Annales scientifiques de l’é.n.S.

NANHUA XI
The based ring of the lowest two-sided cell of an affine Weyl group. II

Annales scientifiques de l'É.N.S. 4^{e} série, tome 27, nº 1 (1994), p. 47-61
http://www.numdam.org/item?id=ASENS_1994_4_27_1_47_0

Abstract

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1994, tous droits réservés. L'accès aux archives de la revue «Annales scientifiques de l'É.N.S. » (http://www. elsevier.com/locate/ansens) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

THE BASED RING OF THE LOWEST TWO-SIDED CELL OF AN AFFINE WEYL GROUP, II

By Nanhua XI (${ }^{1}$)

Abstract

We show that the lowest based ring of an affine Weyl group W is very interesting to understand some simple representations of the corresponding Hecke algebra $\mathrm{H}_{q_{0}}\left(q_{0} \in \mathbb{C}^{*}\right)$ even when q_{0} is a root of 1 .

Let $\mathrm{H}_{q_{0}}$ be the Hecke algebra (over \mathbb{C}) attached by Iwahori and Matsumoto [IM] to an affine Weyl group W and to a parameter $q_{0}^{2} \in \mathbb{C}^{*}$.

When q_{0} is not a root of 1 or $q_{0}^{2}=1$, the simple $\mathrm{H}_{q_{0}}$-modules have been classified (see [KL 2]). However we know little about the simple $\mathrm{H}_{q_{0}}$-modules when q_{0} is a root of 1 . In this paper we give some discussion to the representations of $\mathrm{H}_{q_{0}}$ with q_{0} a root of 1. Namely, let J be the asymptotic Hecke algebra defined in [L 3, III]. There exists a natural injection $\phi_{q_{0}}: \mathrm{H}_{q_{0}} \rightarrow \mathrm{~J}$. Let $\mathrm{K}(\mathrm{J})$ [resp. $\mathrm{K}\left(\mathrm{H}_{q_{0}}\right)$] be the Grothendieck group of J-modules (resp. $\mathrm{H}_{q_{0}}$-modules) of finite dimension over \mathbb{C}, then $\phi_{q_{0}}$ induces a surjective homomorphism $\left(\phi_{q_{0}}\right)_{*}: \mathrm{K}(\mathrm{J}) \rightarrow \mathrm{K}\left(\mathrm{H}_{q_{0}}\right)$, when q_{0} is not a root of 1 or $q_{0}^{2}=1$, $\left(\phi_{q_{0}}\right)_{*}$ is an isomorphism (loc. cit.). For each two-sided cell c of W , we can define the direct summand $\mathrm{K}\left(\mathrm{J}_{c}\right)$ [resp. $\left.\mathrm{K}\left(\mathrm{H}_{q_{0}}\right)_{c}\right]$ of $\mathrm{K}(\mathrm{J})$ [resp. $\mathrm{K}\left(\mathrm{H}_{q_{0}}\right)$]. Thus $\left(\phi_{q_{0}}\right)_{*}$ induces a homomorphism $\left(\phi_{q_{0}}\right)_{*, c}: \mathrm{K}\left(\mathrm{J}_{c}\right) \rightarrow \mathrm{K}\left(\mathrm{H}_{q_{0}}\right)_{c}$. The map $\left(\phi_{q_{0}}\right)_{*, c}$ remains surjective and is an isomorphism if q_{0} is not a root of 1 or $q_{0}^{2}=1$. In this paper we mainly discuss the map $\left(\phi_{q_{0}}\right)_{*, c_{0}}$, where c_{0} is the lowest two-sided cell of W .

1. Introduction

1.1. Let G be a simply connected, almost simple complex algebraic group and T a maximal torus. Let $\mathrm{P} \subseteq \mathrm{X}=\operatorname{Hom}\left(\mathrm{T}, \mathbb{C}^{*}\right)$ be the root lattice. The Weyl group $\mathrm{W}_{0}=\mathrm{N}_{\mathrm{G}}(\mathrm{T}) / \mathrm{T}$ of G acts on X in a natural way and this action is stable on P . Thus we can form the affine Weyl group $\mathrm{W}_{a}=\mathrm{W}_{0} \times \mathrm{P}$, which is a normal subgroup of the extended affine Weyl group $\mathrm{W}=\mathrm{W}_{0} \times \mathrm{X}$. There exists a finite abelian subgroup Ω of W such that $\mathrm{W}=\Omega \times \mathrm{W}_{a}$. Let $\mathrm{S}=\left\{r_{0}, r_{1}, \ldots, r_{n}\right\}$ be the set of simple reflections of W_{a} with $r_{0} \notin \mathrm{~W}_{0}$. Then we have a standard length function l on W_{a} which can be extended

[^0]to W by defining $l(\omega w)=l(w)$ for any $\omega \in \Omega, w \in \mathrm{~W}_{a}$. We keep the same notation for the extension of l.
1.2. For any $u=\omega_{1} u_{1}, w=\omega_{2} w_{1}, \omega_{1}, \omega_{2} \in \Omega, u_{1}, w_{1} \in \mathrm{~W}_{a}$, we define $\mathrm{P}_{u, w}$ to be $\mathrm{P}_{u_{1}, w_{1}}$, as in [KL 1] if $\omega_{1}=\omega_{2}$ and $\mathrm{P}_{u, w}$ to be zero if $\omega_{1} \neq \omega_{2}$. -We say that $\underset{\mathbf{L R}}{u \leqq} w$ or $u \underset{\mathbf{L}}{\leqq} w$ if $u_{1} \leqq w_{\mathbf{L R}} w_{1}$, or $u_{1} \leqq w_{\mathbf{L}}$ in the sense of [KL 1], we say that $u \underset{\mathbf{R}}{\leqq} w$ if $u^{-1} \leqq w^{-1}$. These relations generate equivalence relations $\underset{\text { LR }}{\sim} \underset{\mathrm{L}}{\sim} \underset{\mathrm{R}}{\sim}$ in W , respectively, and the corresponding equivalence classes are called two-sided cells, left cells, right cells of W, respectively. The relation $\underset{\mathbf{L R}}{\leqq}($ resp. $\underset{\mathbf{L}}{\leqq}, \underset{\mathbf{R}}{\leqq})$ in W then induces a partial order $\underset{\mathbf{L R}}{\leqq}($ resp. $\underset{\mathbf{L}}{\leqq} \underset{\mathbf{R}}{\leqq})$ in the set of two-sided (resp. left, right) cells of W . We extend the Bruhat order \leqq in W_{a} to W by defining $u \leqq w$ if and only if $\omega_{1}=\omega_{2}$ and $u_{1} \leqq w_{1}$.

Let q be an indeterminate and let $\mathrm{A}=\mathbb{C}\left[q, q^{-1}\right]$. Let H be the Hecke algebra of W over A, that is a free A-module with basis $\mathrm{T}_{w}(w \in \mathrm{~W})$ and multiplication defined by

$$
\left(\mathrm{T}_{r}-q^{2}\right)\left(\mathrm{T}_{r}+1\right)=0 \quad \text { if } r \in \mathrm{~S} \quad \text { and } \quad \mathrm{T}_{w} \mathrm{~T}_{w^{\prime}}=\mathrm{T}_{w w^{\prime}} \quad \text { if } l\left(w w^{\prime}\right)=l(w)+l\left(w^{\prime}\right)
$$

For each $w \in \mathbf{W}$, let

$$
\mathrm{C}_{w}=q^{-l(w)} \sum_{u \leqq w} \mathrm{P}_{u, w}\left(q^{2}\right) \mathrm{T}_{u} \in \mathrm{H}
$$

And we write

$$
\mathrm{C}_{w} \mathrm{C}_{u}=\sum_{z} h_{w, u, z} \mathrm{C}_{z} \in \mathrm{H}, \quad h_{w, u, z} \in \mathrm{~A}
$$

For each $z \in \mathrm{~W}$, there is a well defined integer $a(z) \geqq 0$ such that

$$
\begin{array}{cl}
q^{a(z)} h_{w, u, z} \in \mathbb{C}[q] & \text { for all } w, u \in \mathrm{~W} \\
q^{a(z)-1} h_{w, u, z} \notin \mathbb{C}[q] & \text { for some } w, u \in \mathrm{~W}
\end{array}
$$

(see [L 3, I, 7.3]). We have $a(z) \leqq l\left(w_{0}\right)$, where w_{0} is the longest element of W_{0}. It is known that

$$
c_{0}=\left\{w \in \mathrm{~W} \mid a(w)=l\left(w_{0}\right)\right\}
$$

is a two-sided cell of W (see $[\mathrm{S}, \mathrm{I}]$) which is the lowest one for the partial order $\underset{\mathrm{LR}}{\leqq}$.
1.3. Let $\gamma_{w, u, z}$ be the constant term of $q^{a(z)} h_{w, u, z} \in \mathbb{C}[q]$. We have $\gamma_{w, u, z} \in \mathbb{N}$. Moreover (see [L 3, II])
(a)

$$
\gamma_{w, u, z} \neq 0 \Rightarrow \underset{\mathrm{~L}}{w \sim u^{-1}}, \underset{\mathrm{~L}}{u \sim z,} \underset{\mathrm{R}}{w \sim z .}
$$

Let \mathbf{J} be the \mathbb{C}-vector space with basis $\left(t_{w}\right)_{w \in \mathbf{w}}$. This is an associative \mathbb{C}-algebra with multiplication

$$
t_{w} t_{u}=\sum_{z} \gamma_{w, u, z} t_{z}
$$

It has a unit element $1=\sum_{d \in \mathscr{D}} t_{d}$, where $\mathscr{D}=\left\{d \in \mathrm{~W}_{a} \mid a(d)=l(d)-2 \operatorname{deg} \mathrm{P}_{e, d}\right\}$ (e is the unit of W) (see [L 3, II]).

For each two-sided cell c of W , let \mathbf{J}_{c} be the subspace of J spanned by $t_{w}, w \in c$, then $\mathbf{J}=\oplus \mathbf{J}_{c}$, where the sum is over the set of all two-sided cells of \mathbf{W}. By (a) we see that \mathbf{J}_{c} is a two-sided ideal of J and in fact is an associative \mathbb{C}-algebra with unit $\sum_{d \in \mathscr{D} \cap c} t_{d}$.
1.4. For each $q_{0} \in \mathbb{C}^{*}$, we denote $\mathrm{H}_{q_{0}}=\mathrm{H} \otimes_{\mathrm{A}} \mathbb{C}$, where \mathbb{C} is an A-algebra with q acting as scalar multiplication by q_{0}. We shall denote $\mathrm{T}_{w} \otimes 1, \mathrm{C}_{w} \otimes 1$ in $\mathrm{H}_{q_{0}}$ again by $\mathrm{T}_{w}, \mathrm{C}_{w}$. We also use the notation $h_{w, u, z}$ for the specialization at $q_{0} \in \mathbb{C}^{*}$ of $h_{w, u, z}$.

