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SUBSPACES OF MODULI SPACES OF RANK ONE
LOCAL SYSTEMS

BY CARLOS SIMPSON

ABSTRACT. - Suppose X is a smooth projective variety. The moduli space M (X) of rank one local systems
on X has three different structures of complex algebraic group (Betti, de Rham, and Dolbeault). A subgroup
which is algebraic for all three structures, we call a triple torus. We show that any closed subspace S of M (X)
which is defined in a natural way, for example by looking at cohomology groups and related constructions, is
a finite union of translates of triple tori by torsion points. This answers a conjecture of Beauville and
Catanese. The proof that the translates are by torsion points rests on a result from transcendental number
theory.

1. Introduction

Let X be a smooth complex projective variety. We will consider the moduli space
M (X) of rank one local systems on X. It is a group under tensor product. There are
many natural ways of defining subspaces, for example if we fix i and k we can let

S=={^eM(X), dimH^X, zQ^}.

The moduli space is isomorphic to a product of a reductive torus by a finite group. We
will show that any naturally defined subset S such as above (cf. § 4, § 6, 7) is a finite
union of translates of subtori by torsion points.

This type of result is originally due to M. Green and R. Lazarsfeld [14], [15], and
A. Beauville [2]. They proved that the intersection of S with the space of unitary local
systems is a finite union of translates of subtori. The question of whether the translations
are by torsion points was posed by F. Catanese ([5], Problem 1.25) and
Beauville [3]. They conjectured that the answer was yes, and Beauville has proved this
in some cases [3].

We indicate three proofs that subspaces such as S are translates of tori, based on
formal properties of the correspondences between rank one local systems (the Betti
version), rank one vector bundles with integrable connection (the de Rham version), and
rank one Higgs bundles with torsion Chern class (the Dolbeault version). A good
reference for the correspondence between local systems and vector bundles with integrable
connection is [7]. The references for the correspondence between local systems and
Higgs bundles are [6], [II], [17], and [21]. However, in the rank one case the situation
is much simpler, and all of the elements are present in the work of Green and
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362 c. SIMPSON

Lazarsfeld. The main part of the argument is Theorem 3.1, saying that subsets ofM
which are compatible with various of the natural structures which it has, must be
translates of subtori. At the time of the final revision of this paper, I have included
three arguments for this result, each using different hypotheses. The first is due to
Arapura [1]. He proves that subsets of the moduli space which are complex analytic in
the Betti version, and preserved by C* in the Dolbeault space, are translates of
subtori. The second was pointed out to me by Deligne: it says that subsets which are
complex analytic in the Betti realization and complex algebraic in the Dolbeault realiz-
ation are translates of subtori. The third was suggested recently by a question of
Laumon: subsets which are algebraic in the Betti and de Rham versions are translates of
subtori. These more precise versions of the statement used in the original version of
this paper could permit a strengthening of the arguments presented in the last sections
of the paper (this is left to the reader).

We prove that the translations are by torsion points. In fact this is not so much a
proof as a remark based on a result from transcendental number theory. Suppose X is
defined over Q. Then the moduli space M can be given structures of algebraic
varieties Mg and M])R. The first parametrizes representations of n^ (X), and the second
parametrizes line bundles with integrable algebraic connection on X. Both Mg and
MDR are defined over Q. The result from transcendental number theory says that
MB (Q) n MDR (Q) consists exactly of the torsion points. It is an application given by
Waldschmidt [26] of the criterion of Schneider-Lang [18] (there is a discussion
in [24]). The result for any X defined over C follows from a specialization
argument. This application of transcendence theory is similar to Brieskorn's proof of
the monodromy theorem [4].

The same methods apply to subvarieties of M (X) defined in many ways — for example,
by looking at various direct images and inverse images, cup products, and so forth. My
first attempt to formalize this was with a notion of canonically defined locally closed
sub-variety. This version was somewhat heuristic. I have included it in Section 4, as it
remains a fairly good picture of the basic idea. The second version of this discussion — gi-
ven in Section 6 and 7 — is much longer and more technical, and still somewhat abbrevi-
ated, but more mathematically precise. It is based on the observation that these subvari-
eties have certain invariance properties with respect to field automorphisms. We assume
the axiom of choice, and make a definition of absolute constructible subset by considering
the action of Aut (C/Q) on everything, much as in Deligne's definition of absolute Hodge
cycles [9]. Using the previous parts of the paper and the Baire category theorem we
show that absolute constructible subsets of the moduli space of rank one local systems
are obtained by finite unions, complements and intersections of torsion translates of
triple tori.

