried out without reference to connected components. The second isomorphism is as in
Corollary 3.7.8. More precisely, the argument used to prove Proposition 3.7.7 shows that

(4.8.7) H^^V^H^SMG^X)1^ (H^))^) 0 V, (^))

where Sh(G, X)13 is the P-stratum of Sh(G, X)*, as in 1.7:

Sh(G, ̂ p ̂  [̂  Sh(G, X)1' x LF (AQ . K/K]/G, (A^),

with r acting on the left on the second factor and Gh (A-^) acting on
the right on both factors. If in Proposition 2.9.4 we take B = S h ( G , X ) p ,
Q= LF (R^/GH (R)+ • K/ x Sh (G, X)15, and TT the projection on the second factor, we
can identify (4.8.7) with

[̂  H- (F\LF (R)+ x LF (A^) • K/G, (R)+ K, K,

H•(Sh(G,X)p\(V,(,^))can)0V,(,,,))]G^A/),
which is easily identified with the rightmost term of (4.8.6).

It remains to be shown that the two isomorphisms of (4.8.6) are rational. Now
Lemma 4.7.1, taken in the limit over K, implies that the first isomorphism

^•(Sh^V^H^F,^),
xv, 2j

of (4.8.6) respects the rational structures of the two sides. On the other hand, it follows
from Lemma 4.7.14 that the second isomorphism of (4.8.6) also respects the rational
structures.

4.9. CANONICAL TRIVIALIZATIONS. - The upper row of (4.2.4) is usually written in terms
of complex vector-valued functions. The results of paragraph 4 show how to calculate
the restriction map rp in terms of specific systems of coordinates, which derive from
the coordinates of the compact dual and homogeneous vector bundles thereupon. These
systems of coordinates are used implicitly in paragraph 5 in proving that the Eisenstein map,
which goes in the reverse direction, preserves rationality. In order to interpret the results of
paragraph 5 for explicit automorphic forms, the definitions of these coordinate systems have
to be recalled. In the first author's work on holomorphic and non-holomorphic cuspidal
cohomology classes on GL(2), these coordinate systems are called canonical trivializations.

The proper way to look at the rational structure on the boundary cohomology is to view
the factor H* (X (G/), •) as being purely topological. A number of people seem to arrived
at the conclusion, from different starting points, that the cohomology of ir(X(G/), •)
only contributes Tate twists. In the present formulation, even the Tate twists have been
incorporated into the H* (Sh^p? •) factor. Indeed, the different Weyl group elements w
determine different automorphic vector bundles, to which are attached different motivic
weights (in terms of the weight map Qrn —^ G/,,F, whose relation to the Cayley morphism
is described in [H2], § 5). Thus when F is a point and D is a rational tube domain over F,
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Gh is a torus, and the cohomology of automorphic vector bundles on Sh^ p is essentially
given by Tate motives, twisted by finite Dirichlet characters. We return to this point in
Part II, where our approach is based on Hodge theory.

5. Cohomology classes defined by Eisenstein series

We use the method of Eisenstein series to associate coherent cohomology classes on
Sh (G, X) to classes on the boundary stratum attached to a maximal parabolic subgroup P,
and prove their non-triviality and arithmeticity under certain additional hypotheses.
Emphasis is placed on the absolutely convergent case, since this is where rationality
theorems can most easily be proved. It is probably safe to say that the non-convergent
case remains at the experimental stage. More examples need to be worked out for low
rank groups before the general pattern can be discerned. We hope to return to this topic
in a future paper.

In section 5.4, we also assume that P is a cuspidal parabolic subgroup; in other words, it is
assumed that the real Levi component L (R) possesses a discrete series. This is a technical
hypothesis which permits us to quote a theorem of Schmid (unpublished), reproved by
Blank [B]), on the embedding of discrete series representations in representations induced
from the discrete series. The effect, as explained in [H4], is to kill the intertwining operator
-there is only one, since we are starting with cusp forms on maximal parabolic subgroups-
in the theory of the constant term of the Eisenstein series. Thus, just as in the holomorphic
case [HI], [H2], the map defining the Eisenstein series exactly inverts the constant term
map. Together with the results of the preceding sections, this permits us to apply the
strategy of [HI] to prove arithmeticity of (most) absolutely convergent Eisenstein classes.

Apart from the identification of the constant term with restriction to the boundary, most
of the ideas of this section were already explained in [H4], § 6.

