
ANNALES SCIENTIFIQUES DE L’É.N.S.

D. YU. NOGIN
Helices on some Fano threefolds : constructivity of
semiorthogonal bases of K0

Annales scientifiques de l’É.N.S. 4e série, tome 27, no 2 (1994), p. 129-172
<http://www.numdam.org/item?id=ASENS_1994_4_27_2_129_0>

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1994, tous droits réservés.

L’accès aux archives de la revue « Annales scientifiques de l’É.N.S. » (http://www.
elsevier.com/locate/ansens) implique l’accord avec les conditions générales d’utilisation
(http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systé-
matique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ASENS_1994_4_27_2_129_0
http://www.elsevier.com/locate/ansens
http://www.elsevier.com/locate/ansens
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. scient. EC. Norm. Sup.,
46 serie, t. 27, 1994, p. 129 a 172.

HELICES ON SOME FANO THREEFOLDS:
CONSTRUCTIVITY OF SEMIORTHOGONAL

BASES OF Kn

BY D. Yu NOGIN

ABSTRACT. — The paper deals with the properties of helices on the level of the Grothendieck group
Ko(X). For Fano threefolds with Pic X^Z (the simplest from the point of view of helix theory) there are
considered the semiorthogonal bases of Ky (X), viewed as a Z-module, which arise as a natural generalization
of images in KQ of foundations of helices.

For these threefolds equations are derived, which play the role analogous to that of Markov equation for
helices on P2. With the help of these equations the semiorthogonal bases of KQ are classified modulo action
of mutations, i. e. the "Ko-constructivity" of helices is proved.

Preface

The notion of a helix was first introduced by A. L. Gorodentsev and A. N. Rudakov
in [5] in connection with the problem of constructing of exceptional bundles on P". It
is shown in this paper and also in [3], [8], [15], that the exceptional bundles can be
obtained one from another by canonical mutations in exceptional pairs. The principal
difficulty therewith is to provide a large enough store of pairs for which the mutations
are defined. The concept of a helix is used to avoid these difficulties.

According to [3], [5], a helix on P" is an infinite periodical exceptional collection
a = { E ^ } of vector bundles (or coherent sheaves) of period ^+1, such that for any
element of it there exist multiple (left) mutations L^E^ for l^k^n, while
LWE^==Ei_^_^ and the collections L^CT are exceptional (we use here the notations
of [3]). With such a definition, nontrivial is the fact proved in [3], that any mutation of
a helix is also a helix, which means that some initial store of mutations provides the
existence of further ones.

In the succeeding works ([2], [4], [14], [16]) the helix theory got its further
progress. Thus, very promising was found the approach of A. L. Gorodentsev [4], who
suggested to consider helices in the derived category of coherent sheaves over an arbitrary
manifold. Such an approach on the one hand generalizes the notion of a helix on P",
and on the other hand allows to consider helices in any triangled category, where
Horn* (E, F) for any two objects E, F has a structure of finite-dimensional graded vector
space over C. In particular, in [2] from this point of view there are studied the categories
of representations of some classes of algebras.
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130 D.YuNOGIN

Exceptional vector bundles were first considered in [9], where they were used for the
description of moduli space of stable vector bundles on P2. There the exceptional
bundles arose as stable bundles with discriminant A(E)< 1/2. Later J.-M. Drezet proved
in [8] that this definition is equivalent to the following: a bundle E is called exceptional,
if

f ° < E , E > ^ C
l^E.E)^ for i^O,

where '(E, F) denotes (as everywhere below) the space Ext^E, F).
Such a cohomological description of exceptional bundles allowed A. L. Gorodentsev

and A. N. Rudakov to extend the notion of an exceptional bundle to P" and other
manifolds (see, for example, [3], [5], [16]). It is possible thereby to consider exceptional
objects not only in the category of vector bundles, but in more general cases: in the
category of coherent sheaves, and in the derived category of coherent sheaves. When
studying vector bundles, such a transition to the greater amount of objects we consider
has a certain purport because of the notion of a mutation of an exceptional pair and the
concept of a helix (see, for example, [4]).

Remind that a pair (E, F) of exceptional objects is called exceptional if \ F, E ) = 0
for all i. It is one of the most important properties of exceptional bundles on P2 that
for an exceptional pair there can be defined a (left) mutation: for an exceptional pair
(E, F) the kernel L^ F of the canonical morphism

°<E,F>(x)E^F

is exceptional, and the morphism itself is surjective. Moreover, the pair (L^F, E) is
also exceptional; it is called the left mutation of the pair (E, F), and the object LgF itself
is called the left shift of F in the pair. The mapping (E, F) \—> (L^ F, E) is also called
the left mutation, the left shift of F or the transfer of F over E.

The right mutation is defined dually with the help of the morphism
rcan= lean* (F*, E*). The mapping rcan is inverse to lean, and vice versa.

Mutations of exceptional vector bundles on P2 first appeared in [8], although without
the terminology.

For an exceptional pair of bundles on P" the surjectivity of lean (correspondingly,
injectivity of rcan) is proved only provided that the pair is included in a constructive
helix [3]. Here the helix is called constructive, if it can be obtained by successive
mutations from the canonical helix { (9 (i)}.

When studying exceptional pairs of sheaves on a two-dimensional quadric P1 x P1

(see [16], [4]), one can note that the canonical morphism lean can be not surjective. It
can be injective; in this case one can easily check that the cokernel of the morphism is
exceptional, and it can be regarded as a left shift in the pair. The mutation of such
type is called a recoil, as distinguished from the case of the mutation of division type,
described above. The case is also possible, when °<E, F)=0, then the result of a
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HELICES ON SOME FANO THREEFOLDS 131

mutation is an exceptional sheaf <f, obtained as the universal extension

O-^F-^-^E.F >®E -> 0

Such a mutation of extension type is inverse to a mutation of recoil type.
These three cases were combined by A. L. Gorodentsev [4] into the concept of a

mutation in the derived category of coherent sheaves. An object A of the derived
category is called exceptional, if

Hom'(A,A)=C°,

and the result of a (left) mutation is the cone of the (left) canonical morphism, which, as
Gorodentsev proves, is also an exceptional object.

An ordered pair (A, B) of exceptional objects is called exceptional, if Horn* (B, A) = 0.
Undoubtedly important is the concept of a helix in the derived category, introduced

by Gorodentsev. Remind that an ordered collection of objects is called exceptional, if
any ordered pair, being a subcollection of it, is exceptional. The helix of period n in
the derived category of coherent sheaves on a manifold X is an infinite ordered collection
< 7 = = { A ^ } , which satisfy the following conditions:

1) Any n successive elements of the collection a form an exceptional collection (called
a foundation of a helix),

2) A^^L^-^A,, where L^-^A, is a (n- l)-th left shift of A, in a.
The result of a shift of A, in a helix is a collection, obtained from it by corresponding

shifts of all elements Aj^, k=i(modn). Therefore, condition 2) may be written as
L^-l^=a.

The connection between the concept of a helix and the structure of the derived category
was revealed by A. I. Bondal [2]. He has proved the following theorem:

Let X be a Fano manifold, (Ao, . . ., A^_i) be an exceptional collection of objects of
D^Sr^X)) be the bounded derived category of coherent sheaves on X. Then the
following conditions are equivalent:

1) The collection (Ao, . . ., A^_i) generates D^Sh^X)),
2) An infinite collection {Aj, defined periodically by the condition

Af_^=Af®(Ox[dimX], is a helix of period n.
Here (Ox is a canonical class of X, and a number in square brackets denotes the

multiplicity of the shift of an object to the left viewed as a graded complex. Such
helices are called the complete helices on a manifold X.

If all the objects A, have only one non-zero cohomology, i. e. if they are represented
by sheaves, then the corresponding helix {E j in the category of sheaves obey the
property Ef_^=E,(JTx)» where Jfx ls trle canonical divisor. An example of a complete
sheaf helix may be given by the helix { 0 (i) ] of period w+ 1 on P": according to [I], the
collection [(9, . . ., (9(n- 1)} generates D^Sr^P")), and according to [3] all mutation of
this helix are possible in the category of sheaves. Collections which generate the derived
category are described also by M. M. Kapranov ([10], [II], [12]) for Grassmannians,
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132 D.YuNOGIN

quadrics and flag manifolds. A symmetric sheaf helix on the Grassmannian G (2, 4) is
constructed by B. V. Karpov [13].

For a foundation of a complete helix on a manifold X there is valid an analogue of
the Beilinson theorem—there exists a spectral sequence associated with the foundation,
which generalizes the Beilinson spectral sequence for the helix { ( 9 (i) ] on P" ([3], [5],
compare with [I], [8]).

The possibility to chose suitable foundations of helices and to mutate the foundations
opens wide prospects in problems of constructing of moduli spaces, since it allows to
obtain the most convenient representations for a given sheaf, and also to mutate the
moduli spaces themselves. Thus, on this way J.-M. Drezet achieved a considerable
success in constructing moduli spaces of stable vector bundles on P2 and studying their
geometry ([6], [7]).

The existence of Beilinson-type spectral sequences, associated with a foundation of a
complete helix, provide the fact that the images in Ko (X) of elements of a foundation of
a complete helix form a basis of Ko (X) viewed as a Z-module. On Ko (X) there is defined
an integer bilinear form < E, F ) = ̂  (E, F) where ̂  (E, F) is the Euler characteristic, equal
to

^(-ly.dim^E.F)
i

for classes E, F represented by sheaves E, F; or, in more general case, to

^ (- I)1. dim H1 (Horn' (E, F))
i

for objects of the derived category.
Since the elements of a foundation of a helix form an exceptional collection, any basis

(CQ, . . ., e^) of the module Ko (X), obtained as an image of some foundation of a helix,
satisfy the conditions

<^. ,^>=1, <^ . ,^>=0 for j>i,

The bases, which satisfy these conditions, are called semiorthogonal.
On the set of all semiorthogonal bases, as well as on the set of helices {see [4, (4.4.1)]),

there acts by left mutations the Artin braid group: the action of a generator of the group
on a basis (^o? « • . ? ^n) is defined as an elementary mutation, which maps the pair
(^, €i+\) to

«^^+i>^-^+i^)-

This definition of mutation in Ko correlates with the corresponding definition in the
category of sheaves up to changing sign:

LEF=±LEF.

(The sign depends on the type of a sheaf mutation). The line denotes here the class of
a sheaf in Ko; further on we as a rule omit it.
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HELICES ON SOME FANO THREEFOLDS 133

In connection with the problem of classifying the complete helices it is natural to
consider that of to classify the semiorthogonal bases, i. e. to select the set of the simplest
bases (further on we call them canonical bases) and to describe the set of constructive
bases, which can be obtained from these canonical ones by successive mutations.

In this paper there is studied the problem of constructivity of the semiorthogonal bases
of Kg for Fano threefolds, which are the simplest from the point of view of helix
theory,—for the threefolds with PicX^Z. A complete helix on such a threefold must
have period 4. There exist four kinds of such manifolds: the projective space P3, a
smooth quadric Q, the manifold ¥5 and the family V^.

