Annales scientifiques de l'É.N.S.

NANHUA XI The based ring of the lowest two-sided cell of an affine Weyl group. II

Annales scientifiques de l'É.N.S. 4^e série, tome 27, nº 1 (1994), p. 47-61 http://www.numdam.org/item?id=ASENS 1994 4 27 1 47 0>

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1994, tous droits réservés.

L'accès aux archives de la revue « Annales scientifiques de l'É.N.S. » (http://www. elsevier.com/locate/ansens) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. scient. Éc. Norm. Sup., 4^e série, t. 27, 1994, p. 47 à 61.

THE BASED RING OF THE LOWEST TWO-SIDED CELL OF AN AFFINE WEYL GROUP, II

By NANHUA XI (1)

ABSTRACT. – We show that the lowest based ring of an affine Weyl group W is very interesting to understand some simple representations of the corresponding Hecke algebra $H_{q_0}(q_0 \in \mathbb{C}^*)$ even when q_0 is a root of 1.

Let H_{q_0} be the Hecke algebra (over \mathbb{C}) attached by Iwahori and Matsumoto [IM] to an affine Weyl group W and to a parameter $q_0^2 \in \mathbb{C}^*$.

When q_0 is not a root of 1 or $q_0^2 = 1$, the simple H_{q_0} -modules have been classified (see [KL2]). However we know little about the simple H_{q_0} -modules when q_0 is a root of 1. In this paper we give some discussion to the representations of H_{q_0} with q_0 a root of 1. Namely, let J be the asymptotic Hecke algebra defined in [L3, III]. There exists a natural injection $\phi_{q_0}: H_{q_0} \to J$. Let K (J) [resp. K (H_{q_0})] be the Grothendieck group of J-modules (resp. H_{q_0} -modules) of finite dimension over C, then ϕ_{q_0} induces a surjective homomorphism $(\phi_{q_0})_*: K(J) \to K(H_{q_0})$, when q_0 is not a root of 1 or $q_0^2 = 1$, $(\phi_{q_0})_*$ is an isomorphism (loc. cit.). For each two-sided cell c of W, we can define the direct summand K (J_c) [resp. K $(H_{q_0})_c$. The map $(\phi_{q_0})_{*,c}$ remains surjective and is an isomorphism if q_0 is not a root of 1 or $q_0^2 = 1$. In this paper we mainly discuss the map $(\phi_{q_0})_{*,c}$, where c_0 is the lowest two-sided cell of W.

1. Introduction

1.1. Let G be a simply connected, almost simple complex algebraic group and T a maximal torus. Let $P \subseteq X = Hom(T, \mathbb{C}^*)$ be the root lattice. The Weyl group $W_0 = N_G(T)/T$ of G acts on X in a natural way and this action is stable on P. Thus we can form the affine Weyl group $W_a = W_0 \ltimes P$, which is a normal subgroup of the extended affine Weyl group $W = W_0 \ltimes X$. There exists a finite abelian subgroup Ω of W such that $W = \Omega \ltimes W_a$. Let $S = \{r_0, r_1, \ldots, r_n\}$ be the set of simple reflections of W_a with $r_0 \notin W_0$. Then we have a standard length function l on W_a which can be extended

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE. – 0012-9593/94/01/\$ 4.00/ © Gauthier-Villars

^{(&}lt;sup>1</sup>) Supported in part by an N.S.F. Grant (DMS 9100383).

to W by defining $l(\omega w) = l(w)$ for any $\omega \in \Omega$, $w \in W_a$. We keep the same notation for the extension of l.

1.2. For any $u = \omega_1 u_1$, $w = \omega_2 w_1$, ω_1 , $\omega_2 \in \Omega$, u_1 , $w_1 \in W_a$, we define $P_{u,w}$ to be P_{u_1,w_1} , as in [KL 1] if $\omega_1 = \omega_2$ and $P_{u,w}$ to be zero if $\omega_1 \neq \omega_2$. We say that $u \leq w$ or $U \leq w$ if $u_1 \leq w_1$, or $u_1 \leq w_1$ in the sense of [KL 1], we say that $u \leq w$ if $u^{-1} \leq w^{-1}$. These relations generate equivalence relations \sim , \sim , \sim in W, respectively, and the corresponding equivalence classes are called two-sided cells, left cells, right cells of W, respectively. The relation $\leq_{LR} (resp. \leq, \leq)$ in W then induces a partial order $\leq_{LR} (resp. \leq, \leq)$ in the set of two-sided (resp. left, right) cells of W. We extend the Bruhat order \leq in W_a to W by defining $u \leq w$ if and only if $\omega_1 = \omega_2$ and $u_1 \leq w_1$.

Let q be an indeterminate and let $A = \mathbb{C}[q, q^{-1}]$. Let H be the Hecke algebra of W over A, that is a free A-module with basis $T_w (w \in W)$ and multiplication defined by

$$(T_r - q^2)(T_r + 1) = 0$$
 if $r \in S$ and $T_w T_{w'} = T_{ww'}$ if $l(ww') = l(w) + l(w')$.

For each $w \in W$, let

$$C_w = q^{-l(w)} \sum_{u \le w} P_{u,w}(q^2) T_u \in H.$$

And we write

$$\mathbf{C}_{w} \mathbf{C}_{u} = \sum_{z} h_{w, u, z} \mathbf{C}_{z} \in \mathbf{H}, \qquad h_{w, u, z} \in \mathbf{A}.$$

For each $z \in W$, there is a well defined integer $a(z) \ge 0$ such that

$$q^{a(z)} h_{w, u, z} \in \mathbb{C}[q] \text{ for all } w, u \in \mathbb{W}$$
$$q^{a(z)-1} h_{w, u, z} \notin \mathbb{C}[q] \text{ for some } w, u \in \mathbb{W}$$

(see [L 3, I, 7.3]). We have $a(z) \leq l(w_0)$, where w_0 is the longest element of W_0 . It is known that

$$c_0 = \{ w \in \mathbf{W} \mid a(w) = l(w_0) \}$$

is a two-sided cell of W (see [S, I]) which is the lowest one for the partial order \leq .

1.3. Let $\gamma_{w, u, z}$ be the constant term of $q^{a(z)} h_{w, u, z} \in \mathbb{C}[q]$. We have $\gamma_{w, u, z} \in \mathbb{N}$. Moreover (see [L 3, II])

(a)
$$\gamma_{w, u, z} \neq 0 \implies w \sim u^{-1}, \quad u \sim z, \quad w \sim z.$$

Let J be the \mathbb{C} -vector space with basis $(t_w)_{w \in W}$. This is an associative \mathbb{C} -algebra with multiplication

$$t_w t_u = \sum_z \gamma_{w, u, z} t_z$$

It has a unit element $1 = \sum_{d \in \mathscr{D}} t_d$, where $\mathscr{D} = \{ d \in W_a | a(d) = l(d) - 2 \deg P_{e, d} \}$ (e is the unit of W) (see [L 3, II]).

For each two-sided cell c of W, let J_c be the subspace of J spanned by t_w , $w \in c$, then $J = \bigoplus_c J_c$, where the sum is over the set of all two-sided cells of W. By (a) we see that J_c is a two-sided ideal of I and in fact is an associative C-algebra with unit $\sum_{c} t$

is a two-sided ideal of J and in fact is an associative \mathbb{C} -algebra with unit $\sum_{d \in \mathcal{D} \cap c} t_d$.