5.1. EISENSTEIN SERIES ATTACHED TO CUSP FORMS. - The results described in this section are
standard, and we summarize them quickly. Fix a point? G X as before, and let Kp C G (R)
denote its stabilizer. We write L for the Levi subgroup of P=Pp containing A, W=Wp
the unipotent radical, and let L=MAW be the corresponding Langlands decomposition,
with L=MA. Let 6p : P (A) —>• Rx be the square root of the modulus character. Using
the Iwasawa decomposition, one extends the function 8p to a positive-valued function 6p
on G(A) in the usual way (cf. [A], p. 254).

Let (II, Hn) be a cuspidal automorphic representation of L(A), II ^ (x)IL, where v
runs through the places of Q. For s G C, define the (normalized) induced representation

(5.1.1) Ip(II, s) = {y G C°°(G(A), Hn)l^(w)
=Il{p)6p(p)s+l^{g^peP{A)^ g G G(A)},

where 11 (p) acts on Hn through the projection ofp modulo Wp (A).
Let Ip (II, s)o be the space of K^-finite vectors in Ip (II, s)', then for any y G Ip (II, <s)o,

y ( g ) { ' ) is a cusp form on L (A). Let f y (g , s) = ^(^)(1); then fy is a function on
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W(A) • P(Q)\G(A). For any s e C, multiplication by (6p)~8 defines a vector space
isomorphism ^ : Ip(II, s)o ^ Ip (II, 0)o ^Z, say. We call a C°° function f (g , s)
on G(A) x C an admissible section if (i) for all s, f{g, s) -=- <^s(^)( l ) , for some
^s € Ip (II, s)o (as a function of g ) and (ii) s \-^ Ss (<^) is a holomorphic map from C
toZ. Let f (g , s) be an admissible section. If Re(s) is sufficiently large, the Eisenstein
series

(5.1.2) E(/,^)= ^ /(7^)
7€P(Q)\G(Q)

converges absolutely to an automorphic form on G(Q)\G(A), holomorphic in s. Thus
there is a homomorphism

(5.1.3) E : Ip(II, 5)o^.4(G)

of (g, Kp)xG(A tf)-modules, where A{G) denotes the space of automorphic forms on
G(Q)\G(A).

The constant term E(/, s, g)p along F, defined by the integral (4.2.5), is computed
as follows:

(5.1.4) E(/, ^ .)rW = f{h^ s) + [M(wo, s) . /(., s)] (h\

where WQ G W1'^ is the unique element that normalizes L and such that WQ (P) D P = L,
and M (wo, s) : II 0 6p -^ ^/ 0 <5p5 is the corresponding intertwining operator [A], with
IP = 11"̂ °. Indeed, / is a cusp form, so all remaining intertwining operators vanish on /.

Write Ip (II, s)o ^Ip (lloo, s)o 0 0Ip (n^, s), where v runs through the finite places
and for v finite (resp. v = oo) Ip (n^, «) = Ind^^ [n^ 0 <5p] (resp. the K^-finite vectors
in Ind^^ [lloo 0 6p]. Then for Re(s) sufficiently large -in particular, if E(^, s, •) is
absolutely convergent (cf. § 5.3), below- Ip (IL, s) has a unique irreducible quotient
Jp (11^, ^), the Langlands quotient, for all v. Define J7 (11^, «) by the exact sequence

(5.1.5) 0 ̂  J7 (II,, s) ^Ip (n,, s) -^Jp(II,, 5) -. 0,

and let V (II, 5^ = J^II^, «) 0 0 Ip (IIy;, s). The theory of local intertwining operators
w^v

then implies that, for Re (5-) sufficiently large as above,

(5.1.6) ^ J' (n, 5), C Ker (M (wo, s)).
v

For all this (cf. [A]; Sch, § 6).

5 . 2. LIFTING COHOMOLOGY CLASSES.

We start with an element w c W^ and a non-zero cohomology class

M G 1̂  [̂  {IT-^) ((V^^r11) 0 IF (X (GQ, V,(^))}]
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represented as in paragraph 4.2 by a differential form

^ € 1̂  [f {C^{G^ K^; V^^,))sia 0 C; (G^ K^ . A, V^^a}].

We assume ci; to be a cuspidal automorphic form, associated to an automorphic
representation 11 (a;) of L (A), which is not necessarily irreducible. However, we assume
for simplicity that 11 (a;) ^ lloo 0 IIy, where lloo is an irreducible (an x Qi, K/i • K; • A)-
module,

Tracing back the identifications in paragraph 4.2, we can realize uj as an element of
the space (4.2.6):

^ G [C°° (P (Q). W (A)\P (R) x G (A^sia 0 A^' (p-)* 0 V^015 W,

and therefore (since G (R) = P (R) • Kp) as an element

(5.2.1) a; (•) G [C°° (P (Q) . W (A)\G (A))^ 0 A^' (p-)* 0 V^]^.

