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ON GLOBAL NASH FUNCTIONS

BY JESUS M. RUIZ (1) AND MASAHIRO SHIOTA

ABSTRACT. - Let M c R be a compact Nash manifold, and jV (M) [resp. (9 (M)] its ring of global Nash
(resp. analytic) functions. A global Nash (resp. analytic) set is the zero set of finitely many global Nash (resp.
analytic) functions, and we have the usual notion of irreducible set. Then we say that separation holds for M
if every Nash irreducible set is analytically irreducible. The main result of this paper is that separation holds
if and only if every semialgebraic subset of M described by s global analytic inequalities can also be described by
s global Nash inequalities. In passing, we also prove that when separation holds, every Nash function on a
Nash set extends to a global Nash function on M.

Introduction

Let M c ff^ be a Nash manifold, J^ (resp. ^) its sheaf of germs of Nash (resp.
analytic) functions of M and jV (M) [resp. (9 (M)] its ring of global Nash (resp. analytic)
functions on M. One of the main and oldest open problems on global Nash functions
is separation. To state it properly, recall that a Nash set is a subset X c: M which is the
zero set of a global Nash function /?eJ^(M):X={xeM:/z(x)=0}, and X is called
Nash irreducible if it is not the union of two smaller Nash sets. Of course, this mimics
the global analytic notions of Bruhat-Whitney ([BrWh]), and leads to the problem
mentioned above, namely:

PROBLEM 1 (Separation). — Is every Nash irreducible set an irreducible global analytic
sefl

In case the answer is yes we say that separation holds for M. This problem can be
reformulated in another familiar way. Recall that M is a semialgebraic subset of [R^,
and that any Nash set X <= M is semialgebraic too. Then one may ask: is every
semialgebraic global analytic set a Nash set! This is equivalent to separation by two
basic facts: a) the irreducible analytic components of a semialgebraic analytic set are also
semialgebraic, and b) every semialgebraic set is contained in a Nash set of the same
dimension.

Actually, the semialgebraic subsets of M are essentially linked to Nash functions: they
are exactly the subsets that can be defined with finitely many systems of Nash equalities

(1) Partially supported by DGICYT, PB 89-0379-C02-02.
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104 J. M. RUIZ AND M. SHIOTA

and/or inequalities. In other words, using Nash functions instead of polynomials in the
definition of semialgebraic sets does not produce new sets. However, what does change
is complexity. For instance, to describe the set S = {(x, y) e R2 : x2 — y2 > 1, x > 0} we
need two polynomial inequalities, while a single Nash one is enough, namely
S = {(x, y) e R2: x > 1\ +y2}. Again, the open question is the comparison of Nash and
analytic complexity:

PROBLEM 2 (Complexities). — Is every semialgebraic set S c= M that can be described
with s analytic inequalities:

S={xeM:/i(x)>0, .. . ,/,(x)>0} with /„ ... ,/ ,e^(M),

also describable mth s Nash inequalities'.

S={xeM:g,(x)>0, . . . ,^ (x)>0} with g^ . . ., ^e^(M)?

Now if the answer to this is affirmative we will say that M has equal complexities.
It is fairly easy to see why complexities are connected to separation. For, suppose

separation fails for a Nash set X c= M, that is, X is Nash irreducible but analytically
reducible. Then there are two analytic functions/and g neither of which vanishes on X,
but their product h==fg does, and we can even suppose that X = { / ? = 0 } . Then the
semialgebraic set S={f2>0] canot be described with one single Nash inequality.

What is more surprising is that the converse is also true if M is compact. This is the
main result we will prove in this paper:

THEOREM 1. — Let M c: ̂  be a compact Nash manifold. Then separation holds for
M if and only if M has equal complexities.

The proof of this result involves in a crucial way another open problem on global
Nash functions. To make this precise we need some more terminology.

Let X c M be a Nash set. Then the ideal ofX is the ideal of all global Nash functions
that vanish on X: I (X) = { h e ̂  (M): h (x) = 0 V x e X}, and the sheaf of Nash function
germs of X is the sheaf J^x= -^M/I PO ̂ M- This seems to be the suitable global
notion; in particular, since ^ (M) is a noetherian ring, the sheaf e/Tx is globally finitely
presented. A Nash function on X is a global section of this sheaf J^x? an^ we will denote
by J^ (X) the ring of all Nash functions on X. There is a canonical homomorphism
^ (M) -> ̂ r (X) which by obvious reasons we call restriction, and we come to another
important open question:

PROBLEM 3 (Extension). — Is every Nash function on a Nash set X c M the restriction
of a Nash function on M?

If the solution is in the affirmative we will say that extension holds for M. Note that
every Nash function on a Nash set is always the restriction of a global analytic function,
by Cartan's Theorem B, and also the restriction of a global continuous semialgebraic
function, by the semialgebraic Tietze theorem, but these two extensions may well not
coincide. One key fact we need to prove before Theorem 1 is:
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ON GLOBAL NASH FUNCTIONS 105

THEOREM 2. — L^ M c= ff^ fc^ a compact Nash manifold. If separation holds for M,
then extension holds too.

These questions have attracted the interest of many mathematicians since the end of
the 70's [BE]. The way they are posed varies from one author to another, and in
particular we have chosen geometric versions (later we will be more explicit on this
matter). The first relevant result was Efroymson's positive solution to extension in case
X is a Nash submanifold of M ([Ef2], [Pk]). Concerning separation, Shiota has proved
that a semialgebraic analytic set X which is a closed submanifold is a Nash set
([Sh2]). Quite recently Tancredi and Tognoli have obtained these two results in case X
is compact coherent and has only normal singularities [TT]. Also recently, Coste and
Diop have come back to some old ideas of Efroymson [Efl] to solve extension if M is
an open semialgebraic subset of [R2 [CtDp]. Furthermore there were many known
connections between these problems and other open questions on Nash functions ([BT],
[CtDp], [Sh2]), much in the spirit of this work. On the other hand some of our results
here can be discussed without compactness assumptions, in a more general sheaf theoretic
setting; we will treat this in the forthcoming [RzSh]. Finally, there are several results
by Shiota [Sh3] concerning analytic factorization of Nash functions, which settle all these
matters for Nash surfaces. For instance, we have:

THEOREM 3. — Let M c [R^ be a Nash manifold. Any Nash irreducible set X c= M of
dimension ^ 1 is an irreducible global analytic set.

Proof. - We can assume that M is closed in R^. Then a global analytic set in M is
a global analytic set in R^. Hence it suffices to see that a semialgebraic global analytic
set X c: R^ of dimension ^ 1 is a Nash set. Let n: ff^ -> R2 be a linear projection such
that 7i | X is proper and T^X^^X7 is injective for some finite set X'. Then 71 (X) c= [R2 is
a closed semialgebraic global analytic set of dimension ^ 1 (recall the fact that any closed
analytic set in R2 is globally analytic). Thus we will assume p =2; we can suppose also
that X is irreducible and, consequently, everywhere of dimension 1.