The A-linear map $\phi: H \rightarrow \mathbf{J} \otimes_{\mathbb{C}} \mathbf{A}$ defined by

$$
\phi\left(\mathrm{C}_{w}\right)=\sum_{\substack{d \in \mathscr{A} \\ z \in \mathbb{W} \\ a(z)=a(d)}} h_{w, d, z} t_{z}
$$

is a homomorphism of A-algebra with 1 (see [L3, II]). Let $\phi_{q 0}: \mathrm{H}_{q 0} \rightarrow \mathrm{~J}$ be the induced homomorphism for any $q_{0} \in \mathbb{C}^{*}$.

Any (left) J-module E gives rise, via $\phi_{q_{0}}: \mathrm{H}_{q_{0}} \rightarrow \mathrm{~J}$, to a (left) $\mathrm{H}_{q_{0}}$-module $\mathrm{E}_{q_{0}}$. We denote by $\mathrm{K}(\mathrm{J})$ [resp. $\left.\mathrm{K}\left(\mathrm{H}_{q_{0}}\right)\right]$ the Grothendieck group of (left) J-modules (resp. $\mathrm{H}_{q_{0}}$-modules) of finite dimension over \mathbb{C}. The correspondence $\mathrm{E} \rightarrow \mathrm{E}_{q 0}$ defines a homo$\operatorname{morphism}\left(\phi_{q_{0}}\right)_{*}: \mathrm{K}(\mathrm{J}) \rightarrow \mathrm{K}\left(\mathrm{H}_{q_{0}}\right)$.

We similarly define $\mathrm{K}\left(\mathrm{J}_{c}\right)$ for any two-sided cell c of W . Then we have $K(J)=\oplus K\left(J_{c}\right)$, where the sum is over the set of all two-sided cells of W. Now we define $\mathrm{K}\left(\mathrm{H}_{q_{0}}\right)_{c}$. For any simple $\mathrm{H}_{q_{0}}$-module M , we attach to M a two-sided cell c_{M} of W by the following two conditions:

$$
\begin{gathered}
\mathrm{C}_{w} \mathrm{M} \neq 0 \text { for some } w \in c_{\mathrm{M}} \\
\mathrm{C}_{w} \mathrm{M}=0 \text { for any } w \text { in a two-sided cell } c \text { with } c \leqq c_{\mathrm{M}}, c \neq c_{\mathrm{M}} .
\end{gathered}
$$

Then c_{M} is well defined since there are only a finite number of two-sided cells in W . Let $\mathrm{K}\left(\mathrm{H}_{q_{0}}\right)_{c}$ be the subgroup of $\mathrm{K}\left(\mathrm{H}_{q_{0}}\right)$ spanned by simple $\mathrm{H}_{q_{0}}$-modules M with $c_{\mathrm{M}}=c$. Obviously we have $\mathrm{K}\left(\mathrm{H}_{q_{0}}\right)=\underset{c}{\oplus} \mathrm{~K}\left(\mathrm{H}_{q_{0}}\right)_{c}$. Thus for a two-sided cell c of W , $\left(\phi_{q_{0}}\right)_{*}$ induces a homomorphism

$$
\left(\phi_{q_{0}}\right)_{*, c}: \quad \mathrm{K}\left(\mathbf{J}_{c}\right) \rightarrow \mathrm{K}\left(\mathrm{H}_{q_{0}}\right)_{c} .
$$

The following result is due to Lusztig (see [L 3, III, 1.9 and 3.4]).
Proposition 1.5. - The map $\left(\phi_{q_{0}}\right)_{*, c}$ is surjective for any $q_{0} \in \mathbb{C}^{*}$, moreover, $\left(\phi_{q_{0}}\right)_{*, c}$ is an isomorphism when q_{0} is not a root of 1 or $q_{0}^{2}=1$.

Now we state a conjecture.
Conjecture 1.6. - The map $\left(\phi_{q_{0}}\right)_{*, c}$ is injective if $\left(\phi_{q_{0}}\right)_{*, c^{\prime}}$ is injective for some twosided cell c^{\prime} of W with $c^{\prime} \underset{\mathrm{LR}}{\leqq} c$.

By proposition 1.6 one knows that $\left(\phi_{q_{0}}\right)_{*, c}$ is injective is equivalent to that $\left(\phi_{q_{0}}\right)_{*, c}$ is bijective.

We mainly discuss $\left(\phi_{q_{0}}\right)_{*, c_{0}}$, where c_{0} is the lowest two-sided cell of W . We prove that if $\sum_{w \in \mathbf{W}_{0}} q_{0}^{2 l(w)} \neq 0$, then $\left(\phi_{q_{0}}\right)_{*, c_{0}}$ is injective (see Theorem 3.4) and show that $\left(\phi_{q_{0}}\right)_{*, c_{0}}$ is likely not injective if $\sum_{w \in \mathrm{w}_{0}} q_{0}^{2 l(w)}=0$ (see Theorem 3.6).
1.7. Let $\mathrm{H}_{q_{0}}^{\prime}$ be the subalgebra of $\mathrm{H}_{q_{0}}$ spanned by $\mathrm{T}_{w}, w \in \mathrm{~W}_{0}$. And let J^{\prime} be the subspace of J spanned by $t_{w}, w \in \mathrm{~W}_{0} . \quad \mathrm{J}^{\prime}$ is a \mathbb{C}-algebra with unit $\sum_{d \in \mathscr{D} \cap \mathrm{~W}_{0}} t_{d}$. Let $\phi_{q_{0}}^{\prime}: \mathrm{H}_{q_{0}}^{\prime} \rightarrow \mathrm{J}^{\prime}$ be defined by

$$
\phi_{q_{0}}^{\prime}\left(\mathrm{C}_{w}\right)=\sum_{\substack{d \in \mathscr{D} \cap \mathbf{W}_{0} \\ z \in \mathrm{~W}_{0} \\ a(d)=a(z)}} h_{w, d, z}\left(q_{0}\right) t_{z}, \quad w \in \mathrm{~W}_{0}
$$

then $\phi_{q_{0}}^{\prime}$ is a \mathbb{C}-algebra homomorphism preserving 1.
As in 1.4 we define $\mathrm{K}\left(\mathrm{H}_{q_{0}}^{\prime}\right), \mathrm{K}\left(\mathrm{J}^{\prime}\right), \mathrm{K}\left(\mathrm{H}_{q_{0}}^{\prime}\right)_{c^{\prime}}, \mathrm{K}\left(\mathrm{J}_{c^{\prime}}^{\prime}\right),\left(\phi_{q_{0}}^{\prime}\right)_{*},\left(\phi_{q_{0}}^{\prime}\right)_{*, c^{\prime}}$, etc., where c^{\prime} is a two-sided cell of W_{0}. We also have

Proposition 1.8. - $\left(\phi_{q_{0}}^{\prime}\right)_{*, c^{\prime}}$ is surjective for any $q_{0} \in \mathbb{C}$. Moreover $\left(\phi_{q_{0}}\right)_{*, c^{\prime}}$ is an isomorphism when q_{0} is not a root of 1 or $q_{0}^{2}=1$.

Conjecture 1.9. - $\left(\phi_{q_{0}}\right)_{*, c^{\prime}}$ is injective if $\left(\phi_{q_{0}}^{\prime}\right)_{*, c^{\prime \prime}}$ is injective for some two-sided cell $c^{\prime \prime}$ of W_{0} with $c^{\prime \prime} \underset{\mathrm{LR}}{\leqq} c^{\prime}$.

When c^{\prime} is the lowest two-sided cell of \mathbf{W}_{0}, it is easy to see that $\left(\phi_{q_{0}}^{\prime}\right)_{*, c^{\prime}}$ is injective if and only if $\sum_{w \in \mathrm{w}_{0}} q_{0}^{2 l(w)} \neq 0$.

2. The two-side cell c_{0} and the ring $\mathrm{J}_{c_{0}}$

In this section we recall and prove some results on c_{0} and $\mathrm{J}_{c_{0}}$.
2.1. We denote by w_{0} the longest element in W_{0}. Let

$$
\mathfrak{S}=\left\{w \in \mathrm{~W} \mid l\left(w w_{0}\right)=l(w)+l\left(w_{0}\right) \quad \text { and } \quad w w_{0} r \notin c_{0} \quad \text { for any } r \in \mathrm{~S} \cap \mathrm{~W}_{0}\right\} .
$$

Then $\mathscr{D}_{0}=\mathscr{D} \cap c_{0}=\left\{w w_{0} w^{-1} \mid w \in \mathbb{S}\right\}$ and $|\mathfrak{S}|=\left|\mathbf{W}_{0}\right|$ (see [S, II]).
4^{e} SÉRIE - TOME $27-1994-N^{\circ} 1$.

Let $\mathrm{X}^{+}=\left\{w \in \mathrm{~W} \mid l(r x)>l(x) \quad\right.$ for any $\left.\quad r \in \mathrm{~S}^{\prime}\right\}$, where $\mathrm{S}^{\prime}=\mathrm{S} \cap \mathrm{W}_{0}$. Let $x_{i} \in \mathrm{X}^{+}\left(\mathrm{i} \in\{1,2, \ldots, n\}=\mathrm{I}_{0}\right)$ be the i-th basic dominant weight, then x_{i} has the properties: $l\left(x_{i} r_{i}\right)<l\left(x_{i}\right), x_{i} r_{j}=r_{j} x_{i}, l\left(x_{i} r_{j}\right)=l\left(x_{i}\right)+1$ if $i \neq j \in \mathrm{I}_{0}$. We have

$$
c_{0}=\left\{w^{\prime} w_{0} x w^{-1} \mid w, w^{\prime} \in \mathbb{S}, x \in \mathbf{X}^{+}\right\} \quad(\operatorname{see}[\mathrm{S}, \mathrm{II}])
$$

Moreover $l\left(w^{\prime} w_{0} x w^{-1}\right)=l\left(w^{\prime}\right)+l\left(w_{0}\right)+l(x)+l\left(w^{-1}\right)$.
Lemma 2.2. - Let $u \in c_{0}$, then $\mathrm{C}_{u}=h \mathrm{C}_{w_{0}} h^{\prime}$ for some $h, h^{\prime} \in \mathrm{H}_{q_{0}}$, i.e., the two-sided ideal $\underset{u \in c_{0}}{\oplus} \mathbb{C} \mathrm{C}_{u}$ of $\mathrm{H}_{q_{0}}$ is generated by the element $\mathrm{C}_{w_{0}}$.

Proof. - Write $u=w^{\prime} w_{0} w$ for some $w^{\prime}, w \in \mathrm{~W}$ such that $l(u)=l\left(w^{\prime}\right)+l\left(w_{0}\right)+l(w)$. We use induction on $l(u)$ to prove that C_{u} is in the two-sided ideal N of $\mathrm{H}_{q_{0}}$ generated by $\mathrm{C}_{w_{0}}$.