For P3, Q and manifolds ¥5 there are known the examples of complete sheaf
helices. For P3 it is the helix [(9(i)} according to [3]. For a quadric Q
M. M. Kapranov [10] has constructed exceptional collections, which generate the derived
category of coherent sheaves and therefore, taking into account the theorem of
A. I. Bondal [2] given above, are foundations of some complete helices. The example
of such a collection gives

(^,^*,^(1),^(2)),

where y is the spinor bundle. One can easily check using some formulas from [10] that
this helix is a sheaf one.

The example of a complete sheaf helix on ¥5 was recently constructed by
D. 0. Orlov — it is the helix with the foundation

(^J2,^*,^(l)),

where y and 3, are correspondingly the restrictions to ¥5 of the universal bundle and
the factor bundle on the Grassmannian G(2, 5) in case of ¥5 realized as the intersection of
the image of the Pliicker embedding G (2, 5) c; P9 with a general subspace P6 c= P9. The
examples of complete helices on V^ are not yet known.

The problem of the classification of the semiorthogonal bases of K()(X) is, in fact, a
Diophantine one. In the simplest cases it can be reduced to that of to solve one
Diophantine equation. Thus, A. N. Rudakov [15] discovered that the ranks of the
elements of a foundation of a helix on P2 satisfy the Markov equation

(1) .x2+.v2+z2==3xyz,

moreover, a mutation of a helix corresponds to a mutation of a numerical solution of
the equation ((x, y, z)\-^(3yz—x, y, z)). Thereby, in order to prove the constructivity
of all helices it is sufficient to prove that all numerical solutions of the Markov equation
form one orbit modulo action of mutations (up to multiplying two elements of a Markov
triple by — 1 , which in geometrical situation corresponds to the shift of graduation in
the derived category). In similar case, when describing symmetric helices on a
quadric [16], there is used the equation

(2) x2+y2+2z2=4;cyz,
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134 D.YuNOGIN

which holds for the ranks of elements of a symmetric helix. Certainly, the transition
from solving a Diophantine problem to geometrical constructivity is possible only when
the corresponding geometrical properties of exceptional objects are studied.

The main tool when proving constructivity of the semiorthogonal bases is the method
of Markov-type equations, which generalizes the equations (1), (2) for helices of
period 3. For helices of greater period a Markov-type equation for an exceptional pair
(EI, E^) is a Diophantine one, which holds for the ranks of elements of the pair and
some invariant of the pair. An invariant of a pair is an integer function of elements of
it, which is invariant under mutations.

For equations (1), (2) such an invariant is

dim Horn (EI, E^),

which is equal correspondingly to 3 z, tripled rank of the third element of the foundation
of the helix in equation (1), and to 4z, taken four times rank of the non-diagonal bundle
in the foundation of the symmetric helix in equation (2). And if by z we denote
dim Horn (EI, E^), then equations (1), (2) would be rewritten in the form

(3) ^2^2+___^^
Jl

where Jf2 is the selfintersection number of the canonical divisor, equal to 9 and 8
correspondingly. Similar equation for rational ruled surfaces was obtained by the author
in [14].

In this paper there is derived and applied when proving constructivity of the semiortho-
gonal bases the following Markov-type equation for threefolds listed above:

(4) ^+ y^2(z^p)2-=xyz.
(-JT)3

Here also z = < E^, E^ ), x = rk E^, y = rk E^; p is a parametre. This equation was first
obtained by A. I. Bondal. However, for the proof of constructivity of the semiortho-
gonal bases it is more convenient to take as z some other invariant of a pair for which
the corresponding Markov-type equations are:
for P3:

(5) x2-^y2-^2z2=(Sz-p)xy

forQ:

(6) x2-}-y2+3z2=(9z-p)xy

for ¥5:

(7) x2+^2+5z2==(10z-/?)^

4eSERIE - TOME 27 - 1994 - N° 2



HELICES ON SOME FANO THREEFOLDS 135

for V,,:

(8) xl-^y2^\\z2=(\\z-p)xy

In the paper there are derived some extra correlations between parametres of semi-
orthogonal bases (foundations of helices), which are used when proving the
construct! vity. For each of these threefolds there exists a set of canonical bases, obtained
one from another by elementwise tensoring by a power of the ideal sheaf of a point. Any
semiorthogonal basis up to changing signs of some elements can be obtained by mutations
from one of these canonical bases.

Let / p denote the ideal sheaf of a point.
For P3 the canonical bases are

W®/^ OW®/^ O^)®/^ ^(3)®^?, neJ..

For a quadric Q the canonical bases are

(O®/^ y®/^ ^(1)®^, ^(2)®^), neZ,

where y is a spinor bundle.
For ¥5 the canonical bases are

(O®/^ ^®/^ y®/^ (9(\)®/^ neZ,

with y and J? described two pages above.
For ¥22 the canonical bases (^o, .. ., ^3) are the bases with

rkeo=l, rk^=4, rke^=3, rk^=2,

Ci eo = 0, Ci 6?i = Ci ^2 = c! ̂ 3 = H,

where H is a positive generator of PicX.
The study of geometrical properties of helices on these manifolds seems to be a field,

worthy of the most intent consideration.
The author is very grateful to A. N. Rudakov and A. N. Tyurin, and also to

A. I. Bondal, A. L. Gorodentsev and S. K. Zube for their kindly support and unchanging
interest to the work.

1. Markov-type equations for exceptional pairs

Here and below we call a collection (^o, . . ., e^) of elements of K() (X) exceptional if
it satisfies the conditions of semiorthogonality:

< ^ , ^ > = 1 , <^ . ,^>=0 for j>i.

In particular, we call xeKo (X) an exceptional object if < x, x ) = 1.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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1.1. INVARIANTS OF EXCEPTIONAL COLLECTIONS. — An invariant of an exceptional collec-
tion is an integer function of elements of the collection, which is invariant under all
possible mutations of it. The simple example is the invariant h of an exceptional pair
(x, y), equal to the value of the form ^ on the pair :

h(x,y)={x,y}.

Indeed, h is preserved under a mutation of the pair

h(L^y, x)=<L^, x>=«x, y } ' x - y , x}
= < x , ^ > - < x , x}-{y, x}^{x,y}=h(x,y).

The example of an invariant of an exceptional collection (^o, . . ., e^) of arbitrary
length is given by

det(^,))^,=o,..,fe,

where (SQ, . . ., ̂ ) is a collection of additive functions on K() (X). Indeed, the transform-
ation of the matrix under the left mutation of the pair (e? ^.+1) is, in fact, the column
transformation, so the determinant is preserved.

The described above invariant h can also be represented as a sum of such invariants,
since for an exceptional pair the Riemann-Roch theorem provides that

^y^^y^-^x^td^Vd^^^ ch*^ V) .
\ \ chx chy //„

More complicated example of an invariant of a pair (x, y) is

detf sw s(y)}
\s^y) s ( x ) )

where s is an additive function. Indeed, the left mutation transforms the matrix to

/ s(L^y) s(x) \
\hs^y)-s(x) h s ( x ) - s ( y ) ) '

since
LL^yx=<.Lxy. x)'L^y-x=h'L^y-x,

so the row transformation is made, which also preserves the determinant.

1.2. MARKOV-TYPE EQUATIONS. — Let there exist an equation, which establishes the
relation between the ranks of elements of an exceptional pair (^o, ^), some invariant z
of the pair and invariants p^ . . .,/^Oz^O) of an exceptional collection (^ • . ., ^),
which complements the pair to a semiorthogonal basis. Consider this equation as a
Diophantine one

(p(x,^,z;/?i, . . . ,A,)=O
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HELICES ON SOME FANO THREEFOLDS 137

on tree variables
x=rkeo, y=rke^ z=z((?o, ^i)

with parametres p^ . . . , / ?„ . Let it be quadratic with respect to each variable. Then,
with fixed values of parametres, on the set of all numerical solutions (x, y , z) of this
Diophantine equation there act the mutations

x^->x', y^y', z}—>z',
defined as following:

For any solution (xo, yo, Zo) consider

(^(O^^o^o^i. • • '.Pn)

— the quadratic polynomial on t\ XQ being one of its roots. The other root x' gives the
mutated solution {x\ yo, Zo). The mutations y^y\ z\-^z are defined similarly.

We call such an equation (p(x, y, z; p^ . . . , /?„)=() Markov-type, if the following
conditions hold:

1) the variables x and y are symmetrical in the equation,
2) numerical mutations x\->x\y\->y' correspond to right and left mutations of a pair

(^o, e^) (up to the commutation of x and y, but they are symmetrical),
3) the value of the parametres / ? i , . . . , /?„ on the collections (e^ . . . ,^) and

(L^ e^, . . ., L^ e^) coincide for any semiorthogonal basis (^o? • • •»^)»
4) the numerical mutation z\—^z corresponds to the transition from the basis

(^o, . . ., e^) to the basis (^OOoOx? ^o? ^1^2? • • ' ^ e ^ k ) (^P to ^e commutation of x
and y), where ©x is the canonical sheaf on X.

Thus, the classical Markov equation (1)

x2-^-y2-^z2=3xyz,

which holds for the ranks of elements of a semiorthogonal basis of K() (P2) (a foundation
of a helix on P2) is a Markov-type equation in the following sense: the equivalent
equation (3)

h2

x2-^y2-^ — =hxy

is a Markov-type equation of variables x, y, h: conditions 1), 3) are obviously satisfied;
x ' = h y — x and y ' = h x — y correspond to mutations in the pair; h'=9xy—h corresponds
to the transition to the basis

(^(x)co, Co, L^),
since for this basis

<^®(0, 6?o>=3rkL^2= 3«6 > l . e 2 ) ' T k e ^ - r k e ^ ) = 3 ( 3 x ' y - z ) = 9 x y - h .

Note that when changing sign of one of the elements of a pair (it is the operation,
which preserves the semiorthogonality of the basis and corresponds to the shift of grading
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in the derived category) the Markov equation (1) is no longer valid, while the equation
(3) is: not only the sign of one of the ranks changes, but that of the invariant h also
does.

The Markov-type equation (4) is derived in section 3.

1.3. REDUCTION METHOD. — Markov-type equations help to find the conditions, which
provide that the corresponding mutations reduce the numerical solutions. Thus, let
(p(^, &, c)=0 be a Markov-type equation with fixed values of parametres, (do, bo, Co) be
one of its solutions. Let the top coefficient of the quadratic (p^ (t) = (p (t, bo, Co) be
positive. One of the roots of this polynomial is do. A mutation reduces a, if the other
root is less than a^ To prove it, it is sufficient to find to<ao such that cp^o)<0.

Suppose that any numerical solution of a Markov-type equation can be reduced to
one of the simplest, which correspond to some certain (canonical) semiorthogonal
bases. It would mean that any semiorthogonal basis can be reduced by mutations to
one of the canonical, i. e. the constructivity of the semiorthogonal bases is proved.

Below this method is applied to some concrete examples.