Let a;(^, s) = (^{g) ' 8p{g)8. For Re(>y) sufficiently large we can perform Eisenstein
summation, and define the Eisenstein series E (c<;, s, g) e A(G) by (5.1.2). If E (a;, s, ^)
converges absolutely at >s'=0 then

(5.2.2) E (a;, 0, g) € [E (Ip (II (a;), 0)o) 0 A^' (p-)* 0 V^

= C '̂ (^, K^; E (Ip (n (a;), 0)o) 0 V;,))

C C '̂ (^, K^; C00 (G (Q)\G (A)),a 0 V;Q).

Consider the following hypothesis on the intertwining operator M(wo):

5.2.3. HYPOTHESIS. - The sum defining E(c<;, s) converges absolutely at ^=0, and the
constant term E(o;, 0)p along F equals a;.

It follows from diagram (4.2.4) that

5.2.4. PROPOSITION. - Under hypothesis 5.2.3, suppose E((J, 0, g) is a closed
form in C^'OPp, Kp; C00 (G (Q)\G (A))sia 0 V^)). Then the cohomology class
[E(uj, 0)] G IT"^ (V^") ^ nor equal to zero, and in fact its restriction rp[E(o;, 0)] to
the ^-stratum of the boundary coincides with [a;].

5.3. RATIONALITY IN THE ABSOLUTELY CONVERGENT RANGE.

The contents of the present section were developed in part in discussions with J. Franke.
Let TT be an automorphic representation of G. Although TT need not be irreducible, we
assume TT = 0 TT^ to be factorizable over the places of Q, with TTy irreducible and
unramified for almost all v. Furthermore, we assume that there exists a finite-dimensional
irreducible representation (/^, W^) of G such that center Z (flc) of the enveloping algebra
of flc acts on 71-00 and W^ through the same character ^oo- We write ^oo = Xa» for some
a € t)^, in terms of the Harish-Chandra homomorphism; thus \a = Xw(a) for all w in
the Weyl group W(0c? f)c). The set {w(a)} can be identified with the set of extreme
weights of ^.
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Let Q be any standard rational parabolic subgroup of G, not necessarily maximal;
let LQ be its Levi component, AQ = ZLQ . We say Q belongs to (the rational boundary
component) F if G^p C Q C Pp. Then Q/ := Q n G^p is a parabolic subgroup of Gi,
and the set of standard rational parabolics that belong to F is in one-one correspondence
with the set of standard rational parabolics of G^p. ItQ belongs to F, then the sum
l)/i,c + CF (t^,c) is a Cartan subalgebra ofLQ (cf. 3.6). It follows from our conventions
that Lie(ZG)c = ^,c H CF (t) / ,c) but that a^c :=Lie(AQ)c = a^ c C Lie(ZQ)c, with
a^^I^AQ^nI^G^c. For * = h, I, we write ()*,c = (t)*,c H a^J ^ I)*,c,
where t)^c = l)*,c H Lie (L^c. Given ̂  = ̂  as above, write

f a = a (^ Q) + CF (a (;, Q) + v (a, Q)),
(5.3.1) ^ with

[a(^ Q) et)^ ̂  Q) ^ br,o ̂  Q) ^ ^Q,C-

5.3.2. DEnMTiON. - We say a is very convergent if, for every ^-parabolic Q C G,
v{a, Q) > PQ, relative to the ordering on OQ ^ given by the roots o/Q. Here pq is the
half-sum of roots of (the unipotent radical of) Q. The automorphic representation TT is very
convergent if the corresponding a is. Finally, the automorphic vector bundle V = V\,
where X is the representation of Kp with highest weight A, is called very convergent ;/ its
associated infinitesimal parameter -A - p G l^/W^c? I)c) is very convergent, with p
as in 3.6.

5.3.3. Remark. - Here we recall that, if an automorphic representation TT contributes
to the coherent cohomology of V\, then the infinitesimal character of 71-00 equals ^(_A-p)
([H5], Prop. 4.3.2).

The complex space 1}̂  has a Q-structure defined by the lattice of algebraic characters
of H. The parameter a belongs to this lattice. The following Lemma was pointed out
to us by J. Franke.

5.3.4. LEMMA. - There is a finite set of hyperplanes {H^} in f)^, rational relative to the
^-structure defined above, such that a is very convergent if and only ifa^Ki for all i.

Proof. - We may take a to be in the positive Weyl chamber. By hypothesis, a belongs
to the lattice of characters of H. Definition 5.3.2 thus excludes a finite set of hyperplanes
for each Q.