When $l(u)=l\left(w_{0}\right)$, then $\mathrm{C}_{u}=\mathrm{C}_{\omega} \mathrm{C}_{w_{0}} \mathrm{C}_{\omega^{\prime}}$ for some $\omega, \omega^{\prime} \in \Omega$. Now assume that $l\left(w^{\prime}\right)>0$. Let $s \in \mathrm{~S}$ be such that $s w^{\prime} \leqq w^{\prime}$, then

$$
\left.\mathrm{C}_{s} \cdot \mathrm{C}_{s u}=\mathrm{C}_{u}+\sum_{\substack{z \in c_{0} \\ l(z)<l(u)}} a_{z} \mathrm{C}_{z}, \quad a_{z} \in \mathbb{N} \quad \text { (see }[\mathrm{KL} 1]\right)
$$

By induction hypothesis we know that $C_{u} \in N$. Similarly we can prove that $C_{u} \in N$ if $l(w)>0$. The lemma is proved.

Corollary 2.3. - For a simple $\mathrm{H}_{q_{0}}$-module M , we have $c_{\mathrm{M}}=c_{0}$ if and only if $\mathrm{C}_{w_{0}} \mathrm{M} \neq 0$.

For $w \in \mathrm{~W}$, set $\mathrm{L}(w)=\{r \in \mathrm{~S} \mid r w \leqq w\}$ and $\mathrm{R}(w)=\{r \in \mathrm{~S} \mid w r \leqq w\}$.
Lemma 2.4. - (i) Let w^{\prime} be the longest element in the Weyl group generated by $\mathrm{L}(w)$ (or $\mathrm{R}(w)$), then $w=w^{\prime} w^{\prime \prime}\left(\right.$ or $\left.w=w^{\prime \prime} w^{\prime}\right)$ for some $w^{\prime \prime} \in \mathrm{W}$ and $l(w)=\left(l\left(w^{\prime}\right)+l\left(w^{\prime \prime}\right)\right.$.
(ii) Let w^{\prime} be the longest element in the Weyl group W^{\prime} generated by $\mathrm{S}-\mathrm{L}(w)$ [resp. $\mathrm{S}-\mathrm{R}(w)]$, then $l\left(w^{\prime} w\right)=l\left(w^{\prime}\right)+l(w)\left[\right.$ resp. $\left.l\left(w w^{\prime}\right)=l(w)+l\left(w^{\prime}\right)\right]$.

Proof. - (i) follows from $\mathrm{T}_{w^{\prime}} \mathrm{C}_{w}=q^{l\left(w^{\prime}\right)} \mathrm{C}_{w}$ or $\mathrm{C}_{w} \mathrm{~T}_{w^{\prime}}=q^{l\left(w^{\prime}\right)} \mathrm{C}_{w}$.
(ii) follows from the fact that w is the shortest element in $\mathrm{W}^{\prime} w$ or $w \mathrm{~W}^{\prime}$.

Let Γ_{0} be the left cell in c_{0} containing w_{0}, then

$$
\begin{aligned}
\Gamma_{0} & =\left\{w w_{0} x \mid x \in \mathrm{X}^{+}, w \in \mathbb{S}\right\} . \\
& =\left\{w \in \mathrm{~W} \mid \mathrm{R}(w)=\mathrm{S}^{\prime}\right\}
\end{aligned}
$$

Lemma 2.5. - Any element $u \in \Gamma_{0}$ has the form $w x w_{\mathrm{J}}$, where $w \in \mathrm{~W}_{0}, x=\prod_{i=1}^{n} x_{i}^{a_{i}} \in \mathrm{X}^{+}$. w_{J} is the longest element in $\mathrm{W}_{\mathrm{J}}=\left\langle r_{j} \mid a_{j}=0, j \in \mathrm{I}_{0}\right\rangle$, moreover $l(u)=l(w)+l(x)+l\left(w_{\mathrm{J}}\right)$.

$$
\text { Proof. - Choose } x=\prod_{i=1}^{n} x_{i}^{a_{i}} \in \mathrm{X}^{+} \text {such that } u \in \Gamma_{0} \cap \mathrm{~W}_{0} x \mathrm{~W}_{0} .
$$

Then the shortest element in $\mathrm{W}_{0} x \mathrm{~W}_{0}$ is $x w_{\mathrm{J}} w_{0}$ and the shortest element in $\Gamma_{0} \cap \mathbf{W}_{0} x \mathbf{W}_{0}$ is $x w_{\mathrm{J}}$ by lemma 2.4 (i), where w_{J} is the longest element in $\mathrm{W}_{\mathrm{J}}=\left\langle r_{j}\right| a_{j}=0$, $\left.j \in \mathrm{I}_{0}\right\rangle$. The lemma is proved.

Lemma 2.6. - (i) Let $\mathrm{J} \subseteq \mathrm{K} \subseteq \mathrm{I}_{0}$, then in $\mathrm{H}_{q_{0}}$ we have $\mathrm{C}_{w_{J}} \mathrm{C}_{w_{\mathrm{K}}}=\mathrm{C}_{w_{\mathrm{K}}} \mathrm{C}_{w_{\mathrm{J}}}=\eta_{\mathrm{J}} \mathrm{C}_{w_{\mathrm{K}}}$, where $w_{\mathrm{J}}, w_{\mathrm{K}}$ are the longest element in $\mathrm{W}_{\mathrm{J}}=\left\langle r_{j} \mid j \in \mathbf{J}\right\rangle, \quad \mathrm{W}_{\mathrm{K}}=\left\langle r_{k} \mid k \in \mathrm{~K}\right\rangle$, respectively, $\eta_{\mathrm{J}}=q_{0}^{-l\left(w_{\mathrm{J}}\right)} \sum_{w \in \mathrm{~W}_{\mathrm{J}}} q_{0}^{2 l(w)}$.
(ii) $\mathrm{C}_{w w_{\mathrm{J}}}=h \mathrm{C}_{w_{\mathrm{J}}}, \quad \mathrm{C}_{w_{\mathrm{J}} w^{\prime}}=\mathrm{C}_{w_{\mathrm{J}}} h^{\prime}$ for some $h, \quad h^{\prime} \in \mathrm{H}_{q_{0}}$ if $l\left(w w_{\mathrm{J}}\right)=l(w)+l\left(w_{\mathrm{J}}\right)$, $l\left(w_{\mathrm{J}} w^{\prime}\right)=l\left(w_{\mathrm{J}}\right)+l\left(w^{\prime}\right)$.

Proof. - First we prove (ii). We use induction on $l(w)$. Assume that $l(w)>0$. Choose $r \in \mathrm{~S}$ such that $r w \leqq w$, then

$$
\mathrm{C}_{r} \mathrm{C}_{r w w_{\mathrm{J}}}=\mathrm{C}_{w w_{\mathrm{J}}}+\sum_{\substack{z \in \mathbf{W} \\ l(z)<l\left(w w_{\mathrm{J}}\right)}} a_{z} \mathrm{C}_{z,} \quad a_{z} \in \mathbb{N} \quad \text { (see [KL 1]). }
$$

Moreover $a_{z} \neq 0$ implies that $z \leqq r w w_{\mathrm{J}} . \quad$ So $\mathrm{R}(z) \supseteqq\left\{r_{j} \mid j \in \mathrm{~J}\right\}$ (see [KL 1]).
By Lemma 2.4 we see that $z=z^{\prime} w_{\mathrm{J}}$ for some $z^{\prime} \in \mathrm{W}$ and $l(z)=l\left(z^{\prime}\right)+l\left(w_{\mathrm{J}}\right)$. By induction hypothesis we know that $\mathrm{C}_{w w_{J}}=h \mathrm{C}_{w_{J}}$ for some $h \in \mathrm{H}_{q_{0}}$. Similarly we have $\mathrm{C}_{w_{\mathbf{J}} w^{\prime}}=\mathrm{C}_{w_{\mathbf{J}}} h^{\prime}$ for some $h^{\prime} \in \mathrm{H}_{q_{0}}$.
(i) follows from $C_{J} C_{J}=\eta_{J} C_{J}$ and (ii).

Corollary 2.7. - Let x, w_{J} be as in 2.5 , then in $\mathrm{H}_{q_{0}}$ we have

$$
\mathrm{C}_{w_{0}} \mathrm{C}_{x w_{\mathrm{J}}}=\eta_{\mathrm{J}} \sum_{\substack{y \in \mathrm{X}^{+} \\ w_{0} y \leqq w_{0} x}} a_{x, y} \mathrm{C}_{w_{0} y} \in \mathbb{C}, \quad a_{x, y} \in \mathbb{C} \quad \text { and } \quad a_{x, x}=1
$$

Proof. - By 2.1 and 2.6 (ii) we see that $\mathrm{C}_{x_{w_{J}}}=\mathrm{C}_{w_{J} x}=\mathrm{C}_{w_{J}} h$, where

$$
h=\sum_{\substack{w \in \mathbf{W} \\ l\left(w_{\mathrm{J}} w\right)=l\left(w_{\mathrm{J}}\right)+l(w) \\ w_{\mathbf{J}} w \leqq w_{\mathrm{J}} x}} a_{w} \mathrm{~T}_{w}, \quad a_{w} \in \mathbb{C}, \quad a_{x}=q_{0}^{-l(x)}
$$

By (2.6(i) we know that

$$
\begin{equation*}
\mathrm{C}_{w_{0}} \cdot \mathrm{C}_{x w_{\mathrm{J}}}=\mathrm{C}_{w_{0}} \cdot \mathrm{C}_{w_{\mathrm{J}}} h=\eta_{\mathrm{J}} \mathrm{C}_{w_{0}} h \tag{a}
\end{equation*}
$$

Note that $h_{w_{0}, x w_{\mathrm{J}}, z} \neq 0$ implies that $\underset{\mathrm{L}}{\sim \sim x w_{\mathrm{J}}}, \underset{\mathrm{R}}{\underset{\sim}{\sim} w_{0}}$ (see [L3, I]), we have $z \in \Gamma_{0} \cap \Gamma_{0}^{-1}=\left\{w_{0} y \mid y \in \mathbf{X}^{+}\right\} . \quad$ So by (a) we get

$$
\mathrm{C}_{w_{0}} \mathrm{C}_{x w_{\mathrm{J}}}=\eta_{\mathrm{J}} \sum_{y \in \mathrm{X}^{+}} a_{x, y} \mathrm{C}_{w_{0} y}, \quad a_{x, y} \in \mathbb{C} .
$$

Since $a_{x}=q_{0}^{-l(x)}$ and $l(w)<l(x)$ if $a_{w} \neq 0, w \neq x$. We havec $a_{x, x}=1$ and $a_{x, y}=0$ if $l(y)>l(x)$ or $l(y)=l(x)$ but $x \neq y$. Let $w \in \mathrm{~W}$ be such that $a_{w} \neq 0$. Consider the expression

$$
\mathrm{C}_{w_{0}} \cdot \mathrm{~T}_{w}=\sum_{z^{-1} \in \Gamma_{0}} b_{z} \mathrm{C}_{z}, \quad b_{z} \in \mathbb{C}
$$