2. Properties of semiorthogonal bases

Let (^o, ^i, ^2» ^3) be a semiorthogonal basis of K() (X), < x, y ) = / (x, y) be the bilinear
form on Ko (X). Denote by K the linear operator on Kg (X) such that

< X , K ^ > = < ^ , X > .

For an arbitrary manifold X this operator exists due to Serre duality, namely

KE=(-\)dimxE®Q.

As above, © denotes here the canonical sheaf on X. In particular, for threefolds
KE= -BOO®.

2.1. DUAL BASES OF KQ (X). - A basis { e] } is called (left) dual to a basis {e,} if

(^ej}^,

If { € i ] is a semiorthogonal basis, which corresponds to some foundation of a complete
helix {Ej, then, as A. L. Gorodentsev [4, (4.4.2)] has shown, the dual basis exists and
is given by the conditions

(9) ^=L^.. .L^E,

i. e. e^ is the image in K() (X) of the i-th left sheaf of E^ in the helix in the derived
category. Conditions (9) together with the definition of a complete helix imply that

6?o=6?o, e!=L^E^=-L^e^=e^-(eo,e^-eo,

^v=]LT5yE3=E3(x)o)[dimX]=(-l)dimxE3®®=K^,
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HELICES ON SOME FANO THREEFOLDS 139

^v=i72yE2=R(L(3)E2)=R(E2(8(o)[dimX]=-R^K^

=-KR^^=K^2-<^2^3> 'K^3-

Further on we use the notation
^r^i^j}'

Thus, if a given basis corresponds to a foundation of a complete helix, then the elements
of the dual basis are given by formulas

(10) eo=eo, e^=e^-h^e^ e^=Ke^-h^Ke^ e^ =K^.

Now one can easily check that for an arbitrary semiorthogonal basis the elements e^
defined by (10) satisfy the conditions (e^, e] )=8^ as well, i.e. form a dual basis.

2.2. PRODUCTS OF ADDITIVE FUNCTIONS. - Define for x e K() (X) the additive function

^x=< - , x> :Ko(X)^Z .

The existence of semiorthogonal bases implies, in particular, that the operator

X:Ko(X)^K$(X)

is invertible, i.e. for any additive function ^eK^(X) there is defined the element X"1 s.
Define for any additive functions s and t their product

^.Q^X-1^-1^.

Note that it can be similarly defined by means of the operator

p :x^«x, .> :Ko(X)^Z) ,

but (x, • ) = < • , Kx) , so p=^-K, and thereby

^-^-^^(Kp-^Kp-^^p-^.Kp-^^p-^p-1^

i. e. the definitions are equivalent.
Fix the basis { p ̂  } in K$ (X) and consider the decomposition of an additive function t:

^Z^P^Z^-).
Then

t(ej)=^t\e,ej\

i.e. t^t^). Thus,
t='Lt(enpe,.

i
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Similarly, using the basis { ' k e^ } one can easily obtain for an additive function s the
identity

s=^s(e^e^

Then

Here

^Q^^^/K^.p^).
i,J

<5l^v ,P^>=<^v ,^- lP^>=<^v ,K^>=<^^v >=§,,,

i.e.

(11) <^>=^>(^(^).

2.3. PROPOSITION (helix property of semiorthogonal bases). — Let (^o, . . .,^) be a
semiorthogonal basis of K()(X). Consider the infinite collection {^ -} defined by the
condition

^-fc-i=^00(o.
Then

1) Any fe+ 1 successive elements of the collection [e^] form a semiorthogonal basis;
2) L^^-ir^.^.,.
Proof. — To prove assertion 1) it is sufficient to verify that the collections

(^®G), CQ, . . .,^-1) and (^i, . . ., e^ ^o®00"1) are semiorthogonal bases. The verify-
ing is obvious.

To prove assertion 2) consider the collection

(L^, CQ, . . ., ^-i),

which is a semiorthogonal basis, since mutations preserve semiorthogonality. Therefore

(12) ^.L^^O for O^^-l.

Furthermore, for an exceptional pair (x, y) we have

0, L^>==0, ( x , y } x - y > = - l .

Hence, by induction on j we obtain that <^, L0^)^- iy. Then (12) together with
the equality < ̂ , L^ e^ ) = (— ̂  implies that

^L^^-(-l)^^,
hence,

L ( k )^=(- l) k^ v=(-l) kK^=(-l) f c + d i m x^_l .

The proposition implies, in particular, that the transition from a basis (e^ ..., e^ to
(^i(g)(o, ^o, L^^ ^2, .. ., Lg^Cfc), which appears in the definition of a Markov-type equation
(1.2), can be obtained by mutations (up to changing signs).
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3. Markov-type equations for X

The manifold X we consider is understood to be one of the threefolds P3, Q, ¥5, V^.
The canonical class of X is denoted by Jf.

3.1. RIEMANN-ROCH FORMULA. — Consider for a manifold X the Riemann-Roch
theorem in Hirzebruch form:

X(B)=(ch(E).td(^))3,

where y is the tangent sheaf on X; ( )3 denotes the component of codimension 3 in
A(X)®Q, where A(X) is the Chow ring; ch(E) is the Chern character;

td(^)=l+cl+(cl±c2)+clc2

2 12 24

is the Todd class of ^~, c, = c, (^). Here Ci (^) = - Jf, and Ci ^2/24 = ̂  ((9) = 1, so

,. 24 c2 24 Jf2
C2^)= c\ jr3

Thus,
^y / i 7 \td (^)=l - t ^+J^ 2 ( - -—)+l .
2 U2 Jf3/

Introduce the notations for "specific components" of Chern character:

vC^^. ^(E)=^=-——(c?(E)-2c,(E)),
r(E) r(E) 2r(E)

^ ̂  = ch^) = ——m(c?(E) ~ 3 c!(E) c2 (E) + 3 c3 (E))'r(E) 6r(E)
then

ch (E) = r (E) • (1 + v (E) + <? (E) + n (E)),

and the Riemann-Roch formula may be written as

X(E)=(ch(E)-td(^))3

=^•(E)•f(l+v(E)+^(E)+1^(E))•fl-^+Jf2f l-——)+l))
\ \ 2 \ 12 Jr / //a

( / 1 2 \ 3f \
=r(E). 1+jf2 — - — — V(£)-—^(E)+TI(E) .

Yl2 . y r 3 } 2 )

For locally free sheaves E, F we have the identity /(E, F)=/(E*®F), and the multiplica-
tivity of Chem class implies that

v(E*®F)=v(F)-v(E)=Av, ^(E*®F)=^(E)+^(F)-v(E).v(F),

11 (E*®F) = Ail + q (E) v (F) - q (F) v (E),
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where Aq = T) (F) - r\ (E). Then

(13) <E,F>=5c(E,F)=r(E).r(F)
.,/, , ^ / lxfl+^2f l-——)Av-: r(<7(E)+^(F)-v(E).v(F))

\ \ \-Zi Jt j Z,

+ATI+^(E)V(F)-^(F)V(E)\
Since the Euler characteristic is additive, formula (13) is valid for an arbitrary sheaf E

of non-zero rank.
In particular, from (13) one can derive the expression for <E,F)+ ^=<E,F)+<F,E):

(14) <E,F>^=2r(E).r(F)Yl-^(^(E)+^(F)-v(E).v(F))\

3.2. RIEMANN-ROCH FORMULA FOR AN EXCEPTIONAL PAIR. — For an exceptional sheaf E
formula (14) implies

2=<E,E>^=2r2(E)Yl-^(2^(E)-v2(E))\

hence, - (Jf/2) (2 ̂  (E) - v2 (E)) = l/r^E)- 1, so

(15) . -^(E)=5(E)-1-^.^,

where 5(E) denotes l^r^E)).
Substituting (15) and the similar expression for -(Jf/2)^(F) into (14), we obtain the

Riemann-Roch formula for an exceptional pair (E, F):

< E , F > = < E , F > ^ = 2 r ( E ) . r ( F )

xfl^(E)- l-v2^.^^(F)- l-v2(^.^^v(E).v^^^^
\ 2 2 2 2 2 2 1 )

=2r(E).r(F).f8(E)+8(F)-Jr(v2(E)+v2(F)-2v(E).v(F))\
\ 4 /

i.e.

(16) <E, F>=2r(E).r(F).f6(E)+8(F)-Jr(Av)2\
\ 4 /

Let H be the positive generator of the group PicX^Z • H. Denote by k the multipli-
city of the anticanonical class (index of Fano threefold), i.e. -Jf=^H. Denote by d
the integer additive function on K() (X), equal to the multiplicity of the first Chern class,
;. e. Ci (E) = d ( E ) ' H. [In particular, k= d(Q~1).]

Consider (16) for an exceptional pair (e^ ej) using the above notations:

<e„.,>=2r.r,^(e,)+8(e,)+^H(^H-^HY\
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Remind that we denote (e^ ej) by h^. Then

A,r.r,=2r?^(§(..)+5^)+^^-rf•YH3)=^+r?+^H3(r.rf,-r,rf,)2.
\ ' \ ' j • i / / ~

Here

,«,-^-<l.tQ ^-C,,

— an invariant of the pair (e^ ej).
Thus, we obtain the formula

(17) ^^r^^+^+JH3 .^.

Note that it is not a Markov-type equation, since it includes two invariants of a pair:
h,j and C .̂.

3.3. PROPOSITION. — An exceptional object on X is of non-zero rank.

Proof. — Formula (14) for an exceptional object E of zero rank implies:

2=<E,E>+=2. J f ^(E)=-fcH(r f (E)•H) 2 =-A:H 3 r f 2 (E)<0,

which provides a contradiction.

3.4. PROPOSITION. — For an exceptional pair of objects of positive rank the inequalities
/^3, C^O hold.

Proof. — Formula (17) written as

(^-^r.r^^-^+JH3^2,

with r^ rj > 0 immediately implies that h^ ̂  2. If h^ = 2, then r, = r? C^ = 0. Conversely,

^•^j^2"^
under C^=0 we obtain

hence r, | r? rj \ r,, i. e. r^ = rj. Thus, in both cases r, = r? c^ (e^ = c^ (^). Then (15) implies
that q(e^=q(ej) as well. Then the condition (e? ^)=0 together with (13) provide
that T|(^)=T|(^), therefore ch(^)=ch(^), i.e. e^=€j as elements of K()(X). But it
would imply

1=<^,>=<^,>=0.

3.5. COROLLARY. — Mutations of an exceptional pair of objects of positive rank preserve
the ranks to be positive.
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Indeed, h is an invariant of a pair; thereby if an object obtained by a mutation has
negative rank, then in equality (17) for the mutated pair we would have ^>0, ^.<0,
A^3, which provides a contradiction.

When multiplying one of the elements of a semiorthogonal basis by — 1 , the basis
remains semiorthogonal. Therefore, taking corollary 3.5 into account, we consider
further on only the bases consisting of objects of positive rank.

All the following assertions of this section are formulated for such bases.

3.6. PROPOSITION. — An exceptional pair with fixed values of invariants C and h can
be reduced by mutations to a pair for -which the lesser rank (among those of elements of
the pair) is not greater than C • /k'R3/2(hzr2).

