NANHUA XI
The based ring of the lowest two-sided cell of an affine Weyl group. I1

Annales scientifiques de [ "E.N.S. 4¢ série, tome 27, 1n° 1 (1994), p-47-61
<http://www.numdam.org/item?id=ASENS_1994_4 27 _1_47_0>

© Gauthier-Villars (Editions scientifiques et médicales Elsevier), 1994, tous droits réservés.

L'acces aux archives de la revue « Annales scientifiques de I'E.N.S. » (http:/www.
elsevier.com/locate/ansens) implique 1’accord avec les conditions générales d’utilisation
(http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systé-
matique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

NuMbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=ASENS_1994_4_27_1_47_0
http://www.elsevier.com/locate/ansens
http://www.elsevier.com/locate/ansens
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Ann. scient. Ec. Norm. Sup.,
4¢ série, t. 27, 1994, p. 47 a 61.

THE BASED RING OF THE LOWEST TWO-SIDED CELL
OF AN AFFINE WEYL GROUP, II

By Nannua XI ()

ABSTRACT. — We show that the lowest based ring of an affine Weyl group W is very interesting to
understand some simple representations of the corresponding Hecke algebra H, (g,€C*) even when g, is a
root of 1.

Let H,  be the Hecke algebra (over C) attached by Iwahori and Matsumoto [IM] to
an affine Weyl group W and to a parameter g2 e C*.

When ¢, is not a root of 1 or g2=1, the simple H, -modules have been classified (see
[KL2]). However we know little about the simple H, -modules when ¢, is a root
of 1. In this paper we give some discussion to the representations of H,  with g, a
root of 1. Namely, let J be the asymptotic Hecke algebra defined in [L 3, III]. There
exists a natural injection ¢qO:HqO—>J. Let K(J) [resp. K(H,)] be the Grothendieck
group of J-modules (resp. H, -modules) of finite dimension over C, then ¢q0 induces a
surjective homomorphism (¢,,), : K (J) » K (H, ), when g, is not a root of 1 or g§=1,
(¢qo)* is an isomorphism (loc. cit.). For each two-sided cell ¢ of W, we can define the
direct summand K (J,) [resp. K (H,)] of K(J) [resp. K(H,)]. Thus (¢qo)* induces a
homomorphism (4)‘10)*‘c :K{J,) - K(H,). The map (4),10)*,c remains surjective and is an
isomorphism if g, is not a root of 1 or gg=1. In this paper we mainly discuss the map
(9g0)+. co» Where ¢ is the lowest two-sided cell of W.

1. Introduction

1.1. Let G be a simply connected, almost simple complex algebraic group and T a
maximal torus. Let P=X=Hom (T, C*) be the root lattice. The Weyl group
W, =Ng (T)/T of G acts on X in a natural way and this action is stable on P. Thus we
can form the affine Weyl group W,=W, X P, which is a normal subgroup of the
extended affine Weyl group W=W, X X. There exists a finite abelian subgroup Q of
W such that W=Q X W,. Let S={ro, ry, ..., r,} be the set of simple reflections of W,
with ro¢ W,. Then we have a standard length function / on W, which can be extended
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48 N. XI

to W by defining /(o w)=1[(w) for any ®eQ, weW,. We keep the same notation for
the extension of /.

1.2. For any u=w,u;, w=w,w;, ®;, 0,€Q, u;, w eW,, we define P, , to be

P, wp as in [KL1] if 0, =®, and P, ,, to be zero if o, #w,. -We say that u< w or
LR

usw if u; <w,, or u; <w, in the sense of [KL 1], we say that u< w if =< w™!. These
L LR L R L

relations generate equivalence relations ~, ~, ~ in W, respectively, and the corresponding
IR L R

equivalence classes are called two-sided cells, left cells, right cells of W, respectively. The

relation < (resp. <, <) in W then induces a partial order < (resp. <, <) in the set of
LR L R LR L R

two-sided (resp. left, right) cells of W. We extend the Bruhat order < in W, to W by
defining u<w if and only if ®, =®, and u; <w,.

Let g be an indeterminate and let A=CJg, g7 !]. Let H be the Hecke algebra of W
over A, that is a free A-module with basis T,,(we W) and multiplication defined by

(T,—¢®>(T,+1)=0 if reS and T,T,=T,, if I(ww)=I1(w)+I(W").

For each we W, let
C,=¢7'™ Y P, ,(¢)T,eH.