Let Z denote the Zariski closure of X in IR2, and Y the Nash irreducible component
of Z containing X. Clearly Y is everywhere of dimension 1, and X is a global analytic
irreducible component ofY. We set X^=X and denote by X^ the union of the other
global analytic irreducible components of Y. Thus Y=X^[JX^ and both X, are
semialgebraic global analytic sets everywhere of dimension 1. We see that the ideal
I (Y) is principal as follows. Let ^ denote the sheaf of ideals of J^2 generated by
I(Y). Then every stalk ̂ , ;ceY, is an intersection of height one prime ideals. Hence
it is generated by one element: namely, a square root/ of h=^f2 for some fixed

i

generators /i, . . .,/^ of I (Y). Indeed, locally any of the two square roots generates
the sheaf, and we can choose the sign coherently to get a global square root because R2

is contractible (see [Shi, Lemme 1]). By a similar argument as above, we obtain two
analytic functions g^ and g^ which generate the ideals of analytic functions vanishing
on X^ and X^ respectively. The only additional remark in the analytic case is that we
do not know that I(X,) is finitely generated. To settle this difficulty, we consider a
Stein open neighborhood Q of R2 in C2 and an extension to Q of the analytic sheaf ̂
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106 J. M. RUIZ AND M. SHIOTA

generated by I (X,.) (see [C]). Then we find countably many complex analytic functions
hf on Q whose restrictions to (R2 generate ̂ . Then we can choose small enough positive
real numbers Cj such that the series ^^-(^)2 is a well defined complex analytic function,
and its restriction h to !R2 generates ^2^ for all xeR2. Now we only have to produce
a square root g, of h as in the Nash case.

Finally we have/==(()^g2 ^or some analytic function (|), and applying the factorization
theorem [Sh3] to/=((|)^)^ we get two Nash functions /?„ hj and two positive analytic
functions q\., (p .̂ such that

<|>^=(PA-. g j ^ ^ j h j .

Thus X .̂ = g ] - 1 (0) = h] 1 (0) is a Nash set. This contradicts the fact that Y is an irreducible
'Nash set. •

The paper is organized as follows. In Section 1 we prove Theorem 2. In Section 2
we review what is needed from the theory of the real spectrum and the theory of fans,
and show how they work in our geometric setting. The final goal of this section is a
reformulation of Theorem 1 adapted to these abstract techniques: the fan extension
theorem. The proof of this theorem is done in Section 4, after obtaining in Section 3
several preliminary lemmas; in particular, a fan extension lemma for valuation rings and
another for henselian excellent rings.

1. Separation and extension

We devote this section to the

Proof of Theorem 2. - Let M c= W be a Nash manifold and suppose that separation
holds for M. Let (p be a Nash function on a Nash set X c= M. Set lCl=M x [R and
denote by X the graph of (p. First we see that X c: M is a Nash set.

By Cartan's Theorem B, there is an analytic extension ^: M -> R of (p and we get a
proper analytic embedding

0: M-^M:x^(x, (|)(x)).

Let p : M -» M denote the canonical projection and p ' : M -> M a Nash map very close
to p in the C^-Nash topology. For this topology and its properties, see [Shi, 11.1];
as M is compact it is the topology induced by the C^-Whitney topology. Now since
p1 is close to p, the composition 9=//°0 is close to p°(S)=ld^ and consequently it
is an analytic diffeomorphism. As //(X)=9(X) and X is a global analytic set, we
conclude that ;/(X) is a global analytic set too. Moreover, p ' (X) is clearly semi-
algebraic, and since separation holds for M, p ' (X) c= M is a Nash set. This implies that
p ' ~ 1 {p' (X)) <= M is a Nash set. Finally, we have

x=rv-Wx)),
p'

where the intersection runs over all the T/'S, which shows that X c= M is a Nash set as
claimed.
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ON GLOBAL NASH FUNCTIONS 107

Now let ^ and ^ denote respectively the sheaves of ideals of J^ and -^M generated
by I(X) and I(X). Then for every xeM the stalk ̂  consists of the Nash function
germs whose complexifications vanish on the zero set germ of the complexifications of
the germs at x of some fixed generators of I(X). The same statement holds true for
9(x,y\ (x,y)eU. This implies that ^^^ is generated by ^ and y-<5>^ where
O^G^TM ^ is a germ whose class mod ̂  is (p^.

Now we will extend (p to every member of a finite covering of X by open semialgebraic
subsets ofM. Let/i, . . .,/^ generate I(X). We claim that at every (x, y)eX we can
write

§i, (x, y) fi, (x, y) = y - ̂  mod ,̂,

for some ; and some g^ ̂  ^ e J^, oc, y)' Indeed, by the preceding remarks, we have

A^y)=h^^^(y-^) mod ,̂, 1^^,

and we want to see that some h^ ̂  ^ is a unit. But we also have

y-^^'L^fj,^^
j

and from this we get a homogeneous system mod ̂

0 = (^1, Qc, y) l^l) /I, (x, y) + • • • + (^, (^, y) ̂  - !)/;•, (x, y) + • • • + (Afc, (^, y) Hfc) /fe, (^ y), 1 ̂  ̂  k,

whose determinant has the form

(- l ) f e +^^,^^+. . .+^^^^

Hence if no h^ ̂  ^ were a unit, we would conclude

/^y)=0mod^, l^i^k,

and consequently ^^^ ̂  = ̂  J^^, (x, y)- ^us X would have dimension > dim (X), which
is impossible.

Whence the open sets
U,={(x,^)eM|^-0,e(/,^^)+^}

cover X. Now, y - 0^ is regular with respect to y at every point (x, y) e X, and it follows
that/; is regular with respect to y at every point (x, y) e U, P| X. Consequently, shrinking
U. we can assume that fi is regular with respect to y on U. Hence /7x (0) 0 U^ is the
graph of a Nash function F, on V^ = 71 (U), where n: M -> M is the canonical pro-
jection. Then F^ = (p on V^ H X.

Next, using a partition of unity we paste the F^s as follows. Set Vo = M\X. Let
{po , . . ., pfc} be a C1 Nash (=C1 semialgebraic) partition of unity subordinated to

k

{Vo, . . ., Vfc}. Then we denote by F() the zero function on Vo, and ^ p^ is a C1

1=0
Nash extension of (p.
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108 J. M. RUIZ AND M. SHIOTA

Lastly, using the approximation theorem ([Sh2], 11.4.1, p. 123) we will smoothen this
function. But we need the same trick as in the proof of the extension theorem ([Sh2],

k

11.5.1, pp. 127-129). The graph of ^ p,F, is the zero set of the C1 Nash function
1=0

k

h= ^ p i ( y - ¥ i ) on M. Note that h is regular with respect to y on /^(O). Since
1=0

k

y~^i=tifi on U fo1' some ^e^(U) (1 ̂ i^k) and/o= ^ /? is never zero on 1VI\X,
1=1

k

we get C1 Nash functions h^ on M such that h = ̂  h^f^ Let /i* be a Nash approximation
1=0

of hi for O^i^k (for the topology involved in this approximation and its properties see
k

[Sh2, 11.1]). Then /?*= ^ hff, is a Nash approximation of h, and clearly /?*eI(X).
1=0

Choose the approximation so that /?* is regular with respect to y. Then (T?*)"1^) is
the graph of a Nash function on M, and that Nash function is what we want. •

2. Complexities and fan extensions

The contents of this section are more or less known, excpet for some results directly
concerning our problem. However we give a quick review with quotations for the
convenience of the reader.