Proof. — We prove the proposition by induction on the sum of ranks of elements of
a pair (assuming them to be positive). Denote the ranks by x and y\ then (17) is written
as

x2-^y2+kH3'c2=hxy.

Applying the reduction method (1.3), we obtain that when x^y, the mutation does not
reduce x only if

0^^(y)=2y2+kH3'C2-hy2,

i.e. (h-^y^-^kll^'C2.
Q.E.D.

3.7. THE DUAL BASES. — According to 2.1, the dual basis of Ko(X) is defined by
formulas (10):

Co^eo, e^= <?i-/Zoi^o. ^^^-^s^s. e^^e^

where KE==(- l)41"1^®^^ -E(x)co.
For additive functions r (rank) and d introduced above, we obtain

r (K e,) = - r,, d(K e,) = - d(e,.®(o) == - (d, - kr,) = kr, - ̂ .,

so r(e^) and d(e^) can easily be computed:

reo=ro, re^= r^-h^r^ re^=-r^h^r^ re^=-r^

deo=do, de!=d^-h^do, de^ =kr^ -d^-h^ 3 (kr^ -^3),

de^=kr^-d^.

Furthermore, ' k ~ l r = ( P p , the class of a structure sheaf of a point (see 2.2), and ^-1 d is
represented by a one-dimensional cycle, so

<r,r>=<r,J>=<^,r>=0.
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The same products can be computed using (II):

(18) 0=<r,r>=^r,^v=^-/^olrorl+^-(rj-^3r,r3+rj);
i

(19) 0=(r,^-(d,r)=^(r^ei/-d,ren
i

== AOI (ro ̂ i - r^ do) + Arj - h^ kr^ r^ + ̂ 3 (^3 ̂  - ^2 ^3) krj
=h^C^h^C^k(ri-h^r^+ri).

The obtained equalities (18), (19) together with (17) provide

(20) ^oiCoi+^C^^H^C^^H2.^.

3.8. PROPOSITION. — For semiorthogonal bases consisting of objects of positive rank the
equality \ Coi | == | C^ | holds, and at least one of the numbers Cg^, C^ is positive.

Proof. — The first part of the assertion follows immediately from (20). Furthermore,
^01 Q)I + ̂ 23^3 >0 because of (20) and proposition 3.4, therefore when ho^h^, we
have

(21) /^(signC^/^-^H^Co^O.

(Correspondingly, when /?oi^^23? thLe^ C23<0).
Let €34 denote C (^3, ^o®®"1)' T^hen similarly | C^ | = | €341.

3.9. PROPOSITION. — For any semiorthogonal basis O/K()(X) one of the following cases
holds: either

(+) Coi=C23 and C^=C^
or

(-) Coi=-C23 and (^l2=~C^.

Proof. — According to 3.8, in all the other cases excepts (+) and ( — ) exactly one of
the numbers C^ f + i ( 0 ^ f ^ 3 ) is negative. Assume without loss of generality that €23 < 0,
since all the other cases can be brought to this by taking into consideration one of the
bases

(6?3®0), CQ, e^ €^\ (^2®°^ ^3®°^ e^ e\) or (^1. ^2. e3. ^o®®"1)-

So, let
Coi= -C23=C>0, C^=C34=C>0.

Consider the basis

./^(/O./l^/s)^^ e!. Re2e^ e3)•

For this basis C{^=C^^=C', since C' is preserved under the mutation of the pair
(^i, e^). Denote C^ == C. Since

r- (^ ^c i j ^ r i r j [ - l - ^ ^
\ ̂  ^ )
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the sign of C^ equals to that of (|LI,.- |̂ ), where \i=d/r is the slope. Then for the starting
basis |Lio<^i<H2 anc! \Ji2>\3L^ ^us, l^^C/i). H(/2)>1^3- It: implies that C>0,o^ - -r^23 — '—

Furthermore,
y-i/ ^

(22) C = ro r^ (^ - ̂ o) == ^-o ^2 ((^2 - l^i) + (^i - ̂ o))= ^o — + ̂  —
ri r.r! ^1

Moreover,

-C c
-C=C23=r2r3(H3-^)=''2''3((^3-H(/2))+(H(/2)-H2))='"2'-7-+^3--7.r{ r{

where r{=h^r^-r^ Together with (22) it gives

-C(h^^r,-r,)r,=r^-Cro-C^)-^r,^C\
i.e.

-C(-rj+/^^l-^)=-C/ro^+C^r3,
where

-rj+^^r.-r^JH^C^JH3.^)2

according to (17), (18); therefore, recalling C^O, we obtain

(23) ^.C'C'^r^-r^.

Now consider the basis

§=(go. gi. §2. §3)=(^®w, ^Oco, e^ e^).
For it

C9 —C —C C9 —C —C' C'9 — F — — P^01 " '^Ol—^? ^12~^30 — ^? ^23—^23— ^5

then (23) implies that

JH^C.C^^-^.^^-^.

Together with (23) it gives C • C7 = 0, which contradicts to 3.4.

3.10. COROLLARY. — The classes of {-\-)-bases and (-)-bases are closed under the
action of mutations.

Indeed, any mutation preserves one of the pairs of numbers: (Coi, €33) or (C^, €34).

3.11. COROLLARY. - Formula (23) is valid for (-)-bases with hQ^h^, ̂ 12^34-
Indeed, when deriving this formula we used the conditions Coi=-C23>0, C^^>0

only, which hold for such (-)-bases, since 3.8 for hoi ̂ 23 implies Coi >0.
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3.12. PROPOSITION. - For (-\-)-bases there is valid the formula

(24) ^H^C-C^ro^+ri^ .

It can be deduced similarly as the formula (23) in 3.9 bearing in mind that a mutation
transforms a (+)-basis to a (+)-basis (3.10).

3.13. MARKOV-TYPE EQUATIONS FOR (+)-BASES. — (Below we prove for each of the
manifolds we consider that (-)-bases consisting of objects of positive rank do not exist).

For a (+ )-basis (20) holds in the form

(25) ^Ql+^23 ^,=C,3.
(fe^H3

Consider (17) with i=0,j= 1. Let h^ =z, h^ =p. Then (25) gives Coi =z+^/(fe2/2)H3,
thus we obtain equation (4) :

x^+ ^-xyz,
(A^H3

i.e.

^ y2^(^P^^

(-JQ3

Conversely, taking the invariant C as z, i.e. considering Coi=z, h^==p, obtain

(26) x2+^2+^H3z2=^^H3z-^

(compare with equations (5-8) of the preface).
For equation (26) the numerical mutation of z is z\—>z'=kxy—z. This mutation

corresponds to the transition to the basis (^(x)co,^o, L^^ Lg^), since

C (^(g)(o, 6-0)= dot f rl ^-detf rl ro )= -C^kr.r^kxy-z.
\d(e^^) do; \d^-kr^ d ^ )

Hence, equation (26) is indeed a Markov-type equation (verifying other properties is
obvious).

For equation (4) the numerical mutation of z is

, (-^)3 .z\—>z = ———— x y — 2 p — z .

On the other hand,
k2

h {e^ ®G), eo) = — H3 C (e^ ®o, e^) -p
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according to (25), so

k2 k3 k2 f—j03

A(^®G), e^ - H\kxy-C^)-p= ^ H3^- , H^oi-p- ^——— xy-(z+p)-p,

Q.E.D.

Thus, (4) is also a Markov-type equation.

4. Two lemmas

4.1. LEMMA. — Let (CQ, e^, e^ e^) and (/o»/i?/2»/s) ^e two semiorthogonal bases of
KQ (X) with r (ei) = r (/;), d(e^ == d (/,). Then there exists a e Z such that f, = e,®/^ where
/ p is an ideal sheaf of a point.

Proof. — For an exceptional object formula (15) implies that q is determined by r and
c^ so q(ei)=q(fi). Hence, /^ == ̂  + n^ d)p, where ^-eZ. Conversely, any object of such
a kind as ^ + n (9p is exceptional, since

< ^ + / z ^ , ^ + 7 2 ^ > = l + ^ < ^ , ^ > + < ^ , ^ > = l + ^ . r , - 7 2 . r , = l .

On the other hand, semiorthogonality implies that for j>i we have

0=</,,/,>=<^+^, ̂ +^>=/v,-AZ,r,

so ^/r^ == ̂ /r^ == — a e Q. Here a • ̂  e Z for any ;', /. ̂ .

a -g .c .d . ( ro , r^ r^ r^)eZ.

But ro, ri, r^, ^3 are coprime as the values of the function r on the elements of a
basis. Thus, aeZ and

/,=^-r,.a^=^®(^-a^)=^®^,
Q.E.D.

Further we need the following technical result:

4.2. LEMMA. — Let a (-^-)-basis (^o, e^, e^, e^) satisfy the inequalities C^p-ror^,
C ' ^ q ' r ^ r ^ where C^CQ^C^C'^C^C^P, qeR, with Apq> 1, where A=^/2H3.
Besides, let both possible mutations do not reduce the rank of e^ i.e. r^^h^r^—r^ and
r^h^rQ-r^. Then

/A^+l yA^+T
r^ ̂  v————— or FQ ri < v—————,

Apq—\ Apq—\
and also

Proof. — Formula (23) provides

^o^+^i^A'C'C^A/^-ror^^A/^-ro^,
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so r^r^(Apq-\)ror^ Then r^r^r^r^^Apq- 1), i.e.

^f A ! +lWo^2+^3=A.C.C,\A^-1 /
hence,

'•i^-^-^A.C.C^A^.ro^^
A^-l

L^.

(27) r3^(A^-l).ro^.

Furthermore,

^3 Apq ^ A ' C ' C ^ A ' C ' p r o r ^
Apq-\

hence,

(28) C^—^—• r 3 .
Apq-\ ro

Similarly,
OQ^ p < j } . 3
^z^; -= A iA/^-l ^

Since the mutation does not reduce the rank of ^3, we have

(30) h^r^lr^

(31) h^r^lr^.

Consider equation (17) for the pair (e^ e^)\

rj+rj+A-C^/^s^s^rj

according to (30); substituting (29) into it we obtain

r^-^-A^(A^-l)2 rj
so

,2^_ A/.2 \
f i i / i ———————— i — s f ' 7 ,

J \ — / ' A 1 \ 7 1 —— •"\ (A^-l)2/

then either the expression in brackets is non-positive, ;'. e.

^^,V^
Apq—1 Apq—1

or

(32) r3 ̂  (ri-Ap^^Apq-l)2) r2'
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On the other hand, (27) implies

rlriri(Apq-\)2^

which together with (32) provides

r2
y2 y.2 < _________________I_________________

0 '-(Apq-^ri-Ap29

hence,

(33) ro^——————————_^.
^/(Apq-^ri-Ap2

Consider the function
______t______

J v ) ~ ^ / ( A p q - l Y ^ - A p 2 '

On the set t> /Ap^KApq— 1) this function monotonically decreases, and/(^)=^ when
t = to = /(AfF^T^KApq - 1). It means that either t ̂  to orf(t) < to. Recalling inequality
(32), we obtain that either r^ ̂  to or r^ r^ < to, i. e. the first part of the assertion is proved.