And we write
C,C.,=Yh,.,.C,eH, h eA.

w,u,z

For each ze W, there is a well defined integer a(z) =0 such that

¢ ®h, ,,eClg] forall w,ueW

gD th ¢Clq] for some w, ueW

w,u, z

(see [L3, I, 7.3]). We have a(z)</(w,), where w, is the longest element of W,. It is
known that
co={weW|a(w)=1(w)}

is a two-sided cell of W (see [S, 1]) which is the lowest one for the partial order <.
R

)

1.3. Let vy, , , be the constant term of ¢°®h, ,.eClg]. We have vy, ,.eN.
Moreover (see [L 3, II])

(a) You:70 = w~u"l, u~z, w~z.

L L R

Let J be the C-vector space with basis (¢,),,.w- This is an associative C-algebra with
multiplication

tw tuzz’Yw, u, z tz'
z

4° SERIE — TOME 27 — 1994 — N° |



THE LOWEST TWO-SIDED CELL 49

It has a unit element 1= ) ¢, where 2={deW, |a(d)=1(d)—2 deg P, ,} (e is the unit
de 2

of W) (see [L 3, II]).
For each two-sided cell ¢ of W, let J, be the subspace of J spanned by ¢, wec, then
J=@®J,, where the sum is over the set of all two-sided cells of W. By (a) we see that J,

is a two-sided ideal of J and in fact is an associative C-algebra with unit Y, ¢,
de9 nc

1.4. For each q,eC*, we denote H, =H®,C, where C is an A-algebra with ¢
acting as scalar multiplication by g,. We shall denote T, ®1, C,®1 in H, again by
T,, C,. We also use the notation 4, , , for the specialization at g,e C* of A

The A-linear map ¢:H— J®c A defined by

¢(Cw)= 2 hw, d, z tz
de 9
zeW
a(z)=a(d)

w,u,z*

is a homomorphism of A-algebra with 1 (see [L3, II]). Let ¢q0 :H,, —J be the induced
homomorphism for any ¢, C*.

Any (left) J-module E gives rise, via ¢,,:H, —J, to a (left) H, -module E,. We
denote by K(J)[resp. K(H,)] the Grothendieck group of (left) J-modules (resp.
H, -modules) of finite dimension over C. The correspondence E — E, | defines a homo-
morphism (¢,,), : K () -» K H,,).

We similarly define K(J,) for any two-sided cell ¢ of W. Then we have
K@) =@®K(J,), where the sum is over the set of all two-sided cells of W. Now we

define K (H, ). For any simple H, -module M, we attach to M a two-sided cell ¢y of
W by the following two conditions:

C,, M #0 for some we ¢y

C,M=0 for any w in a two-sided cell ¢ with cZcy, c#cy.
LR

Then ¢, is well defined since there are only a finite number of two-sided cells in W.
Let K (H,). be the subgroup of K(H,) spanned by simple H,-modules M with
cy=c. Obviously we have K(H,)=® K (H,,).. Thus for a two-sided cell ¢ of W,

(940) induces a homomorphism
(4)110)*, c* K (Jc) -K (HGO)’-"

The following result is due to Lusztig (see [L 3, 111, 1.9 and 3.4]).

ProrositioN 1.5. — The map (d)qo)*,c is surjective for any q,€ C*, moreover, (4),10)*’6 is
an isomorphism when q is not a root of 1 or q5=1.
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50 N. XI

Now we state a conjecture.

CoNJECTURE 1.6. — The map (¢‘IO)*" is injective if (¢qo)*’c, is injective for some two-

sided cell ¢’ of W with ¢'Zc.
LR

By proposition 1.6 one knows that (¢,,),. . is injective is equivalent to that (¢,.), . is
bijective.
We mainly discuss (¢q0)*,co, where ¢, is the lowest two-sided cell of W. We prove

that if ) ¢3'™#0, then ()4 ., is injective (see Theorem 3.4) and show that
weWo

(@40)x. co i likely not injective if Y g3 ™ =0 (see Theorem 3.6).
weWo

1.7. Let H  be the subalgebra of H, spanned by T,, weW,. And let J’ be the

subspace of J spanned by z,, weW,. J' is a C-algebra with unit Y ot Let
de 9 n Wy

b, : Hyy — J' be defined by

4);0 (Cw) = Z hw, d, z (qO) tz’ we WO’
de 9 nWo
zeWp

a(d)=a(z)

then ¢,  is a C-algebra homomorphism preserving 1.