Since $w_{\mathrm{J}} w \leqq w_{\mathrm{J}} x$, we have $b_{z} \neq 0$ implies that $z \leqq w_{0} x$. Thus by (a) we know that $a_{x, y} \neq 0$ implies that $w_{0} y \leqq w_{0} x$. The Corollary is proved.
2.8. For any $x \in \mathrm{X}$, we choose $x^{\prime}, x^{\prime \prime} \in \mathrm{X}^{+}$such that $x=x^{\prime} x^{\prime \prime-1}$ and then define $\tilde{\mathrm{T}}_{x}=q_{0}^{-l\left(x^{\prime}\right)} \mathrm{T}_{x^{\prime}}\left(q_{0}^{-l\left(x^{\prime \prime}\right)} \mathrm{T}_{x^{\prime \prime}}\right)^{-1} . \quad \tilde{\mathrm{T}}_{x}$ is independent of the choices x^{\prime} and $x^{\prime \prime}$. We denote the conjugacy class of $x \in \mathrm{X}$ in W by O_{x} and let $z_{x}=\sum_{x^{\prime} \in \mathrm{O}_{\boldsymbol{x}}} \tilde{\mathrm{T}}_{x^{\prime}} \quad z_{x}$ is in the center of $\mathrm{H}_{q_{0}}$. For $x \in \mathrm{X}^{+}$, denote $d\left(x^{\prime}, x\right)$ the dimension of the x^{\prime}-weight space $\mathrm{V}(x)_{x^{\prime}}$ of $\mathrm{V}(x)$, where $\mathrm{V}(x)$ is the irreducible representation of G with highest weight x. We set $\mathrm{S}_{x}=\sum_{x^{\prime} \in \mathbf{X}^{+}} d\left(x^{\prime}, x\right) z_{x^{\prime}}, x \in \mathrm{X}^{+}$.

Lemma 2.9. (see [X]). - In $\mathrm{H}_{q_{0}}$ we have $\mathrm{C}_{w^{\prime} w_{0} w^{-1}} \mathrm{~S}_{x}=\mathrm{S}_{x} \mathrm{C}_{w^{\prime} w_{0} w^{-1}}=\mathrm{C}_{w^{\prime} w_{0} x w^{-1}}$ for any $w^{\prime}, w \in \mathfrak{G}, x \in \mathrm{X}^{+}$.

Lemma 2.10. - Let $u \in \Gamma_{0}$, then

$$
\mathrm{C}_{u}=\sum_{\substack{y \in \mathrm{X}^{+} \\ \mathrm{I} \subseteq \mathrm{I}_{0}}} h_{\mathrm{I}, y} \mathrm{C}_{x_{\mathrm{I}}{ }^{w} \mathrm{I}}, \mathrm{~S}_{y}
$$

where $h_{\mathrm{I}, y} \in \mathrm{H}_{q_{0}}^{\prime}=\underset{w \in \mathrm{~W}_{0}}{\oplus} \mathbb{C} \mathrm{~T}_{w}=\underset{w \in \mathbf{W}_{0}}{\oplus} \mathbb{C} \mathrm{C}_{w}, x_{\mathrm{I}}=\prod_{i \in \mathrm{I}} x_{i}, \quad \mathrm{I}^{\prime}=\mathrm{I}_{0}-\mathrm{I}$.
Proof. - By 2.5 we see that $u=w x w_{\mathrm{J}}$, where $w \in \mathrm{~W}_{0}, x=\prod_{i=1}^{n} x_{i}^{a_{i}}, \mathrm{~J}=\left\{j \in \mathrm{I}_{0} \mid a_{j}=0\right\}$.
We use induction on $l(u)$, when $w=e$, by 2.9 we see that $\mathrm{C}_{u}=\mathrm{C}_{x_{J^{\prime}}{ }_{\mathrm{J}}} \mathrm{S}_{y}$, where $\mathrm{J}^{\prime}=\mathrm{I}_{0}-\mathrm{J}$, $y=\prod_{j \in J^{\prime}} x_{j^{j_{j}}-1}$, i.e. the lemma is true. Now assume that $l(w)>0$ and choose $r \in \mathrm{~S}^{\prime}$ such that $r w \leqq w$, then

$$
\mathrm{C}_{r} \cdot \mathrm{C}_{r w x w_{\mathrm{J}}}=\mathrm{C}_{w x w_{\mathrm{J}}}+\sum_{\substack{z \in \Gamma_{0} \\ l(z)<l\left(w x w_{\mathrm{J}}\right)}} a_{z} \mathrm{C}_{z}, \quad a_{z} \in \mathbb{N} .
$$

By induction hypothesis we know that there exists $h_{\mathrm{I}, y} \in \mathrm{H}_{q_{0}}^{\prime}$ such that $\mathrm{C}_{u}=\sum_{\substack{y \in \mathbf{X}^{+} \\ \mathbf{I} \subseteq \mathrm{I}_{0}}} h_{\mathbf{I}, y} \mathrm{C}_{x_{\mathbf{I}} w_{\mathbf{I}}} \mathrm{S}_{\boldsymbol{y}} . \quad$ The lemma is proved.
2.11. Let R_{G} be the ring of the rational representations ring of G tensor with \mathbb{C}. Then R_{G} is a \mathbb{C}-algebra with a \mathbb{C}-basis $\mathrm{V}(x), x \in \mathrm{X}^{+}$. Let $\mathrm{M}_{\mathfrak{S} \times \mathfrak{S}}\left(\mathrm{R}_{\mathrm{G}}\right)$ be the $\mathfrak{S} \times \mathbb{S}$ matrix
ring over R_{G}. Then we have

Theorem 2.12 (see [X]). - There is a natural isomorphism $\mathrm{J}_{c_{0}} \xrightarrow{\sim} \mathrm{M}_{\mathfrak{S} \times \mathbb{S}}\left(\mathrm{R}_{\mathrm{G}}\right)$ such that $t_{w^{\prime} w_{0} \times w^{-1}} \rightarrow\left(m_{w_{1}, w_{2}}\right) \in \mathbf{M}_{\mathfrak{S} \times \mathfrak{S}}\left(\mathrm{R}_{\mathrm{G}}\right), w^{\prime}, w^{-1}, w_{1} w_{2} \in \mathbb{S}$,

$$
m_{w_{1}, w_{2}}= \begin{cases}\mathrm{V}(x) & \text { if } w_{1}=w^{\prime}, \quad w_{2}=w \\ 0 & \text { otherwise } .\end{cases}
$$

Hereafter we identify $J_{c_{0}}$ with $\mathrm{M}_{\mathfrak{\subseteq} \times \mathfrak{\subseteq}}\left(\mathrm{R}_{\mathrm{G}}\right)$.

3. The homomorphism $\left(\phi_{q_{0}}\right)_{*, c_{0}}$

3.1. For any semisimple conjugacy class s in G, we have a simple representation ψ_{s} of $J_{c_{0}} \simeq M_{\mathfrak{E} \times \mathbb{G}}\left(R_{G}\right)$:

$$
\begin{gathered}
\psi_{s}: \quad \mathbf{M}_{\mathfrak{S} \times \mathfrak{S}}\left(\mathrm{R}_{\mathrm{G}}\right) \rightarrow \mathbf{M}_{\mathfrak{S} \times \mathfrak{C}}(\mathbb{C}) \\
\left(m_{w, w^{\prime}}\right) \rightarrow\left(\operatorname{tr}\left(s, m_{w, w^{\prime}}\right)\right), w, w^{\prime} \in \mathfrak{S}
\end{gathered}
$$

Any simple representation of $\mathrm{J}_{c_{0}}$ is isomorphic to some ψ_{s} (see [X]). Let E_{s} be the simple $\mathrm{J}_{c_{0}}$-module providing the representation $\psi_{s} . \quad \mathrm{E}_{s}$ gives rise, via

$$
\phi_{q_{0}, c_{0}}: \quad \mathbf{H}_{q_{0}} \rightarrow \mathbf{J} \rightarrow \mathbf{J}_{c_{0}}
$$

to an $\mathrm{H}_{q_{0}}$-module $\mathrm{E}_{s, q_{0}}$. Note that $\phi_{q_{0}, c_{0}}\left(\mathrm{~S}_{x}\right)=\sum_{w \in \mathfrak{S}} t_{w w_{0} x w^{-1}}$ for any $x \in \mathrm{X}^{+}$, we see that S_{x} acts on $\mathrm{E}_{s, q_{0}}$ by scalar $\operatorname{tr}(s, \mathrm{~V}(x))$.

Proposition 3.2. - The set $\Lambda=\left\{\left(\phi_{q_{0}}\right)_{*, c_{0}}\left(\mathrm{E}_{s}\right) \mid s\right.$ semisimple conjugacy class of $\mathrm{G}\}-\{0\}$ is a base of $\mathrm{K}\left(\mathrm{H}_{q_{0}}\right)_{c_{0}}$.

Proof. - It is easy to see that $\left(\phi_{q_{0}}\right)_{*, c_{0}}\left(\mathrm{E}_{s}\right)=\sum_{\mathrm{M}} a_{\mathrm{M}} \mathrm{M}$, where the sum is over the set of composition factors M of $\mathrm{E}_{s, q_{0}}$ with $c_{\mathrm{M}}=c_{0}$ and a_{M} is the multiplicity of M in $\mathrm{E}_{s, q_{0}}$.

Now let $\mathrm{F}_{i}=\left(\phi_{q_{0}}\right)_{*, c_{0}}\left(\mathrm{E}_{s_{i}}\right) \in \Lambda, 1 \leqq i \leqq k$, and suppose that $\sum_{i=1}^{k} m_{i} \mathrm{~F}_{i}=0, m_{i} \in \mathbb{Z}$. Let $\mathrm{F}_{i}=\sum_{\mathrm{M}_{i j}} a_{\mathbf{M}_{i j}} \mathbf{M}_{i j}, \mathrm{M}_{i j}$ simple $\mathrm{H}_{q_{0}}$-module with $c_{\mathrm{M}_{i j}}=c_{0}$. Since S_{x} acts on $\mathrm{E}_{s_{i}, q_{0}}$ by scalar $\operatorname{tr}\left(s_{i}, \mathrm{~V}(x)\right) . \quad \mathrm{S}_{x}$ acts on $\mathrm{M}_{i j}$ by scalar $\operatorname{tr}\left(s_{i}, \mathrm{~V}(x)\right)$ if $a_{\mathrm{M}_{i j}} \neq 0 . \quad \mathrm{F}_{i} \in \Lambda$ implies that $a_{\mathrm{M}_{i j}} \neq 0$ for some $\mathrm{M}_{i j}$. Therefore $m_{i}=0$. By 1.6 we know that $\left(\phi_{q_{0}}\right)_{*, c_{0}}$ is surjective, hence Λ is a base of $\mathrm{K}\left(\mathrm{H}_{q_{0}}\right)_{c_{0}}$. The proposition is proved.