In Section 7 we define absolute functors between categories of local systems, and
absolute natural transformations. These give rise to absolute constructible
subsets. Examples of absolute functors are cohomology groups, inverse images, higher
direct images, tensor products, and duals. Cup products are absolute natural
transformations. The composition of two absolute functors is again an absolute
functor—this formalizes the idea mentioned in Section 4, that various operations can be
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SUBSPACES OF MODULI SPACES 363

applied sequentially with the resulting functor used to define an absolute constructible
subset. At the end of Section 7, we show that as local systems V\, . . . ,V^ run through
all semisimple local systems of given rank, the cup-product algebras of cohomology
groups with coefficients in tensor products of the V^ (truncated at a finite stage) occupy
only finitely many isomorphism classes of algebras; and that the set of (V\, . . .,Vfc)
corresponding to a given isomorphism class is an absolute constructible subset.

These properties are topological properties of smooth projective varieties — some more
in a long line of properties due to Hodge theory. It is not clear exactly what type of
properties they are; it would be interesting, for instance, to have some examples of
topological spaces not satisfying them.

I would like to thank M. Green and R. Lazarsfeld for explaining their work a long
time ago; A. Beauville for posing the question of rationality (whether the translates are
by torsion points) a few months ago; and F. Catanese for pointing out this conjecture in
his talk in Trento (September 1991). I would like to thank P. Deligne for some helpful
comments on a preliminary version, and for indicating a new proof of Theorem 3.1
which allows the subtraction of one of the hypotheses. I would like to thank G. Levitt
and J.-C. Sikorav for a helpful discussion about topology.

2. Preliminary definitions

Let X be a smooth projective variety defined over K <= C. Let M = M (X) denote the
moduli space of complex local systems of rank one over X. We consider M as a real
analytic group under the operation of tensor product. There are three natural algebraic
groups whose underlying real analytic groups are canonically isomorphic to M. The
first is

Me = Me (X)dlfHom (Tii (X), C*).

The second is MDR=MDR(X), the moduli space of pairs (L, V) where L is a line bundle
on X and V is an integrable algebraic connection on L. Recall that an integrable
connection is a morphism of sheaves

V: L -^ L g) Q^

such that ̂ (au)=d(a)u-\-a^(u) and (when V is extended to an operation on forms with
coefficients in L), V2: L -> L g) 0^ is zero.

The third space is M^oi = M^i (X), the moduli space of rank one Higgs bundles with
first Chern class vanishing in the cohomology with rational coefficients. A rank one
Higgs bundle is (E, (p) where E is a lin,e bundle and (peH°(X, Q^). We require that
Ci(E) is a torsion class in H^X, Z). Recall that Pic^X) denotes the group of line
bundles on X whose first Chern classes are torsion. We have an isomorphism

M^Pic^xH^X,^).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



364 C. SIMPSON

We have isomorphisms of real analytic groups M^M^M^ M^. The morphism
^R-^MB associates to each (L, V) the monodromy representation of the local system
of analytic solutions of V (u) - 0. This is complex analytic. The morphism M^i -. Mg
(which is not complex analytic) may be defined as follows. If (E, (p)eM^i, th°ere is a
flat unitary metric K on E, with corresponding connection ̂  (which is uniquely determi-
ned by E). JThe local system corresponding to (E, (p) is that of sections e of E with
<(^)+((p4-(p)(^)=0.

For any subset S c M, let 83, SDR, and S^i denote the corresponding subsets of Mg,
MDR, and Mooi. Let U c: M be the subgroup of unitary local systems. We have
UDoi^Pic^X), and

UB^Hom(7Ci(X),U(l)).

Let R c: M denote the subgroup of real orientable local systems We have
R^H°(X,nx),and

RB^Hon^^X^R^).

The direct product decomposition M = U x R is compatible with the previous direct
product decomposition for M^i. Both Ug and Rg are totally real subgroups of Mg
whose real dimensions are equal to the complex dimension of Mg. On the other hand,
this product decomposition does not have a good description in M^R.

Let T c: Hi (X, Z) denote the subgroup of torsion. Let T" =Hom(T, C*) denote the
dual abelian group. Let M° denote the connected component of M which contains the
identity (trivial local system). We have an exact sequence

l-^M°->M-^T^->Q.

This exact sequence splits (since T is a direct summand of H^(X, Z)). Since ̂  is a
finite group, the splitting is an algebraic morphism for all three algebraic groups. The
isomorphisms are compatible with the exact sequence and the splitting.

Remark. - Let Pic° (X) denote the group of line bundles whose Chern classes vanish
inH^Z). We have

MSoi^Pic^xH^X.nx).