As in 1.4 we define K (H; ), K ("), K(H; )., K(J;), (905 @s)s. > etc., where ¢’ is
a two-sided cell of W,. We also have

PROPOSITION 1.8. — (§; )y, is surjective for any q,eC*. Moreover (¢, . is an
isomorphism when q is not a root of 1 or gg=1.

CoNJECTURE 1.9. — (4),10)*,0' is injective if (4),’10)*,0” is injective for some two-sided cell

¢’ of Wy with ¢ <¢'.
LR

When ¢’ is the lowest two-sided cell of W,,, it is easy to see that (¢, ), . is injective if
and only if ) ¢3'™#0.

weWo

2. The two-side cell ¢, and the ring J, |

In this section we recall and prove some results on ¢, and J.
2.1. We denote by w, the longest element in W,. Let
S={weW|l(wwo)=I(w)+I(w,) and  wwor¢c, forany reSNW,}.
Then 2,=2 Nco={wwow™'|weS} and | S|=| W, | (see [S, II]).

4° SERIE — TOME 27 — 1994 — N° 1-



THE LOWEST TWO-SIDED CELL 51

Let X*={weW|I(rx)>I(x) for any reS}, where S =SNW, Let
x;eX*(ie{l,2,...,n}=1,) be the i-th basic dominant weight, then x; has the proper-
ties: [(x;r)<l(x), x;r;=r;x;, l(x;r)=1(xp)+1if i#jel,. We have

co={wwoxw 'w, weS, xeX"}  (seelS, II]).
Moreover [ (W woxw™ D) =1(w)+1(wo) +1(x)+1(w™ ).

LeMMA 2.2. — Let uec,, then C,=hC, h' for some h, heH,, i.e., the two-sided
ideal ® CC, of H, is generated by the element C,, .

uecq

Proof. — Write u=w"wyw for some w’, we W such that /(u)=[/(w)+1(wy) +I(w). We
use induction on /(u) to prove that C, is in the two-sided ideal N of H,  generated by
C

wo*
When [(u)=1(w,), then C,=C,C, C, for some o, o'€eQ. Now assume that
I(w)>0. Let seS be such that sw'<w’, then

C,.C,=C,+ > a,C, a,eN (see[KL1]).
zeco
1 (z)<l(u)

By induction hypothesis we know that C,eN. Similarly we can prove that C,eN if
I(w)>0. The lemma is proved.

CoroLLARY 2.3. — For a simple H, -module M, we have cy=c, if and only if
C,o M#0.

For weW, set L(w)={reS|rw<w} and R(w)={reS|wr<w}.

LemMMA 2.4. — (1) Let w' be the longest element in the Weyl group generated by L (w)
(or R(W)), then w=w'w" (or w=w"w'") for some w' €W and [(w)=({W)+I1(W").

(ii) Let w' be the longest element in the Weyl group W' generated by S—L (w) [resp.
S—R (W), then [(W w)=I1(W")+1(w) [resp. [(ww")=1(w)+I(Ww")].

Proof. — (i) follows from T, C,=¢'®"C, or C, T, =¢'®C,.

(ii) follows from the fact that w is the shortest element in W w or w W',

Let I’y be the left cell in ¢, containing w,, then

To={wwox|xeX*, weS}.

={weW|R(w)=S"}

n

LEMMA 2.5. — Any element ueT, has the form wxw,, where weW,, x=[] xfieX™.
i=1

wy is the longest element in W;={ rj|aj=0,jeI0 >, moreover [ (u)=1(w)+1(x)+1(w)).

n

Proof. — Choose x= [] x%ieX™ such that ueTy N\ W, xW,.

i=1
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52 N. XI

Then the shortest element in WoxW, is xw;w, and the shortest element in
[y MWox W, is xw; by lemma 2.4 (i), where wy is the longest element in W;={r;|a;=0,
j€ly ). The lemma is proved.

LemMmA 2.6. — (i) Let JSK <1, then in H,  we have C,, C,, =C,, C, =n;C,,, where
wy, wg are the longest element in W,={r;|jel), Wx={r|keK), respectively,

— ,—l(wp 21 (w)

N3=90 > 9™

weW)

(i) C,,,,=hC

wwyj wy? C

[(wyw)=1(w))+1(W).