Corollary 3.3. $-\mathrm{E}_{s, q_{0}}$ has at most one composition factor to which the attached two-sided cell is c_{0}. Moreover the multiplicity a_{M} is 1 if $\mathrm{E}_{s, q_{0}}$ has such a composition factor M .

```
4 'e SÉRIE - TOME 27 - 1994 - N N 1
```

THEOREM 3.4. - If $\sum_{w \in \mathbf{w}_{0}} q_{0}^{2 l(w)}=q_{0}^{l(w)} \eta_{\mathrm{I}_{0}} \neq 0$, then $\left(\phi_{q_{0}}\right)_{*, c_{0}}$ is injective, so $\left(\phi_{q_{0}}\right)_{*, c_{0}}$ is an isomorphism by 1.6.

Proof. - We have

$$
\phi_{q_{0}, c_{0}}\left(\mathrm{C}_{w_{0}}\right)=\sum_{\substack{w \in \mathbb{S} \\ x \in \mathrm{X}^{+}}} h_{w_{0}, w w_{0} w^{-1}, w_{0} x w^{-1} t_{w_{0} x w^{-1}} \in \mathrm{~J}_{c_{0}} .}
$$

We identify $J_{c_{0}}$ with $\mathbf{M}_{\mathfrak{S} \times \mathscr{E}}\left(\mathrm{R}_{\mathbf{G}}\right)$, then $\phi_{q_{0}, c_{0}}\left(\mathrm{C}_{w_{0}}\right)=\left(m_{w^{\prime}, w}\right) \in \mathrm{M}_{\mathfrak{E} \times \mathscr{\subseteq}}\left(\mathrm{R}_{\mathrm{G}}\right)$ and

$$
m_{w^{\prime}, w}= \begin{cases}\sum_{x \in \mathrm{X}^{+}} h_{w_{0}, w w_{0} w^{-1}, w_{0} x w^{-1} \mathrm{~V}(x),} & \text { if } w^{\prime}=e \\ 0 & \text { if } w^{\prime} \neq e\end{cases}
$$

Note that $\mathrm{C}_{w_{0}} \mathrm{C}_{w_{0}}=\eta_{\mathrm{I}_{0}} \mathrm{C}_{w_{0}}$, we see that $m_{e, e}=\eta_{\mathrm{I}_{0}} \neq 0$, where e is the unit in W. So $\mathrm{C}_{w_{0}} \mathrm{E}_{s, q_{0}} \neq 0$ for any semisimple conjugacy class s of G since $\psi_{s} \phi_{q_{0}, c_{0}}\left(\mathrm{C}_{w_{0}}\right) \neq 0$. Now let $0=\mathrm{F}_{0} \subseteq \mathrm{~F}_{1} \subseteq \ldots \subseteq \mathrm{~F}_{k}=\mathrm{E}_{s, q_{0}}$ be a composition series of $\mathrm{E}_{s, q_{0}}$ and let i be the integer such that $\mathrm{C}_{w_{0}} \mathrm{~F}_{i} \neq 0$ and $\mathrm{C}_{w_{0}} \mathrm{~F}_{i-1}=0$. Then $\mathrm{C}_{w_{0}} \mathrm{M} \neq 0$ where $\mathrm{M}=\mathrm{F}_{i} / \mathrm{F}_{i-1}$, otherwise, $\mathrm{C}_{w_{0}} \mathrm{~F}_{i} \subseteq \mathrm{~F}_{i-1}$, choose $v \in \mathrm{~F}_{i}$ such that $\mathrm{C}_{w_{0}} v \neq 0$, we have $\mathrm{C}_{w_{0}}^{2} v=\eta_{\mathrm{I}_{0}} \mathrm{C}_{w_{0}} v \neq 0$. A contradiction, so $\mathrm{C}_{w_{0}} \mathrm{M} \neq 0$, i.e., $c_{\mathrm{M}}=c_{0}$. That is to say $\left(\phi_{q_{0}}\right)_{*, c_{0}}\left(\mathrm{E}_{s}\right) \neq 0$. The theorem follows from proposition 3.2.
3.5. In the subsequent part of this section we assume that $\eta_{\mathrm{I}_{0}}=0$, i.e., $\sum_{w \in \mathrm{~W}_{0}} q_{0}^{2 l(w)}=0$.

Let $\Delta_{q_{0}}=\left\{\mathrm{I} \subseteq \mathrm{I}_{0} \mid \eta_{\mathrm{I}^{\prime}} \neq 0\right.$ but $\eta_{\mathrm{I}^{\prime} \cup\{i\}}=0$ for any $\left.i \in \mathrm{I}\right\}$. Here we use the convention that I^{\prime} always denotes the complement of I in I_{0} i.e., $\mathrm{I}^{\prime}=\mathrm{I}_{0}-\mathrm{I}$.
Theorem 3.6. - Let s be a semisimple conjugacy class of G, then $\left(\phi_{q_{0}}\right)_{*, c_{0}}\left(\mathrm{E}_{s}\right)=0$ if and only if $\alpha_{\mathrm{I}}=0$ for all $\mathrm{I} \in \Delta_{q_{0}}$, where

$$
\alpha_{\mathrm{I}}=\sum_{x \in \mathrm{X}^{+}} h_{w_{0}, x_{\mathrm{I}} w_{\mathrm{I}}, w_{0} x} \operatorname{tr}(s, \mathrm{~V}(x)) \quad \text { for any } \mathrm{I} \subseteq \mathrm{I}_{0}
$$

We need two lemmas.
Lemma 3.7. - The following conditions are equivalent.
(i) $\mathrm{C}_{w_{0}} \mathrm{E}_{s, q_{0}}=0$.
(ii) $\psi_{s} \phi_{q_{0}, c_{0}}\left(\mathrm{C}_{w_{0}}\right)=0$.
(iii) $\sum_{x \in \mathrm{X}^{+}} h_{w_{0}, w w_{0} w^{-1}, w_{0} x w^{-1}} \operatorname{tr}(s, \mathrm{~V}(x))=0$ for all $w \in \mathbb{G}$.
(iv) $\sum_{x \in \mathrm{X}^{+}} h_{w_{0}, w w_{0}, w_{0} x} \operatorname{tr}(s, \mathrm{~V}(x))=0$ for all $w \in \mathbb{S}$.
(v) $\alpha_{\mathrm{I}}=\sum_{x \in \mathrm{X}^{+}} h_{w_{0}, x_{\mathrm{I}} w_{\mathrm{I}}, w_{0} x} \operatorname{tr}(s, \mathrm{~V}(x))=0$ for all $\mathrm{I} \subseteq \mathrm{I}_{0}$.
(vi) $\alpha_{\mathrm{I}}=\sum_{x \in \mathrm{X}^{+}} h_{w_{0}, x_{\mathrm{I}} w_{\mathrm{I}}, w_{0} x} \operatorname{tr}(s, \mathrm{~V}(x))=0$ for all $\mathrm{I} \in \Delta_{q_{0}}$.

Proof. - (i) and (ii) are obviously equivalent.
Note that $h_{w_{0}, w w_{0} w^{-1}, z} \neq 0$ implies that $z=w_{0} x w^{-1}$ for some $x \in \mathrm{X}^{+}$and that $\phi_{q_{0}, c_{0}}\left(\mathrm{C}_{w_{0}}\right)=\left(m_{w^{\prime}, w}\right)$,

$$
m_{w^{\prime}, w}= \begin{cases}\sum_{x \in \mathrm{X}^{+}} h_{w_{0}, w w_{0} w^{-1}, w_{0} x w^{-1} \mathrm{~V}(x),} & \text { if } w^{\prime}=e \\ 0, & \text { otherwise }\end{cases}
$$

we see that (ii) \Leftrightarrow (iii).
By theorem 2.9 in [X] we have $h_{w_{0}, w w_{0}, w_{0} x}=h_{w_{0}, w w_{0} w^{-1}, w_{0} x w^{-1}}$. So we have (iii) \Leftrightarrow (iv).
By Lemma 2.4 (i) we see that $x_{\mathrm{I}} w_{\mathrm{I}^{\prime}}=w w_{0}$ for some $w \in \mathrm{~W}$. Using the method in [S] one knows that $w \in \mathbb{S}$. Thus we have (iv) \Rightarrow (v). Now we show that (v) \Rightarrow (iv). Let $w \in \mathfrak{G}$, then $w w_{0} \in \Gamma_{0}$, hence by 2.10

$$
\mathrm{C}_{w w_{0}}=\sum_{\substack{y \in \mathrm{X}^{+} \\ \mathrm{I} \subseteq \mathrm{I}_{0}}} h_{\mathrm{I}, y} \mathrm{C}_{x_{\mathrm{I}} w_{\mathrm{I}}} \mathrm{~S}_{y}, \quad h_{\mathrm{I}, y} \in \mathrm{H}_{q_{0}}^{\prime}
$$

Since $\mathrm{C}_{w_{0}} h_{\mathrm{I}, y}=a_{\mathrm{I}, y} \mathrm{C}_{w_{0}}$ for some $a_{\mathrm{I}, y} \in \mathbb{C}$, we have

$$
\sum_{x \in \mathrm{X}^{+}} h_{w_{0}, w w_{0}, w_{0} x} \operatorname{tr}(s, \mathrm{~V}(x))=\sum_{\substack{y \in \mathrm{X}^{+} \\ \mathrm{I} \subseteq \mathrm{I}_{0}}} a_{\mathrm{I}, y} \alpha_{\mathrm{I}} \operatorname{tr}(s, \mathrm{~V}(y))=0
$$

Finally we prove that (v) and (vi) are equivalent.
One direction is obvious. Now assume that (vi) holds. Let $\mathbf{J} \subseteq \mathrm{I}_{0}$. We use induction on $l\left(x_{\mathrm{J}}\right)$ to prove that $\alpha_{\mathrm{J}}=0$. When $\eta_{\mathrm{J}^{\prime}}=0$ or $\mathrm{J} \in \Delta_{q_{0}}$ we have $\alpha_{\mathrm{J}}=0$ by 2.7 or by (vi). Suppose $\eta_{J^{\prime}} \neq 0$ and $\mathbf{J} \notin \Delta_{q_{0}}$. Choose $j \in \mathbf{J}$ such that $\eta_{\mathbf{J}^{\prime} \cup\{j\}} \neq 0$. Let $\mathrm{K}=\mathrm{J}-\{j\}$, then $\mathrm{K}^{\prime}=\mathrm{J}^{\prime} \cup\{j\}$. We have

$$
\begin{aligned}
\mathrm{C}_{w_{0}} \mathrm{C}_{x_{\mathrm{J}} w_{\mathbf{J}^{\prime}}} & =\frac{1}{\eta_{\mathbf{K}^{\prime}}} \mathrm{C}_{w_{0}} \mathrm{C}_{w_{\mathbf{K}^{\prime}}} \mathrm{C}_{x_{\mathrm{J}} w_{\mathbf{J}^{\prime}}} \quad(\text { by 2.6) } \\
& =\frac{\eta_{\mathrm{J}^{\prime}}}{\eta_{\mathbf{K}^{\prime}}} \mathrm{C}_{w_{0}}\left(\mathrm{C}_{w_{\mathbf{K}^{\prime} x_{K} x_{j}}}+\sum_{\substack{\mathrm{I} \leq \mathrm{I}_{0} \\
y \in \mathrm{X}^{+}}} h_{\mathrm{I}, y} \mathrm{C}_{x_{\mathrm{I}} w_{\mathbf{I}^{\prime}}} \mathrm{S}_{y}\right), \quad h_{\mathrm{I}, y} \in \mathrm{H}_{q_{0}}^{\prime} \quad \text { (by 2.6, 2.10). }
\end{aligned}
$$