(2.1) CONSTRUCTIBLE SETS IN THE REAL SPECTRUM ([BCR, Ch. 4&7]). - Let A be a
commutative ring with unit. The real spectrum Spec,. (A) of A is the set of all pairs
a=(p^, >„), where ?„ is a prime ideal of A and >„ is an ordering in the residue field
K(pJ. The element a is called a prime cone of A. It is clear that

Spec,(A)=USpec,(K(p)),
p

where the p's run among the prime ideals of A.
We will write /(a)>0, /(a)=0 to mean / mod ?„>„(), /modp^=0. In this way

we can impose sign conditions on the elements of A and use notations like
{/i>0, ...,/,>0}c=Spec,(A) for { a e Spec, (A) :/i (a)>0, . . .,/,(a)>0}. Then we
define the constructible sets of Spec,. (A) to be the subsets C c= Spec,. (A) of the form

c=^{/;i>o, ...,/,,>o,g-o}.

The real spectrum is equiped with the Harrison topology generated by the following
constructible sets:

C-^iX), ...,/,,>0}.
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ON GLOBAL NASH FUNCTIONS 109

We also define the Zariski topology by analogy with the Zariski prime spectrum:
a subbasis consists of all sets of the form {/^O}. We distinguish the closure in
this topology with an index Z and saying Zariski closure. In a somehow mixed
way we define the Zariski boundary of an open set C c= Spec,. (A) to be the Zariski
closure of the boundary of C, that is 8^(C)=C\CZ. It is easy to check that if
C={/ i>0, . . .,/,>0}, then CC\8^(C)=0. We will say that C does not meet its
Zariski boundary instead of writing C 0 S^ (C) = 0. With this terminology we can state
the main result concerning our problem:

THEOREM 2.1.1 ([Bri, 4.1, p. 76]). - Let C be an open constructive subset of Spec, (A)
which does not meet its Zariski boundary and s an integer. The following assertions are
equivalent'.

a) There are f^. . .,f,e A such that C=[f^>^ ...,/,>0}.
b) For every prime ideal p of A there are f^ . . . , /^eA such that

C U Spec, (K (?))={ f, >0, . . .,/,>0}nSpec,(K(p)).

(2.2) FANS AND CONSTRUCTIBLE SETS. — Let K be a field and Spec,. (K) its real spectrum
(usually called its space of orderings, because the prime cones of K are exactly the
orderings of K). A {finite) fan of K is a finite set F of orderings of K such that for
any three orderings o^, o^, 03 eF, their product 04=01.02.03 is a well-defined ordering
and belongs to F (we multiply orderings as signatures). This condition holds trivially if
# (F) = 1 or 2, in which case we say that F is trivial. A basic fact is that # (F) is always
a power of 2.

The beautiful result that shows the importance of fans is:

THEOREM 2.2.1 ([Br2, 5.4, p. 312]). - Let C be a constructive subset of Spec, (K).
The following assertions are equivalent:

a) There are s elements /i, . . .,/,eK such that C= {/i >0, . . . , /^>0}.
b) For every fan F of K with # (F) = 2^" W F 0 C ̂  0 we have # (F U C) == T with

O^m-n^s.

Putting together the two theorems above we obtain

PROPOSITION 2 . 3 . — Let Abe a commutative ring with unit and C an open constructive
subset of Spec,. (A) which does not meet its Zariski boundary. Let s be an integer. The
following assertions are equivalent:

a) There are f^ . . .,/,eA such that C={/i>0, ...,/,>0}.

b) For every prime ideal p of A and every fan F c= Spec,. (K (p)) with # (F) = 2"1 and
FHC^0 we have #(FnC)=2" withO^m-n^s.

(2.4) FANS AND VALUATIONS ([Lm, § 3, 5 & 12]). - Let K be a field and V a valuation
ring of K; we will denote by my the maximal ideal of V and by fev=V/mv its residue
field. We say that an ordering o of K is compatible with V if V is convex with respect
to o, that is, from -g<f<g, ge\,feK it follows/eV. In that case, V contains the
rationals. If o is compatible with V, then o induces a unique ordering y in the residue
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110 J. M. RUIZ AND M. SHIOTA

field ofV, defined in the obvious way: any element zek is the residue class of some unit
u e V whose sign in a is by definition the sign of z in y. We say that a specializes to y.

These specializations are ruled by the following theorem:

THEOREM 2.4.1 (Baer-Krull theorem [Lm, 3.10]). — Let V be a valuation ring of the
field K, and let Y denote the value group of\. Fix an ordering y of the residue field k of
V. Then there is a bijection between the set of orderings a of K compatible with V and
specializing to y and the set of group homomorphisms (|): F -^ { + 1, — 1}. Such a bijection
a \—> ̂  can be defined through any fixed ordering ao specializing to y by

a(/)=aoCO.^CO),

where given fe K\{ 0 }, v (/) stands for its value in F.
Now we say that a fan F of K is compatible with V if every aeF is compatible

with V. The main result relating fans and valuations is:

THEOREM 2.4.2 (Brocker's trivialization theorem [Lm, 5.13]). — Let ¥ be a non-trivial
fan of the field K. Then F is compatible with some non-trivial valuation ring V ofK and
the orderings of¥ specialize to at most two distinct orderings in the residue field of\.

Finally we apply all this abstract stuff in our geometric setting. Let M c= W be a
compact Nash manifold and consider the sheaves J^, (9^ and rings ^T (M), (9 (M) as in
Section 1. The references for the next two paragraphs are [BCR, Ch. 7 & 8] for the
Nash case and [Rzl, 2] for the analytic. For commutative algebra (flatness, completions,
excellent rings, etc.) we refer to [Mt].

(2.5) THE NASH AND ANALYTIC TILDA OPERATORS. — Put again A=J/'(M) [resp.
0(M)]. Then we have the Nash (resp. analytic) tilda operator: Si—^S, which maps a set
S c: M defined by a system of Nash (resp. analytic) equalities and/or inequalities to the
constructible set § c: Spec,. (A) given by the same system. The starting fact here is that
S = 0 if and only if S = 0, which is only a sophisticated reformulation of the Artin-
Lang homomorphism theorem for global Nash (resp. analytic) functions. From this it
follows that the definition above is consistent and gives a bijection that preserves
inclusions and Zariski closures. Some further work shows that this bijection preserves
closures and interiors, so it preserves Zariski boundaries. Among the consequences of
these facts we will use the following form of the real Nullstellensatz: a prime ideal p c: A
is real if and only if the Krull dimension of the ring A/p coincides with the topological
dimension of the zero set X c: M of p. Also, the irreducible components of a zero set
correspond bijectively to the prime divisors of its zero ideal.