=C,,h for some h, heH, if [I(ww)=I(Ww)+I(w),

wyw' T “wy

Proof. — First we prove (ii). We use induction on /(w). Assume that /(w)>0.
Choose reS such that rw<w, then

Cr Crww; = wa; + Z a, Cz, a,c N (See [KL 1])
zeW
1(z) <l (wwy)

Moreover a,#0 implies that z<rww,. So R(z)2{r;|jeJ} (see [KL1]).
L

By Lemma 2.4 we see that z=z'w; for some z’eW and [(z)=1(z")+1(w;). By
induction hypothesis we know that C,,, =hC,, for some heH,. Similarly we have
Copw=C,, ' for some h'eH,,.

(i) follows from C;C;=n,C; and (ii).
CoROLLARY 2.7. — Let x, wy be as in 2.5, then in H, ) we have

C,Coy=my > a,C,,cC, a,,eC and a, =1

yeX+
woy=wo X

Proof. — By 2.1 and 2.6 (ii) we see that C,,, =C,, . =C, h, where

wix

— _ -l
h= Y a,T,, a,cC, a,=q;'™.
weW
Lwyw)=1l(wp+1(w)

wywswyx

By (2.6(i) we know that

(a) Cpo - Cuwy=Chy - Cy, h=1,C, .

Note that &, ., .#0 implies that z~xw;, z~w, (see [L3,1]), we have
L R

zeToNTgt={wey|yeX*}. So by (a) we get

C,Cow,=my Y. 4,,C,,»  a.,€C.

x, ¥
yeX+
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THE LOWEST TWO-SIDED CELL 53

Since a,=¢o'™ and I(w)</(x) if a,#0, w#x. We havec a, ,=1 and a, ,=0 if
I(y)>I(x)or I(p)=I(x) but x#y. Let weW be such that a,#0. Consider the expres-
sion

C,,-T,= Y b,C, b,eC.
z7le To

Since wyw<w;x, we have b, #0 implies that z<w,x. Thus by (@) we know that a, ,#0
implies that wo y<wgx. The Corollary is proved.

2.8. For any xeX, we choose x’, x"eX"' such that x=x"x""! and then define
T.=¢5'*" T, (¢5'*"T,)~1. T, is independent of the choices x’ and x. We denote
the conjugacy class of xeX in W by O, and let z,= Y T,. z, is in the center of

x' e Oy
H,,. For xeX", denote d(x’, x) the dimension of the x’-weight space V (x),. of V (x),
where V(x) is the irreducible representation of G with highest weight x. We set
S,= Y d(',x)z,, xeX*.

xext
LemmA 2.9. (see [X]). — In H, ) we have C,,, ,-18,=S,C,. , ,-1=C, -1 for
any w', we S, xeX*.

LemMA 2.10. — Let uely, then

C= Y Mh,Cyu, S
yeX+
1€l

y?

where by ,eH, = @ CT,= @ CC,, x=[[x, I'=I[,—L

weWg we Wgo iel

n

Proof. — By 2.5 we see that u=wxw,, where we Wy, x=[] x§i, J={jel,|a;=0}.
i=1

We use induction on /(u), when w=e, by 2.9 we see that C,=C,,, S,, where J'=1,—17,

xywy Oy
y=11 x‘}f'l, i.e. the lemma is true. Now assume that /(w)>0 and choose reS’ such
jel
that rw<w, then
Cr . Crwxw; = waw_; + Z a, Cz’ a,e€ N.

zelg
1(2) <l (wxwy)

By induction hypothesis we know that there exists A ,eH; ~such that
C,= Y m,C,,.S, Thelemma is proved.

yex+
 §=3 1))

ye

2.11. Let Rg be the ring of the rational representations ring of G tensor with C. Then
Rg is a C-algebra with a C-basis V(x), xeX*. Let Mg,s(Rg) be the & x & matrix
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54 N. XI

ring over Rg. Then we have

THEOREM 2.12 (see [X]). — There is a natural isomorphism J 3 Mg . ¢ (Rg) such that

tw'woxw—1 - (mwl, wz) € MG x& (RG)’ W’, w 1’ Wy W€ 6’
m (V™ if wi=w, w,=w
Wi w2 0 otherwise.

Hereafter we identify J,| with Mg, g(Rg).