As Franke pointed out, the excluded hyperplanes are not necessarily root hyperplanes.
The analogous definition can be made for spherical functions on the groups of p-adic

points of G. Let Po,p C Gp be a minimal Qp-parabolic subgroup, with respect to which
the standard Q-parabolic subgroups are still standard. Let A° be a split component which
is compatible with the AQ'S above, Ao,p = A - ^ p ' Zop. The Satake transform associates to
any spherical representation TTp of Gp (relative to a special maximal compact subgroup) a
vector a(7fp) in X* (Ao,p) 0 C. If Q C G is a standard Q-parabolic subgroup as above,
we can write

(5.3.5) X* (Ao,^) 0 C ^X* (Ao,^ n L^ (Q^)) ® C®X* (AQ) 0 C.
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5.3.6. DEFINITION ([HI], 1.1).- Let Tip be as above. We say TT? is convergent/or Q if,
in the decomposition (5.3.5), a (Tip) = a (Tip, Q) + v (a (Tip), Q), where

(i) a (Tip, Q) corresponds to a bounded spherical function on L^ (Qp), and
(i i)Re(^(a(7Tp),Q)) > PQ.

5.3.7. Remark. - We could also require a (Tip, Q) to correspond to a unitariz.able
spherical representation. When G(Qp) has Kazhdan's property (T), this imposes a
significantly stronger constraint on TT? than the one used in [HI], and this in turn implies
a stronger rationality theorem than Theorem 5.3.11, below. We leave this for another
occasion.

It follows from [HI], Proposition 1.2 that

5.3.8. LEMMA. - Any given TV? is convergent for at most one (not necessarily proper)
parabolic Q.

Langlands' theory of Eisenstein series defines a natural decomposition of the space
A(G) of automorphic forms on G(Q)\G(A), the Q-decomposition:

(5.3.9) -4(G)=®.4(G)Q.
Q

Here A{G)o is the space of all automorphic forms arising as constituents of the space of
Eisenstein series attached to cusp forms on LQ (A), and the sum is taken over associate
classes of standard parabolic subgroups Q. In particular, .4(G)o = Ao (G) is the space
of cusp forms on G.

5.3.10. LEMMA. - Let TT C A{G)o and TT' C A(G)^ be automorphic representations
with TTp ^ TT', for some unramified place p. Suppose 71-00 and TT^ are very convergent.
Then Q = Q'.

Proof. - Suppose not. Write the Langlands decomposition Q = MQ • AQ • NQ, with
MQ = L^f; Q' = MQ/ • AQ/ • NQ/. It follows from the hypothesis that TT (resp. TT') is
isomorphic to a constituent of the normalized induced representation Ind§ (r 0 v 0 INQ)
(resp. Ind§/ (r' 0 y ' 0 IN /)) , where r (resp. r') is a cuspidal automorphic representation
ofMQ (resp. MQ/), v G X* (AQ) (g) C satisfies v > RQ (resp. v ' > PQ/), and INQ and
IN / are the trivial representations. In particular, for every unramified prime p, the local
factor TTp (resp. Trp is convergent for Q (resp. for Q'). Now apply Lemma 5.3.8.

Lemma 5.3.10 provides an effective form of what Harder calls the Manin-Drinfeld
principle, for the cohomology of Sh(G, X) with coefficients in the local system attached
to W^, provided the infinitesimal character of ^ does not lie on one of the hyperplanes
in 5.3.4. In particular, the lemma shows that the action of G(A^) separates the pieces
of automorphic cohomology coming from different pieces of the Q-decomposition. Since
the action of G (A^) respects the rational structure of cohomology, this implies that the
corresponding pieces of cohomology are rational. In particular, this provides a way of
showing that Eisenstein cohomology classes are rational.

The same argument applies to coherent cohomology; the case of holomorphic
automorphic forms was the subject of [HI]. Here is the result, which is certainly not
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the strongest possible. Our proof makes use of the recent difficult theorem of Franke [F],
which shows that all cohomology of Sh(G, X) (coherent or with twisted coefficients) is
represented by automorphic forms. This was not necessary in the holomorphic case, and
it may not be necessary in general. It also makes use of results to be proved in Part III
of this paper, and in this sense should be considered provisional, except when G^ is of
Q-rank 1, where the arguments of Part I already suffice.

5.3.11. THEOREM. - Suppose the automorphic vector bundle V = V\ is very convergent,
in the sense of Definition 5.3.2. Let

M e l̂  [f [w-1^ ((^(/^r11) W (X(GQ, V,(^))}L
be defined by a cuspidal automorphic form u, as in paragraph 5.2. Suppose

( a ) ^ { g ^ 0 ) e J^II^O)^;
(b) the sum defining E(cj, s) converges absolutely at *y=0;
(c) E (a;, 0, .) is a closed form in C^ (^ K^; C°° (G (Q)\G (A))^ 0 V^));
(d) The class [uj} is rational over a finite extension C ofE(V\).
Then for all a <E Aut (C/£), [E (c^ 0)]^ = [E (a;, 0)] e £P+^ ((VA)^).