We have defined two different tilda operators. However, we use the same notation
for both: the context will always avoid any risk of confusion.

(2.6) THE EXTENSION J^(M) c ^P(M). - Put A=J^(M) [resp. ^(M)]. The ring A
is an excellent noetherian ring. Its maximal ideals are exactly the ideals of the points
ofM: for every xeM its maximal ideal m^ consists of all functions/e A that vanish
at x. Every localization A^=A^ is a local regular ring whose Krull dimension is the
topological dimension of M at x.

4° SERIE - TOME 27 - 1994 - N° 1



ON GLOBAL NASH FUNCTIONS 111

Moreover the extension ^ (M) <= ^ (M) is faithfully flat and regular, and for every
point xeM we have the following commutative square of regular faithfully flat local
homomorphisms

^(M), - ̂ ,x

T T
^(M),-^M,.

Furthermore all the four homomorphisms extend to isomorphisms between the respective
adic completions. In particular, every prime ideal of height r of any of these rings
generates in any other bigger a radical ideal whose prime divisors have all height r.

Now we can prove a result that will be essential later:

PROPOSITION 2.7. — Every ordering a of the residue field K(p) of a prime ideal
p c J^ (M) extends to an ordering a" of the residue field K (q) of some prime divisor q of
the extension p (9 (M).

Proof. — We first claim that there is a point xeM with the property that every
function positive at x is positive in a. For, consider all the finite intersections of the
form

S= n {xeM:/,(x)^0, ...,/,(x)^0}.
/l(oc)^0,...,/s(o()^0

Clearly a e §, and § i- 0. Since the tilda operator is a bijection, we deduce S 7^ 0. Then
by compactness, Pi S^0, and any point xe Pi S verifies the statement (actually there is
only one).

We will write a -> x. Then we are in the hypotheses needed to apply the going-down
theorem in [Rz3], and we obtain a prime ideal q c= (9 (M) lying over p and an ordering
y! in K(q) that restricts to a in K(p). Furthermore q can be chosen with ht(q)=ht(p),
which means that q is a prime divisor of p (9 (M) as required. •

The preceding proposition shows that the extension to (9 (M) of a real prime ideal of
e/T (M) has some real prime divisor. It follows easily from the real Nullstellensatz that
in case separation holds, that extension has a unique real prime divisor. As a matter of
fact we could reformulate separation as follows: Given a real prime ideal p c: J^ (M), is
the real-radical of p (9 (M) a prime idea?. Now a stronger separation question is whether
the ideal p(P(M) is prime for every prime p of ^(M). Concerning extension the
difference is similar: we only deal with ideals of the form I (X), i. e. real ideals, instead
of arbitrary ideals I of J^ (M).

After this preparation we are ready to reformulate Theorem 1 in a much more abstract
way, but which will be also much more tractable:

THEOREM 2.8 (Fan extension theorem). — Suppose that separation holds for M.
Then every fan F of the residue field of a prime ideal p of ̂  (M) extends to a fan Y of
the residue field of the unique real prime divisor q ofp ^P(M), with # (F)= #(F').

Our claim is that Theorem 1 follows from this fan extension theorem. Indeed, suppose
we are given a semialgebraic set S c= M which can be described by s analytic inequalities,

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



112 J. M. RUIZ AND M. SHIOTA

but cannot by s Nash inequalities. Then using the tilda operators, § c= Spec,. (^ (M))
can be described with s inequalities, but § c= Spec,. (J^ (M)) cannot. By Proposition 2.3
there are two possibilities:

(i) The constructible set § meets its Zariski boundary in Spec,. (J^ (M)).
(ii) There is a prime ideal p c= J^(M) and a fan F of its residue field K(p) such that

# (F 0 §) gives a numerical obstruction.
In the first case, note that the Zariski boundary of S in Spec,. (J^ (M)) corresponds by

the Nash tilde operator to the smallest Nash set T that contains the semialgebraic set
S\S. Consequently SP|T^0. Now by the separation assumption T is also the
smallest analytic set that contains S\S. Indeed, the latter is a union of irreducible
analytic components of T, and those irreducible components are semialgebraic. Hence
by the equivalent formulation of separation given in the introduction, those irreducible
components are Nash sets and their union is a Nash set too. From this we see that T
corresponds by the analytic tilda operator to the Zariski boundary of § in
Spec,. (^ (M)). Since S^}^T^0, we conclude that § meets its Zariski boundary in
Spec,.(^(M)). This contradicts the fact that § can be described with s inequalities in
Spec^(M)).

Now suppose (ii). Then by Theorem 2.8 there is a fan F7 of the residue field K (q) of
a prime ideal q c= (9 (M) lying over p, whose restriction to K (p) is F and
#(F)=#(F). Clearly, # ( ¥ ' U §)= #(FH §), and we obtain the same numerical
obstruction, this time in ^(M). Whence § c: Spec,.(^(M)) cannot be described with s
inequalities (Proposition 2.3), and applying the analytic tilda operator once more, S c M
cannot be described with s analytic inequalities, a contradiction.

(2.9) STABILITY INDICES. — The method used in the last proof is an example of the
systematic approach developed in [AnBrRz2]. It leads to the exact computation of the
stability indices of the rings Spec,(J^(M)) and Spec,((^(M)). Indeed, by [AnBrRzl,
10.2] any fan in a residue field of J^ (M) [resp. (9 (M)] has ^2^ elements, where d stands
for the dimension ofM. This, together with Proposition 2.3 and the tilda operator,
shows that a semialgebraic set that can be described with s Nash (resp. analytic)
inequalities can be described always with no more that d. Note however that this gives
no information concerning a fixed semialgebraic set, which is the matter in the equal
complexities problem.

3. Preliminaries for fan extensions

In order to prove Theorem 2.7 we will use several results concerning extensions of
orderings and fans in various situations. We devote this section to such preliminary
lemmas.

First we consider a valuation theory situation:

PROPOSITION 3.1. - Let K be a field, V c K a valuation ring and F a fan ofK
compatible with V. Let W c= L be an extension of V c= K which has the same value
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group r as V. Suppose that the orderings of? specialize to two orderings <7i, a 2 o/ ̂
residue field ky of V 0/2^ ^^ extend to two orderings T^, T^ of the residue field k^/
o/W. Then F extends to a fan F' o/L compatible with W w/?6w orderings specialize
to Ti, T2 and such that #(F')= #(F).