3. The homomorphism (9,,),. ,

3.1. For any semisimple conjugacy class s in G, we have a simple representation
of Jeo=Me e (Rg):
Vs Mgue(Rg) = Mgy (C)

(m,, ) - (tr (s, m, ), w, W €S,
Any simple representation of J. is isomorphic to some Y, (see [X]). Let E; be the

simple J. -module providing the representation . E; gives rise, via

4)‘10-‘0: H‘10_>J_>J

co?

to an H, -module E, , . Note that ¢, ., (S)= Y ¢

we®

-1 for any xe X*, we see that

wwoxw

S, acts on E; , by scalar (s, V (x)).

PrOPOSITION 3.2. — The set A={(Q40)x,co (Ey)|s semisimple conjugacy class of
G}—{0} is a base of K(H

‘IO)CO'

Proof. — It is easy to see that (¢,0). ., (Es)=2 ayM, where the sum is over the set of
M

composition factors M of E, ,  with cy=c, and ay is the multiplicity of M in E , .
k
Now let Fi=(¢q0)*,60 (E;)eA, 1=i<k, and suppose that Y. m;F,=0, meZ. Let
i=1
M;; simple H, -module with My = Co- Since S, acts on E

S, 40

F,=) ay; M
M;;j

tr(s;, V(x)). S, acts on M;; by scalar tr(s;, V(x)) if ay,; #0. F,e A implies that ay,;#0

for some M;;. Therefore m;=0. By 1.6 we know that (¢,,),. ., is surjective, hence A

is a base of K (H The proposition is proved.

ijs si,ao DY scalar

40)00'

CoroLLARY 3.3. — E, . has at most one composition factor to which the attached

S, 40
two-sided cell is c,. Moreover the multiplicity ay is 1 if E; . has such a composition

S, 40
factor M.
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THE LOWEST TWO-SIDED CELL 55

TueoreM 3.4. — If Y. q3'™=g"™ ny, #0, then (,)y, ., is injective, 50 (§,)y. e iS

weWo
an isomorphism by 1.6.

Proof. — We have

¢qo, co (Cwo) = Z hwo, wwow ™ 1, woxw ™1 twoxw— 1€ Jco'

wed
xext

We identify J,, with Mg, (Rg), then ¢, ., (C,)=(m,, ,)€Mg.s(Rg) and

. ,
_ ‘ Z hwo, wwow—l,woxw_lv(x)s if w =e
w,w I xext :

0 if w'#e

m

Note that C, C, =n,,C,,, we see that m, ,=n; #0, where e is the unit in W. So
C,, E;, 4, #0 for any semisimple conjugacy class s of G since Y ¢40, 0 (Cwy) #0. Now
let 0=F,cF,c... cF,=E, , be a composition series of E, , and let i be the integer
such that C, F;#0 and C, F,_;=0. Then C, M#0 where M=F/F,;_,, otherwise,
C,,F:=F;_,, choose veF; such that C,, v#0, we have C% v=n,,C,, v#0. A contrad-
iction, so C,, M #0, i.e., cy=co. That is to say (d)qo)*‘m (E))#0. The theorem follows
from proposition 3.2.

3.5. In the subsequent part of this section we assume that m, =0, i.e,
21 (w) —
Z qo _0

we Wo

Let A, ={I<I;|n,#0 but n.,;,=0 for any iel}. Here we use the convention
that I' always denotes the complement of I in I i.e., I'=1;—L

THEOREM 3.6. — Let s be a semisimple conjugacy class of G, then (¢qo)*,c0 (Ey=01if
and only if 0,=0 for all 1e A, , where

q0°

dI = Z hwo, x| Wi, wox tr (S’ V (X)) for any Ig IO'

xeXx™t

We need two lemmas.

LemMmA 3.7. — The following conditions are equivalent.
(i) C,,E; 4,=0.

(ll) ‘I’s ¢q0, <0 (Cwo) = 0'

(1) Y Py, wwow= L, woxw—1 I (S, V(X))=0 for all we &.
xext

(V) Y. Py, wwo, wor I (8, V(x))=0 for all we S.
xext

(V) 4= Y Py xywp wox 17 (s, V(X)) =0 for all 1],

xext

(vi) oy= Z v, xpwp, wox 17 (5, V(X)) =0 for all Te A, .

xex™t
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56 N. XI

Proof. — (i) and (ii) are obviously equivalent.
Note that A, ywow-
¢qo. co (Cwo) = (mw’, w)a

1 ,#0 implies that z=w,xw ™! for some xe X" and that

‘ Y Ay wwow-Lowore -1 VX), if W' =e
Q 0, otherwise

we see that (ii) <> (iii).
By theorem 2.9 in [X] we have A, yug, wox =5

By Lemma 2.4 (i) we see that x; w;,, =ww, for some we W. Using the method in [S]
one knows that weS. Thus we have (iv)=(v). Now we show that (v)=(iv). Let
we S, then wwy eIy, hence by 2.10