Let $\quad \mathrm{C}_{w_{0}} h_{\mathrm{I}, y}=a_{\mathrm{I}, y} \mathrm{C}_{w_{0}}, \quad a_{\mathrm{I}, \mathrm{y}} \in \mathbb{C}$. By 2.7 we see that $a_{\mathrm{I}, y} \eta_{\mathrm{I}^{\prime}} \neq 0$ implies that $l\left(x_{\mathrm{I}} y\right)<l\left(x_{\mathrm{J}}\right)$. Obviously $l\left(x_{\mathrm{K}}\right)<l\left(x_{\mathrm{J}}\right)$. Using induction hypothesis we get

$$
\alpha_{\mathrm{J}}=\frac{\eta_{\mathrm{J}^{\prime}}}{\eta_{\mathrm{K}^{\prime}}}\left(\alpha_{\mathrm{K}} \operatorname{tr}\left(s, \mathrm{~V}\left(x_{j}\right)\right)+\sum_{\substack{\mathrm{I} \subseteq \mathrm{I}_{0} \\ y \in \mathrm{X}^{+}}} a_{\mathrm{I}, y} \alpha_{\mathrm{I}} \operatorname{tr}(s, \mathrm{~V}(y))\right)=0
$$

The lemma is proved.
Lemma 3.8. - $\left(\phi_{q_{0}}\right)_{*, c_{0}}\left(\mathrm{E}_{s}\right)=0$ if and only if $\mathrm{C}_{w_{0}} \mathrm{E}_{s, q_{0}}=0$.
Proof. - The "if" part is obvious. The "only if" part need to do a little more.

```
4c
```

Assume that $\mathrm{C}_{w_{0}} \mathrm{E}_{s, q_{0}} \neq 0$. By 3.7 we see that $\alpha_{1} \neq 0$ for some $\mathrm{I} \subseteq \mathrm{I}_{0} . \quad$ As in $[\mathrm{LX}]$ we define an automorphism $\alpha: W \rightarrow W$ by

$$
\alpha(w x)=w_{0} w x^{-1} w_{0}, \quad w \in \mathbf{W}_{0}, \quad x \in \mathbf{X}
$$

One verifies that α leaves stable W_{0}, X, S, S^{\prime}. In particular, α induces a bijection $\alpha: \mathrm{I}_{0} \rightarrow \mathrm{I}_{0}$ and an automorphism $\sigma: \mathrm{H}_{q_{0}} \rightarrow \mathrm{H}_{q_{0}}$ by defining $\mathrm{C}_{u} \rightarrow \mathrm{C}_{\alpha(u)}, u \in \mathrm{~W}$. Let $\mathrm{J}=\alpha(\mathrm{I})$, we have $\alpha\left(x_{\mathrm{I}}\right)=x_{\mathrm{J}}, \alpha\left(w_{\mathrm{I}^{\prime}}\right)=w_{\mathrm{J}^{\prime}} . \quad$ Consider

$$
\psi_{s} \phi_{q_{0}, c_{0}}\left(\mathrm{C}_{x_{\mathrm{J}}^{-1} w_{\mathbf{J}}}\right)=\left(n_{w^{\prime}, w}\right) \in \mathrm{M}_{\mathfrak{E} \times \mathfrak{C}}(\mathbb{C})
$$

By 2.4 and 2.12 , we know that $n_{w^{\prime}, w}=0$ if $w^{\prime} \neq e$ and

$$
n_{e, w}=\sum_{x \in \mathrm{X}^{+}} h_{x \mathrm{~J}}^{-1} w_{\mathrm{J}^{\prime}}, w w_{0} w^{-1}, w_{0} x w^{-1} \operatorname{tr}(s, \mathrm{~V}(x))
$$

In particular,

$$
n_{e, e}=\sum_{x \in \mathbf{X}^{+}} h_{x_{\mathrm{J}}^{-1}} w_{\mathbf{J}^{\prime}}, w_{0}, w_{0} x \operatorname{tr}(s, \mathrm{~V}(x))
$$

We claim that $n_{e, e}=\alpha_{\mathrm{I}}$. In fact, let \mathfrak{l} be the antiautomorphism of $\mathrm{H}_{q_{0}}$ defined by $\mathrm{C}_{u} \rightarrow \mathrm{C}_{u^{-1}}, u \in \mathrm{~W}$. Apply t to the equality

$$
\mathrm{C}_{w_{0}} \mathrm{C}_{x_{\mathrm{I}} w_{\mathrm{I}}}=\sum_{x \in \mathrm{X}^{+}} h_{w_{0}, x_{\mathrm{I}} w_{\mathrm{I}}^{\prime}, w_{0} x} \mathrm{C}_{w_{0} x}
$$

We get

$$
\mathrm{C}_{x_{\mathrm{I}}^{-1} w_{\mathrm{I}}} \mathrm{C}_{w_{0}}=\sum_{x \in \mathrm{X}^{+}} h_{w_{0}, x_{\mathrm{I}} w_{\mathrm{I}}^{\prime}, w_{0} x} \mathrm{C}_{x^{-1} w_{0}} .
$$

Apply σ to the above identity we obtain

$$
\mathrm{C}_{x \mathrm{~J}}^{-1} w_{\mathrm{w}^{\prime}} \mathrm{C}_{w_{0}}=\sum_{x \in \mathrm{X}^{+}} h_{w_{0}, x_{\mathrm{I}} w_{\mathrm{I}^{\prime}}, w_{0} x} \mathrm{C}_{w_{0} x}
$$

Therefore $h_{x_{j}-1} w_{J^{\prime}}, w_{0}, w_{0} x=h_{w_{0}, w_{I} w_{I}, w_{0} x}$ and $n_{e, e}=\alpha_{I} \neq 0$. By this and $n_{w^{\prime}, w}=0$ if $w^{\prime} \neq e$ we see that α_{I} is an eigenvalue of $\psi_{s} \phi_{q_{0}, c_{0}}\left(\mathrm{C}_{x_{\mathrm{J}}{ }^{-1} w_{J}}\right)$. Let $0 \neq v \in \mathrm{E}_{s, q_{0}}$ be such that
 maximal $H_{q_{0}}$-submodule F_{0} which doesn't contain $v . \mathrm{F} / \mathrm{F}_{0}$ is an irreducible $\mathrm{H}_{q_{0}}$-module. Moreover $\mathrm{C}_{x_{\mathrm{J}}{ }^{-1} \boldsymbol{w}_{J^{\prime}}}\left(\mathrm{F} / \mathrm{F}_{0}\right) \neq 0$ since $v \notin \mathrm{~F}_{0}$. We have proved that $\left(\phi_{q_{0}}\right)_{*, c_{0}}\left(\mathrm{E}_{s}\right) \neq 0$.

Theorem 3.6 follows from 3.7 and 3.8 .
3.9. There are two special cases. One is that $\eta_{\mathrm{I}_{0}}=0$ but $\eta_{\mathrm{I}} \neq 0$ for any proper subset I of I_{0}. In this case we have $\Delta_{q_{0}}=\left\{\{i\} \mid i \in \mathrm{I}_{0}\right\}$. Let $i^{\prime}=\mathrm{I}-\{i\}$. By 2.7 we have $h_{w_{0}, x_{i} w_{i}, w_{0} x}=\eta_{i}, a_{i, x}$ for some $a_{i, x} \in \mathbb{C}$. Moreover, $a_{i, x} \neq 0$ implies that $w_{0} x \leqq w_{0} x_{i}$ and $a_{i, x_{i}}=1$. By this we see that the equation system

$$
\alpha_{\{i\}}=\eta_{i}, \sum_{\substack{x \in \mathrm{X}^{+} \\ w_{0} x \leqq w_{0} x_{i}}} a_{i, x} \operatorname{tr}(s, \mathrm{~V}(x))=0, \quad i \in \mathrm{I}_{0}
$$

uniquely determines $\operatorname{tr}\left(s, \mathrm{~V}\left(x_{i}\right)\right)$, $i \in \mathrm{I}_{0}$. In other words, there exists a unique semisimple conjugacy class s of G such that $\alpha_{\{i\}}=0$ for all $i \in \mathrm{I}_{0}$. By 3.6 we have got the following.

Proposition. - There exists a unique semisimple conjugacy class s of G such that $\left(\phi_{q_{0}}\right)_{*, c_{0}}\left(\mathrm{E}_{s}\right)=0$ when $\eta_{\mathrm{I}_{0}}=0$ but $\eta_{\mathrm{I}} \neq 0$ for any proper subset I of I_{0}.

When W is of type $\tilde{\mathrm{A}}_{n}$. We can determine the semisimple conjugacy class s in the proposition explicitly. We have $a_{i, x}=0$ if $x \neq x_{i}$ since x_{i} is a minimal dominant weight for any $i \in \mathrm{I}_{0}$. So $\alpha_{\{i\}}=\eta_{i^{\prime}} \operatorname{tr}\left(s, \mathrm{~V}\left(x_{i}\right)\right)$. Let T be the diagonal subgroup of $\mathrm{G}=\mathrm{SL}_{n+1}(\mathbb{C})$. We may require that $x_{i} \in \operatorname{Hom}\left(\mathrm{~T}, \mathbb{C}^{*}\right)$ is defined by $x_{i}(t)=t_{1} t_{2} \ldots t_{i}$ where $t=\operatorname{diag}\left(t_{1}, t_{2}, \ldots, t_{n+1}\right) \in \mathrm{T}$. Thus, we have

$$
\operatorname{tr}\left(s, \mathrm{~V}\left(x_{i}\right)=\sum_{\substack{j_{a} \in \mathrm{I}_{0} \cup\{n+1\} \\ j_{a} \neq j_{b} \text { if } a \neq b}} t_{j_{1}} t_{j_{2}} \ldots t_{j_{i}} .\right.
$$

where $t=\operatorname{diag}\left(t_{1}, t_{2}, \ldots, t_{n+1}\right) \in s \cap \mathrm{~T}, s$ a semisimple conjugacy class of G. Hence, $\operatorname{tr}\left(s, \mathrm{~V}\left(x_{i}\right)\right)=0,1 \leqq i \leqq n$ is equivalent to that $t_{i}(1 \leqq i \leqq n+1)$ is the solution of the equation $\lambda^{n+1}+(-1)^{n+1}=0$. So if $\eta_{\mathrm{I}_{0}}=0$ but $\eta_{\mathrm{I}} \neq 0$ for any proper subset I of I_{0}, $\left(\phi_{q_{0}}\right)_{*, c_{0}}\left(\mathrm{E}_{s}\right)=0$ if and only if the eigenpolynomial of s is $\lambda^{n+1}+(-1)^{n+1}$.