From the universal coefficients theorem, the subgroup of torsion in H2 (X, Z) is iso-
morphic to Ext^T, Z), so Pic^XVPic^X^Ext^T, Z) and we obtain a natural morph-
ism from M^i to Ext1 (T, Z). Similarly, if a line bundle L admits an integrable connec-
tion, then its Chern class is torsion, so we get a morphism Mpp -> Ext1 (T, Z). These
two morphisms are the same, since the holomorphic line bundle associated to a unitary
connection is the same as the Higgs bundle. There is a natural isomorphism
^ ^Ext1 (T, Z) obtained using the exponential exact sequence. This is compatible with
the definition of first Chern class by the exponential exact sequence, so our map from
M(X) to Ext1 (T, Z) agrees with our map from M(X) to ̂  via this identification.
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SUBSPACES OF MODULI SPACES 365

A triple torus is a closed, connected real analytic subgroup N c: M such that Ng, N^R,
and ND^I are algebraic subgroups defined over C. We say that a closed real analytic
subspace S c= M is a translate of a triple torus if there exists a triple torus N c: M and a
point veM such that S^^®^, weN}. Note that, in this case, any choice of veS
will do.

We say that a point v e M is torsion if there exists an integer a > 0 such that ^<8)a ̂  1. Let
M101" denote the set of torsion points. Note that for a given integer a, there are only
finitely many solutions of v^^l. Hence, the points of M1^ are defined over Q, and
the points of Mg^ and Mg^ are defined over K.

We say that a closed subspace S is a torsion translate of a triple torus if S is a translate
of a triple torus N by an element v e M101". This is equivalent to asking that S be a
translate of a triple torus, and contain a torsion point.

Let A be the Albanese variety of X (which can be defined as
H°(X, Q.^)*/H^{X, Z))- Let X-^A be the map from X into A given by integration
(from a basepoint, which will be suppressed in the notation but assumed to be defined
over K). Fullback of local systems gives a natural map from M (A) to M (X), which is
an isomorphism

M(A)^M°(X).

The Albanese variety A is defined over K.

LEMMA 2.1. — Let N c M be a closed connected subgroup such that Ng c: Mg is
complex analytic and N^oic= M^oi is an algebraic subgroup. Then there is a connected
abelian subvariety P c: A, defined over K, such that N is the image in M of M (A/P). In
particular, N is a triple torus in M.

Proof. — The condition that N^i is an algebraic subgroup of U^oix RDOI? ^d the
facts that U^oi is an abelian variety and R^i is a vector space, imply that
N ̂  (N n U) x (N 0 R). To see this, we can divide by (N Pi U) x (N H R), so it suffices
to show that i f N U L ^ N Q R ^ O then N==0. Under those circumstances, N would
provide the graph of an injective morphism of algebraic groups from the projection
p^ (N) c: R^ to U^oi — but there are no nonzero morphisms of algebraic groups from a
vector space to an abelian variety, so we get the claimed statement.

Note that (N 0 U)i^i is an abelian subvariety of A (hence defined over tC), and
(NHR)Doi is a vector subspace of Roor Let A==Hi(X, Z)/T; it is also equal to
TCI (A). Then complex analytically,

M^Hom(A, C)/Hom(A, Z).

The product decomposition of N implies that there is an exact sequence

0 -, o -> A ̂ x? ̂  0

where ^P has no torsion, such that

NB^ Horn OF, C)/HomOP, Z).
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366 c. SIMPSON

Note that UDoi=Pic°(X) is the abelian variety dual to A. Hence the abelian subvariety
(N H U)ooi c= UD^I is dual to a quotient A/P of the Albanese by a connected abelian
subvariety P. The fundamental group of (NHU) is the subgroup Hon^, Z) of
Tti (U°) = Horn (A, Z). Hence n^ (P) = 0 and n^ (A/P) = ̂  Thus N = M (A/P). Note
that, as there are at most countably many abelian subvarieties of a given A, P must be
defined over K.

COROLLARY 2.2.- Suppose N c M is a triple torus. Then Ng is defined over Q, and
N])R and Npol are defined over K.

Proof. - Since A/P is defined over K, NDR and N^oi are defined over K. The
subtorus NB is defined over Q, since it may be expressed as NB==Hom(7ti (A/P), C*).

There is an action of C* on M^i, given by

^(E,(p)=(E,^(p).

Let p denote the projection from M to the first factor of U x R. The tangent space
T (M)y at any point v is naturally identified (via translation) with the tangent space
T(M)i at the identity. We denote all of these tangent spaces simply by m. Similarly,
let u and r denote the tangent spaces of U and R. The exponential map is a natural
identification exp:r^R. This is compatible with the vector space structure of
RDOI- The complex structure i of Mg acts on m, and provides an isomorphism ;u=r.

3. The main theorems

THEOREM 3.1. - Suppose that S c: M is a closed irreducible real analytic
subset. Suppose that one of the following sets of hypotheses holds:

(a) SB is complex analytic and S^i is preserved by the C* action,
(b) SB is complex analytic and S^i is complex algebraic; or
(c) SB and SDR are complex algebraic.
Then S is a translate of a triple torus.