1.4. For each $q_0 \in \mathbb{C}^*$, we denote $H_{q_0} = H \otimes_A \mathbb{C}$, where \mathbb{C} is an A-algebra with q acting as scalar multiplication by q_0 . We shall denote $T_w \otimes 1$, $C_w \otimes 1$ in H_{q_0} again by T_w , C_w . We also use the notation $h_{w,u,z}$ for the specialization at $q_0 \in \mathbb{C}^*$ of $h_{w,u,z}$.

The A-linear map $\phi: H \to J \otimes_{\mathbb{C}} A$ defined by

$$\phi(\mathbf{C}_w) = \sum_{\substack{d \in \mathscr{D} \\ z \in W \\ a(z) = a(d)}} h_{w, d, z} t_z$$

is a homomorphism of A-algebra with 1 (see [L 3, II]). Let $\phi_{q_0} : H_{q_0} \to J$ be the induced homomorphism for any $q_0 \in \mathbb{C}^*$.

Any (left) J-module E gives rise, via $\phi_{q_0}: H_{q_0} \to J$, to a (left) H_{q_0} -module E_{q_0} . We denote by K(J)[resp. K(H_{q_0})] the Grothendieck group of (left) J-modules (resp. H_{q_0} -modules) of finite dimension over \mathbb{C} . The correspondence $E \to E_{q_0}$ defines a homomorphism $(\phi_{q_0})_*: K(J) \to K(H_{q_0})$.

We similarly define $K(J_c)$ for any two-sided cell c of W. Then we have $K(J) = \bigoplus_{c} K(J_c)$, where the sum is over the set of all two-sided cells of W. Now we define $K(H_{q_0})_c$. For any simple H_{q_0} -module M, we attach to M a two-sided cell c_M of W by the following two conditions:

 $C_w M \neq 0 \text{ for some } w \in c_M$ $C_w M = 0 \text{ for any } w \text{ in a two-sided cell } c \text{ with } c \leq c_M, c \neq c_M.$

Then $c_{\rm M}$ is well defined since there are only a finite number of two-sided cells in W. Let $K(H_{q_0})_c$ be the subgroup of $K(H_{q_0})$ spanned by simple H_{q_0} -modules M with $c_{\rm M} = c$. Obviously we have $K(H_{q_0}) = \bigoplus_c K(H_{q_0})_c$. Thus for a two-sided cell c of W,

 $(\phi_{q_0})_*$ induces a homomorphism

$$(\phi_{q_0})_{*,c}$$
: $K(J_c) \rightarrow K(H_{q_0})_c$.

The following result is due to Lusztig (see [L 3, III, 1.9 and 3.4]).

PROPOSITION 1.5. – The map $(\phi_{q_0})_{*,c}$ is surjective for any $q_0 \in \mathbb{C}^*$, moreover, $(\phi_{q_0})_{*,c}$ is an isomorphism when q_0 is not a root of 1 or $q_0^2 = 1$.

Now we state a conjecture.

CONJECTURE 1.6. – The map $(\phi_{q_0})_{*,c}$ is injective if $(\phi_{q_0})_{*,c'}$ is injective for some twosided cell c' of W with $c' \leq c$.

By proposition 1.6 one knows that $(\phi_{q_0})_{*,c}$ is injective is equivalent to that $(\phi_{q_0})_{*,c}$ is bijective.

We mainly discuss $(\phi_{q_0})_{*, c_0}$, where c_0 is the lowest two-sided cell of W. We prove that if $\sum_{w \in W_0} q_0^{2l(w)} \neq 0$, then $(\phi_{q_0})_{*, c_0}$ is injective (see Theorem 3.4) and show that

 $(\phi_{q_0})_{*, c_0}$ is likely not injective if $\sum_{w \in W_0} q_0^{2l(w)} = 0$ (see Theorem 3.6).

1.7. Let H'_{q_0} be the subalgebra of H_{q_0} spanned by T_w , $w \in W_0$. And let J' be the subspace of J spanned by t_w , $w \in W_0$. J' is a \mathbb{C} -algebra with unit $\sum_{d \in \mathscr{D} \cap W_0} t_d$. Let

 $\phi'_{q_0}: \mathbf{H}'_{q_0} \to \mathbf{J}'$ be defined by

$$\phi_{q_0}'(\mathbf{C}_w) = \sum_{\substack{d \in \mathscr{D} \cap \mathbf{W}_0 \\ z \in \mathbf{W}_0 \\ a(d) = a(z)}} h_{w, d, z}(q_0) t_z, \qquad w \in \mathbf{W}_0,$$

then ϕ'_{q_0} is a C-algebra homomorphism preserving 1.

As in 1.4 we define $K(H'_{q_0})$, K(J'), $K(H'_{q_0})_{c'}$, $K(J'_{c'})$, $(\phi'_{q_0})_*$, $(\phi'_{q_0})_{*,c'}$, etc., where c' is a two-sided cell of W_0 . We also have

PROPOSITION 1.8. $-(\phi'_{q_0})_{*,c'}$ is surjective for any $q_0 \in \mathbb{C}^*$. Moreover $(\phi_{q_0})_{*,c'}$ is an isomorphism when q_0 is not a root of 1 or $q_0^2 = 1$.

CONJECTURE 1.9. $-(\phi_{q_0})_{*,c'}$ is injective if $(\phi'_{q_0})_{*,c''}$ is injective for some two-sided cell c'' of W_0 with $c'' \leq c'$.

When c' is the lowest two-sided cell of W₀, it is easy to see that $(\phi'_{q_0})_{*,c'}$ is injective if and only if $\sum_{w \in W_0} q_0^{2l(w)} \neq 0$.

2. The two-side cell c_0 and the ring J_{c_0}

In this section we recall and prove some results on c_0 and J_{c_0} .

2.1. We denote by w_0 the longest element in W_0 . Let

$$\mathfrak{S} = \{ w \in \mathbf{W} | l(ww_0) = l(w) + l(w_0) \text{ and } ww_0 r \notin c_0 \text{ for any } r \in \mathbf{S} \cap \mathbf{W}_0 \}.$$

Then $\mathcal{D}_0 = \mathcal{D} \cap c_0 = \{ww_0 w^{-1} | w \in \mathfrak{S}\}$ and $|\mathfrak{S}| = |W_0|$ (see [S, II]).

 $4^{e}\,\text{série}\,-\,\text{tome}\,27\,-\,1994\,-\,\text{n}^{\circ}\,1\cdot$

Let $X^+ = \{ w \in W | l(rx) > l(x) \text{ for } \}$ any $r \in S'$, where $S' = S \cap W_0$. Let $x_i \in \mathbf{X}^+$ (i $\in \{1, 2, ..., n\} = \mathbf{I}_0$) be the *i*-th basic dominant weight, then x_i has the properties: $l(x_i r_i) < l(x_i), x_i r_i = r_i x_i, l(x_i r_i) = l(x_i) + 1$ if $i \neq j \in I_0$. We have

$$c_0 = \{ w' w_0 x w^{-1} | w, w' \in \mathfrak{S}, x \in \mathbf{X}^+ \}$$
 (see [S, II]).

Moreover $l(w'w_0xw^{-1}) = l(w') + l(w_0) + l(x) + l(w^{-1})$.

LEMMA 2.2. - Let $u \in c_0$, then $C_u = h C_{w_0} h'$ for some $h, h' \in H_{q_0}$, i.e., the two-sided ideal $\oplus \mathbb{C} C_u$ of H_{q_0} is generated by the element C_{w_0} . $u \in c_0$

Proof. - Write $u = w' w_0 w$ for some $w', w \in W$ such that $l(u) = l(w') + l(w_0) + l(w)$. We use induction on l(u) to prove that C_u is in the two-sided ideal N of H_{a_0} generated by C_{w_0} .