Proof. — Let F^ denote the set of orderings of F that specialize to CT^, and G^ the set
of orderings of K compatible with V that specialize to c^. Then let G[ be the set of
orderings of L compatible with W that specialize to T^. Finally choose oc^ e G[ and denote
by a, its restriction to K. By the Baer-Krull theorem (Theorem 2.4.1) we have three
bijections

G[ ^
H o m ( F , { + l , - l } ) ^ i ((> i

G, ^.(|>

the vertical arrow being restriction from L to K. Now for every yeF^ there exists a
unique homomorphism ̂  such that y = oc^. ̂  and Y = oc^. (J^G G[. Then put ¥[ = [ Y : y e Fj.
We claim that F' = F^ U F^ is the fan we sought. Indeed, it is clear that F7 is a set of
orderings that extend F and # (F') = # (F). Hence we only must show that ¥ ' is a fan.
But from the general theory of fans we know that G[ U G^ =' F' is a fan. Consequently,
if y^, Y^, y^eF7 their product is a well defined ordering y^Y'i •y^Ya 6^ ^or certain
;'. Then the restriction of y' to K is an ordering y e G^. Using the bijections described
above we get y^o^.^. On the other hand, y==yi .yrVs^Fp because F is a fan, and
we conclude that y' e ¥[ c: F' and we are done. •

Before proceeding further we need some terminology. Let ^: A -> B be a local homo-
morphism of (local) noetherian rings, that is, ^~l(m^)=m^ where m^, ntg denote
respectively the maximal ideals of A, B. We will say that <|) has the approximation
property if given a system of polynomials equations f^ (Xj) = 0, \^i^p, \^j^q, with
coefficients in A, any solution Xj=bjCB can be arbitrarily approximated in the adic
topology by solutions Xj=^eA. Now the main result is:

THEOREM 3.2. — Let ^'. A —> B be a local homomorphism which has the aproximation
property. Suppose that A is a domain and let K be its quotient field. Then B is also a
domain and every fan F o/K extends to a fan ¥ ' of the quotient field L o/B, with
#(F')=#(F).

Proof. — The argument to prove that B is a domain is well-known (see for instance
[Tg, III. 4.4, p. 62]). Thus we turn to the assertion concerning fans. Let
F = { a ^ , l^f^'"} and set P^ for the positive cone of o^ in A, that is, P^ is the set of
elements of A which are positive in oc^. We seek 2"1 orderings (3^ of L such that Pj K= oc^
[or equivalently ^(Pi)>0 for gePJ and PrP^.P^P^ whenever o^.ocy.o^=o^. To that
end, we consider the product space S of 2W copies of Spec^(L), and the set
E=EiOE2 c 2 where

Ei={(P , , l^^^eS^P^Oior^eP^and 1^2^
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and

E,={(P, 1^^2w)eE:/(P,)/(P,)/(p,)/^)>Ofor/eLanda,.a,.a,=^}.

We have to check that E^0. Rewriting, we have E ^ = n E i g where the intersection
g

runs over all tuples g=(gp l^i^l^eP^x . . . x P^m, with

Eig={pieSpec,(L):^(Pi)>0}x . . . x { p^eSpec^L):^^"1)^}

Similarly E^ = 0 E^ ^, where the intersection runs over all /e L and
f

£2 / = U { Pi e Spec, (L): £i/(PO > 0 } x . . . x {^ e Spec, (L): s,mf(^m) > 0 }
£

with £=(£? \^i^lm) verifying £^.= ±1 and 8^.8^=6^ whenever 0^.0^.0^=0^. We will
denote by ^ the set of all these tuples e. Now suppose E = 0. Then, since S is compact
and all sets E^ g, E^j- are closed, there exist g\ . . ., g^, /i, . . ., /^ such that

EI gi n . . . n EI ̂  n E^ ̂  n . . . n E^ ̂  = 0.
Rewriting this we get

U E, ( l )x . . .xE, (2 w )=0 ,
ee ^q

where £=(£^; \^i^Tn, l^j^q) and

Ee(0={^>0, . . ., ^f>0, e^/^O, . . ., e?/,>0}.

Hence, for every s e ̂  there is some i such that Eg (f) = 0. By the abstract Positivstellen-
satz, ([BCR, 4.4.1, p. 81]), this equality is equivalent to the fact that the equation

E y^ (glY1.. • fef)^ (^ Ar1... (^ /.)̂  = - (^)2 rl. • . tef)2 rp (e.1 /i)2 s l... (s? /,)2 \
v, H

where Vj^, Uj = 0, 1, has a solution, say

.Vfvp^iVH6^.

Collecting these equations for all se^ and replacing the/^.'s by indeterminates Xj we get
a system

E ̂  fe.1)'1... fef)^ (s^i)'1... (s? ̂ )^
v. H

= -te1)2'1. • .tef)2^^^)251. . .(eW^ se^ 1^^2m

which has in B the solution
Yi VH =: ^i VH? ^j ==./J•
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Since the homomorphism ^ has the approximation property, this solution can be approx-
imated by other in A, say

Vi vp = zi VH? x j = 'lr

Going backwards in the Positivstellensatz that means that there are h^ . . ., hqEA such
that for every s e ̂ q the set

D,(0={^>0, . . ., ^f>0, e^>0, . . ., e?^>0}

is empty for some i. Consequently, the product Dg(l)x . . . xD^^ is empty too.
Hence

U D,( l )x . . .xD,(2 w )=0,
e e S^

which is a contradiction, since by construction (o^, 1 ̂ i^T^ belongs to that set. •
The main example of a homomorphism with the approximation property is provided

by the following deep result:

THEOREM 3.3 [Rt, 4.2]. - Let A be a henselian local excellent ring containing the
rationals, and B = A its adic completion. Then the canonical homomorphism ^: A -> B has
the approximation property.

The first cases to which these results apply are the rings J^\i, x ^d ^M, x °^ Nash and
analytic germs at a point x of a Nash manifold M. As a matter of fact this was the
concern of the important paper [Ar]. Furthermore, since the canonical homomorphism
j\r^ ^->0^ ^ induces an isomorphism between the completions, it has the approximation
property. We will use this later.

Coming back to our general lemmas we recall ([vdD, 11.2.5, p. 75], [Pr, 0.5, p. 131]):

PROPOSITION 3.4 (Amalgamation). - Let K <= K' be two fields, the smaller algebraically
closed in the bigger, and k =3 K a third field. Suppose we are given orderings Y and a of
K' and K respectively that restrict to the same ordering y O/K. Then the ring K' ®^k is a
domain, and there exists an ordering T of its quotient field K* that extends both y ' and a.

The preceding result will be useful in our setting in view of the following fact:

PROPOSITION 3.5. - Let M c= W be a compact Nash manifold, ^(M) and (^(M) its
rings of global Nash and global analytic functions. Let p c= J^(M) be a real prime ideal
and q a prime divisor of p (9 (M). If extension holds, the field K (p) is algebraically closed
in K(q).

Proof. - We have A=J^(M)/p c: ^(M)/q, and correspondingly the field extension
K=K(p) c= L==K(q). To prove the assertion in the statement, pick an element /zeL
which is algebraic over K: there are a^, . . ., a^ e A with OQ ̂  + . . . + a^ = 0 in K. Then
we must see that h e K.

First, we can suppose that the polynomial P(0=^o^+ • • • +^^1X1 is

irreducible. Now we recall that the total ring of fractions <S> of B = (9 (M)/p (9 (M) is
canonically isomorphic to the product of the residue fields of the prime divisors of
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p (9 (M), and so O = L x <S>' where 0' is a product of fields. Thus we can pick fe 0 with
/=(/?, 0), so that/is a root of the polynomial Q(t)=tP(t) and for h to be in K it is
enough that / is in K. Clearly the discriminant of Q (Q, ^eZ [OQ, . . ., a^] c= A is not
zero. Second, there is an element r\ eA, T| 7^0, such that the zero set X c M of p is a
Nash manifold off T| = 0. Indeed, take any generators of p and a regular point x of
maximal dimension of X c= M c: (R^, so that some jacobian of those generators has
maximal corank at x (this is possible because p being real, I (X) = p). That jacobian is
actually a global Nash function, and does the job. Then we claim that (Sr^/eB for
some m.