Proof. - We may assume LJ belongs to a finite sum of irreducible cuspidal representations
©7-^0^ of L == Lp, where r, and ^ are as in the proof of Lemma 5.3.10. Since uj is
realized in coherent cohomology, it follows easily that Vi is an algebraic Hecke character
of A = Ap for all ;, and since V\^,w) is associated to an irreducible representation,
we may even assume that the archimedean components of the ^ all coincide. For any
prime p, let r ^ p and v^p be the corresponding representations of L (Qp). It follows from
our hypotheses that, for each p, the natural action of Aut (C/£) on representations of
L(Qp) permutes the sets of pairs {(r^p, ^,p)}. Thus,

(5.3.11.1) For all p at which E(c^, 0) is unramified, Aut (C/£) permutes the local
components {Ip,J of the induced representations Ind^ (r^ 0^0 IN?).

Let a C Aut(C/£), and let E' = [E(o;, 0)]^ - [E(c^ 0)]. We claim that E' is
represented by cohomology classes in A(G). Indeed, Franke has proved that H* ((V^)0^)
is entirely represented by automorphic forms, and that

(5.3.11.2) H- ((^r11) - 9H- (^, K,; A(G)Q 0 V,)).
Q

This implies the claim. Moreover, since the action of G (A^) on H' ((VA)^") is rational
over E(VA), it follows from (5.3.11.1) that

(5.3.11.3) For all a e Aut (C/£) and almost all p, E' belongs to a sum of automorphic
representations TT, whose local components at p are convergent for P.

We can ignore the Try that do not contribute to cohomology. Our hypothesis that V\
is very convergent then implies that, for all j\ the archimedean component TT^ oo of TI) is
very convergent. It now follows from (5.3.11.3) and Lemma 5.3.10 that the TT, all
belong to A(G)p.
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Let P = Pp. By Theorem 4.7.1, TF ([E (cj, 0)]^) = TF ([E (^ 0)])^, and by
Proposition 5.2.4 the latter equals [u^Y = [cc;]. Thus rp (E') = 0. The Theorem is
now a consequence of the following lemma:

5.3.12. LEMMA. -LetP = PF, and let c € H- (q?p, Kp; .4(G)p 0 V;Q) C H* ((V^)
have the property that rp (c) = 0. Suppose V\ is very convergent. Then c=0 as a
cohomology class.

The proof relies on an argument familiar from the theory of Eisenstein cohomology
with twisted coefficients, but which in the context of coherent cohomology depends on
results to be proved in Part III. Since V\ is very convergent, the interior cohomology
H* (Sh(G, X),V\) is represented entirely by cusp forms. Indeed, it was proved in [H5],
§ 5 that this is true provided the highest weight A is sufficiently regular. But in fact, as
Franke pointed out to us, it suffices to assume that, for every root /3 of G we have

(5.3.12.1) 1 < A , / 3 ) | > 1 (c/.[F]).

This is clearly the case when V\ is very convergent. (A similar suggestion was made
by F. L. Williams.)

Since c is orthogonal to cusp forms, it follows that, if c ^ 0, then the image of c
in llr? H* ((9Shs, V\ 0 Oashs) is non-trivial; here the limit is taken over compact open
K cG (A^) and admissible toroidal compactifications p^Sh (G, X)s. As in [H4], we write
H- (Vx) (oo) =^ H- (9Shs, VA 0 OashJ.

Now at finite level Shs =KSh(G, X)s, we can compute the coherent cohomology of
(9Shs by the closed cover of its Q-strata Sh^;, where Q runs through the set of standard
maximal parabolics. Thus, if Q is any standard parabolic, let Sh^; = H Sh^ . Let

Q^Q
Q' maximal

%Q : Sh^; "—> Shs be the corresponding closed embedding. Let r(Q) denote the parabolic
rank of Q. Then the nerve spectral sequence for this closed cover of 9Shs takes the form

(5.3.12.2) E^ = ® H5 (Sh^, ̂  (V^s)) ̂  H^ (9Shs, VA 0 OashJ.
r(Q)=r

Taking the limit over K and S, we obtain

(5.3.12.3) E^5 = ® llr? H5 (Sh^, ZQ (V^s)) ̂  H^ (V^) (oo).
r(Q)=r

The terms E^'3 have been computed in the previous sections. Write

H-'Q^^^H^Sh^ZQ^s)).
In Part II we will show that, for all Q,

(5.3.12.4) H^C^)
- 9 I§[IQ{H-^(w)((V,^^))can)0H•(X(G^),V,(^))}].