When $l(u) = l(w_0)$, then $C_u = C_{\omega} C_{w_0} C_{\omega'}$ for some ω , $\omega' \in \Omega$. Now assume that l(w') > 0. Let $s \in S$ be such that $sw' \leq w'$, then

$$\mathbf{C}_{s} \cdot \mathbf{C}_{su} = \mathbf{C}_{u} + \sum_{\substack{z \in c_{0} \\ l(z) < l(u)}} a_{z} \mathbf{C}_{z}, \qquad a_{z} \in \mathbb{N} \quad (see \text{ [KL 1]}).$$

By induction hypothesis we know that $C_u \in \mathbb{N}$. Similarly we can prove that $C_u \in \mathbb{N}$ if l(w) > 0. The lemma is proved.

COROLLARY 2.3. – For a simple H_{a_0} -module M, we have $c_M = c_0$ if and only if $C_{w_0} M \neq 0.$

For $w \in W$, set $L(w) = \{r \in S \mid rw \leq w\}$ and $R(w) = \{r \in S \mid wr \leq w\}$.

LEMMA 2.4. – (i) Let w' be the longest element in the Weyl group generated by L(w)(or R (w)), then w = w'w'' (or w = w''w') for some $w'' \in W$ and l(w) = (l(w') + l(w'')).

(ii) Let w' be the longest element in the Weyl group W' generated by S-L(w) [resp. S - R(w)], then l(w'w) = l(w') + l(w) [resp. l(ww') = l(w) + l(w')].

Proof. – (i) follows from $T_{w'}C_w = q^{l(w')}C_w$ or $C_wT_{w'} = q^{l(w')}C_w$.

(ii) follows from the fact that w is the shortest element in W'w or wW'.

Let Γ_0 be the left cell in c_0 containing w_0 , then

$$\Gamma_0 = \{ ww_0 x | x \in \mathbf{X}^+, w \in \mathfrak{S} \}.$$
$$= \{ w \in \mathbf{W} | \mathbf{R}(w) = \mathbf{S}' \}$$

LEMMA 2.5. – Any element $u \in \Gamma_0$ has the form wxw_J , where $w \in W_0$, $x = \prod_{i} x_i^{a_i} \in X^+$. w_{I} is the longest element in $W_{I} = \langle r_{i} | a_{i} = 0, j \in I_{0} \rangle$, moreover $l(u) = l(w) + l(x) + l(w_{I})$.

Proof. - Choose
$$x = \prod_{i=1}^{n} x_i^{a_i} \in X^+$$
 such that $u \in \Gamma_0 \cap W_0 \times W_0$.

Then the shortest element in $W_0 x W_0$ is $xw_J w_0$ and the shortest element in $\Gamma_0 \cap W_0 x W_0$ is xw_J by lemma 2.4 (i), where w_J is the longest element in $W_J = \langle r_j | a_j = 0, j \in I_0 \rangle$. The lemma is proved.

LEMMA 2.6. - (i) Let $J \subseteq K \subseteq I_0$, then in H_{q_0} we have $C_{w_J} C_{w_K} = C_{w_K} C_{w_J} = \eta_J C_{w_K}$, where w_J , w_K are the longest element in $W_J = \langle r_j | j \in J \rangle$, $W_K = \langle r_k | k \in K \rangle$, respectively, $\eta_J = q_0^{-1} (w_J) \sum_{w \in W_J} q_0^{21} (w)$.

(ii) $C_{ww_J} = h C_{w_J}, \quad C_{w_J w'} = C_{w_J} h'$ for some $h, h' \in H_{q_0}$ if $l(ww_J) = l(w) + l(w_J), l(w_J w') = l(w_J) + l(w').$

Proof. – First we prove (ii). We use induction on l(w). Assume that l(w)>0. Choose $r \in S$ such that $rw \leq w$, then

$$\mathbf{C}_{\mathbf{r}} \mathbf{C}_{\mathbf{r}_{\mathbf{w}\mathbf{w}\mathbf{j}}} = \mathbf{C}_{\mathbf{w}\mathbf{w}\mathbf{j}} + \sum_{\substack{z \in \mathbf{W} \\ l(z) < l(\mathbf{w}\mathbf{w}\mathbf{j})}} a_z \mathbf{C}_{z,} \qquad a_z \in \mathbb{N} \quad (see \text{ [KL 1]}).$$

Moreover $a_z \neq 0$ implies that $z \leq rww_J$. So $\mathbb{R}(z) \supseteq \{r_j | j \in J\}$ (see [KL 1]).

By Lemma 2.4 we see that $z=z'w_J$ for some $z' \in W$ and $l(z)=l(z')+l(w_J)$. By induction hypothesis we know that $C_{wwJ}=hC_{wJ}$ for some $h \in H_{q_0}$. Similarly we have $C_{wJw'}=C_{wJ}h'$ for some $h' \in H_{q_0}$.

(i) follows from $C_J C_J = \eta_J C_J$ and (ii).

COROLLARY 2.7. – Let x, w_J be as in 2.5, then in H_{q_0} we have

$$C_{w_0}C_{xw_J} = \eta_J \sum_{\substack{y \in X^+ \\ w_0, y \le w_0, x}} a_{x, y}C_{w_0y} \in \mathbb{C}, \quad a_{x, y} \in \mathbb{C} \quad and \quad a_{x, x} = 1.$$

Proof. – By 2.1 and 2.6(ii) we see that $C_{xw_1} = C_{w_1x} = C_{w_1}h$, where

$$h = \sum_{\substack{w \in \mathbf{W} \\ l(w_J w) = l(w_J) + l(w) \\ w_J w \le w_J x}} a_w \mathbf{T}_w, \quad a_w \in \mathbb{C}, \quad a_x = q_0^{-l(x)}.$$

By (2.6(i)) we know that

(a)
$$C_{w_0} \cdot C_{xw_J} = C_{w_0} \cdot C_{w_J} h = \eta_J C_{w_0} h$$

Note that $h_{w_0, xw_J, z} \neq 0$ implies that $z \sim xw_J$, $z \sim w_0$ (see [L3, I]), we have $z \in \Gamma_0 \cap \Gamma_0^{-1} = \{w_0 y | y \in X^+\}$. So by (a) we get

$$C_{w_0}C_{xw_j} = \eta_J \sum_{y \in X^+} a_{x,y}C_{w_0y}, \qquad a_{x,y} \in \mathbb{C}.$$

Since $a_x = q_0^{-l(x)}$ and l(w) < l(x) if $a_w \neq 0$, $w \neq x$. We have $a_{x,x} = 1$ and $a_{x,y} = 0$ if l(y) > l(x) or l(y) = l(x) but $x \neq y$. Let $w \in W$ be such that $a_w \neq 0$. Consider the expression

$$\mathbf{C}_{w_0} \cdot \mathbf{T}_w = \sum_{z^{-1} \in \Gamma_0} b_z \mathbf{C}_z, \qquad b_z \in \mathbb{C}.$$

Since $w_1 w \leq w_1 x$, we have $b_z \neq 0$ implies that $z \leq w_0 x$. Thus by (a) we know that $a_{x,y} \neq 0$ implies that $w_0 y \leq w_0 x$. The Corollary is proved.