Similarly, considering equation (17) for the pair (^3, ^o®00"1) ^d using inequalities
(28), (31), we obtain the second part of it.

5. Constructivity problem for P3

For a semiorthogonal basis ofKo(P3) formula (17) takes the form

(34) x2-^y2-^2z2=hxy,

where x=r,, y=r^ z=C^., h=h^ The constant (^/2)H3 in formulas (21), (25), (26)
equals 8.

5.1. PROPOSITION. - (-)-bases ofKo(P3) do not exist.

Proof. — It is sufficient to prove that for any (— )-basis consisting of objects of positive
rank there exists a mutation, which reduces the sum of ranks of elements of the
basis. Indeed, according to 3.5 and 3.10, ranks remain positive under mutations, and
a basis remains to be a (— )-basis, i. e. the proposition will thereby be proved by induction
on the sum of ranks of elements of a basis.

Assume without loss of generality that in the given basis ^oi^23» ^12 ^^34? ^or

otherwise we may consider instead of it one of the bases

(6?3(X)G), CQ, 6?i, 6?;,), (^OOfi), ^®G), 6?o, ^i), 0?iO<)CO, ^(X)0), ̂ (gO),^),

which, according to 2.3, can be obtained from the given one by mutations.
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Then (21) holds in the form /!oi-/?23=8Coi>0; similarly, h^-h^=SC^>^' It
implies, in particular, that in (34) for the pairs (e^ e^) and (^, e^) there holds the
condition h > 8 z.

Consider (34) with h > 8 z. Use the reduction method 1.3 for variables x and y.
1) Let .x^^z. Then x ' ' < y , i.e. cp^(^)<0, for otherwise

0^^(y)==2y2-^2z2-hy2<4y2-Szy2,

which provides a contradiction.
2) Let x^z>^. Then x ' < z , for otherwise

0^(p„(z)=^2+3z2-Ayz<4z2-8z2.y,

which also provides a contradiction.
3) Hence, both x and y can not be reduced only if z>x, z>y. Then

4 z2 > x2 + y2 + 2 z2 = hxy > 8 .xyz,

;'.̂ . z>2xy.

So, the mutations of the pair (^o, ^) do not reduce the sum of the ranks only if
C=Coi >2xy=2ror^. Similarly, in the pair (^, e^) the ranks can not be reduced only
if C' = C^ > 2 r^ r^. Then formula (23) (see corollary 3.11) gives

r0r2~rlr3=2c'cf>sr0rl•rlr2^sr0r2.

which provides a contradiction.

5.2. COROLLARY. — The elements of a helix on P3 are ordered by slopes.

Proof. — Shifting when necessary the grading of some elements of a helix, we obtain
the helix consisting of objects of positive rank; the slopes are not changed. Then the
image in K() (P3) of any foundation of the obtained helix is a semiorthogonal basis of
Kg (P3), which according to 3.9 and 5.1 can be only a (+ )-basis. Then

a.^-H-01^^.
^•+1

Now we start proving constructivity of semiorthogonal bases.

5.3. THEOREM. — Any semiorthogonal basis o/Ko(P3), up to changing signs of some
elements of it, can be reduced by mutations to one of the canonical bases

W®/^ 0(\)®/^ ^(2)®^, ̂ (3)®^), neZ.

Proof. — Changing the signs when necessary, we obtain a basis consisting of objects
of positive rank. According to 5.1, this basis is a (+)-basis.
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We prove the theorem by induction on the sum of ranks of elements of a basis: show
that if the basis is not a canonical one (up to tensoring by an invertible sheaf), then
always a mutation exists, which reduces the sum of ranks.

For a (4- )-basis (25) gives

^01+^23= =^Col, /?i2 + ̂ 34 = 8Ci2.

As in the proof of 5.1, assume without loss of generality that /^i ̂ 23' ^i2 ̂ 34- T^en
in equation (34) for the pairs (^ ^i) and (^i, e^) we have A^4z.

Use the reduction method for x and y in (34) with h ̂  4 z.
1) Let x^j^z. Either x'<^ or

0^(p^)=2.y2+2z2-/^2^4y2-4zy2,
hence, z= 1, then

O^O^r^-Ay2^-^2,
hence, ^==1, then

0^(p,00=4-A,

so A ̂ 4. By proposition 3.4, we have h ̂ 3, but (34) immediately implies that for an
exceptional pair on P3 the invariant h must be even. Thus, h =4. Then equation (34)
takes the form

^+3=4x,
the lesser root is x= 1.

2) Let x^z>y. Then x'<z, for otherwise

0^(^(z)==.v2+3z2-/!z^<4z2-4z2.y,

which provides a contradiction.
Hence, either x (or y) can be reduced or x=y= 1 or
3) z>jc, z>j\ In this case

4z2 >;c2+y2+2z2 =/?;cy^4z;cy,

i.e. z>xy.
Thus, the mutations of the pair (^o? ^i) do not reduce the sum of ranks only if

ro=ri = 1 or C=Coi >^o'"r Similarly, the mutations of the pair (e^ e^) do not reduce
the sum of ranks only if r^ == r^ = 1 or C = C^ > ^"i ^2-

Now, it remains to consider two cases:
1. C>ror^ C>r^r^
2. The basis includes at least two objects of rank 1.

Case 1. - Apply lemma 4.2. Under the conditions of the lemma we have p=q= 1,
A ==2, i.e.

^A^+l^A^T^^
Apq-1 Apq-1 2
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Then both possible mutations do not reduce r^ only if

(^=1 or ro^^l ) and (ro= 1 or r^ r^ 1).

Therefore, in this case there also exist two elements of the basis of rank 1, i.e. it is
sufficient to consider case 2.

Case 2. — Assume without loss of generality that ro==r^= 1. Then the Markov-type
equation (26) for the pair (^o, e^) is

2+2z2=8z-7?,

hence, z = 2 ± / 3 — ( l / 2 ) / ? , where p^h^, so either /^s = 4 or h^=6.
Let ^23 == 6, then €33 = z = 2. Then lemma 3.6 for the pair (^3, e^) provides that under

r^rj (here { ; ,7 '}={2, 3}) the mutation does not reduce r^ only if r^l /T72, i.e.
ry= 1. Then equation (17) for the pair (^ ^3) is

r?+9=6r,,

hence, r, = 3. Then condition (24) gives 2 C • 2 = 1 + 3, z. ^. C = C^ = €34 = 1. If ;•= 2,
7=3, then (17) for the pair (^, e^) implies h^^=4, so the mutation Lg^e^ reduces the
sum of ranks. And if ;'=3, 7=2, then, similarly, the right mutation of the pair
(^3, ^o®03"1) reduces the sum of ranks.

Let h^==4, then z= l or z=3. Consider the basis corresponding to the lesser root
z= 1. Then lemma 3.6 for the pair (e^ e^) implies that under r^rj the mutation does
not reduce ^ only if r^ 1, i. e. ^=1. Then (17) for (^ ^3) is

r?+3=4r,,
the lesser root is r^ = 1.

So we come to the case FQ = r^ = r^ = r^ = 1, Coi = C^ = 1. Then (24) gives 2 C = 2, so
C = C^ = €34 = 1. For the obtained basis consisting of objects of rank 1 we have

l=C^i+^=di+^-di,

then di = OQ + f. Then the « helix » {e\ ] in the sense of 2.3 determined by this basis
satisfies the condition ^(^+i)=^(^)+ 1 for all L Hence, it includes a foundation

(^O5 ^O+l 5 eio+2•» eio+^

such that ^(<?y=0.
Thus, we obtain a basis (^o? ^i? ^2? ^3) ^th ^"^ I? ^= =^ The assertion of the theorem

just follows from lemma 4.1, applied to this basis and the basis corresponding to a
foundation of the helix { ( 9 (i) ] .

5.4. COROLLARY. — The Gram matrix of the form %for a canonical basis is

( 1 4 10 20 \
0 1 4 10 |
0 0 1 4 )•
0 0 0 1 /
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Proof. — It is easy to compute h^ for a semiorthogonal basis using formula (17).
Indeed, for a canonical basis we obtain

/^,=2+2C^^=4; ^^,=2+2C^^=10; ^^3-2+2^^3=20.

(HereC,,=^-rf,).

6. Constructivity problem for a quadric

Consider a smooth three-dimensional quadric Q. For a semiorthogonal basis of
K()(Q) formula (17) takes the form

(35) x2-}-y2+3z2=hxy,

where x=^., y^r? z=C^., h=h^. The constant (A:2/^)!-!3 equals 9.

6.1. PROPOSITION. — (-)-bases O/K()(Q) rfo ̂  exist.

Proof. — As in 5.1, it is sufficient to show that for any (-)-basis consisting of
objects of negative rank there exists a mutation, which reduces the sum of ranks. As
above, assume without loss of generality that ho^^h^, /z^=^34- Then (21) gives
/Zoi—/!23=9C()i>0; similarly, h^—h^=9C^>Q. Hence, for the pairs (^o, e^) and
(e^ e^) in (35) there holds the condition h>9z.

Use the reduction method for x and y in (35) with h>9z.
1) Let x^y^z. Then x ' <y, for otherwise

0^^(y)=2y2+3z2-hy2<5y2-9zy2,

which provides a contradiction.
2) Let x^z>y. Then x ' <z, for otherwise

0 ̂  (p^ (z) = y2 + 4 z2 - hyz < 5 z2 - 9 z2 ̂ ,

which also provides a contradiction.
3) Finally, i fz>x, z>y, then

5 z2 > x2 + y2 + 3 z2 = Axy > 9 .x^z,

L ^. z > (9/5) xy > xy.
Thus, the mutations of the pairs (^o, e^) and (^i, ^2) do not reduce the sum of ranks

only if C = Coi > ro FI, C' = C^ > /"I '"2- Then (23) (corollary 3.11) implies

''0 r! ~ r! ̂  = 3 c • c > 3 '•0 r! • r! r2 ̂  3 ̂ 0 r1.

which provides a contradiction.

6.2. COROLLARY. — The elements of a helix on a smooth three-dimensional quadric are
ordered by slopes.
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6.3. THEOREM. — Any semiorthogonal basis o/Ko(Q), up to changing signs of some
elements of it, can be reduced by mutation to one of the canonical bases

((9®/^ y®/^ ^(1)®^, ^(2)®^), neZ,

where y is the spinor bundle.

Proof. - As in the proof of the theorem 5.3, use induction on the sum of ranks of
elements of a semiorthogonal (+)-basis consisting of objects of positive rank.

For a (+ )-basis condition (25) gives

^01+^23=9Coi, ^2+^34=9C^.

As above, assume without loss of generality that ho^^h^, h^^h^. Then in
equation (35) for the pairs (CQ, e^) and (e^ e^ we have A^(9/2)z.