Another special case is that $q_{0}+q_{0}^{-1}=0$. In this case $\Delta_{q_{0}}=\left\{\mathrm{I}_{0}\right\}$. So $\left(\phi_{q_{0}}\right)_{*, c_{0}}\left(\mathrm{E}_{s}\right)=0$ if and only if $\alpha_{\mathrm{I}_{0}}=0$. If we identify the set $\{$ semisimple conjugacy classes of $G\}$ with \mathbb{C}^{n} through the bijection

$$
s \rightarrow\left(\operatorname{tr}\left(s, \mathrm{~V}\left(x_{1}\right)\right), \operatorname{tr}\left(s, \mathrm{~V}\left(x_{2}\right)\right), \ldots, \operatorname{tr}\left(s, \mathrm{~V}\left(x_{n}\right)\right)\right)
$$

then $\alpha_{1_{0}}=0$ defines a hypersurface in \mathbb{C}^{n}. That is to say, the set $\{$ semisimple conjugacy class s of $\left.\mathrm{G} \mid\left(\phi_{q_{0}}\right)_{*, c_{0}}\left(\mathrm{E}_{s}\right)=0\right\}$ is a variety of dimension $n-1$.

When W_{0} is of rank 2 , if $\eta_{\mathrm{I}_{0}}=0$, then either $\eta_{\mathrm{I}} \neq 0$ for any proper subset $\mathrm{I} \subseteq \mathrm{I}_{0}$ or $q_{0}+q_{0}^{-1}=0$. The above discussion shows that $\left(\phi_{q_{0}}\right)_{*, c_{0}}$ is an isomorphism if and only if $\eta_{\mathrm{I}_{0}} \neq 0$.
3.10. In general it is difficult to compute $\mathrm{C}_{w_{0}} \mathrm{C}_{x_{\boldsymbol{I}^{\prime} w^{\prime}}}$ in H . Now we compute it for the simplest case: x_{I} is the highest short root.

When $x_{\mathrm{I}} \in \mathrm{X}^{+}$is the highest short root, $x_{\mathrm{I}} w_{\mathrm{I}^{\prime}}=r_{0} w_{0}$, and $w_{0} x \leqq w_{0} x_{\mathrm{I}}, x \in \mathrm{X}^{+}$implies that $x=e$ or x_{I}. So by 2.7, in H we have

$$
\mathrm{C}_{w_{0}} \mathrm{C}_{r_{0} w_{0}}=\mathrm{C}_{w_{0}} \mathrm{C}_{x_{\mathrm{I}} w_{\mathrm{I}}}=\sigma_{\mathrm{I}^{\prime}}\left(\mathrm{C}_{w_{0} x_{\mathrm{I}}}+a \mathrm{C}_{w_{0}}\right)
$$

where $\sigma_{\mathbf{I}^{\prime}} \in \mathbf{A}=\mathbb{C}\left[q, q^{-1}\right]$ is determined by $\mathrm{C}_{w_{\mathrm{I}^{\prime}}} \mathrm{C}_{w_{\mathrm{I}^{\prime}}}=\sigma_{\mathrm{I}^{\prime}} \mathrm{C}_{w_{\mathrm{I}^{\prime}}}, a \in \mathrm{~A}$. We need to determine the coefficient a. Comparing the coefficient of T_{e} in both sides we get

$$
q^{-l\left(w_{0}\right)-1} \sigma_{\mathrm{I}_{0}}=q^{-l\left(w_{0} w_{\mathrm{I}}\right)} \sigma_{\mathrm{I}^{\prime}} \mathrm{P}_{e, w_{0} x_{\mathrm{I}}}\left(q^{2}\right)+a q^{-l\left(w_{0}\right)} \sigma_{\mathrm{I}^{\prime}}
$$

i.e.
(a)

$$
\sigma_{\mathrm{I}_{0}}=q^{1-l\left(x_{\mathrm{I}}\right)} \sigma_{\mathrm{I}^{\prime}} \mathrm{P}_{w_{0}, w_{0} w_{\mathrm{I}}}\left(q^{2}\right)+a q \sigma_{\mathrm{I}^{\prime}}
$$

4^{e} SÉRIE - TOME $27-1994-\mathrm{N}^{\circ} 1$

Using the formula 8.10 in [L 2] we get the following
Proposition 3.11. - If x_{I} is the highest short weight, then

$$
\mathrm{P}_{w_{0}, w_{0} x_{\mathrm{I}}}= \begin{cases}\sum_{i=1}^{n} q^{e_{i-1}} & \text { for type } \tilde{\mathrm{A}}_{n}, \tilde{\mathrm{D}}_{n}, \tilde{\mathrm{E}}_{n} \\ \frac{q^{2(n-1)}-1}{q^{2}-1} & \text { for type } \widetilde{\mathrm{C}}_{n}, \widetilde{\mathrm{G}}_{2} \\ q^{4}+1 & \text { for type } \widetilde{\mathrm{B}}_{n} \\ \\ \hline\end{cases}
$$

where e_{1}, \ldots, e_{n} are the exponents of W_{0}.
By the proposition and $3.10(a)$ we obtain the following
Proposition 3.12. - In H we have

$$
\mathrm{C}_{w_{0}} \mathrm{C}_{r_{0} w_{0}}=\mathrm{C}_{w_{0}} \mathrm{C}_{x_{\mathrm{I}_{\mathrm{I}} \mathrm{I}^{\prime}}}=\sigma_{\mathrm{I}^{\prime}} \mathrm{C}_{w_{0} x_{\mathrm{I}}}+\frac{\sigma_{\mathrm{I}_{0}}}{\left[e_{n}+1\right]}\left[e_{n}\right] \mathrm{C}_{w_{0}}
$$

where e_{n} is the largest exponent of W_{0} and $[i]=\left(q^{i}-q^{-i}\right) /\left(q-q^{-1}\right)$ for any $i \in \mathbb{N}$.
3.13. When W is of type $\tilde{\mathrm{A}}_{n}$, the highest short weight is $x_{1} x_{n}$.

$$
\eta_{\mathrm{I}_{0}}=[2]_{q_{0}}[3]_{q_{0}} \ldots[n+1]_{q_{0}}
$$

where $[i]_{q_{0}}$ is the specialization at $q_{0} \in \mathbb{C}^{*}$ of $[i]$. By 3.12 , in $\mathrm{H}_{q_{0}}$ we have

$$
\mathrm{C}_{w_{0}} \mathrm{C}_{r_{0} w_{0}}=[2]_{q_{0}}[3]_{q_{0}} \ldots[n-1]_{q_{0}}\left(\mathrm{C}_{w_{0} x_{1} x_{n}}+[n]_{q_{0}}^{2} \mathrm{C}_{w_{0}}\right)
$$

Now suppose $[n]_{q_{0}}=0$ but $[i]_{q_{0}} \neq 0$ for $i, 1 \leqq i \leqq n-1$, then $\Delta_{q_{0}}=\{\{1, n\},\{2\},\{3\}, \ldots$, $\{n-1\}\}$. By 3.9 and 3.12 we see that $\alpha_{\mathrm{I}}=0, \mathrm{I} \in \Delta_{q_{0}}$ is equivalent to $\operatorname{tr}\left(s, \mathrm{~V}\left(x_{1} x_{n}\right)\right)=0$, $\operatorname{tr}\left(s, \mathrm{~V}\left(x_{i}\right)\right)=0,2 \leqq i \leqq n-1$. Note that $\operatorname{tr}\left(s, \mathrm{~V}\left(x_{1} x_{n}\right)\right)=\operatorname{tr}\left(s, \mathrm{~V}\left(x_{1}\right)\right) \operatorname{tr}\left(s, \mathrm{~V}\left(x_{n}\right)\right)-1$, by 3.9, we know that $\alpha_{I}=0, \mathrm{I} \in \Delta_{q_{0}}$ if and only if the eigenpolynomial of s has the form $\lambda^{n+1}-a \lambda^{n}+(-1)^{n} a^{-1} \lambda+(-1)^{n+1}, \quad a \in \mathbb{C}^{*}$. In other words, if $[n]_{q_{0}}=0, \quad[i]_{q_{0}} \neq 0$, $1 \leqq i \leqq n-1$, then $\left(\phi_{q_{0}}\right)_{*, c_{0}}\left(\mathrm{E}_{s}\right)=0$ if and only if the eigenpolynomial of s has the form $\lambda^{n+1}-a \lambda^{n}+(-1)^{n} a^{-1} \lambda+(-1)^{n+1}, a \in \mathbb{C}^{*}$.

4. Examples

4.1. Type $\tilde{\mathrm{A}}_{1} . \quad$ In this case $\mathrm{G}=\mathrm{SL}_{2}(\mathbb{C}), \mathrm{S}=\left\{r_{0}, r_{1}\right\}, \quad x_{1}=r_{0} \omega, \quad \Omega=\{e, \omega\}$, $\eta_{\mathrm{I}_{0}}=q_{0}+q_{0}^{-1} . \quad c_{0}=\{w \in \mathrm{~W} \mid l(w)>0\} . \quad$ Another two-sided cell c of W is Ω.
J_{c} has two irreducible modules $\mathrm{F}_{0}, \mathrm{~F}_{1}$. Both have dimension 1 and t_{ω} acts on F_{i} by scalar $(-1)^{i}, i=0$, 1. Via, $\phi_{q_{0}, c}: \mathrm{H}_{q_{0}} \rightarrow \mathrm{~J} \rightarrow \mathrm{~J}_{c}, \mathrm{~F}_{i}$ becomes $\mathrm{H}_{q_{0}}$-module $\mathrm{F}_{i, q_{0}}$. T_{ω} acts on $\mathrm{F}_{i, q_{0}}$. by scalar $(-1)^{i}$ and $\mathrm{T}_{r_{i}}$ acts on $\mathrm{F}_{i, q_{0}}$. by scalar $-1 . \quad\left(\phi_{q_{0}}\right)_{*, c}$ is an isomorphism for any $q_{0} \in \mathbb{C}^{*}$.