2.8. For any $x \in X$, we choose x', $x'' \in X^+$ such that $x = x' x''^{-1}$ and then define $\tilde{T}_x = q_0^{-l(x')} T_{x'} (q_0^{-l(x'')} T_{x''})^{-1}$. \tilde{T}_x is independent of the choices x' and x''. We denote the conjugacy class of $x \in X$ in W by O_x and let $z_x = \sum_{x' \in O_x} \tilde{T}_{x'}$. z_x is in the center of

 H_{q_0} . For $x \in X^+$, denote d(x', x) the dimension of the x'-weight space $V(x)_{x'}$ of V(x), where V(x) is the irreducible representation of G with highest weight x. We set $S_x = \sum_{x' \in X^+} d(x', x) z_{x'}, x \in X^+$.

LEMMA 2.9. (see [X]). - In H_{q_0} we have $C_{w'w_0w^{-1}}S_x = S_x C_{w'w_0w^{-1}} = C_{w'w_0xw^{-1}}$ for any $w', w \in \mathfrak{S}, x \in X^+$.

LEMMA **2.10.** – Let $u \in \Gamma_0$, then

$$\mathbf{C}_{u} = \sum_{\substack{\mathbf{y} \in \mathbf{X}^{+} \\ \mathbf{I} \subseteq \mathbf{I}_{0}}} h_{\mathbf{I}, \mathbf{y}} \mathbf{C}_{\mathbf{x}_{\mathbf{I}} \mathbf{w}_{\mathbf{I}}}, \mathbf{S}_{\mathbf{y}},$$

where $h_{\mathrm{I}, y} \in \mathrm{H}'_{q_0} = \bigoplus_{w \in \mathrm{W}_0} \mathbb{C} \mathrm{T}_w = \bigoplus_{w \in \mathrm{W}_0} \mathbb{C} \mathrm{C}_w, \ x_{\mathrm{I}} = \prod_{i \in \mathrm{I}} x_i, \quad \mathrm{I}' = \mathrm{I}_0 - \mathrm{I}.$

Proof. - By 2.5 we see that $u = wxw_J$, where $w \in W_0$, $x = \prod_{i=1}^n x_i^{a_i}$, $J = \{j \in I_0 \mid a_j = 0\}$.

We use induction on l(u), when w = e, by 2.9 we see that $C_u = C_{x_j,w_j}S_y$, where $J' = I_0 - J$, $y = \prod_{j \in J'} x_j^{a_j-1}$, *i.e.* the lemma is true. Now assume that l(w) > 0 and choose $r \in S'$ such that $m_{w} \leq w$ then

that $rw \leq w$, then

$$\mathbf{C}_{r} \cdot \mathbf{C}_{rwxw_{\mathbf{J}}} = \mathbf{C}_{wxw_{\mathbf{J}}} + \sum_{\substack{z \in \Gamma_{0} \\ l(z) < l(wxw_{\mathbf{J}})}} a_{z} \mathbf{C}_{z}, \qquad a_{z} \in \mathbb{N}.$$

By induction hypothesis we know that there exists $h_{I, y} \in H'_{q_0}$ such that $C_u = \sum_{\substack{y \in X^+ \\ I \subseteq I_0}} h_{I, y} C_{x_I w_{I'}} S_y$. The lemma is proved.

2.11. Let \mathbb{R}_G be the ring of the rational representations ring of G tensor with \mathbb{C} . Then \mathbb{R}_G is a \mathbb{C} -algebra with a \mathbb{C} -basis V(x), $x \in X^+$. Let $\mathbb{M}_{\mathfrak{S} \times \mathfrak{S}}(\mathbb{R}_G)$ be the $\mathfrak{S} \times \mathfrak{S}$ matrix

ring over R_G . Then we have

THEOREM 2.12 (see [X]). – There is a natural isomorphism $J_{c_0} \xrightarrow{\sim} M_{\mathfrak{S} \times \mathfrak{S}}(\mathbf{R}_G)$ such that $t_{w'w_0xw^{-1}} \rightarrow (m_{w_1, w_2}) \in \mathbf{M}_{\mathfrak{S} \times \mathfrak{S}}(\mathbf{R}_G)$, $w', w^{-1}, w_1, w_2 \in \mathfrak{S}$,

$$m_{w_1, w_2} = \begin{cases} V(x) & \text{if } w_1 = w', \quad w_2 = w \\ 0 & \text{otherwise.} \end{cases}$$

Hereafter we identify J_{c_0} with $M_{\mathfrak{S} \times \mathfrak{S}}(\mathbf{R}_G)$.

3. The homomorphism $(\phi_{q_0})_{*, c_0}$

3.1. For any semisimple conjugacy class s in G, we have a simple representation ψ_s of $J_{c_0} \simeq M_{\mathfrak{S} \times \mathfrak{S}}(\mathbf{R}_G)$:

$$\begin{split} \psi_s \colon & M_{\mathfrak{S} \times \mathfrak{S}}(\mathbf{R}_G) \to M_{\mathfrak{S} \times \mathfrak{S}}(\mathbb{C}) \\ & (m_{w, w'}) \to (tr(s, m_{w, w'})), w, w' \in \mathfrak{S}. \end{split}$$

Any simple representation of J_{c_0} is isomorphic to some ψ_s (see [X]). Let E_s be the simple J_{c_0} -module providing the representation ψ_s . E_s gives rise, via

$$\phi_{q_0, c_0} \colon \quad \mathbf{H}_{q_0} \to \mathbf{J} \to \mathbf{J}_{c_0},$$

to an H_{q_0} -module E_{s, q_0} . Note that $\phi_{q_0, c_0}(S_x) = \sum_{w \in \mathfrak{S}} t_{ww_0 x w^{-1}}$ for any $x \in X^+$, we see that S_x acts on E_{s, q_0} by scalar tr(s, V(x)).

PROPOSITION 3.2. The set $\Lambda = \{(\phi_{q_0})_{*, c_0}(E_s) | s \text{ semisimple conjugacy class of } G \} - \{0\}$ is a base of $K(H_{q_0})_{c_0}$.

Proof. – It is easy to see that $(\phi_{q_0})_{*, c_0}(E_s) = \sum_M a_M M$, where the sum is over the set of composition factors M of E_{s, q_0} with $c_M = c_0$ and a_M is the multiplicity of M in E_{s, q_0} .

Now let $F_i = (\phi_{q_0})_{*, c_0} (E_{s_i}) \in \Lambda$, $1 \le i \le k$, and suppose that $\sum_{i=1}^k m_i F_i = 0$, $m_i \in \mathbb{Z}$. Let $F_i = \sum_{M_{ij}} a_{M_{ij}} M_{ij}$, M_{ij} simple H_{q_0} -module with $c_{M_{ij}} = c_0$. Since S_x acts on E_{s_i, q_0} by scalar $tr(s_i, V(x))$. S_x acts on M_{ij} by scalar $tr(s_i, V(x))$ if $a_{M_{ij}} \ne 0$. $F_i \in \Lambda$ implies that $a_{M_{ij}} \ne 0$ for some M_{ij} . Therefore $m_i = 0$. By 1.6 we know that $(\phi_{q_0})_{*, c_0}$ is surjective, hence Λ is a base of $K(H_{q_0})_{c_0}$. The proposition is proved.

COROLLARY **3.3.** – E_{s,q_0} has at most one composition factor to which the attached two-sided cell is c_0 . Moreover the multiplicity a_M is 1 if E_{s,q_0} has such a composition factor M.

THEOREM 3.4. - If $\sum_{w \in W_0} q_0^{2l(w)} = q_0^{l(w)} \eta_{l_0} \neq 0$, then $(\phi_{q_0})_{*, c_0}$ is injective, so $(\phi_{q_0})_{*, c_0}$ is

an isomorphism by 1.6.