Use the reduction method for x and y.
1) Let x^y^z. Either x ' < y or

Q^(y)=2y2^3z2-hy2^5y2-9zy2,

hence, z ̂  10/9, i. e. z = 1. Then

0^^^y)=2y2+3-hy2^3-5y2,

hence, y2 ̂  6/5, i. e. y = 1. Then

0^(p,00=5-/!,

i.e. h^5. On the other hand, h ̂ 9/2 z=9/2, hence, h=5. Then equation (35) takes
the form

x2+4=5x,

the lesser root is x= 1.
Thus, in this case x is not reduced only if x=y= 1.
2) Let x ̂  z >y. Either x' < z or ,

0^^(z)=y2-^4z2-hzy<5z2-9z2y,

hence, y = 1. Then

0^(p„(z)=l+4z2-/!z^l-- l-z2 ,

hence, z2^, ;.6\ z=l , which contradicts to the considered case z>y. Hence, in this
case x can always be reduced.
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3) Let z>x, z>y. Then
9

5z2>x2+y2+3z2==hxy^ - zxy,

i.e. z>9/l0xy.
Thus, the mutations of the pairs (^o, <?i) and (<?i, ^2) d° not reduce the sum of ranks

only in the following cases:
1. C=Coi>(9/10)rori, C=C^>9/10r^.
2. The basis includes at least two objects of rank 1.

Case 1. - Apply lemma 4.2. Under the conditions of the lemma we have p = q = 9/10,
A =3. Then ____ ____ _______

^/A^+l^A^+1^3 •81/100+1
Apq-\ Apq-1 3 •81/100-1

Hence, both possible mutations do not reduce r^ only if

Q-2 ̂ 1 or ror^l) and Oo^ 1 or r^ r^l).

Therefore, in this case there also exist two elements of the basis of rank 1.

Case 2. - Let ro=r^ == 1. Then the Markov-type equation (26) for (e^ e^) is

2+3z2==9z-/?,

so z = 3/2 db /(19-4/?)/12, where p = /^s. Hence, ̂  = 4, then z = 1 or z = 2. Consider
the basis corresponding to the lesser root z== 1. Then lemma 3.6 for (e^ e^) provides
that under r^r^ the mutation does not reduce r, only if r^/3/2, i. e. ^.= 1. Then (17)
for the pair (e^, e^) is

^?+4=4r,,

;'.̂ . r,=2.
Thus, ro=r i=r ,= l , r,=2, Coi==C23=l . Then (24) takes the form 3C-3,

i.e. l=C=Ci2=C34. Since €34=0(03, Oo®®"1)^ the "helix" [e[} in the sense
of 2.3 determined by this basis satisfies the condition C ^ , + i = l for all i. Then this
"helix" includes a foundation (<?o, e^ e^, e^) such that r^=2, ro==r2 = r 3 = l • Here
l^i - Ho = Coi/ro ^i == 1/2, similarly, ^2 - ̂ i = V2^ Hs ~ ^2 = L

Moreover, since the foundation (0.4, 0.3, e_^ e _ ^ ) can be obtained from the consi-
dered one when tensoring by the canonical class JT == — 3 H, we may assume without
loss of generality that - l^r fo^l . Besides, ^oi^n^, which follows from (35), so
r(L^)=r(R^)=2.

Then for Jo = 1 consider the basis

and for do^ — 1, the basis

/=(^3®0), L^ ^,6?o,02).

/=(^2, R^i,^3^0®0)~1).
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In each case we have

r(/,)=2, r(/o)=rCQ==r(/3)=l, ^o=0, C=C==1.

Then

^1=^1 '^1=1. ^2=^ ' ^2==^(^ l+ . )= 1 . ^^-^^(^-H)^.

Thus, we obtain a basis for which

ro^r^r^^l, ^i"2' ^o^ ^ i = = ^ 2 = = l » ^s"2-

The assertion of the theorem follows from lemma 4.1, applied to this basis and the basis
corresponding to the foundation of a helix

(^,^*,^(l),d?(2)).

6.4. COROLLARY. ~ The Gram matrix of the form %, for a canonical basis is

( 1 4 5 14 \
0 1 4 16 ^
0 0 1 5 1
0 0 0 1 /

Proof. - Indeed, formula (17) implies :

, , _ 1 + 4 + 3 _ . , , _ 1 + 1 + 3 _ ^
"Ol""^'" ———^——— "~4' A ^02"~ f ^23~ ———.——— ~':)'

1 + 1 + 3 - 4 , . , 1+4+3-9
Ao3=——^——-14, ^3=——^——=16.

7. Constructivity problem for V^

For a semiorthogonal basis of KoCV^) formula (17) with x^r^ y==rp z=C^, h^h^
takes the form

(36) x2-^y2+5z2=::hxy.

The constant (Ar^H3 equals 10.

7.1. PROPOSITION. - (-)'bases ofKo(y^) ^0 not exist.
Proofs similar to those of propositions 5.1,6.1. Assume without loss of generality

that ho^h^ ^12 ̂ ^^ then for the pairs (^o, e^) and (e^ e^) in equation (36) we have
A>10z.
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Use the reduction method for x and y.
1) Let x^y^z. Then x' <y, for otherwise

Q^^y)=ly2^5z2-hy2<1 y^-wzy2,
which provides a contradiction.

2) Let x^z>y. Then x'<z, for otherwise

0^q)^(z)=^2+6 z2-hyz<7 z2-10z2y,

which also provides a contradiction.
3) Finally, ifz>^, z>y, then

7z 2 >x 2 +^ 2 +5 z^/u^lOxyz,

i. e. z>(10/7) xy>.xy.
Thus, the mutations of (^o, ^i) and (e^, e^) do not reduce the sum of ranks only if

C = CQI > TQ r^, C' = C^2 > r\ ̂ i' Then corollary 3.11 implies:

r0 r2- r l r3=5 C•C />5ro'•l• ' • l '<2^5 ̂ 2.

which provides a contradition.

7.2. COROLLARY. — 77^ elements of a helix on V'5 ^r^ ordered by slopes.

7.3. THEOREM. — ^4^!y semiorthogonal basis O/KQ^V^), up to changing signs of some
elements of it, can be reduced by mutation to one of the canonical bases

(^®^, ̂ ®^, ̂ ®/^ ^(1)®^), neZ,

where ^ and 2, are correspondingly the restrictions to ¥5 of the universal bundle and the
factor bundle on the Grassmannian G(2, 5) in case of\^ realized as the intersection of the
image of the Plucker embedding G(2, 5) <^ P9 with a general subspace P6^?9.

Proof. - When proving the theorem, instead of the basis (^o, e^ e^, e^) we consider
sometimes, for convenience, the adjoint basis (e^, e^, ef, e^), proving the constructivity
of it. Because of the identities

(L,/)*=R,./*, (R,/)*=L,./*

the constructivity of the adjoint basis is equivalent to the fact that the basis (^ ^i,
e^ e^) itself can be reduced by mutations to a basis, which is adjoint to some canonical.
Therefore, to prove the constructivity of (^o, e^ e^ ^3), it will be sufficient to verify that
a basis adjoint to a canonical one is constructive.

As before, use induction on the sum of ranks of elements of a semiorthogonal
(+)-basis consisting of objects of positive rank. Condition (25) gives

^01+^23= 10 Coi, A^^-IOC^.
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Assume without loss of generality that /?oi^23? ^12 ̂ ^34? ^en in equation (36) for
(^o, ^i) and (^i, ^2) we have h^5 z.

Use the reduction method for x and ^.
1) Let x^y^z. Either x ' < y or

0^(y)=2y2-^5z2-hy2^7 y2-5zy2,

hence, z= 1. Then
0^(y)=2y2-{-5-hy2^5-3y2,

hence, y = 1. Then
0^(p,00=7-^

i.e. h ̂ 7. On the other hand, A ̂ 5 z=5. Equation (36) gives

x2+6=/^x,

hence, either h =5, the lesser root is x=2, or /z=7, the lesser root is x= 1.
Thus, in this case x is not reduced only if

x=l , ^=1, z = = l , /z=7 or x=2, ^=1, z=l, h=5.

2) Let x^z>^. Either x ' < z or

0^(p^(z)=^2+6z2-/^z^<7 z2-5 z2 y,

hence, ^=1. Assume now that x^2 z. Then x ' <2 z, for otherwise

O^q^z)^^^2^/^!^2,

i.e. z=l, which contradicts to the considered casez>^. Hence, it remains to
consider x < 2 z. Then z > 1 /2 x = 1 /2 xy.

Thus, in this case x is not reduced only i f ^ = l , z > l / 2 x v .
3) Let z>x, z>y. Then

7 z2 > x2 + j^2 + 5 z2 = hxy ̂  5 zxy,

i. e. z>(5/7) xy.
Thus, the mutations of (eo, e^) and (^i, e^) do not reduce the sum of rank only in the

following cases (as above, denote C=Coi, C'=C^^):
1. The basis includes a pair with x = 2 , ^ = l , z = l , / ? = 5 .
2. C>(5/7) ro^Cy>(5/7)r^.
3. C>(5/7) rori, C>(1/2) ^ ̂  {r , , r^l-
4. 0(l /2)ror, ,C>(l/2)r ,r , , r i=l.
5. The basis includes at least two objects of rank 1.
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(The possible case C> (1/2) ro^, C> (5/7) r^r^ { r o ^ r ^ } ^ ! is reduced to case 3 by
considering the basis (^, ̂ , e^, (?l®ci)~1), taking into account the remark at the begin-
ning of the proof.)

Case 1. — Assume without loss of generality that r^= 1, r^ ==2, Coi = 1, /?oi = 5, then
C23== 1, ^23 = 5. Then lemma 3.6 for (e^ e^) implies that under r^r^ the mutation does
not reduce r, only if r^ /5/3, i. e. r,== 1. But then <?o and ^ are of rank 1 and the case
is reduced to case 5.

Case 2. — Under the conditions of lemma 4.2 we have p = q = 5/7, A = 5. Then

/A^+l^A^+1^5-25/49+1

Apq-1 ~ Apq-1 ~ 5.25/49-1

Hence, both possible mutations do not reduce ^3 only if

(r^l or f o ^ i ^ l ) ^d (^o^l or rlr2^1)'

Therefore, in this case there also exist two elements of rank 1, which corresponds to
case 5.

Case 3. - Under the conditions of lemma 4.2 we have/? =5/7, q= 1/2, A =5. Then

^A^^_^574+T_21^
Apq-1 25/14-1 11<

Hence, he mutations do not reduce ^3 only if ^o = 1 or r^ r^ = 1; besides, {r^ r^} 9 1, so
in the basis there exist two elements of rank 1 (case 5).

Case 4. — Under the conditions of lemma 4.2 we have p = q = 1/2, A = 5. Then

^/A^+T _ ̂ /A^TT _ ^/574"+T_
Apq-1 ~ Apq-1 5/4-1

Here the assumptions of the lemma hold as strict inequalities C>/?-ro^i , C ' > q ' r ^ r ^
which implies that the inequalities in the conclusion of the lemma are also strict (see the
proof of 4.2). Thus, the mutations do not reduce r^ only if r^<6 or r^<6', thereto,
r ,=l .

Assume without loss of generality [considering when necessary the basis
(^, ef, e^, ^(x)o)~1)] that ro<6. If ro== l , then we are under conditions of case 5;
therefore consider only 2^ro^5.