Proof. - Using hypothesis (a), the theorem is essentially due to D. Arapura. He
proves that if S^i is preserved by the action of (R^* then SB is a translate of an
algebraic subtorus [1]. We give some details. By translation we may assume that the
origin 0 is a smooth point ofS. Then exp'^S) c TMo is smooth at the origin and
invariant under real scaling in the second factor of the decomposition
TMo = TUo © TRo. This implies that TSo = T (S U U)o © T (S C\ R)o and that
exp (T (S 0 R)o) c: S. Let k denote the complex structure of Mg. Since Sg is k-complex
analytic, we have

exp(T(S U R)o © kT(S U R)o) c= S.

4eSERIE - TOME 26 - 1993 - N° 3



SUBSPACES OF MODULI SPACES 367

Furthermore, k: T (S 0 R)o ̂  T (S 0 U)o- Therefore exp (TSo) <= S. Since S is closed
and irreducible, this implies that Sg is a closed complex analytic subgroup of MB. We
also get S = (S n U) x (S P^ R), which implies that Sg is an algebraic subtorus.

To prove the first part of the theorem, we have to use the hypothesis that M^i is
preserved by the full C* to conclude that S^oi is complex algebraic. Let j denote the
complex structure of M^i. Together, j and k are two of the three complex structures
of a quaternionic structure [17], [12]. In particular, kj= -jk. The action of ;eC* on
TRo is equal to the action ofj. Thus the hypothesis implies that S^iPlRDol is a

complex vector subspace of R^i. On the other hand, T(Sr»U)o=kT(SnR)o. so
the commutation formula for j and k implies that T(SPiU)o is preserved byj. Thus
S^iPlUDol is a complex analytic, hence algebraic, subgroup of the abelian variety
Uooi. Now Lemma 2.1 implies that S is a triple torus.

The second statement, using hypothesis (&), was pointed out to me by P. Deligne, in
response to an earlier version of this paper. Briefly, the proof goes as follows. The
universal covering of M has a structure of vector space over the quaternions. Any
smooth submanifold of a quaternionic vector space which is holomorphic for the complex
structures j and k must be a linear subspace. This follows from the more general
principle that quaternionic subspaces of quaternionic-Kahler manifolds are totally
geodesic [25]. In this case, a simple proof can be had by noting (as Deligne) that the
subspace is locally the graph of a function which is j and k-holomorphic. Such a
function must be linear, as the second derivative, a quadratic form, must vanish:

jkQ(M, ^)=JQ(M, kz;)=Q(JM, kz;)=kQ(JM, zO=kjQ(M, zQ= -JkQ(M, v).

We conclude that S is a translate of a closed subgroup. The hypothesis that S^i is
algebraic allows us to apply Lemma 2.1 to conclude that S is a translate of a triple
torus.

The third statement of the theorem, using hypothesis (c), has been added in proof, in
response to a question of G. Laumon. For the proof of this statement, suppose A is
an abelian variety. Say that a closed real analytic subset S <= M (A) is Betti-de Rham if
SB and SDR are algebraic. We have to show that an irreducible Betti-de Rham subset is
a translate of a triple torus. We may suppose that this statement is known for abelian
varieties of smaller dimension. Translations and intersections of Betti-de Rham subsets
are again Betti-de Rham subsets.

Our first claim is that there are no irreducible Betti-de Rham subsets of codimen-
sion one. If S were such, then SB, as a divisor in the affine variety MB (A), would
be defined by a function g in the coordinate ring of MB (A). If we choose a basis
Hi(A,Z)^Z2^ then we can express MB(A)^(C*)2ff. The coordinate ring becomes
C [^i, xf \ . . ., ̂  g, x^g], so we can write

g=^a^. . .^}g.

There are at least two nonzero terms in this expression if SB is nonempty. Choose a
generic holomorphic one-form aeH°(A, Q^), and consider the family of vector bundles
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368 c. SIMPSON

with integrable connection [O^ rf+^a)}^^- Let ^ , . . . ,X^ be the integrals of a
around the basis elements of H^ (A, Z) chosen above. The line bundle with connection
( ( P ^ d - ^ t a i ) corresponds to the point ^(0==0i(0, . . ., ̂  (0) e (C*)2 ̂  Mg (A) with
^•(0==exp(rXf). Our family of connections corresponds to an algebraic morphism
C -> MDR (A), so the hypothesis that S^p is algebraic implies that the set of values of t
such that g (y (t)) = 0 is either empty, finite, or all of C. On the other hand, the condition
that a is generic implies that the ̂  are linearly independent over Q. We can write

^(0)-I>u^

where the sum is over distinct complex numbers u, and there are at least two nonzero
terms. The argument of [20], Chapter 12 shows that g(y(t))==0 for a countably infinite
set of values. This contradiction shows that a Betti-de Rham subset cannot be a divisor.