Proof. – We have

$$\phi_{q_0, c_0}(\mathbf{C}_{w_0}) = \sum_{\substack{w \in \mathfrak{S} \\ x \in X^+}} h_{w_0, ww_0 w^{-1}, w_0 x w^{-1}} t_{w_0 x w^{-1}} \in \mathbf{J}_{c_0}$$

We identify J_{c_0} with $M_{\mathfrak{S}\times\mathfrak{S}}(R_G)$, then $\phi_{q_0,c_0}(C_{w_0}) = (m_{w',w}) \in M_{\mathfrak{S}\times\mathfrak{S}}(R_G)$ and

$$m_{w',w} = \begin{cases} \sum_{x \in X^+} h_{w_0, ww_0 w^{-1}, w_0 x w^{-1}} V(x), & \text{if } w' = e \\ 0 & \text{if } w' \neq e \end{cases}.$$

Note that $C_{w_0}C_{w_0} = \eta_{I_0}C_{w_0}$, we see that $m_{e,e} = \eta_{I_0} \neq 0$, where *e* is the unit in W. So $C_{w_0}E_{s,q_0}\neq 0$ for any semisimple conjugacy class *s* of G since $\psi_s\phi_{q_0,c_0}(C_{w_0})\neq 0$. Now let $0 = F_0 \subseteq F_1 \subseteq \ldots \subseteq F_k = E_{s,q_0}$ be a composition series of E_{s,q_0} and let *i* be the integer such that $C_{w_0}F_i\neq 0$ and $C_{w_0}F_{i-1}=0$. Then $C_{w_0}M\neq 0$ where $M=F_i/F_{i-1}$, otherwise, $C_{w_0}F_i\subseteq F_{i-1}$, choose $v\in F_i$ such that $C_{w_0}v\neq 0$, we have $C_{w_0}^2v=\eta_{I_0}C_{w_0}v\neq 0$. A contradiction, so $C_{w_0}M\neq 0$, *i.e.*, $c_M=c_0$. That is to say $(\phi_{q_0})_{*,c_0}(E_s)\neq 0$. The theorem follows from proposition 3.2.

3.5. In the subsequent part of this section we assume that $\eta_{I_0} = 0$, *i.e.*, $\sum_{w \in W_0} q_0^{2I(w)} = 0$.

Let $\Delta_{q_0} = \{I \subseteq I_0 | \eta_{I'} \neq 0 \text{ but } \eta_{I' \cup \{i\}} = 0 \text{ for any } i \in I\}$. Here we use the convention that I' always denotes the complement of I in I_0 *i.e.*, $I' = I_0 - I$.

THEOREM 3.6. – Let s be a semisimple conjugacy class of G, then $(\phi_{q_0})_{*,c_0}(E_s) = 0$ if and only if $\alpha_1 = 0$ for all $I \in \Delta_{a_0}$, where

$$\alpha_{\mathrm{I}} = \sum_{x \in \mathrm{X}^+} h_{w_0, x_{\mathrm{I}}, w_{\mathrm{I}'}, w_0 x} tr(s, \mathrm{V}(x)) \text{ for any } \mathrm{I} \subseteq \mathrm{I}_0.$$

We need two lemmas.

LEMMA 3.7. – The following conditions are equivalent.

- (i) $C_{w_0} E_{s, q_0} = 0.$ (ii) $\psi_s \phi_{q_0, c_0} (C_{w_0}) = 0.$ (iii) $\sum_{x \in X^+} h_{w_0, ww_0 w^{-1}, w_0 x w^{-1}} tr(s, V(x)) = 0$ for all $w \in \mathfrak{S}$.
- (iv) $\sum_{x \in \mathbf{X}^+} h_{w_0, ww_0, w_0 x} tr(s, \mathbf{V}(x)) = 0 \text{ for all } w \in \mathfrak{S}.$
- (v) $\alpha_{\mathbf{I}} = \sum_{x \in \mathbf{X}^+} h_{w_0, x_{\mathbf{I}}, w_{\mathbf{I}'}, w_0, x} tr(s, \mathbf{V}(x)) = 0 \text{ for all } \mathbf{I} \subseteq \mathbf{I}_0.$
- (vi) $\alpha_{I} = \sum_{x \in X^{+}} h_{w_{0}, x_{I}w_{I'}, w_{0}x} tr(s, V(x)) = 0 \text{ for all } I \in \Delta_{q_{0}}.$

Proof. - (i) and (ii) are obviously equivalent.

Note that $h_{w_0, ww_0w^{-1}, z} \neq 0$ implies that $z = w_0 xw^{-1}$ for some $x \in X^+$ and that $\phi_{q_0, c_0}(C_{w_0}) = (m_{w', w})$,

$$m_{w',w} = \begin{cases} \sum_{x \in X^+} h_{w_0, ww_0 w^{-1}, w_0 x w^{-1}} V(x), & \text{if } w' = e \\ 0, & \text{otherwise} \end{cases}$$

we see that (ii) \Leftrightarrow (iii).

By theorem 2.9 in [X] we have $h_{w_0, ww_0, w_0x} = h_{w_0, ww_0w^{-1}, w_0xw^{-1}}$. So we have (iii) \Leftrightarrow (iv).

By Lemma 2.4 (i) we see that $x_1 w_1 = ww_0$ for some $w \in W$. Using the method in [S] one knows that $w \in \mathfrak{S}$. Thus we have (iv) \Rightarrow (v). Now we show that (v) \Rightarrow (iv). Let $w \in \mathfrak{S}$, then $ww_0 \in \Gamma_0$, hence by 2.10

$$C_{ww_0} = \sum_{\substack{y \in X^+ \\ I \subseteq I_0}} h_{I, y} C_{x_I w_{I'}} S_y, \qquad h_{I, y} \in H'_{q_0}.$$

Since $C_{w_0} h_{I, y} = a_{I, y} C_{w_0}$ for some $a_{I, y} \in \mathbb{C}$, we have

$$\sum_{x \in \mathbf{X}^{+}} h_{w_{0}, w_{w_{0}, w_{0}x}} tr(s, \mathbf{V}(x)) = \sum_{\substack{y \in \mathbf{X}^{+} \\ 1 \leq I_{0}}} a_{I, y} \alpha_{I} tr(s, \mathbf{V}(y)) = 0.$$

Finally we prove that (v) and (vi) are equivalent.

One direction is obvious. Now assume that (vi) holds. Let $J \subseteq I_0$. We use induction on $l(x_J)$ to prove that $\alpha_J = 0$. When $\eta_{J'} = 0$ or $J \in \Delta_{q_0}$ we have $\alpha_J = 0$ by 2.7 or by (vi). Suppose $\eta_{J'} \neq 0$ and $J \notin \Delta_{q_0}$. Choose $j \in J$ such that $\eta_{J' \cup \{j\}} \neq 0$. Let $K = J - \{j\}$, then $K' = J' \cup \{j\}$. We have

$$C_{w_0} C_{x_J w_{J'}} = \frac{1}{\eta_{K'}} C_{w_0} C_{w_{K'}} C_{x_J w_{J'}} \quad (by \ 2.6)$$

= $\frac{\eta_{J'}}{\eta_{K'}} C_{w_0} (C_{w_{K'} x_{K} x_{J}} + \sum_{\substack{I \le I_0 \\ y \in X^+}} h_{I, y} C_{x_I w_{I'}} S_y), \qquad h_{I, y} \in H'_{q_0} \quad (by \ 2.6, \ 2.10).$

Let $C_{w_0}h_{I,y} = a_{I,y}C_{w_0}$, $a_{I,y} \in \mathbb{C}$. By 2.7 we see that $a_{I,y}\eta_{I'} \neq 0$ implies that $l(x_I y) < l(x_J)$. Obviously $l(x_K) < l(x_J)$. Using induction hypothesis we get

$$\alpha_{\mathbf{J}} = \frac{\eta_{\mathbf{J}'}}{\eta_{\mathbf{K}'}} \left(\alpha_{\mathbf{K}} tr\left(s, \mathbf{V}(x_j)\right) + \sum_{\substack{\mathbf{I} \subseteq \mathbf{I}_0 \\ y \in \mathbf{X}^+}} a_{\mathbf{I}, y} \alpha_{\mathbf{I}} tr\left(s, \mathbf{V}(y)\right) \right) = 0.$$

The lemma is proved.