1 -1. So we have (iil) < (iv).

wo, Wwow  , woxw

C S h,CowSy M ,eH.

wwo = Xpwy 7y

yeX
1§53 1)

Since C,, iy, ,=q, ,C,,, for some g ,€C, we have

Z hwo, wwg, wox tr(s, V(JC))= Z aI,yal tr(s, V(y))=0

xext yeX+
1€1p

Finally we prove that (v) and (vi) are equivalent.

One direction is obvious. Now assume that (vi) holds. Let JSI,. We use induction
on /(x;) to prove that a;=0. When n; =0 or JeA, we have o;=0 by 2.7 or by
(vi). Suppose n;#0 and J¢A,. Choose jeJ such that ny;,#0. Let K=J—{,},
then K'=J"U{j}. We have

Cyo Cary = —— Cyy Co C (by 2.6)

wo “xywy wo WK “xy wy
K’

= Cwo (walxxxj-l_ 12;4 hI,ycxl wr,Sy)’ hl,yeH;o (by 2.6, 2.10).
K’ Slo
yeX+

Let C, M, ,=a,,C,, a,,€C. By 2.7 we see that g ,n; #0 implies that
I(x;y)<I(x;). Obviously /(xg)</(x;). Using induction hypothesis we get

=" (e tr(s, V) + Y a,0r(s, V(3))=0.
Nk’ IS]g
yeX+

The lemma is proved.
LEMMA 3.8. = (§y0)s, o (B))=0 if and only if C,, E, , =0.

Proof. — The “if”” part is obvious. The “only if”” part need to do a little more.
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THE LOWEST TWO-SIDED CELL 57

Assume that C, E. . #0. By 3.7 we see that o;#0 for some Ic1,. As in [LX] we

wos, 90
define an automorphism o: W — W by

a(wx)=wowx tw,, weW, xeX

One verifies that o leaves stable Wy, X, S, S'. In particular, o induces a bijection
a:1p—>1, and an automorphism o:H, —H, by defining C,»C,), ueW. Let
J=a/(I), we have a(x;)=x;, a(w;)=w;.. Consider

\IJS ¢qo, <o (CXJ_ t WJ') = (nw’, w) € Me x& (C)
By 2.4 and 2.12, we know that n,, ,=0if w'#e and

ne, wo Z hx_l_ 1wy, wwow L wo xw Lir (S, v (X))
xex?

In particular,
e e™ Z hxj- 1 wy', wo, wox tr (S, A ()C))

xext

We claim that n, ,=o. In fact, let 1 be the antiautomorphism of H, defined by
C,—~C,-1, ue W. Apply 1 to the equality

CWO CxIWl' = Z th, X[ Wi, WoX Cwox'

xeX

We get
C’Cl_ 1Wl' CWO = Z hWQ, X[ WL’ woX Cx_ 1 wo*

xeXx™
Apply o to the above identity we obtain

CXJ— Ly Cwo = Z hwo, X] W, wo X Cwox‘

xeX

Therefore A1, wo. wox = Pwo, wwp, wo » @0d 1, ;=0oy#0. By this and n,, ,=0 if w'se
we see that o; is an eigenvalue of V¢, . (C.i1,,). Let 0#v€E, , be such that
C,ty,v=0oqv. Let F be the H, -submodule of E; , generated by v. Then F has a
maximal H, -submodule F, which doesn’t containv. F/F, is an irreducible
H, -module. Moreover C, 1, (F/F)#0 since v¢F,. We have proved that
Dgo),eo (E) #0.

Theorem 3.6 follows from 3.7 and 3.8.

3.9. There are two special cases. One is that n;,=0 but n;#0 for any proper subset
I of I,. In this case we have A, ={{i}|iel,}. Let i’=I—{i}. By 2.7 we have
Pyvg, xowir, wox = Mi @i, for some a; ,eC. Moreover, a; ,#0 implies that wyx <w, x; and
a; .,=1. By this we see that the equation system

ey = My Z ai.xtr(sa V(x))=0> iEIo

xex™
wox S wox;
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uniquely determines r (s, V(x;)), i€l,. In other words, there exists a unique semisimple
conjugacy class s of G such that o,;,=0 for all iel,. By 3.6 we have got the following.