To prove our claim consider a complexiflcation X^ c: M10 of the couple X c M. We
can assume that/extends to a meromorphic function/0 ofX0, and OQ, . . ., ^,8, r| to
analytic functions ̂ , . . ., a^ S^ r^ with /c (^ (/^ + . . . +^)=0. Furthermore by
the construction of T| we also can suppose thai, X0 is a complex manifold off
TI^O. Then at every point ^6XC\{5€r|€=0}, the meromorphic function^ gives a
simple root of the polynomial equation x (a^ x"" + . . . + cQ = 0 in the complex manifold
^^^ r^ = ̂  }• Hence /c is analytic at y . Thus in the diagram

^(X^ - ̂ c,
i I

^(X^^,,

(where M means meromorphic, or equivalently total ring of fractions) the element /c is
in the right upper corner and in the left lower one. By faithful flatness of the first
horizontal arrow we conclude that /c is actually in the left upper corner. In other
words, for every ^eX^'X^j^ri^O} there is a global representation of the meromorphic
function/0 whose denominator does not vanish at y .

Now for every x e X, the ring of germs at x of holomorphic functions of X0 is
^xc,x=^MC,x/P^MC,x' Indeed, since p is radical, it generates a radical ideal in (9^^
and consequently also in (CIMC,x=^®^^^,x^ so tnat by Riickert's Nullstellensatz, any
holomorphic germ vanishing on X^=zero set germ of the ideal p^M^x belongs to
V^x'

Now the germ /^ is an element of the total ring of fractions of the ring (9^c^ ^ and
we consider the ideal of denominators of/^, that is, the ideal 1̂  of all germs gx^^x^^
such that gJ^eO^c^. The zero germ Y^ c X^ of 1̂  is the pole germ of/c.
We will see next that the germ S^T|^ vanishes on Y^. Indeed, otherwise in any
representative Y^ of the pole germ there would be points y arbitrarily close to x with
S^jQri^^^O. But we saw before that for such a point y there is a global representa-
tion of the meromorphic function / whose denominator does not vanish at yeV^.
This is impossible, by the definition of the pole germ, and we conclude that 5^r|^
vanishes on Y^. Then by Riickerfs Nullstellensatz again, (8^ TI^)"" (x) e 1̂  for some m (x).
Hence (S^ri^^/^e^x^jc an(! since everything is here a complexiflcation, we get
^x^xT^fx^^xlV^x- This implies (arO^/eB,, where B^ stands for the localiz-
ation of B at the maximal ideal of the point xeX. Thus (S^^^ f=g/h, where g, heB,
and h(x)^0. Since X is compact, we can pick finitely many fractions gjh^ l^i^r,
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such that X = { / ? i ^ O } U . . . U { A , ^ 0 } . Then putting m = max, (w,) we obtain

(5r^r-mlg^+...+(5r^)m-^A
(Sn)̂ /^+.. .+^2

Since the denominator never vanishes on X, a standard application of Cartan's Theorem
A for real analytic manifolds shows that the left hand side of the equation above is an
element of B, and we have proved our claim.

All this shows that we can assume /eB without loss of generality, and we will
see that/^e^M^/P^,^ for ^^Y -^M. To that end, we consider the polynomial
CKOe^M^M- since the homomorphism ^M,x-^M,x has the approximation prop-
erty, for every v we find/(v) e J^M,^ such that Q (/(v))e P ̂ M, x and the ^ts of order v

of / and /(v) coincide. Then let p ' be a prime divisor of p J^M, x ' since P ' lies over

p and Q (t) is not zero mod p, we conclude it is not zero mod p' either. Conse-
quently, the /^'s are roots of the same non-zero polynomial in the field K (?'), and
hence there is VQ with/(v) ̂ ^ mod p' for V^VQ. As there are finitely many p^s,
we find Vo large enough such that /(v) -/(v()) e U p' = p ̂ ^ ^ for V^VQ. This implies
y-y(vo)(= (^ (m;+pJ^M,x). and consequently /-/(vo) e p J^, x ' In other words,

v^vo
f^^M,xlP^M,x. as wanted.

So we have proved that f={fx}xeu defines a global section of the sheaf
J/^/p J/^. But we are assuming that extension holds, and consequently there is a Nash
function f e^ (M) such that /^ =/„ mod p (9^ ^ for every xeM. This shows that fe A,
and finishes the proof. •

Since we have already proved that separation implies extension, from the preceding
proposition we get:

COROLLARY 3 . 6 . — Let M c= [R^ be a compact Nash manifold and suppose that separation
holds for M. Let p c J^(M) be a real prime ideal and q the unique real prime divisor of
p (9 (M). Then the field K (p) is algebraically closed in K (q).

4. Proof of the fan extension theorem

Let M c= W be a compact Nash manifold and assume that separation holds. Let
^r(M) and (9(M) be the rings of global Nash and global analytic functions
on M. Finally consider a prime ideal po c= J^(M) and a fan F in the residue field
K=K(po). By separation, the ideal po^(M) has a unique real prime divisor
qo c (9 (M). Then we seek a fan F' in the residue field K (qo) => K (po) = K whose restric-
tion to K is F. We separate the argument in nine steps.

STEP I. - By Theorem 2.4.2 the fan F is compatible with a non-trivial valuation V
of K and specializes to at most two distinct orderings o^, oc^ of the residue field k^
of V. Put A = J^ (M)/po. We claim that V contains the ring A.
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Indeed, let/eJ^M) and denote by/the residue class of/in A. To see that/eV,
pick any ordering of K, jocF. Then Yo is compatible with V, which means that if we
find an integer m such that —w<^/<^w, then JeV. But M is compact, so that
there is an integer m such that —m<f{x)<m for all xeM. Using the tilda operator
we deduce —m<f(y)<m for all jeSpec^(^(M)). In particular, for y=Yo we get
— m < ̂  /< ^Q w, and we are done. •

STEP II. — Let p be the center of V in A: p=rrtv 0 A, where my is the maximal ideal
of V. Then V dominates the localization A^. The ideal p is the residue class mod po of
some prime ideal of J^ (M), which we still denote by p, and we get a local homomorphism
p: J^ (M)p -> V. Now notice that p is real and since separation holds, the extension
p (9 (M) has a unique real prime divisor, which we denote by q. Now we produce the
following diagram of local homomorphisms

(P(M) c (P(M\ -^ d)(M^ —————^(M);=K(q)[[x]] = D

T T T T
^ (M) c= ^ (M), ̂  ̂  (M% ̂  (K (q) ®, ̂  (M)^ =D^Dh

ip

(V,F)
where:

(i) The index h denotes henselization, and the index adic completion;
(ii) the integer r is the common height of the ideals p and q, or equivalently the

common Krull dimension of the regular rings jV (M)p, (9 (M)^;
(hi) x=(;q, . . ., x^), the x/s being a regular system of parameters of ^(M)y and

since p generates q (9 (M\ also one of (9 (M)^;
(iv) n is the ideal generated by x^ ..., x, in K(q) ®^)^(M){;, D=(K(q) ®^(p)J/'(M)^

is a local regular ring of dimension r and the x/s are a system of regular parameters
ofD;

(v) the arrows denoted by = are the canonical isomorphisms obtained by considering
the x^s as indeterminates over K (q).