LEMMA **3.8.** $-(\phi_{q_0})_{*,c_0}(E_s)=0$ if and only if $C_{w_0}E_{s,q_0}=0$.

Proof. - The "if" part is obvious. The "only if" part need to do a little more.

Assume that $C_{w_0}E_{s,q_0} \neq 0$. By 3.7 we see that $\alpha_I \neq 0$ for some $I \subseteq I_0$. As in [LX] we define an automorphism $\alpha: W \to W$ by

$$\alpha(wx) = w_0 wx^{-1} w_0, \qquad w \in \mathbf{W}_0, \quad x \in \mathbf{X}.$$

One verifies that α leaves stable W₀, X, S, S'. In particular, α induces a bijection $\alpha: I_0 \to I_0$ and an automorphism $\sigma: H_{q_0} \to H_{q_0}$ by defining $C_u \to C_{\alpha(u)}$, $u \in W$. Let $J = \alpha(I)$, we have $\alpha(x_I) = x_J$, $\alpha(w_{I'}) = w_{J'}$. Consider

$$\psi_s \phi_{q_0, c_0} (\mathbf{C}_{x_1^{-1} w_1}) = (n_{w', w}) \in \mathbf{M}_{\mathfrak{S} \times \mathfrak{S}} (\mathbb{C}).$$

By 2.4 and 2.12, we know that $n_{w',w} = 0$ if $w' \neq e$ and

$$n_{e,w} = \sum_{x \in \mathbf{X}^+} h_{x_{\mathbf{J}}^{-1}w_{\mathbf{J}'}, ww_0w^{-1}, w_0xw^{-1}} tr(s, \mathbf{V}(x)).$$

In particular,

$$n_{e, e} = \sum_{x \in X^{+}} h_{x_{J}^{-1} w_{J', w_{0}, w_{0}x}} tr(s, V(x)).$$

We claim that $n_{e,e} = \alpha_1$. In fact, let ι be the antiautomorphism of H_{q_0} defined by $C_u \to C_{u^{-1}}, u \in W$. Apply ι to the equality

$$C_{w_0} C_{x_1 w_{1'}} = \sum_{x \in X^+} h_{w_0, x_1 w_{1'}, w_0 x} C_{w_0 x}.$$

We get

$$C_{x_{I}^{-1}w_{I'}}C_{w_{0}} = \sum_{x \in X^{+}} h_{w_{0}, x_{I}w_{I'}, w_{0}x}C_{x^{-1}w_{0}}.$$

Apply σ to the above identity we obtain

$$C_{x_{J}^{-1} w_{J'}} C_{w_{0}} = \sum_{x \in X^{+}} h_{w_{0}, x_{I} w_{I'}, w_{0} x} C_{w_{0} x}.$$

Therefore $h_{x_{1}^{-1} w_{1', w_{0}, w_{0}x}} = h_{w_{0}, w_{1}w_{1', w_{0}x}}$ and $n_{e, e} = \alpha_{I} \neq 0$. By this and $n_{w', w} = 0$ if $w' \neq e$ we see that α_{I} is an eigenvalue of $\psi_{s} \phi_{q_{0}, c_{0}}(C_{x_{1}^{-1} w_{1'}})$. Let $0 \neq v \in E_{s, q_{0}}$ be such that $C_{x_{1}^{-1} w_{1'}} v = \alpha_{I} v$. Let F be the $H_{q_{0}}$ -submodule of $E_{s, q_{0}}$ generated by v. Then F has a maximal $H_{q_{0}}$ -submodule F₀ which doesn't contain v. F/F₀ is an irreducible $H_{q_{0}}$ -module. Moreover $C_{x_{1}^{-1} w_{1'}}(F/F_{0}) \neq 0$ since $v \notin F_{0}$. We have proved that $(\phi_{q_{0}})_{*, c_{0}}(E_{s}) \neq 0$.

Theorem 3.6 follows from 3.7 and 3.8.

3.9. There are two special cases. One is that $\eta_{I_0} = 0$ but $\eta_I \neq 0$ for any proper subset I of I₀. In this case we have $\Delta_{q_0} = \{\{i\} | i \in I_0\}$. Let $i' = I - \{i\}$. By 2.7 we have $h_{w_0, x_i w_{i'}, w_0 x} = \eta_{i'} a_{i, x}$ for some $a_{i, x} \in \mathbb{C}$. Moreover, $a_{i, x} \neq 0$ implies that $w_0 x \leq w_0 x_i$ and $a_{i, x_i} = 1$. By this we see that the equation system

$$\alpha_{\{i\}} = \eta_{i'} \sum_{\substack{x \in \mathbf{X}^+ \\ w_0 x \leq w_0 x_i}} a_{i,x} tr(s, \mathbf{V}(x)) = 0, \qquad i \in \mathbf{I}_0$$

uniquely determines $tr(s, V(x_i))$, $i \in I_0$. In other words, there exists a unique semisimple conjugacy class s of G such that $\alpha_{(i)} = 0$ for all $i \in I_0$. By 3.6 we have got the following.

PROPOSITION. – There exists a unique semisimple conjugacy class s of G such that $(\phi_{q_0})_{*,c_0}(E_s) = 0$ when $\eta_{I_0} = 0$ but $\eta_I \neq 0$ for any proper subset I of I_0 .

When W is of type \tilde{A}_n . We can determine the semisimple conjugacy class s in the proposition explicitly. We have $a_{i,x}=0$ if $x \neq x_i$ since x_i is a minimal dominant weight for any $i \in I_0$. So $\alpha_{\{i\}} = \eta_i \cdot tr(s, V(x_i))$. Let T be the diagonal subgroup of $G = SL_{n+1}(\mathbb{C})$. We may require that $x_i \in Hom(T, \mathbb{C}^*)$ is defined by $x_i(t) = t_1 t_2 \dots t_i$ where $t = \text{diag}(t_1, t_2, \dots, t_{n+1}) \in T$. Thus, we have

$$tr(s, \mathbf{V}(x_i) = \sum_{\substack{j_a \in \mathbf{I}_0 \cup \{n+1\}\\ j_a \neq j_b \text{ if } a \neq b}} t_{j_1} t_{j_2} \dots t_{j_i}.$$

where $t = \text{diag}(t_1, t_2, \ldots, t_{n+1}) \in s \cap T$, s a semisimple conjugacy class of G. Hence, $tr(s, V(x_i)) = 0, 1 \leq i \leq n$ is equivalent to that $t_i (1 \leq i \leq n+1)$ is the solution of the equation $\lambda^{n+1} + (-1)^{n+1} = 0$. So if $\eta_{I_0} = 0$ but $\eta_I \neq 0$ for any proper subset I of I_0 , $(\phi_{q_0})_{*, c_0}(E_s) = 0$ if and only if the eigenpolynomial of s is $\lambda^{n+1} + (-1)^{n+1}$.