wGV^
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Here the terms are defined as follows. Order the standard maximal parabolics Pp by
setting PF < PF' if F < F'. For simplicity we assume G to be Q-simple; then this defines
a total ordering. Let Pp (o) (Q) be the standard maximal parabolic containing Q which is
minimal for this ordering. Then G^F(O) H Q is a maximal parabolic in G^F(O)» G^Q is a
standard Levi component, and G/^ = G/^F(O). Then G^F(O) H Q determines a maximal
parabolic subalgebra of tp^ c by Cayley transform, as in 3.6, and W^ is the corresponding
subset ofW(E^c, f)c). For each w e WQ, V\^,w) is an automorphic vector bundle on
Sh(G^F(o)? X(F(0))), and V\(^w) is a local system on the (adelic) locally symmetric
space X(G^Q) associated to G^Q. The intermediate induction ̂  and the induction I§
are defined by analogy with 4.1-2.

The differentials in the spectral sequence (5.3.12.3) have a simple expression in
terms of the description (5.3.12.4). However, for our purposes, it suffices to remark
that, ifV\ is very convergent, and if 717 is the representation of G(A^) corresponding
to TT c A(G)p, then TTJ does not intertwine with the G(AJ)-action on ?^(1^) for
any Q 7^ P. Indeed, by Franke's theorems [F] applied to Gh^ (for coherent cohomology)
and G^ Q (for cohomology with twisted coefficients), the right-hand side of (5.3.12.4) is
a sum of representations Try of G (A^) such that, for almost all /?, the local component TT?
is convergent for some standard parabolic Q C Q. At the same time, each TT^ is the finite
part of an automorphic representation TT whose archimedean part is very convergent, by
our hypothesis on V\. It thus follows from Lemma 5.3.8 that, for almost all;?, TV? is
not convergent for P. But our hypothesis on TT implies that Tip is convergent for P, so
the claim is clear.

We can project the spectral sequence (5.3.12.3) on its Ti-y-isotypic component. More
precisely, we fix a compact open subgroup K cG (A^) such that 717 has a K-fixed vector,
project all terms in (5.3.12.3) on their subspaces of K-fixed vectors, which are finite
dimensional. Then Try corresponds to a finite-dimensional representation V(7ry) of the
Hecke algebra T-^(K) pf G(A^) relative to K; we then project on the maximal ^<(K)-
quotient all of whose Jordan-Holder components are isomorphic to V (Try). It follows from
the previous remarks that this procedure annihilates all H6^ (V\) for Q / P. But the
map from IP ((VA^") to the image of H5^ (Vx) in H* (Vx) (oo) is given by rp. Thus c
maps trivially to Ef (V\) (oo), so c=0.

5.3.13. Remark. - The same proof shows that the analogue of Theorem 5.3.11 holds
when, in hypothesis (a), J' (a, 0)oo is replaced by J' (a, 0)v for any finite place v. The
present formulation was chosen on the basis of a (perhaps misplaced) analogy with the case
of holomorphic Eisenstein series, and on an absence of examples satisfying both (a) and (c).

5 .4. A CONJECTURE ABOUT EMBEDDINGS OF DISCRETE SERIES.

It remains to show that Theorem 5.3.11 is not vacuous; in other words, that rational
cohomology classes on the boundary can, in some instances, be lifted to elements of
J' (^? 0)oo which define closed forms. (We note that this difficulty does not arise if
J' (^ 0)oo is replaced by J' (a, 0)^ for some finite place v, as in Remark 5.3.13, since
the latter space is defined as a rational subspace of cohomology). The basis of our
construction was already explained in [H4], § 6. We assume henceforward that P (R) is a
cuspidal maximal parabolic subgroup of G (R); this means that its Levi component L (R)
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has a Cartan subgroup which is compact modulo the center ZL (R) of L. The hypothesis
is restrictive but not empty. The set of R-irreducible examples can be enumerated
easily. If G(R)der 'o is R-simple and rankq G = rankR G, then there is always a Pp,
corresponding to a maximal boundary component F, for which G/ is a torus; such a Pp is
cuspidal. Each hermitian symmetric domain of the form Sp (n, R)/U (n), SO* (2 n)/V (n),
or S0(2p+l , 2)°/SO(2p+l) x SO (2) ([He], p. 518) has an additional boundary
component stabilized by a cuspidal parabolic subgroup, for which Gi (R)^" is isogenous,
respectively, to SL(2), SL(2), and S0(2p, 1)°. This exhausts the list of irreducible
examples.