Assume that A is an irreducible abelian variety, and suppose that there exists a
proper irreducible Betti-de Rham subset of positive dimension. Choose one of minimal
dimension, and translate so that it passes through the origin. Then for some k the map
from the fc-fold product

/: S x . . . x S -> M (A)

defined by the group law of M (A), is surjective and generically finite. Let C c= M (A)
denote the subset of points^ such that/is not a covering space over a neighborhood
of y. Then C itself is a Betti-de Rham subset. On the other hand, C is of pure
codimension 1 (by purity of the branch locus, the fact that in the Betti realizations / is
an affine map, and Hartog's theorem). The claim of the previous paragraph implies
that C is empty. Thus/is a covering space. By passing to a finite covering of A we
may assume that/is an isomorphism. Let p^ denote the projection on the ;-th factor
and j the inclusion of S in M (A). Put Vf=/^/~ 1 : M (A) -> M (A). The composition
of Vi with the projection to Pic° (A) factors through a map Pic° (A) -^ Pic° (A). For
some i this map is nonzero, hence S surjects onto Pic° (A). On the other hand every
point of MDR (A) has a rational curve passing through it, and this curve has a nontrivial
projection into one of the factors. Thus if s e S is a general point, then there is a rational
curve in S^R passing through s. These curves must project to points in Pic° (A), so we
get dim(S)>dim(A). This contradicts the possibility that/is an isomorphism (k>\
since S is a proper subset). This contradiction shows that if A is an irreducible abelian
variety, then M (A) contains no proper Betti-de Rham subsets of positive dimension.

We finish with the proof for any abelian variety A. Note that if S is an irreducible
Betti-de Rham subset which is contained in a translate of a triple subtorus, or which is
translation invariant by a triple subtorus, then the inductive hypothesis implies that S is
a translate of a triple subtorus.

Suppose S c M (A) is an irreducible Betti-de Rham subset of positive
dimension. Choose a projection M (A) -> M (A^) where A^ is one of the irreducible
factors of A, such that the projection g : S -> M (A^) is nonconstant. From the result of
the previous paragraph, g is surjective. The fibers of the projection M (A) -> M (A^) are
also of the form M (B), and the fibers of g are Betti-de Rham subsets of M (B). The
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SUBSPACES OF MODULI SPACES 369

Stein factorization of a projective completion of g has branch locus which is a Betti-
de Rham divisor in M (A^), so this branch locus is trivial. Thus we may go to a finite
cover and assume that g 'has connected general fiber. Since we are proceeding by
induction on the dimension of A, we may assume that the general fibers of g are translates
of triple subtori of M (B). Since there are only countably many possibilities, the general
fibers are translates of the same triple subtorus. Thus S is translation invariant by this
triple subtorus. By taking the quotient we reduce to a lower dimensional case, unless
the general fiber of g is finite. In that case, by the same argument as above, g is a finite
covering. In particular, Sg is a covering of Mg (A^), so it is a product of multiplicative
groups. The morphism from Sg into Mg (A) must be a translate of a group homomorph-
ism, so S is a translate of a closed subgroup. A subgroup which is Betti-de Rham is a
triple subtorus. This completes the proof.

COROLLARY 3 . 2 . — Suppose S c M is a closed real analytic subset satisfying one of
hypotheses (a), (b) or (c) of the above theorem. If hypothesis (a) is used, assume that Sg
is complex algebraic. Then S is a union of translates of triple tori.

Proof. — Divide S into a union of irreducible components. This is possible since one
of SB or Sj^oi is assumed to be complex algebraic. The condition of irreducibility can be
described topologically, once it is known that the subset is complex algebraic in one of
the realizations. Apply the theorem to each irreducible component.

THEOREM 3 . 3 . — Suppose X is defined over K== Q. Suppose S c= M is a translate of a
triple torus such that Sg and Spp are defined over Q. Then S is a torsion translate of a
triple torus.

The proof of this theorem depends mostly on the following result from transcendental
number theory. This statement may be found in the proof of Theorem 1 in [24]. There,
the statement is quoted directly from Waldschmidt ([26], Corollary 5.2.7 and remark
on pp. 92-93). In turn, Waldschmidt's proof is essentially an application of the criterion
of Schneider-Lang [18]. We will give a short discussion here as Waldschmidt's remarks
are very brief.

PROPOSITION 3.4. — Suppose A is an abelian variety defined over Q. Suppose v e M (A)
is a point such that v^ is defined over Q in Mg(A) and v^ is defined over Q in
MDR(A). Then v is a torsion point.