Of all of this, only the assertions (iv) concerning the ring D require an explanation.
The key fact is that the canonical homomorphism K(q) 00 .^^(M)^ ^K(q)[[x]] is
flat. To see that, after factorizing through K(q) ®^(p)K(p)[[x]], it suffices to show
that K(q)®^) ^PHI^H "^(^[M] ls fl^- Then, by the characterization of flatness
in terms of linear equations ([Mt, Th. 1, p. 17-18]), it is enough to see that
K®x(p)K(P)[M] "^K((>y)[M] ls ^at ^or ^v^y finitely generated subextension K of
K(q)=3K(p) . Now, factorizing through K[[x]] and since K [[x]] -> K (q) [[x]] is flat [Bk,
Exercise III. 3.17, p. 250], we are reduced to show that K0^()K(p)[[x]]-^K[[x]] is
flat. But we can write K^K^?)^)!^)], where y=(y^ . . ., Ys) are indeterminates and 9
is algebraic over K(p)(y). Thus our homomorphism comes by the base change
K®^(y)- from K(p)(^)®^^K(p)[[x]]-^K(p)(^)[[x]]. Hence we will see that the
latter homomorphism is flat. To that end it suffices to check that

K (?) M ®. (p) K (?) [[X]] -^ K (?) (y) [[X]]
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is flat. Finally K (p) [y] ®^ ̂  K (p) [[x]] = K (p) [[x]] [y] and the homomorphism under consi-
deration factorizes in the form

K (?) [M] M ̂  K (?) [M] [̂  ̂  K (?) (̂ ) [[X]],

where the two arrows are flat: localization and completion.
One we know that ic(q) 00 ̂ ^(M)^ ->K(q)[[x]] is flat, let n be the contraction of

the maximal ideal of K (q) [[x]]. Then the homomorphism

(K(q)®.(p)^(M)^K(q)[[x]]

is faithfully flat, and since x^ . . ., Xy generate the maximal ideal of K(q)[[x]], they
generate n. We conclude at once that K(q) [[x]] is the adic completion of D, that D is a
local regular ring of dimension r and that x^ . . ., x^ are a regular system of parameters
ofD. •

STEP III. — The ring D and its henselization D^ are excellent rings.
By the jacobian criterion [Mt, Th. 102, p. 291], it is enough to see that the derivations

9 / 9 x ^ , . . ., 9/8x^ of K(q)[[x]] leave D and Dh invariant. This in turn will follow if
J^ (M)p is invariant, using the general properties of derivations and the definition of the
homomorphisms

^ (M), ̂  ̂  (M)^ -^ (K (q) (x), ̂  (M)^), = D ̂  D = K (q) [[x]].

On the other hand ^ (M)p will be invariant if there is a field K c= ^ (M)p such that the
canonical extension K -> K (p) is algebraic and the rank of the module Der^ (J^ (M)p) of
derivations of ^ (M\ over is exactly ht (p) ([Mt, Th. 99, p. 288]). Now by the extension
property for closed Nash submanifolds ([Sh2, 11.5.5, p. 131]), we can write
^(M)^^^)/:^^!), where I(M) corresponds to any fixed closed embedding
M c ffr, and there is a prime ideal ^^I (M) such that p=^P/I(M). Then
^ (M\ = J\T (R%/1 (M), and by [Mt, Th. 100, p. 290] we are reduced to find K c= jV (RP)^
such that Der^ (J^ (R%) has rank == ht (^P). Finally put 0 = ̂  0 tR [X^, . . ., Xp]. As
is well known, the extension R[Xi, . . ., Xp]/0 c: jV (^p)/^ is algebraic, and the
transcendence degree of ^(RP)/^ over R is d=p-ht(^). Now we can make
a linear change of coordinates and assume that the canonical homomorphism
lR[Xi, . . ., XJ -> R[Xi, . . . . Xp]/0 is finite and injective. This implies that
^Pn tR[Xi, . . ., X J = { 0 } and so K=R(XI , . . ., X^» c: ̂ (R% induces and algebraic
extension K -> K (p) and we claim this is the K we sought. Indeed,

^i=a/ax^, ...,a,=a/ax,

are clearly derivations of ^(RP)^ over K and X^+i, . . ., XpeJ^(W)<p verify
Si(Xj)=Sij. As p-d=hi(^), we apply [Mt, Th. 99, p. 288] to conclude that the rank
of Der^ (^T (R%) is ht (^P), as wanted. •

Now the proof becomes a fan chasing through the diagram above. This will be done
by successively completing a third row of valuation rings and fans compatible with them.
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STEP IV. - Consider the henselization V^ of V. By the universal property of henseliz-
ations [Ng, 43.5, p. 181] we have a commutative square of local homomorphisms

^(M)^^(M)^
[ p ^h

v -. v^

The henselization of a valuation ring is a valuation ring of a field K^ =3 K and with the
same residue field and value group as V. Thus, by Proposition 3.1 the fan F (which is
compatible with V) extends to a fan P of V^. Whence, we have added an entry to the
diagram of Step II:

^(M)c= (P(M\ -^ ^P(M% —————^(M)^=EK(q)[[;c]] = D
T T T T

^ (M) c= ^ (M), -^ ̂  (M)^ -> (K (q) ®, ̂  (M^\ == D ̂  Dh

r ^
(V, F) ^ (V^, F^)

STEP V. — We have two orderings c^, p^ in the residue field k^ of V^ that restrict to
oci, a^ in K(p) c= fe^. On the other hand, by Proposition 2.7, each o^ lifts to an ordering
cn'i in the residue field of some prime divisor of the extension of p to (9 (M). But q is
the unique real prime divisor of that extension and so o^ is an ordering of K(q). Now
we consider the commutative square

K(q)->K(q)®,^
T T

K(p) ^

By separation the field K (p) is algebraically chlosed in K (q) (Corollary 3.6), and by
amalgamation (Proposition 3.5) the ring in the right upper corner is a domain, and we
find two orderings T^, T^ in its quotient field A:* that extend simultaneously the orderings
oe'i, o^ ofK(q) and <7i, a^ ofK(p).

STEP VI. - The field k* is an extension of the residue field k^ of the valuation
ring V\ Then we can construct a valuation V* of the quotient field K* of the domain
^^ ®,((p)K^ which extends V\ has the same value group as V^ and whose residue field
is/c*.