Since P is cuspidal, L (R) has a discrete series. Let f) be the Cartan subalgebra of Kp
chosen in 3.6, Kp, L = Kp n L (R); we assume f)L = t) HLie (Kp, L) is a Cartan subalgebra
of Lie(K^],)- We use the same notation to designate discrete series representations of
G(R) and their associated (5, Kp)-modules; likewise for L(R). For every discrete series
representation 71-00 of G(R), Blank constructs in [Bl] a discrete series representation lloo
of L (R) and an explicit embedding S : 71-00 c-^ 1̂  (lloo ̂  IN?) as (fl, Kp)-modules.

The existence of the embedding was previously proved by Schmid (unpublished). The
identification of lloo depends on three factors. Write L=MA, as in 5.3, and let M° and A°
be the identity components ofM(R) and A (R), respectively. Write lloo = T (^oo)^^ (^oo),
where r (71-00) is a discrete series representation of M (R) and v (71-00) is a character of A°.
Now the infinitesimal character of 71-00 determines that of r (71-00), and determines v (71-00)
up to sign. The set of discrete series representations r with given infinitesimal character is
determined by two additional data: the Harish-Chandra parameter A (r°) of an irreducible
constituent r° of T|MO, which is an element of 1)̂  c, and a certain sign character of
M (R)/M°, which determines an extension of r° to an irreducible representation of M (R).

Starting with the Harish-Chandra parameter A = A (71-00) C t)£ of 71-00, Blank lets
A (r°) = A|(j* . The sign character is defined explicitly, and is determined by the condition
that the central characters of 71-00 and 1̂  (lloo ̂  iNp) coincide. Finally, of the two possible
choices of ^(Tr-oo), Blank chooses the one with the property that 1̂  (lloo ̂  IN?) has a
(non-tempered) Langlands quotient. The explicit formulas can be found in [Bl], p. 128;
however. Blank actually constructs a map from the dual of 1̂  (lloo 0 1-Np) onto the dual
of Ti-oo, so there is a change of sign.

The discrete series representation 71-00 has (9-cohomology [H5] in a single degree g(A),
and only with coefficients in the representation V\ with highest weight A* - p, where A*
is the Harish-Chandra parameter of (71-00)* and p is the half-sum of positive roots. (N.B.:
In [H4], [H5], A is used to designate highest weights of Kp-modules and A denotes Harish-
Chandra parameters.) Let B (A) be the (unique) lowest Kp-type of 71-00; we use the same
notation to denote its highest weight in t)^ (Blattner parameter, cf. [BW], II, § 5). Let
b (A) (resp. v\) be a highest weight vector in B (A) (resp. Vp. Recall that q (A) is the
cardinality of

(5.4.1) Q ( A ) = { a e R ^ | < a , A * } > 0 } .

Let /3(A) = /\ z^ € A^p", where z^ € p~ is a root vector for-a. Then
a€Q(A)

the cocycle c2;oo € C9 (A) (^, Kp; TToo ® Vx) ̂  HomR, (A9 (A) p- ® V^, TToo), which
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generates H9^ (^ Kp; 71-00 ^V^), is the K^-equi variant extension of the unique ()c-
homomorphism which takes /3 (A) 0 VA to 6 (A) e B (A) C 71-00 (cf. [W] for these
computations, but note that the conventions are not identical).

To guarantee hypothesis (c) of Theorem 5.3.11, we have to assume i -\- j = (?(A).
At the same time, to guarantee the existence of u with non-trivial cohomology, we have
to assume r (71-00) ^ TH 0 TI, corresponding to the decomposition M = M^ • Mi, where
M/ ,=G, ,nM, M ^ = G ; H M . Then g(A(T/,)) = z - ; ( w ) , A(r,:) = A ( / ^ w ) + ^ ,
and TI has (m^ Ki n M) -cohomology in degree j with values in V A ( ^ , W ) » ̂  = Lie(M^).
Since TI is a discrete series module, we must have j = qi := l /2dmiX(G^) [BW]: II,
5.3 (dimension as a real manifold).

Blank's example corresponds to the case w = 1; we write A(/i) = A( / i , l ) ,
A ( < ) == A(^ 1). Define A(/i), /3(A(fa)) , ^A(/,), and 6(A(/i)) for r/i in analogy with
the definitions for G, and let UJH € Hompp (A9^^ .p^ 0 V^^, r/,) in analogy with the
definition of 0:00 above. The cocycle corresponding to r/ lies in a different Lie algebra
complex, namely C* (m^ Ki n M; n 0 VA (o). Let G^ = G/ (R)° • ZG, (R), K^ = K; n M^,
and let r}- be the irreducible (fl^ K^)-submodule ofll^ corresponding to T° (introduced
above). Then (in the notation of 4.2)