For c_{0}, we have $\mathrm{J}_{c_{0}}=\mathrm{M}_{2 \times 2}\left(\mathrm{R}_{\mathrm{G}}\right)$ and

$$
\begin{aligned}
& \phi_{q_{0}, c_{0}}\left(\mathrm{C}_{r_{1}}\right)=\left(\begin{array}{cc}
\eta_{\mathrm{I}_{0}} & \mathrm{~V}\left(x_{1}\right) \\
0 & 0
\end{array}\right) \\
& \phi_{q_{0}, c_{0}}\left(\mathrm{C}_{r_{0}}\right)=\left(\begin{array}{cc}
0 & 0 \\
\mathrm{~V}\left(x_{1}\right) & \eta_{\mathrm{I}_{0}}
\end{array}\right) \\
& \phi_{q_{0}, c_{0}}\left(\mathrm{C}_{\omega}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
\end{aligned}
$$

Suppose that $\eta_{\mathrm{I}_{0}} \neq 0$. Let s be the semisimple conjugacy class of G containing $\left(\begin{array}{cc}t & 0 \\ 0 & t^{-1}\end{array}\right) \in \mathrm{G}$, then $\mathrm{E}_{s, q_{0}}$ is irreducible if and only if $\eta_{\mathrm{I}_{0}} \neq \pm\left(t+t^{-1}\right)$. When $\eta_{\mathrm{I}_{0}}= \pm\left(t+t^{-1}\right), \quad \mathrm{E}_{s, q_{0}} / \mathrm{F}_{i, q_{0}} \simeq \mathrm{M}_{s, q_{0}}$, where $i=0 \quad$ if $\quad \eta_{\mathrm{I}_{0}}=-\left(t+t^{-1}\right) \quad$ and $i=1 \quad$ if $\eta_{\mathrm{I}_{0}}=t+t^{-1}$. T_{ω} acts on $\mathrm{M}_{s, q_{0}}$ by scalar $(-1)^{i-1}$ and $\mathrm{T}_{r_{i}}$ acts on $\mathrm{M}_{s, q_{0}}$ by scalar q_{0}^{2}. $\left(\phi_{q_{0}}\right)_{*, c}\left(\mathrm{E}_{s}\right)=\mathrm{E}_{\mathrm{s}, q_{0}}$ if $\eta_{\mathrm{I}_{0}} \neq \pm\left(t+t^{-1}\right),\left(\phi_{q_{0}}\right)_{*, c_{0}}\left(\mathrm{E}_{s}\right)=\mathrm{M}_{s, q_{0}}$ if $\eta_{\mathrm{I}_{0}}= \pm\left(t+t^{-1}\right)$. In particular, when $\eta_{\mathrm{I}_{0}} \neq 0,\left(\phi_{q_{0}}\right)_{*}$ is an isomorphism.

When $\eta_{\mathrm{I}_{0}}=0$, one verifies that $\mathrm{E}_{s, q_{0}}$ is irreducible if $t+t^{-1} \neq 0$ and $\mathrm{E}_{s, q_{0}}=\mathrm{F}_{0, q_{0}} \oplus \mathrm{~F}_{1, q_{0}}$ if $t+t^{-1}=0$. In particular rank $\operatorname{ker}\left(\phi_{q_{0}}\right)_{*}=1$.
4.2. Type $\tilde{\mathrm{A}}_{2}$. In this case we have $\mathrm{G}=\mathrm{SL}_{3}(\mathbb{C}), \mathrm{S}=\left\{r_{0}, r_{1}, r_{2}\right\}, \Omega=\left\{1, \omega, \omega^{2}\right\}$ and $\omega r_{0}=r_{1} \omega, \omega r_{1}=r_{2} \omega, \omega r_{2}=r_{0} \omega, x_{1}=r_{0} r_{2} \omega, x_{2}=r_{0} r_{1} \omega^{2}$. W has three two-sided cells: $c=\Omega, c_{0}, c^{\prime}=\mathrm{W}-c \cup c_{0} . \quad c^{\prime}$ is the two-sided cell of W containing r_{0}, r_{1}, r_{2}.

It is obviously $\left(\phi_{q_{0}}\right)_{*, c}$ is an isomorphism.
Now consider $\mathrm{J}_{c^{\prime}}$. Any element in c^{\prime} has one of the following forms: $\omega^{i} r_{1} x_{1}^{a} \omega^{j}$, $\omega^{i+1} x_{1}^{a} \omega^{j}, \omega^{i+2} r_{2} x_{2}^{a} \omega^{j+1}, \omega^{i+1} x_{2}^{a} \omega^{j+1}, i, j=0,1,2$. We define a \mathbb{C}-linear map θ : $\mathrm{J}_{\boldsymbol{c}^{\prime}} \rightarrow \mathbf{M}_{3 \times 3}(\mathrm{~A}), \mathrm{A}=\mathbb{C}\left[q, q^{-1}\right]$, by $\theta\left(t_{w}\right)=\left(\mathscr{M}_{a b}\right) \in \mathbf{M}_{3 \times 3}(\mathrm{~A}), w \in c^{\prime}$. Assume that w is of one of the above forms, then $m_{a b}=0$ except $(a, b)=(i+1, j+1)$ and

$$
m_{i+1, j+1}= \begin{cases}q^{2 a} & \text { if } w=\omega^{i} r_{1} x_{1}^{a} \omega^{j} \\ q^{2 a-1} & \text { if } w=\omega^{i+1} x_{1}^{a} \omega^{j} \\ q^{-2 a} & \text { if } w=\omega^{i+2} r_{2} x_{2}^{a} \omega^{j+1} \\ q^{-2 a+1} & \text { if } w=\omega^{i+1} x_{2}^{a} \omega^{j+1}\end{cases}
$$

By $[\mathrm{L} 1,3.8]$ we know that θ is a \mathbb{C}-algebra isomorphism. We have

$$
\begin{gathered}
\theta \phi_{q_{0}, c^{\prime}}\left(\mathrm{C}_{r_{1}}\right)=\left(\begin{array}{ccc}
{[2]_{q_{0}}} & q^{-1} & q \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
\theta \phi_{q_{0}, c^{\prime}}\left(\mathrm{C}_{\omega}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
\end{gathered}
$$

Specialize q to $a \in \mathbb{C}^{*}$, we get a simple representation ψ_{a} of $J_{c^{\prime}}=M_{3 \times 3}(\mathrm{~A})$ and any simple representation of $\mathrm{J}_{c^{\prime}}$ is isomorphic to some $\psi_{a}, a \in \mathbb{C}^{*}$. Let E_{a} be a simple $\mathrm{J}_{c^{\prime}}{ }^{-}$ module providing ψ_{a}.

A little surprisingly, the homomorphism $\left(\phi_{q_{0}}\right)_{*, c^{\prime}}: \mathrm{K}\left(\mathrm{J}_{c^{\prime}}\right) \rightarrow \mathrm{K}\left(\mathrm{H}_{q_{0}}\right)_{c^{\prime}}$, is an isomorphism for any $q_{0} \in \mathbb{C}^{*}$. In fact, via $\phi_{q_{0}, c^{\prime}}: \mathrm{H}_{q_{0}} \rightarrow \mathbf{J} \rightarrow \mathbf{J}_{c^{\prime}}, \mathrm{E}_{a}$ gives rise to an $\mathrm{H}_{q_{0}}$-module $\mathrm{E}_{a, q_{0}}$. One verifies that $\mathrm{E}_{a, q_{0}}$ has a unique quotient $\mathrm{M}_{a, q_{0}}$ such that the attached two-sided cell is c^{\prime} and $\left(\phi_{q_{0}}\right)_{*, c^{\prime}}\left(\mathrm{E}_{a}\right)=\mathrm{M}_{a, q_{0}}$, moreover, $\mathrm{M}_{a, q_{0}}$ is not isomorphic to $\mathbf{M}_{b, q_{0}}$ whenever $a \neq b$.

When $\eta_{\mathrm{I}_{0}}=[2]_{q_{0}}[3]_{q_{0}} \neq 0,\left(\phi_{q_{0}}\right)_{*, c_{0}}$ is an isomorphism by 3.4. So $\left(\phi_{q_{0}}\right)_{*}$ is an isomorphism. When $[3]_{q_{0}}=0$, by 3.9 we see that $\left(\phi_{q_{0}}\right)_{*, c_{0}}\left(\mathrm{E}_{s}\right)=0$ if and only if

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right) \in s,
$$

here we regard ω as a 3-th primitive root of 1 in \mathbb{C}. When $[2]_{q_{0}}=q_{0}+q_{0}^{-1}=0$, by 3.13 we see that $\left(\phi_{\phi_{0}}\right)_{*, c_{0}}\left(\mathrm{E}_{s}\right)=0$ if and only if the eigenpolynomial of s has the form $\lambda^{3}-a \lambda^{2}+a^{-1} \lambda-1, a \in \mathbb{C}^{*}$.

REFERENCES

[IH] N. Iwahori and H. Matsumoto, On Some Bruhat Decomposition and the structure of the Hecke Ring of p-Adic Chevalley Groups (Publ. math. IHES, Vol. 25, 1965, pp. 237-280).
[KL1] D. KAZhDAn and G. LuSztig, Representations of Coxeter Groups and Hecke algebras (Inventiones Math., Vol. 53, 1979, pp. 165-184).
[KL 2] D. KAZhDAN and G. Lusztig, Proof of the Deligne-Langlands Conjecture for Hecke Algebra (Inventiones Math., Vol. 87, 1987, pp. 153-215).
[L 1] G. Lusztig, Some Examples on Square Integrable Representations of Semisimple p-Adic Groups (Trans. of the AMS, Vol. 277, 1983, pp. 623-653).
[L 2] G. Lusztig, Singularities, Character Formulas, and a q-analog of Weight Multiplicities, in Analyse et Topologie sur les Espaces Singuliers (II-III) (Astérisque, Vol. 101-102, 1983, pp. 208-227).
[L 3] G. Lusztig, Cells in affine Weyl groups, I-IV, in Algebraic Groups and Related Topics, pp. 255287. Adv. Studies in Pure Math., Vol. 6, North Holland, Amsterdam, 1985; J. Algebra, Vol. 109, 1987, pp. 536-548; J. Fac. Sci. Univ. Tokyo Sect. IA Math., Vol. 34, 1987, pp. 223-243, Vol. 36, 1989, No. 2, pp. 297-328.
[LX] G. Lusztig and N. Xi, Canonical Left Cells in Affine Weyl Groups (Adv. in Math., Vol. 72, 1988, pp. 284-288).
[S] J.-Y. Shi, A Two-Sided Cell in an Affine Weyl Group, I, II (J. London Math. Soc., (2), Vol. 36, 1987, pp. 407-420; Vol. 37, 1988, pp. 253-264.
[X] N. XI, The Based Ring of the Lowest Two-Sided Cell of an Affine Weyl Group (J. Algebra, Vol. 134, 1990, pp. 356-368).
(Manuscript received June 11, 1992.)
N. XI,

Institute for Advanced Study, School of Mathematics Princeton, NJ 08540.
Permanent address: Institute of Mathematics,

Academia Sinica, Beijing 100080, China.

[^0]: (${ }^{1}$) Supported in part by an N.S.F. Grant (DMS 9100383).