Another special case is that $q_0 + q_0^{-1} = 0$. In this case $\Delta_{q_0} = \{I_0\}$. So $(\phi_{q_0})_{*, c_0}(E_s) = 0$ if and only if $\alpha_{I_0} = 0$. If we identify the set {semisimple conjugacy classes of G} with \mathbb{C}^n through the bijection

$$s \rightarrow (tr(s, V(x_1)), tr(s, V(x_2)), \ldots, tr(s, V(x_n))),$$

then $\alpha_{I_0} = 0$ defines a hypersurface in \mathbb{C}^n . That is to say, the set {semisimple conjugacy class s of G | $(\phi_{q_0})_{*, c_0}(E_s) = 0$ } is a variety of dimension n-1.

When W_0 is of rank 2, if $\eta_{I_0} = 0$, then either $\eta_I \neq 0$ for any proper subset $I \subseteq I_0$ or $q_0 + q_0^{-1} = 0$. The above discussion shows that $(\phi_{q_0})_{*, c_0}$ is an isomorphism if and only if $\eta_{I_0} \neq 0$.

3.10. In general it is difficult to compute $C_{w_0}C_{x_1w_1}$ in H. Now we compute it for the simplest case: x_1 is the highest short root.

When $x_I \in X^+$ is the highest short root, $x_I w_{I'} = r_0 w_0$, and $w_0 x \le w_0 x_I$, $x \in X^+$ implies that x = e or x_I . So by 2.7, in H we have

$$C_{w_0}C_{r_0w_0} = C_{w_0}C_{x_1w_{1'}} = \sigma_{I'}(C_{w_0x_1} + aC_{w_0}),$$

where $\sigma_{I'} \in A = \mathbb{C}[q, q^{-1}]$ is determined by $C_{w_{I'}}C_{w_{I'}} = \sigma_{I'}C_{w_{I'}}$, $a \in A$. We need to determine the coefficient a. Comparing the coefficient of T_e in both sides we get

$$q^{-l(w_0)-1} \sigma_{I_0} = q^{-l(w_0w_I)} \sigma_{I'} P_{e,w_0x_I}(q^2) + aq^{-l(w_0)} \sigma_{I'}.$$

i.e.

(a)
$$\sigma_{I_0} = q^{1-l(x_I)} \sigma_{I'} P_{w_0, w_0 w_I}(q^2) + aq \sigma_{I'}.$$

Using the formula 8.10 in [L 2] we get the following

PROPOSITION 3.11. – If x_1 is the highest short weight, then

$$\mathbf{P}_{\mathbf{w}_{0}, \mathbf{w}_{0}\mathbf{x}_{1}} = \begin{cases} \sum_{i=1}^{n} q^{e_{i-1}} & \text{for type } \tilde{\mathbf{A}}_{n}, \tilde{\mathbf{D}}_{n}, \tilde{\mathbf{E}}_{n}. \\ 1 & \text{for type } \tilde{\mathbf{C}}_{n}, \tilde{\mathbf{G}}_{2}. \\ \frac{q^{2(n-1)}-1}{q^{2}-1} & \text{for type } \tilde{\mathbf{B}}_{n}. \\ q^{4}+1 & \text{for type } \tilde{\mathbf{F}}_{4}. \end{cases}$$

where e_1, \ldots, e_n are the exponents of W_0 .

By the proposition and 3.10(a) we obtain the following

PROPOSITION 3.12. - In H we have

$$C_{w_0} C_{r_0 w_0} = C_{w_0} C_{x_I w_{I'}} = \sigma_{I'} C_{w_0 x_I} + \frac{\sigma_{I_0}}{[e_n + 1]} [e_n] C_{w_0},$$

where e_n is the largest exponent of W_0 and $[i] = (q^i - q^{-i})/(q - q^{-1})$ for any $i \in \mathbb{N}$.

3.13. When W is of type \tilde{A}_n , the highest short weight is $x_1 x_n$.

$$\eta_{I_0} = [2]_{q_0} [3]_{q_0} \dots [n+1]_{q_0},$$

where $[i]_{q_0}$ is the specialization at $q_0 \in \mathbb{C}^*$ of [i]. By 3.12, in H_{q_0} we have

$$C_{w_0}C_{r_0w_0} = [2]_{q_0}[3]_{q_0} \dots [n-1]_{q_0}(C_{w_0x_1x_n} + [n]_{q_0}^2C_{w_0}).$$

Now suppose $[n]_{q_0} = 0$ but $[i]_{q_0} \neq 0$ for $i, 1 \leq i \leq n-1$, then $\Delta_{q_0} = \{\{1, n\}, \{2\}, \{3\}, \ldots, \{n-1\}\}$. By 3.9 and 3.12 we see that $\alpha_1 = 0, I \in \Delta_{q_0}$ is equivalent to $tr(s, V(x_1x_n)) = 0, tr(s, V(x_i)) = 0, 2 \leq i \leq n-1$. Note that $tr(s, V(x_1x_n)) = tr(s, V(x_1)) tr(s, V(x_n)) - 1$, by 3.9, we know that $\alpha_1 = 0, I \in \Delta_{q_0}$ if and only if the eigenpolynomial of s has the form $\lambda^{n+1} - a\lambda^n + (-1)^n a^{-1}\lambda + (-1)^{n+1}, a \in \mathbb{C}^*$. In other words, if $[n]_{q_0} = 0, [i]_{q_0} \neq 0, 1 \leq i \leq n-1$, then $(\phi_{q_0})_{*, c_0} (E_s) = 0$ if and only if the eigenpolynomial of s has the form $\lambda^{n+1} - a\lambda^n + (-1)^n a^{-1}\lambda + (-1)^{n+1}, a \in \mathbb{C}^*$.

4. Examples

4.1. Type \tilde{A}_1 . In this case $G = SL_2(\mathbb{C})$, $S = \{r_0, r_1\}$, $x_1 = r_0 \omega$, $\Omega = \{e, \omega\}$, $\eta_{l_0} = q_0 + q_0^{-1}$. $c_0 = \{w \in W | l(w) > 0\}$. Another two-sided cell c of W is Ω .

 J_c has two irreducible modules F_0 , F_1 . Both have dimension 1 and t_{ω} acts on F_i by scalar $(-1)^i$, i=0, 1. Via, $\phi_{q_0, c}: H_{q_0} \rightarrow J \rightarrow J_c$, F_i becomes H_{q_0} -module F_{i, q_0} . T_{ω} acts on F_{i, q_0} . by scalar $(-1)^i$ and T_{r_i} acts on F_{i, q_0} . by scalar -1. $(\phi_{q_0})_{*, c}$ is an isomorphism for any $q_0 \in \mathbb{C}^*$.

For c_0 , we have $J_{c_0} = M_{2 \times 2}(R_G)$ and

$$\phi_{q_0, c_0}(\mathbf{C}_{r_1}) = \begin{pmatrix} \eta_{\mathbf{I}_0} & \mathbf{V}(x_1) \\ 0 & 0 \end{pmatrix}$$
$$\phi_{q_0, c_0}(\mathbf{C}_{r_0}) = \begin{pmatrix} 0 & 0 \\ \mathbf{V}(x_1) & \eta_{\mathbf{I}_0} \end{pmatrix}$$
$$\phi_{q_0, c_0}(\mathbf{C}_{\omega}) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Suppose that $\eta_{I_0} \neq 0$. Let *s* be the semisimple conjugacy class of G containing $\begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix} \in G$, then E_{s, q_0} is irreducible if and only if $\eta_{I_0} \neq \pm (t+t^{-1})$. When $\eta_{I_0} = \pm (t+t^{-1})$, $E_{s, q_0}/F_{i, q_0} \simeq M_{s, q_0}$, where i=0 if $\eta_{I_0} = -(t+t^{-1})$ and i=1 if $\eta_{I_0} = t+t^{-1}$. T_w acts on M_{s, q_0} by scalar $(-1)^{i-1}$ and T_{r_i} acts on M_{s, q_0} by scalar q_0^2 . $(\phi_{q_0})_{*, c} (E_s) = E_{s, q_0}$ if $\eta_{I_0} \neq \pm (t+t^{-1})$. In particular, when $\eta_{I_0} \neq 0$, $(\phi_{q_0})_{*}$ is an isomorphism.