(5.4.2) C^mi^nM^^V^o)
^ C- (mi, K,1; r,1 0 V^) ^Hom^ (A- ̂  0 V^,* ^l^

A ( 0 ? ' h ) '

Let A(<) cl)^ c be the Harish-Chandra parameter of the discrete series representation T/,
let B(A(Q) c T;1 be the Blattner K^-type, b{A{l)) c B(A(Q) (resp. ^(Q e V^^) a
highest weight vector. Finally, let

(5.4.2) /^(A(0)= /\ w—eA^ 0 ?^
^^Pt(A(0)

where P^ (A(^)) is the set of all non-compact roots a for ()^c such that (a, A(Z) ) > 0,
and w"0' is a basis of the root space corresponding to -a. In terms of (5.4.2),
H^^m^ K ^ n M ; r ;0VA(/ ) ) is generated by the K^-equivariant extension^ of the
unique I);, c n m-homomorphism which takes /? (A (^)) 0 v\ ̂  to & (A (/)) e B (A (<)) C r}
(cf. [BW], proof of Theorem 5.3).

Let TT^ = Th 0 T^. The local computation underlying the restriction maps (4.2.5-10)
is given by the composite of three maps:

S : HOHIK, (A9^) p- 0 V^, TToo) ̂  Ci :=HomK, (A^^ p- 0 V^ 1̂  (lloo 0 IN?))

(derived functorially from Blank's embedding);

T : Ci - C2 :=HomK,.^ (A9^ p- 0 V^, r^)

(restriction of functions from G (R) to M (R)); and
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U : C2 ̂  C3 :=HomK^ ([A^^p, 0V^] 0 [A-^ 0V:^], r, 0^),

obtained by composing Cayley transform with restriction; since ; (w) = 1, V^ 0 V^
is naturally (and uniquely) a K/i • K^-submodule of V^.

Since ^oo is (up to scalars) the unique cohomology class in H90^ (^p, Kp; 71-00 0 V^),
Hypothesis (c) of 5.3.11 is equivalent to the conclusion of the following proposition:

5.4.3. PROPOSITION. - Suppose q (A (ft)) + q (?) = q (A). Then U o T o S (u;^) is a
non-^ero multiple of uj^ 0 c^.

Prw/. - Blank has verified [Bl], Prop. 4.1 that B (A (/i)) 0 B (A (Q) is representable
uniquely as a K/i • K^-invariant subspace (or quotient) of B (A), in such a way that
b{A)=b{A(h)) 0 & ( A ( < ) ) . We may similarly write v\ = Y),^ ^v\(iy It therefore
suffices to verify that Cayley transform identifies /3(A) with /3(A(fa)) 0/3(A(Q);
equivalently, that

(5.4.4) Q (A) = Q (A (/i)) II Ad (cp)-1 (P^ (A (Q)).

Our hypothesis is that both sides of (5.4.4) have the same cardinality, so it suffices to
verify that the left-hand side contains the right-hand side. But this follows immediately
from the definitions.

We have shown that Theorem 5.3.11 is non-vacuous, but the examples proposed
have two obvious drawbacks. In the first place, we had to assume Pp cuspidal, which
is quite rare; the theory of holomorphic Eisenstein series gives examples of embeddings
for arbitrary F, where the representation of G/ is a character (cf. [HI]). Furthermore,
the examples only work for w=l . Little is known in general about the embedding of
discrete series modules in induced modules, or rather the most general results are expressed
in terms of the Kazhdan-Lusztig polynomials, and are therefore not directly accessible.
Our arguments in paragraph 3 lead us to suspect that Blank's embeddings have a direct
interpretation in terms of the geometry of the flag variety for G, and that they admit the
following generalization. For brevity, write G for G (R), etc., and assume G semi-simple
and connected. Let T c t)^ be the set of differentials of algebraic characters of H. Assume
A € T is R^-dominant, and A := A+p is (flc, ()c)-regular. Let A {h, w) = X (h, w) + p^.
Let TT (A) (resp. TT (A {h, w))) be the discrete series representation of G (resp. of G/,) in the
Harish-Chandra parametrization. Define g(A) and g (A( fa , w)) as above. For w e W^,
let

d (A, w) = q (A) - q (A {h, w)) - I (w).

Finally, let A (0, w) = A (/, w) |a, and write P = Pp.

5.4.5. CONJECTURE. - Suppose A(0, w) - pp, as a character of a, is in the negative
chamber relative to the parabolic subgroup P. Let a be an irreducible (fl^ K^-module such
that H^'^ (^, Ki, a 0 Y^(^^)) / {0}. Then the discrete series module TT (A)* embeds
as a subrepresentation of Ind^ (TT (A (h, w))* 0 (pp - Ao (w)) 0 a) (normalized induction).
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