Proof. — The criterion of Schneider-Lang, as stated in [26] Theorem 5.2.1, says: if G
is a connected commutative algebraic group defined over Q, if \|/: C" -> G is an analytic
homomorphism normalised so that the differential at the origin is defined over Q, and if
r <= C" is a subgroup containing n elements linearly independent over C with
\|/ (F) c: G (Q), then the dimension of the Zariski closure of \|/ (C") is less than or
equal to n. Our point Z^R corresponds to a line bundle L with integrable connection V
over A. Consider the extension of algebraic groups

1_G,-G^A^1

where G is the set of pairs (x, /) with T : A -> A a translation and /: t* (L) s L. The
connection V gives an analytic homomorphism \|/: TA -> G from the tangent space of A
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370 C. SIMPSON

to G, lifting the exponential map TA -» A. If (L, V) is defined over Q then G and the
differential of v|/ at the origin are defined over Q. Let F c: TA denote the period
lattice. The condition that v^ is defined over Q means that v|/ (F) c G^ (Q) c: G (Q). By
the criterion of Schneider-Lang, there is an algebraic subgroup G' c G of dimension
n=dim(A) such that v|/(TA) c: G'. But G' -> A is surjective, hence finite, so G'OG^
is a finite group. Thus the monodromy representation F -> G' 0 G^ c: G^ takes values
in the group of roots of unity, so v is a torsion point.

Proof of Theorem 3.3. — First of all, note that any irreducible component ofM
contains a torsion point. This is because the exact sequence

O-.M^M-^T^O

splits. Let MI be a torsion point in the same component as S. Let Si=Mi'1 (x) S. If
we can show that S^ is a torsion translate of a triple torus, then it follows that S will
be. Hence we reduce to the case where S c M°. In particular we may replace X by
its Albanese A.

Let N be the triple torus such that S is a translate ofN. Apply Lemma 2.1, to find
a connected abelian subvariety P c: A such that N=M(A/P). The natural morphism
M(A)-^M(P) identifies M(P) with the quotient M/N. Let veM(P) denote the point
corresponding to the image of S in M/N. Then v^ and v^ are defined over Q, so we
may apply Proposition 3.4 to conclude that v is a torsion point. Finally, note that
there is an exact sequence

0 -> M^ (A/P) -. M101- (A) -. M101- (P) -. 0

(this can be seen by identifying M^CA^H^A, O/H^A, Z)). Thus v may be lifted
to a point w e M101"; then w e S, and S = w (x) N. This proves the theorem.

COROLLARY 3.5. — Suppose X is defined over K=Q. Suppose S c= M(X) is a closed
subset such that Sg and S^p are algebraic sub-varieties of Mg and M[)R, defined
over Q. Suppose that Sp^ is a complex analytic sub-variety of M^oi, preserved by the
action ofC*. Then S is a finite union of torsion translates of triple tori.

Proof. — By Corollary 3.2, S is a union of translates of triple tori. It has finitely
many irreducible components, because Sg is an algebraic subvariety. Each of these
components is defined over Q in Mg and M^R. By Theorem 3.3, each of these com-
ponents is a torsion translate of a triple torus.

Remark. — With the argument of Theorem 3.1 part (c) (which was added in proof),
we can remove the hypotheses in the third sentence of this corollary.

4. Canonically defined subvarieties

In this section we will indicate the existence of a large number of ways of defining
subvarieties S <= M (X) so as to satisfy the hypotheses of Corollary 3.5. We call these
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canonically defined sub-varieties. This notion does not have a prerise definition, but we
state a theorem about it anyway. It will be replaced in Sections 6, 7 by the more precise
notion of an absolute constructible set. There we will sketch a method of proving the
things which we indicate heuristically here. It seemed like a good idea to keep this
section, which was a preliminary version, because it serves to explain the idea more
intuitively.

Fix a smooth projective variety X defined over a field K c= C. Let M = M (X). We
will say that a closed subset S c= M is canonically defined if the property v e S can be
characterized by looking at the following types of things. For any morphism/: Y -> X
such that Y is a smooth projective variety, and any smooth morphism g : Y -> Z, we can
consider the local systems Rl^(/*V). We can take tensor products, direct sums and
duals (including also the trivial local systems). We may consider natural morphisms
between these local systems, such as morphisms given by cup product, and take kernels
and cokernels. We may iterate these types of operations to obtain a class of local
systems W on smooth projective varieties Z, depending on one or several local
systems V. Finally, given the data of all of these local systems, we may consider the
ranks; and also their decompositions into irreducible or isotypic pieces. We may consider
whether various of the local systems obtained are isomorphic. Furthermore, we may
consider the invariant theory of the various multilinear forms on cohomology groups
obtained by cup products. Any closed subset S of local systems V obtained by character-
izing some set of such data, will be called canonically defined.

A constructible canonically defined subset is one obtained by finite unions, intersections
and complements of closed canonically defined subsets. We restrict the discussion here
to closed subsets, as Sections 6 and 7 will treat constructible subsets.