When $\eta_{I_0} = 0$, one verifies that E_{s, q_0} is irreducible if $t + t^{-1} \neq 0$ and $E_{s, q_0} = F_{0, q_0} \oplus F_{1, q_0}$ if $t + t^{-1} = 0$. In particular rank ker $(\phi_{q_0})_* = 1$.

4.2. Type \tilde{A}_2 . In this case we have $G = SL_3(\mathbb{C})$, $S = \{r_0, r_1, r_2\}$, $\Omega = \{1, \omega, \omega^2\}$ and $\omega r_0 = r_1 \omega$, $\omega r_1 = r_2 \omega$, $\omega r_2 = r_0 \omega$, $x_1 = r_0 r_2 \omega$, $x_2 = r_0 r_1 \omega^2$. W has three two-sided cells: $c = \Omega$, c_0 , $c' = W - c \cup c_0$. c' is the two-sided cell of W containing r_0 , r_1 , r_2 .

It is obviously $(\phi_{q_0})_{*,c}$ is an isomorphism.

Now consider $J_{c'}$. Any element in c' has one of the following forms: $\omega^i r_1 x_1^a \omega^j$, $\omega^{i+1} x_1^a \omega^j$, $\omega^{i+2} r_2 x_2^a \omega^{j+1}$, $\omega^{i+1} x_2^a \omega^{j+1}$, i, j=0, 1, 2. We define a \mathbb{C} -linear map θ : $J_{c'} \to M_{3\times 3}(A)$, $A = \mathbb{C}[q, q^{-1}]$, by $\theta(t_w) = (\mathcal{M}_{ab}) \in M_{3\times 3}(A)$, $w \in c'$. Assume that w is of one of the above forms, then $m_{ab} = 0$ except (a, b) = (i+1, j+1) and

$$m_{i+1, j+1} = \begin{cases} q^{2a} & \text{if } w = \omega^{i} r_{1} x_{1}^{a} \omega^{j} \\ q^{2a-1} & \text{if } w = \omega^{i+1} x_{1}^{a} \omega^{j} \\ q^{-2a} & \text{if } w = \omega^{i+2} r_{2} x_{2}^{a} \omega^{j+1} \\ q^{-2a+1} & \text{if } w = \omega^{i+1} x_{2}^{a} \omega^{j+1}. \end{cases}$$

By [L 1, 3.8] we know that θ is a C-algebra isomorphism. We have

$$\theta \phi_{q_0,c'}(\mathbf{C}_{r_1}) = \begin{pmatrix} [2]_{q_0} & q^{-1} & q \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$\theta \phi_{q_0,c'}(\mathbf{C}_{\omega}) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

Specialize q to $a \in \mathbb{C}^*$, we get a simple representation ψ_a of $J_{c'} = M_{3 \times 3}(A)$ and any simple representation of $J_{c'}$ is isomorphic to some ψ_a , $a \in \mathbb{C}^*$. Let E_a be a simple $J_{c'}$ -module providing ψ_a .

A little surprisingly, the homomorphism $(\phi_{q_0})_{*,c'} : K(J_{c'}) \to K(H_{q_0})_{c'}$, is an isomorphism for any $q_0 \in \mathbb{C}^*$. In fact, via $\phi_{q_0,c'} : H_{q_0} \to J \to J_{c'}$, E_a gives rise to an H_{q_0} -module E_{a,q_0} . One verifies that E_{a,q_0} has a unique quotient M_{a,q_0} such that the attached two-sided cell is c' and $(\phi_{q_0})_{*,c'}(E_a) = M_{a,q_0}$, moreover, M_{a,q_0} is not isomorphic to M_{b,q_0} whenever $a \neq b$.

When $\eta_{I_0} = [2]_{q_0}[3]_{q_0} \neq 0$, $(\phi_{q_0})_{*,c_0}$ is an isomorphism by 3.4. So $(\phi_{q_0})_{*}$ is an isomorphism. When $[3]_{q_0} = 0$, by 3.9 we see that $(\phi_{q_0})_{*,c_0}(E_s) = 0$ if and only if

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix} \in s,$$

here we regard ω as a 3-th primitive root of 1 in \mathbb{C} . When $[2]_{q_0} = q_0 + q_0^{-1} = 0$, by 3.13 we see that $(\phi_{\omega_0})_{*, c_0}(\mathbf{E}_s) = 0$ if and only if the eigenpolynomial of s has the form $\lambda^3 - a\lambda^2 + a^{-1}\lambda - 1$, $a \in \mathbb{C}^*$.

REFERENCES

- [IH] N. IWAHORI and H. MATSUMOTO, On Some Bruhat Decomposition and the structure of the Hecke Ring of p-Adic Chevalley Groups (Publ. math. IHES, Vol. 25, 1965, pp. 237-280).
- [KL1] D. KAZHDAN and G. LUSZTIG, Representations of Coxeter Groups and Hecke algebras (Inventiones Math., Vol. 53, 1979, pp. 165-184).
- [KL2] D. KAZHDAN and G. LUSZTIG, Proof of the Deligne-Langlands Conjecture for Hecke Algebra (Inventiones Math., Vol. 87, 1987, pp. 153-215).
- [L 1] G. LUSZTIG, Some Examples on Square Integrable Representations of Semisimple p-Adic Groups (Trans. of the AMS, Vol. 277, 1983, pp. 623-653).
- [L 2] G. LUSZTIG, Singularities, Character Formulas, and a q-analog of Weight Multiplicities, in Analyse et Topologie sur les Espaces Singuliers (II-III) (Astérisque, Vol. 101-102, 1983, pp. 208-227).
- [L 3] G. LUSZTIG, Cells in affine Weyl groups, I-IV, in Algebraic Groups and Related Topics, pp. 255-287. Adv. Studies in Pure Math., Vol. 6, North Holland, Amsterdam, 1985; J. Algebra, Vol. 109, 1987, pp. 536-548; J. Fac. Sci. Univ. Tokyo Sect. IA Math., Vol. 34, 1987, pp. 223-243, Vol. 36, 1989, No. 2, pp. 297-328.
- [LX] G. LUSZTIG and N. XI, Canonical Left Cells in Affine Weyl Groups (Adv. in Math., Vol. 72, 1988, pp. 284-288).
- [S] J.-Y. SHI, A Two-Sided Cell in an Affine Weyl Group, I, II (J. London Math. Soc., (2), Vol. 36, 1987, pp. 407-420; Vol. 37, 1988, pp. 253-264.
- [X] N. XI, The Based Ring of the Lowest Two-Sided Cell of an Affine Weyl Group (J. Algebra, Vol. 134, 1990, pp. 356-368).

(Manuscript received June 11, 1992.)

N. XI, Institute for Advanced Study, School of Mathematics Princeton, NJ 08540. Permanent address: Institute of Mathematics, Academia Sinica, Beijing 100080, China.