Recall that the considered case C>(1/2) fo^ corresponds to the situation y= 1,
x^z> (1/2) x, so the condition

r o ^ C > _ r o

must hold. Moreover, (36) under y== 1 provides that x\(5z2-\-\), hence, ro^5, r^C.
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Thus, we consider a basis satisfying the following conditions:

ri=l, 2^ro^4, ^<C<r^ roK^+l).

If ro==2, then 1/2<C<1, which provides a contradiction. If ro=4, then 2<C<4,
L^. C=3, but then 5 C2-!-1 =46, which is not divisible by ro==4.

Finally, if ro=3, then 3/2<C<3, i.e. C=Coi=C23==2. Then (17) for (e^ e^) implies
A O I = 10, and (25) gives h^ = 10. Then lemma 3.6 for (e^ e^) provides that under r^rj
the mutation does not reduce ^ only ifr^2 /5/8, i.e. ^=1. Thus, CQ and ej are of
rank 1, which corresponds to case 5.

Case 5. — Let r o = r i = = l . Then the Markov-type equation (26) for the pair(^o, e^)
takes the form

2+5^=107-;?,

hence, z = 1 ± /(3 -/?)/5, L ^. ̂  == h^ = 3, so z = Coi == €33 = 1. Then lemma 3.6 for (e^, e^)
implies that under r^r^ the mutation does not reduce ^ only if r^/5, i.e. rj= 1 or
r^=2. Under ^.== 1 equation (17) for (e^ e^) is

^+6=3r,,

which has no integer roots. If ^=2, then (17) for (e^ e^) is

r?+9=6r , ,

hence, ^.=3. Then (24) gives 5C=2+3, i.e. C=l. Considering if necessary the
basis (^®co, ^g®o), e^, ̂ ), without loss of generality assume r^=3, ^==2.

Thus, we obtain a basis for which

'o^i-l. ^==3, ^3=2, C=C=1.

Then the "helix" {e\ ] in the sense of 2.3 determined by this basis satisfies the
condition C^ , i + i = l for all i. In the "helix" there exists a foundation (^o, ^i, ^2? ^s)
with ro= 1, r ^==3 , ^"2=2, ^3= I, and O^^o^l (tensoring of a foundation by JT reduces
rfo by k=2). One can easily check using (17) that under dQ=\ the basis

/==(^(x)(o, L,^, L^R^i, ^o)

satisfies
^(/o)-!, ^(/i)=3, r(^)=2, r(/3)=l,

rf(/o)=0, C=C=1.

Thus, we obtain a basis with

ro=r3=l, ri=3, ^=2, rfo=0, C=C==1.
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Then for it
C 1 C 1 C 1

Hi-Ho=———. ^2-Hi=———, ^-^^——=^
fo^i 3 r^ 6 r^^ 2

so u,i = 1 /3, a^ = 1 /2, H3 = 1, hence, rfi = d^ == ^3 = 1. Applying lemma 4.1, conclude that
any basis of such a kind is

(O®/^ ^®/^ y®/^ ^(1)®^).

According to the remark at the beginning of the proof of the theorem now it remains
to verify that a basis adjoint to a canonical one is constructive. Indeed, for a basis
adjoint to a canonical we have

ro=r3=l , ri=2, ^=3, C=C=1.

Formula (17) gives h^^=3, then the basis

/=(^o, e^ Rg^i, ^3)

provides the already considered case

^(/(^(/s)^ r(/,)=3, r(/,)=2, C=C=1.

7.4. COROLLARY. — 77^ Grow matrix of the form %for a canonical basis is

/ I 5 5 7 ^
0 1 3 10

I o o i 5 r
\ 0 0 0 I /

Proof. — Indeed, formula (17) implies:

^1+9+5 _ 1 + 4 + 5 _ ^ _ 1 + 1 + 5 _ -
^01 _ -)? /^02 ^23 ~———-————^ ^03 — — — — . — — — ~ / ^

, 4+9+5 , , 9 + 1 + 5 . 4 . ./Zi2=-^—==3, h^=——^——=10.

8. Constructivity problem for ¥22

For a semiorthogonal basis of KofV^) formula (17) with x=r^, y=r? z=Cip h=h^
takes the form

(37) ^^llz2^;^.

The constant (^/2) H3 equals 11.
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8.1. PROPOSITION. — (-)-bases ofKo^V^i) ao not exist.

Proof is similar to those of propositions 5.1, 6.1, 7.1. Assume without loss of
generality that ho^^h^, h^^h^, then for the pairs (e^ e^) and (e^, e^) in equation (37)
we have A>11 z. Moreover, since HQ^=\\ C+^s and h^= 11 C-^-h^ recalling 3.4,
we obtain h^ 11 z+3. Use the reduction method:

1) Let x^y^z. Then x ' <y, for otherwise

0^cp^(^)=2^ 2+llz 2-^ 2^2^ 2+llz 2-( l lz+3)^ 2^10^ 2- l lz^ 2 ,

which provides a contradiction.
2) Let x^z>y. Either x' < z or

0^^(z)=y2+12z2-hzy<\3z2-nz2y,

hence, ^=1. Assume that x^2z. Then x' <1 z, for otherwise

0^(^(2z)=l+15z2-2/^z^l-7z2 ,

which provides a contradiction.
If;c<2z,thenz>(l/2);c=(l/2)xy.
3) Let z>x, z>y. Then

13z2>x2+^2+llz2=/^^>ll^z,

hence, z> (ll/13)x^> (1/2) xy.
Thus, the mutations of (^ ^i) and (^i, ^2) d° not reduce the sum of ranks only if

C=Coi>l/2 r^r^ C=C^>1/2 r^r^ Then corollary 3.11 implies:

ror2~rlr3=n C ' C ' > — r Q r ^ ' r ^ r ^ > r Q r ^ ,
4

which also provides a contradiction.

8.2. COROLLARY. — The elements of a helix on V^ are ordered by slopes.

8.3. THEOREM. — Any semiorthogonal basis ofKo(V^^), up to changing signs of some
elements of it, can be reduced by mutations to a canonical basis (^o, . . ., ^3) such that

^0=1, ^=4, ^=3, f3=2, t^0. ^l=^2=^3=L

Proof. — As above, use induction on the sum of ranks of elements of a semiorthogonal
(+)-basis consisting of objects of positive rank. As when proving theorem 7.3, consider
sometimes the adjoint basis (^, ̂ , e^, e^)\ further verify that a basis adjoint to a
canonical one is constructive.
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Assume without loss of generality that Aoi^/^s, h^^h^ then in equation (37) for
(CQ, e^) and (^i, e^) we have h ̂ (11/2) z. Use the reduction method:

1) Let x^y^z. Either x ' <y or

o^(y)==2y2^nz2-hy2^l3y2-l]-zy2,

hence, z^26/ll, ;'.^. z= 1 or z=2.
I fz=l , then

0^00=2^+11-1^2,

hence, y2^22/^, L^. ^== 1. Then equation (37) takes the form

X2-^12==hx,

hence, x|12, /.^. x=l or x=2 or x=3 (the other factors of 12 correspond to greater
roots of the quadratic, which can be transformed by mutations to lesser ones).

Ifz==2, then
0^q^Cy)=2.v2+44-/^y2^44-9.y2,

hence, y^2, but since we consider the case y^.z, then ^=2. Then

0^(p,00=52-/!.4,

i.e. h^\3. On the otherhand, A^(ll/2) z= l l . Equation (37) takes the form

^+ 48 =2 hx,

hence, h== 13, the lesser root is x=2.
Thus, in this case x can not be reduced only if

(^)e{(l; l) ,( l ;2),(l ;3),(2;2)}.

2) Let x^z>y. Either x' <z or

0^^^z)=y2-^12z2-hzy<\3z2-nz2y,

hence, ^^26/11, i.e. y= 1 or ^=2.
I f^==l , then x'=hy-x=h-x, i.e. x ' ^ x implies h^2 x. Then

x2-^y2-^nz2=hxy^2x2,

i.e. llz^l^x2 . Since z>^=l , we have z^2, then l^z2/^ i.e. llz^z2^)^2,
hence,
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Let y = 2. Assume that ^ ̂  (3/2) z. Then x' < (3/2) z, for otherwise

0^(p,(|z)=4+^^ll^-A•|z•2<44-^^-^•3z2=4-^z2,

hence, z== 1, which contradicts to the considered case z>y=2.
Thus, in this case x is not reduced only if

3) Let z > x, z > y. Then

13 z2 >x2 -^y2 + 11 z2 == fcc^—zxy,

hence, z> (11/26) xy.
Thus, the mutations of (6?o, ^i) and 0?i, ^2) do not reduce the sum of ranks only in

the following cases (with account of the transition to the adjoint basis, as in the proof
of 7.3):

1. C > (11/26) ror i ,C>(l 1/26) r^.
2. C> (11/26)^, C>(l/3)r^, {r,, ̂ 92.
3. C>(ll /26)rori ,C^(2/^/45)r^2,{^,r2}9l.
4. C > (2/3) ro, C > (2/3) r^ r, = 2. ^
5. ro^C^ (2/^/45) ro, r^ 0^(2/^/45)^, ^==1.
6. The basis includes a pair with x=^=2.
7. The basis includes a pair with x=y= 1.
8. The basis includes a pair with x= 1, ^=2.
9. The basis includes a pair with x= 1, ^=3.

C^^ 1. - Under the conditions of lemma 4.2 we have A = 11, p = q = (11/26). Then

Apq-\ Apq-\

L e. both possible mutations do not reduce r^ only if

(^1 or r^r^l) and (fo^l or r^^l);

hence, the basis includes a pair with x=y:==\ (case 7).

Q^ 2. - Under the conditions of lemma 4.2 we have A = 11,7?= 11/26, ^=1/3. Then

^Aq^^n/9T\
Apq-\ 121/78- ̂  '
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i.e. the mutations do not reduce r^ only if r^l or ^^2; moreover, [r^ r^}^2.
Hence, the conditions of cases 6 or 8 hold.

Case 3^ - Under the conditions of lemma 4.2 we have A =11, p= (11/26),
<S=(2/^/^)' Then (^/A q2 + 1)/(A/^ - 1) < 4, ;.6?. the mutations do not reduce r^ only
if ro ̂  3 or r^ r^ ̂  3; thereto, {r^ r^} 3 1. Hence, the conditions of cases 7, 8 or 9 hold.

Case 4. - We can directly apply lemma 4.2, but better estimations can be obtained
when repeating the proof of it using the condition r^ =2.

Formula (23) gives

^2+2^3=11 C-C^ll.4^^,

hence

08) • ^^
lo

Then
88 2
^3>^2+'-3=11 C.C>11 C , ^ ,

L^.