Indeed, let fc\ m^ and F^ denote respectively the residue field, the maximal ideal and
the value group of V\ First consider any subextension K (p) <= K c: K (q) and the domain
K ®^(v)kh• Then Ae canonical homomorphism V^ -> K 0^^ is faithfully flat, and it
follows that mh generates in E^®^^ the prime ideal m=K(x)^nr\ Thus we
get a faithfully flat local embedding V^ -> E^, and mh generates the maximal ideal
of E^. Furthermore, E^ contains the quotient field k of K ®^ ̂  ky, and k is a coefficient
field ofE^. Finally the quotient field L of E is the quotient field of the domain
^^K^, and consequently K^ c L c= K* where K* denotes the quotient field of the
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domain K(q) ®^)K\ We summarize this construction in the following diagram:

K (q) c, k* = qf(K (q) ®, ̂  ̂ ) c= E^ c= KV(K (q) ®, ̂  K^)
U U T U
K ^ k =^(K®,^) c E, c= L =qf(^®^^)
U U T U

K(p)c^ =K(p)®,^ c= V^ czK^KCp)®,^^

(with the obvious notations in the first row). Now we consider the collection ̂  of all
pairs (K, W) where K is as above and W is a valuation ring of L such that:

(i) W contains the local ring E^ and the inclusion E^ c= W is a local homomorphism,
(ii) the induced map E^/m -> W/m^ is a bijection, and
(iii) W is an extension of V^ with the same value group F\
It is clear that 'W is inductive and contains (K (p), V^). Consequently by Zorn's lemma

it has a maximal element (K, W). We will see that this W is the valuation V* we
seek. For this it is enough to prove that K = K (q), so we argue by way of contradiction
supposing there is an element /€K(q)\K. We need the following fact:

CLAIM. - Let 0 denote either ^ or K\ Then the element ^eK(q) is algebraic over K
if and only if the element t=t® 1 eK(q) ®^(p)0 is algebraic over K®^0. If that is
the case, the irreducible polynomial of t over K coincides mth the irreducible polynomial of
t ozwKOO^d).

This claim follows from the fact that applying the faithfully flat base change - 00^)0
to the homomorphism K [T] -> K (q): T \-> t we get (K ®^ ̂  0) [T] -> K (q) ®^ ̂  0: T \-> t ® 1
(T stands for an indeterminate).

Now we distinguish two cases:

Case 1, t is algebraic over K. — Then the claim above for 0=K^ shows that t is also
algebraic over L, and there is some valuation W' of L [t\ extending W. We put K' = K [t]
and will see that the pair (K\ W7) is an element of i^. As it is strictly bigger than
(K, W), this will be the wanted contradiction.

Since t and \ / t are algebraic over K, they are integral over W and since W' is integrally
closed, we conclude that t is a unit of W'. Hence, k[t\ c= ̂ ,. Now by the claim above
[K [t]: K] = [k [t]: k\ = [L [t]: L], say = n. Thus from the fundamental inequality [En, 17.5,
p. 128] we deduce

n=[L[t]:L]^e.f=[r^:r^].[k^:k]^[r^:r^.n

which implies I\y/=r\v and k^.=k[t\. In this situation the construction associated to
K' gives

E^K^^V^K^^EM,

L^K^^K^KM®,!^].^],

(using again the claim above). From this it follows easily that W' dominates E^, and
so (K'.W^e^T.
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Case 2, t is not algebraic over K. - Then the same happens over k and over L and we
can treat t as an indeterminate. Hence putting K'=K(^), we get E^=E[<|^^ and
U=L(t). Then W^W^]^^ is a valuation ring of I/, and (K7, W) is an element of
^T strictly bigger than (k, W). We are done. •

STEP VII. - Now by Proposition 3.1 there is a fan F* compatible with V* that extends
F\ Substituting V* by its henselization we can assume that V* is henselian. Note
that it has a coefficient field k* and contains K(q) <= ^*. Thus we have a canonical
homomorphism T| : K(q) ®^(p)^(M)^ -> V* that makes commutative the square

^(M)^K(q)®,^^(M%
[ p h f
\h ____^ y*

Hence, the prime ideal T| -1 (my*) lies over the maximal ideal of J^ (M)^, and consequently
contains the x^s. Thus we obtain the ideal n defined in Step II and a local homomorph-
ism D=(K(q)®^J^(M)^-^V* that, since V* is henselian, extends to another one
p* : D^ -^ V*. This adds one more entry to our diagram which looks as follows

^(M)c (P(M\ -^ 0(M^ —————————^(M)<;=EK(q)[M] =D

T T T
^•(M)c=^(M)^^(M)^(K(q)®,^^(M)^=D -^ D^

[ p [ p h I /
(V, F) -> (V, F^) —————————> (V*, F*) P*

and explains our somehow sophisticated choice of the ring D.

STEP VIII. - After all this preparation, the fan F* restricts to a fan in the residue
field of the ideal pg=ker(p*). Since D^ is henselian excellent, Theorem 3.2 applies
here: pg generates a prime ideal qg in the completion D=^(M)^, and F* extends to a
fan F of the residue field of K (qg). To finish we restrict F to (9 (M) via the homomorph-
ism 0 (M) c= (9 (M)^ as follows: the ideal qg lies over a prime ideal qo c= (9 (M) and F
restricts to a fan F' in the residue field K(qo). It is clear from the construction of the
diagram that qo lies over po and F7 restricts to F in K(po).

STEP IX. - It remains to see that qo is a prime divisor of po (9 (M), since then it will
be the unique real one, as wanted. For that we consider the ideal I=ker(p^). Since
the base change K(q) ®^(p)- is faithfully flat, the kernel of

K (q) ®, ̂  ̂  : K (q) ®, ̂  ̂  (M)^ ̂  K (q) ®, ̂  V^

is the extension I<K(q) ®^(p)^(M)^). Thus, since V* is a valuation ring of a field
containing the domain K(q)(x)^V\ we deduce that F=I .D is the kernel of the
homomorphism D -> V*. Finally put J= qg Ft (9 (M)^, which by construction is a prime
divisor of the extension I^(M)S. The following diagram depicts the various ideals
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involved:

qo^qo^(M),^J———^

T T
po^po^(M)^i^r^

Here an arrow between two ideals means that the target is either the extension or a
prime divisor of the source. Note also that these arrows correspond to faithfully flat
regular homomorphisms. Then counting heights we obtain

ht(qo)=ht(J)=ht(I)=ht(po)

and since qo lies over po we conclude that qo is a prime divisor of po (9 (M). We are
done. •

This ends the proof of the fan extension theorem.

Remark. — The complicated argument above is not needed if ht (p) = 1. Indeed, in
that case .yT(M)p is a discrete valuation ring and the fan is determined by the two
orderings induced in K (p) (every one of these two orderings lifts to exactly two orderings
of the quotient field of ^(M\ by prescribing the sign of any fixed uniformizer r ep of
J^ (M)p). Since (9 (M)^ is another discrete valuation ring and t is also a uniformizer of
this bigger ring, the fan extends as soon as the orderings in K(p) extend to K(q). Thus
we bypass henselizations, extensions of residue field and completions.
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