Examples

The first example is given by looking at the dimensions of cohomology groups. Fix ;
and k', then

S={^eM(X), dimH^X, v)^k]

is canonically defined. We may also do the same for varieties over X. If/: Y -^ X is a
morphism, with Y smooth and projective, then

S={v€M(X\dimW(y,f*vW}

is canonically defined. Note that both of these cases fit into the framework described
above, because the cohomology groups are the same as the higher direct images for the
morphisms from X or Y to a point.

We may look at higher direct images to other varieties. For example, suppose
/: Y -^ X is a morphism, and g : Y -^ Z is a smooth projective morphism (with Y and Z
smooth projective). The set S of ?;eM(X) such that ^g^(f*v) either has rank>fc, or
has rank k and is reducible, is a closed canonically defined subset.
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We may look at the rank of morphisms induced by cup product. Let S^ i be the
subset of local systems V e M (X) such that dim H1 (X, V) = k and dim H1 (X, V*) = /. Its
closure S^i is a closed canonically defined subset, as is the complement
^) ̂  Sfc , - Sfcj. Let r = dim H1 +J (X, C). Fix an isomorphism class of pairing

q'.C^C^C1'.

Let S (q) be the subset of v e S^ i such that the cup product

H^X, V) ® H^X, V*) ̂  rf-^X, C)

is isomorphic to the pairing q for some choice of frames H^X, V)^^, iP(X, V*)^^,
and H1^ (X, C) ̂  C. Then S (q) U D is a closed canonically defined subset of M (X).

Properties

THEOREM 4.1.- Suppose ScM is a closed, canonically defined subset. Let K be a
common field of definition for X and all of the objects involved in the definition ofS. Then
S has the following properties'.

1. SB is an algebraic subvariety o/Mg defined over Q;
2. SDR and S^i are algebraic subvarieties ofM^ and M^i, defined over K;
3. SDOI ^ invariant under the action o/C*;
4. ^r^ ^x^ a specialization, that is a variety X' defined over Q with an isomorphism

of topological spaces \|/: X1^ ̂  (XJ^, and a closed subset S' c= M(X'), such that S' has
properties 1-3 above (with respect to Q in property 2), and under the induced isomorphism
v|/*: M (X') ̂  M (X) we have \|/* (S') = S.

Proo/. - Inverse images and smooth direct images can be defined in the categories of
local systems, vector bundles with integrable connection, and polystable Higgs bundles
with vanishing Chern classes. For vector bundles with integrable connection, the smooth
direct images are defined by the relative algebraic de Rham cohomology of
Grothendieck [16]. For Higgs bundles, the direct image is defined similarly as follows:
suppose /: Y -> Z is a smooth morphism, and (E, (p) is a polystable Higgs bundle with
vanishing Chern classes on Y. Let Qy/z (E, (p) be the complex whose terms are
Qy/z ® E with differentials given by cp (the relative Dolbeault complex). Put

RDOI A (E, <P) = R1 A (^Y/Z (E. <P)).

This has a Higgs field 9 defined by using the connecting morphism in an exact
sequence. In [23] it is shown that this direct image is compatible with the correspondence
with harmonic bundles and local systems. Note that all local systems involved remain
semisimple, and correspond to harmonic bundles. (The compatibility is probably also
true for semistable Higgs bundles with vanishing Chern classes, and nonsemisimple local
systems, but I haven't thought about this.)
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Tensor products and cup product morphisms may also be defined in all three of these
categories. The correspondences between local systems, vector bundles with integrable
connection, and Higgs bundles are preserved by these operations. Furthermore, the
sub-objects correspond. Hence there are algebraic subvarieties Sg, S^R and S^i with the
same underlying set of points S c: M. For property 3, note that the action of C*
commutes with inverse images and direct images. For example, if/is a smooth morph-
ism, then there are natural isomorphisms

O^(RDOI/*(E, (p), ^)^(RDOI^(E, rep), 9),

obtained from the isomorphism of complexes Ov/zO^ (p)^Qy/z(E, ^<p) which one makes
by multiplying by t1 on the terms of degree i. These isomorphisms are compatible with
tensor products and cup products. In particular, the invariants of the multilinear forms
which one can obtain by using tensor products and cup products are unchanged by the
action of C*. This completes the verification of the first three properties.