(39) C^12.^.
35 r,

Equation (17) for the pair (e^ e^) implies

ri+rj+llC2^^^,

since h^r^l r^, assuming that ^3 is not reduced by the corresponding mutation. Using
(39) we obtain

/12\2 r2, j+i i . (-1 2) .r3>,j;
\35J rj 3 ?

and using the estimation 11 • (12/35)2 <4/3 obtain

r4 > r2 . ( r 2 - \
r2>r3 V2 3 -

Ifr^l, then
rj__^ 4 _3 2 25 2

(rj-(4/3))=r2'(4-(4/3)) l'"2 '̂'2'^<-i-7—————^J———^=-i<-.J

;'. e. /-3 < (5/4) r^ Together with (38) it gives

4 35
^•TT0'2'
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hence, ro<9/14, which provides a contradiction. Hence, ^=1, L^. the conditions of
case 8 hold.

Case 5. — In this case we can not apply the methods of lemma 4.2, since
A^pq = 44/45 <1.

I f r o ^ 3 C o r r 2 ^ 3 C (case 5 a\ i.e. C^(l/3) r^r^ or C^(l/3) r^ r^ then

A;^!!.--2^--1^!,
V45 3

and lemma 4.2 can be applied. Consider at first the case ro>3 C, r^>3 C1 (case 5b).

Case 5 b. So, let

^ C ^ 2 ^ , ^C^-L^, r i = l .
3 ~^/45 ° 3 -y45 2 '

Use the fact that l^o®00"1)"'!1^^^ 1- On the other hand,
3 3

^o®^-1)-^^ S (^+i-^)= E ̂ l±l,
i=0 i = 0 ^i ^i + 1

where ^4 denotes ^o®co~1. Thus,

r r7 r c'i=—+—+—+—,
'•0^1 ^2 ^2^3 ^3^0

where ri = 1, i.e.
C (^o + r^ r^) + C' (r;, + ro ^3) = ro ^2 ^3.

Using the inequalities ro/3>C, r^/3>C' we obtain

. ('•0 + '•0 '•2 '•3 + r! + ̂  ̂ 2 ̂  > ̂  '•2 r^

hence

(40) ^+^>''0^2''3.

Furthermore, the Markov-type equation (26) for the pair (^o, e^) is

^ 2+^ 2+llz 2=x(l lz- /?) ,

hence

— x /•x2 _ X2~{~PX~^ ^z ~2 VT n '
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Then the inequality ro/3>C, i.e. x/3>z, implies that

x_ /x2_x2+/?x+1 x2 ~ V 7 ~ n ^
hence

x2 x2+px+\ x2 fx-}-p x^
4 > 11 36>x\l^ 36>

therefore, (2/9)x> (x+7?)/ll, i.e. p<(\3/9)x. Thus,

(41) ^3<(13/9)ro.

Finally, assuming that the transfer of e^ over ^3 does not reduce the sum of ranks we
obtain the inequality r^h^r^-r^ hence, ^23^ 2 (^3). Together with (41) it gives
(\319)r^>l(r^\i.e.

18
r o r ^ - ^ r ^ .

Substituting it into (40) we obtain

^jAi
i.e. r^> (5/13)rj>(l/4)rj, hence, ro>(l/2) r^.

Similar computations for the pair (^, e^) provide r^>(\/2) KQ. Hence, I>Y^Y^> 1/2.
Then (40) implies

, <r^+r2<2+l
r, r, I9

i.e. r^l.
Thus, r^ = 1, r^ ̂ 2, so the conditions of cases 7 or 8 hold. It remains to consider.

Case 5 a. Assume without loss of generality that /?=1/3, q=l/ /4?. Then
/(A q2 + \)/(Apq - 1) < 16. Hence, lemma 4.2 implies that the mutations do not

reduce r^ only if r^ ̂  15 or r^ ̂  15, since r^ == 1.
To lessen the number of variants, make some extra estimations. Assuming that the

transfers of CQ over e^ and of e^ over e^ do not reduce the sum of ranks we obtain the
inequalities Aoi ̂ 2 r^, h^ ^2 (r^jr^). Then (25) implies

l lC= /^o l+A23^2f ro+ r 3 )= 2 - ( ro r2+r3 )= 2 - l lC .C /

\ rj r^ r^

[last equality is equality (24)]. Hence, C^(l/2) r^. Similarly, C^(l/2) r^.
Thus, we obtain that the considered basis includes the pair for which [using the

notations of formula (37)]
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Furthermore, (37) implies that
11^+1

h=————+x,
x

v
hence, in particular, x | ( l l z2-^ 1). Thereto, z^-, L(?. z^7.

Now consider z lying in the interval 1 = z ̂  7 and for them x such that

x/45 7
Iz^x^""—z<-z,- - 2 2

withxKllz2^-!) .
Let z= 1. Then 2^x^3, f. ^. the conditions of the cases 8 or 9 hold.
Letz=2. Then 4^x^6; l l z 2 +l=45 , hence, x=5. Then h=\4.
Letz=3. Then 6^x^10; \\z2^ 1=100, hence, x=10. Then/! =20.
Let z=4. Then 8^x^13; llz^ 1 = 177=3-59, so such x do not exist.
Letz=5. Then 10=x^l5; llz^ 1 =276, hence, x= 12. Then/?=35.
Letz=6. Then 12^x^15; l lz 2+1=397, so such x do not exist.
Letz=7. Then 14^x^15; l lz2+1=540, hence, x=15. Then/?=51.
Assume without loss of generality that x=ro, y=r^. Then for the pair (e^ e^) we have

C^s =z, h^==llz-h [according to (25)]. Then lemma 3.6 for (^2, e^) implies that under
r^ = FJ the mutation does not reduce r^ only if r] = 11 z2/^! 1 z — h — 2).

For z=2, /z= 14, we obtain r^44/6, i.e. r^l.
For z=3, /z=20, we obtain r2^99/ll, i.e. r,^3.
For z=5, /z=35, we obtain rj^275/18, L^. r^3.
Finally, for z= 7, A =51, we obtain r]^ 539/24, i.e. r^4.
Thus, either the pair (^, .̂) satisfies the conditions of the cases 7, 8 or 9, or (^, ej) is

a pair with x= 1, ^=4.
In last case consider for convenience a basis with ^0= 1, r^ =4. Then the Markov-type

equation (26) for (e^ e^) is
17+11 z 2=4(l l z-p\

hence, z=2± /(27-4^)/11, i.e.p=4, then z= l or z=3. Consider the basis corres-
ponding to the lesser root z= 1. Then for it

/Zo i= l lC- /?23=l lz - /?=7 .

Thus, for the pair (<?o, ^i) we have /?oi = 7, and the ranks of elements of the pair are 1
and 4. Then the corresponding mutation of the pair leads to a pair with elements of
ranks 1 and 3, i. e. to case 8.

Case 6. — Let rQ=r^=2. Then (26) for (^o, e^) takes the form

8+11 z^Qlz-;?),
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hence, z=2±2^/(9-/?)/ll, L^. h^=p=9, then C=z=2. Then lemma 3.6 for (^, ^3)
implies that under r^rj the mutation does not reduce r^ only if r^l /11/7, hence,
^•= 1 or ^-=2. Under r^= 1 equation (17) for the pair (e^, e^) is

r?+45=9r,,

which provides a contradiction. Under ^-=2 equation (17) for the pair is

r?+48=18r,,

which also provides a contradiction.
Thus, the case is impossible.

Case 7. - Let x=y= 1. The (37) and (25) imply

2 + l l z 2 = / ^ = / ^ o l ^ l l C o l = l l z ,

so, this case is also impossible.

Case 8. — Let fo= 1, r^ =2. Then (26) for (e^ e^) is

5+l lz 2=2(l lz- /?) ,

hence, z = 1 ± /(6 - 2 /?)/! 1,;'. ̂ . h^ =p = 3, C = z = 1. Then lemma 3.6 for (^2, ^3) implies
that under r^r^ the mutation does not reduce r^ only if r^ /II, hence, ^.^3.

The cases ^-=1 and ^-=2 because of ro=l and r^=2 provide the cases 7 and 6
respectively, i. e. are impossible. Hence, ^.=3; then the pair (^, ej) satisfies the conditions
of case 9.

Case 9. — Let FQ= 1, r^ = 3. Then (26) for the pair (CQ, e^) is

lO+llz^Qlz-/?),

hence, z = (3/2) ± (1/2) /(59-12/?)/11,;. ̂ . h^=p== 4. Consider the basis corresponding
to the lesser rootz=l . Then lemma 3.6 for (e^, e^) implies that under r^rj the
mutation does not reduce ^ only ifr^ /11/2, i.e. rj= 1 or ^==2. Recalling case 7 we
obtain ^-=2. Then (17) for (e^ e^) takes the form

^+15=8^,

the lesser root is r^=3. Assume without loss of generality that ro= 1, ^=3. Then the
case ^=3, r^=2 is impossible, since formula (24) gives

nC'C'=ror^+r^r^=9.

Conversely, under ^ = 2, r^ = 3 formula (24) implies 11 C • C' = 11, hence, C = C' == 1.
For the pair (^3, e^), where €4. = <?o®^~ S we have €34 = C' = 1, and (17) implies ^34 = 7.

Then Rg^ ̂ 3 is of rank ^34 r^-r^= 4. Hence, for the basis

/=(^, Reo(^3®^)^l. ^2)
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we have

^(/o)=L ^(/i)=4, r(/,)=3, r(/3)=2,

and (24) implies 11C-C =3+4.2=11, hence, C=C=1. Then the "helix" {f,} in the
sense of 2.3 determined by this basis satisfies the condition C^+i=l for all i. This
"helix" includes a foundation (^o, ^, ^? ^3) ^or which ro=l , r^=4, ^=3, ^3=2, and
do = 0, since the tensoring of a foundation by JT reduces OQ by A: = 1. Then

C 1 C 1 C 1
^ I - H O = — — — = . . H2-Hl=———=-.-. 1^3-^2=—————.

^1 4 ^2 12 ^3 6

L ^. Hi = 1/4, ^2 = 1/3, ^3 = 1/3, hence, d^ = d^ = d^ = 1, as we need.
To finish the proof, it remains to show that a basis adjoint to a canonical one is

constructive. Indeed, for a basis (<?o, e^ e^, e^) adjoint to a canonical we have ro=2,
ri=3, ^=4, ^3=1. Then (17) implies that for this basis /^3=(16+14-11)/4=7,
^13 = (9 + ! + 11)/3 = 7- Then for the basis

/=(^3, R,^i, R^e^e^w 1)

we have

r(fo)=^ r(/0=7.1-3=4,
^(/2)=7-1-4=3, r(/3)=2, ^(/o)=0.

Then according to the computations in case 9 this basis is a canonical one.

8.4. COROLLARY. — The Gram matrix of the form ^ for a canonical basis is

1 7 7 8 \
0 1 3 8 ]
0 0 1 4 1
0 0 0 1 /

Proof. — Indeed, formula (17) implies:

16+1+11 , , 9+1+11 _ , 4+1+11 _
hol=——.——=7. ^02=——.——=7, h^=——^——=8,

4 3 2

16+9+11 , , 16+4+44 . , 4+9+11 ,
/ Z l 2 = — — — — — — — — — — = 3 , ^ 1 3 = — — — — — — — — — — = 8 , ^23= :—————————= 4-

3.4 2.4 2.3
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