PROPOSITION. — There exists a unique semisimple conjugacy class s of G such that
(¢qo)*»vo (E,) =0 when n,;,=0 but n,#0 for any proper subset 1 of 1.

When W is of type A,. We can determine the semisimple conjugacy class s in the
proposition explicitly. We have a; =0 if x#x; since x; is a minimal dominant weight
for any iel,. So oy =m;tr(s, V(x)). Let T be the diagonal subgroup of
G=SL,,;(C). We may require that x;e Hom (T, C¥*) is defined by x;(t)=1¢,¢,...¢;

where t=diag (¢, t5, . . ., t,+1)€T. Thus, we have
s V)= Y 4,8,
Ja€elou{n+1}
Ja#ipif a®b

where t=diag (¢,, t,, ..., t,+1)€sNT, s a semisimple conjugacy class of G. Hence,
tr(s, V(x;))=0, 1 <i<nis equivalent to that #,(1<i<n+ 1) is the solution of the equation
AL+ (=1yt=0. So if m=0 but m#0 for any proper subset I of I,
(9g0)x, co (B9 =0 if and only if the eigenpolynomial of s is A"**+(—1)"*"*.

Another special case is that ¢go+go'=0. In this case A, ={I,}. So
(9g0)x. o (E9)=0 if and only if o =0. If we identify the set {semisimple conjugacy
classes of G} with C" through the bijection

s (tr (S, V(xl))a tr(s, V(xz))a ] tr (S9 V(xn)))’

then oy, =0 defines a hypersurface in C". That is to say, the set { semisimple conjugacy
class s of G|(,.)x, o (E) =0} is a variety of dimension n—1.

When W, is of rank 2, if m;,=0, then either n;#0 for any proper subset IS, or
dot+4qo '=0. The above discussion shows that (¢, ), ., i an isomorphism if and only
if my, #0.

3.10. In general it is difficult to compute C, C,,,. in H. Now we compute it for
the simplest case: x; is the highest short root.

When x;eX* is the highest short root, x;w.=row,, and wyx<wqyx;, xeX™ implies
that x=e or x;. So by 2.7, in H we have

Cro Crowo = Cuo Capip = 01 (Cypoy T aC,,p)s

rowo Xwr wox]

where o, € A=C[q, ¢~'] is determined by C,, C, =, C,,, acA. We need to deter-
mine the coefficient a. Comparing the coefficient of T, in both sides we get

-1 -1 | 2 -1
q o) 0'10 =9 (wow) Oy Pe, woX] (q ) + aq (vo) Oy
ie.

(a) O.Io = ql ~He Oy Pwo, wowy (qZ) + aq Gy
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Using the formula 8. 10 in [L 2] we get the following

ProposiTioN 3.11. — If x; is the highest short weight, then

( Z g%t for type A,,, ]3", Ew
i=1 ‘

P =J 1 for type C,, G,.
w0, WoXj| qZ (n—-1) __ 1 ) -
———— Jfor ype B,
qg°—1
g*+1 for type F,.

\

where e, . . ., e, are the exponents of W,,.
By the proposition and 3. 10 (a@) we obtain the following

ProrosiTiON 3.12. — In H we have

= 01y
=0y C +— [en] Cwoa

Cc,C . =C,6 C
wo YO e, + 1]

wo “—rowo xpwy’

where e, is the largest exponent of W, and [i]=(¢'—q~)/(q—q~ ") for any ieN.
3.13. When W is of type A,, the highest short weight is x, x,.
Mty = [2gg [3Lgg- - -1+ 1y
where [i],, is the specialization at g€ C* of [{]. By 3.12, in H,, we have
Co Crowo =214 Blag - - - [n= 1140 (Cprpxyx, T [n1Z,C,,,)-

Now suppose [n],, =0 but [i], #0 for i, 1<Zi<n—1, then A, ={{1,n}, {2}, {3},...,
{n—1}}. By3.9and 3.12 we see that ,=0, Ie A, is equivalent to tr (s, V (x, x,)) =0,
tr(s, V(x;))=0, 2<i<n—1. Note that tr(s, V(x;x,)=tr(s, V(x)tr(s, V(x,)—1, by
3.9, we know that o,=0, IeA,  if and only if the eigenpolynomial of s has the form
AMHl—al+(—1)"a”'A+(—1)""!, aeC* In other words, if [n], =0, [, #0,
1<i<n—1, then (¢qo)*,C0 (Ey) =0 if and only if the eigenpolynomial of s has the form
AMrl—aA+(—D"a" A+ (= 1), aeC*.

4. Examples

4.1. Type A,. In this case G=SL,(C), S={ro, 1}, x,=r,0, Q={e, 0},
My=qo+ 45" ¢co={weW|I(w)>0}. Another two-sided cell ¢ of W is Q.

J. has two irreducible modules F, F;. Both have dimension 1 and ¢, acts on F; by
scalar (—1), i=0, 1. Via, ¢,, .:H, —J—1J, F; becomes H, -module F; ... T, acts
on F; _ . by scalar (— 1)’ and T, actson F, . . by scalar —1. (4),10)*,0 is an isomorphism

i, 490
for any ¢,eC*.
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For ¢,, we have J,,=M,;,,(R;) and

- M Vi(xy)
o @)= (g0 VoY)

¢qo, <0 (CVO) = < O 0 >

v (xl) nlo

/01
¢q0, co (Cm) - <1 0>

Suppose that m;,#0. Let s be the semisimple conjugacy class of G containing

((t) (_)1>GG, then E,, is irreducible if and only if ng#=+(@+ t™1). When
t ,

Me=£0+17Y), By o fFi oM, ., where i=0 if n =—-(@+¢"") and i=1 if

M,=t+t"'. T, acts on M, . by scalar (—1)'"" and T,, acts on M, , by scalar ¢3.

(¢q0)*, c (Es)= Es, q0 lf nlo ;é i (t+ t_ 1)’ (¢q0)*, co (Es) = Ms, q0 lf n10= :l: (t+ t- 1)' In par-

ticular, when m,, #0, (<|>q0)* is an isomorphism.

When m;,=0, one verifies that E is irreducible if ¢+77'#0 and

S, 40

E, 40=Fo,4o®F, 4 if t+¢71=0. In particular rank ker (¢,),=1.

S, 40

4.2. Type A,. In this case we have G=SL;(C), S={ro, ry, 1, }, @={1, ®, ®*} and
OFg=r, 0, OF =r,®, OF,=rg®, X; =ror,®, X,=ryr; ®. W has three two-sided cells:
c=Q, ¢y, =W—cUcqy c is the two-sided cell of W containing r, ry, r,.

It is obviously (¢,,),, . is an isomorphism.

Now consider J.. Any element in ¢’ has one of the following forms: w'r, x} o,
o't xf o), o't ?r, x50, o't x0T, i, j=0, 1, 2. We define a C-linear map 6:
J.—>M;,;(A), A=Clq, g1, by 0(t,)=(# ) eM; 3 (A), wec'. Assume that w is of
one of the above forms, then m,, =0 except (a, b))=(i+1, j+1) and

q* if w=o'r, x%o’
m _ q2a—1 if W=(Dl+1X‘;(D}
i+1,j+1 q—Za if w=mt+2r2xgw]+1
q—2a+1 if w=ml+1x¢;mj+1

By [L 1, 3.8] we know that 0 is a C-algebra isomorphism. We have

2, ' g
6¢qo,c'(C,l)=< 0 0 0)

Vo 0 o0
0 0 1

09,0, Co)=| 1 0 o).
010

Specialize g to aeC*, we get a simple representation Y, of J.=M;,;(A) and any
simple representation of J. is isomorphic to some ,, acC*. Let E, be a simple J-
module providing V,.
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A little surprisingly, the homomorphism (¢,,),. . : K ({J,) » K (Hg,).'» 1s an isomorphism
for any g, C*. In fact, via ¢,, .:H, —J - I, E, gives rise to an H, -module E, .
One verifies that E, , has a unique quotient M, ;. such that the attached two-sided cell
is ¢ and (§,)4, (E)=M, ,,, moreover, M, ,  is not isomorphic to M, , whenever
a#b.

When n,,=[2],, [3],,#0, (¢qo)*,co is an isomorphism by 3.4. So (¢qo)* is an
isomorphism. When [3], =0, by 3.9 we see that (¢,,), ., (E)=0 if and only if

0

1 0 O
0 o 0 Jes,
0 0

here we regard @ as a 3-th primitive root of 1 in C. When [2],,=¢,+¢, ' =0, by 3.13
we see that ((1)1,,0),,‘,CO (E;)=0 if and only if the eigenpolynomial of s has the form
A —ar?+a tA—1, aeC*.
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