For the fourth, note that we may find a subring 0 c= K, finitely generated over Q,
such that all of the objects required in the definition of S are defined over 0 (since Mg
is noetherian, we need only consider a finite set of data to define S). We may further
assume that all of the varieties and morphisms which are required to be projective (resp.
smooth), are projective (resp. smooth) over Spec(O). Then all of the varieties are
topologically fibrations over Spec (0) (C)^, and the local systems and morphisms of
local systems which occur in the definition of S are locally constant over Spec(O) (C)^,

The inclusion 0 c= K c: C corresponds to a point aeSpec(0)(C). There exists a
point PeSpec(0)(Q), and a continuous path from o to P in Spec(O) (C)^. Let X'
be the fiber of the scheme corresponding to X, over P. It is a smooth projective
variety defined over Q. Transporting along the path gives an isomorphism
vl/iX^^X'y015. We may also transport all of the topological data along this path, to
obtain a canonically defined subset S'clV^X') such that S^^S'). The data
defining S' are defined over Q, so S^p and S^oi are defined over Q. This gives property 4.

This theorem may now be combined with the previous theorems to give our main
statement,

THEOREM 4.2.- Suppose X is a smooth projective variety over C. Suppose S c= M (X)
is a closed, canonically defined subset. Then S is a finite union of torsion translates of
triple tori.

Proof. - By properties 1-3 of the previous theorem, and Corollary 3.2, S is a finite
union of translates of triple tori. Property 4 indicates that there is a specialization X'
defined over Q, and a subvariety S' c M(X'), such that S^vl/^S'). We have S'^ and
5'B defined over Q. By Corollary 3.5, this implies that S' is a union of torsion translates
of triple tori. The fact that each of the irreducible components of S' contains a torsion
point may be seen in Mg (X'); hence the fact that the isomorphism \|/* between Mg (X")
and MB (X) takes S' to S implies that each irreducible component of S contains a torsion
point. Hence S is a union of torsion translates of triple tori.
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Remark. - If X is defined over a field K, then any canonically defined subvariety
S c: M (X) is defined over K (in the DR and Dol versions) - even if the data used to
define S are not defined over K.

Finally, we note another principle. There may be morphisms from canonically defined
locally closed subvarieties S <= M (which means that S and S - S are canonically defined
closed subvarieties), to some algebraic varieties Q, defined by considering the invariant
theory of various multilinear forms obtained from cup products and tensor products of
local systems associated to points of S. These morphisms are algebraic with respect to
all three structures Sp, S^R, and S^i. Any such morphism must be locally constant
on S. Thus, the invariant theory of the multilinear forms cannot change continuously
with the parameter of the local system (c/. Theorems 7.19-7.23 below).

5. Applications to coherent sheaf cohomology

The previous results imply the results of Green and Lazarsfeld (this was pointed out
in [1]). Consider the stratification of M by canonically defined locally closed subvarieties
made by considering the rank of the cohomology H1 (X, v). Restrict this stratification
to the abelian variety U^i = Pi^ (X). We obtain a stratification U^o^US^. By the
previous theorems, the closures of the Sfc are torsion translates of abelian subvarieties of
UDOI.

The Higgs bundle associated to a point v e U^i is simply a line bundle E with torsion
Chern class, and Higgs field (p = 0. Hence the Dolbeault complex has differentials equal
to zero, so the Dolbeault cohomology splits:

HDoi(X,E)= © W(X,E®QS).
p+q=i

The dimensions of each of the pieces vary semicontinuously in E. It follows that the
stratification made according to the total, or sum of the dimensions, is finer than the
stratifications made by considering the dimensions /^(X, E®0^). That is, the strata
for the individual pieces are unions of strata for the total. Hence the closures of the
strata for each A4 (X, E (x) Q^) are finite unions of torsion translates of abelian
subvarieties. We recover the results of Green and Lazarsfeld [14], and the rationality
results of [3] as well as the more general statements conjectured by Beauville and
Catanese.

6. Absolute constructible subsets

The reader may (justifiably) complain that the discussion in Section 4 was somewhat
vague. In this section and the next, we try to formulate things more precisely. We
explicitly assume the axiom of choice (although we may have used it already in a more
standard way), so that Aut(C/Q) has the properties one would expect-for example that
the fixed field is Q. We replace the notion of "canonically defined subvariety" by a
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notion of absolute constructible subset. Absoluteness concerns only the relationship
between the algebraic de Rham, the Dolbeault, and the topological interpretations of
the category of local systems, and the behaviour under the action of Aut (C/Q) (this idea
of looking at the Galois action comes from Deligne's definition of absolute Hodge
cycles [9]). In the next section, we will discuss absolute functors: these give ways of
constructing absolute subsets; we will give a collection of lemmas and propositions which
allow one to verify that any canonically defined subset, in the sense of Section 4, is an
absolute subset. To give the motivation, we first show that a closed absolute subset of
local systems of rank one is a finite union of torsion translates of triple tori—the
absolute constructible subsets are then obtained by taking finite unions, complements,
and intersections.

As we will be working with local systems of any rank, we change notation with respect
to the previous portion of the paper. Suppose X is a smooth complex projective
variety. If X is connected, choose a base point in X and let R (X) denote the space of
representations of 7ti(X). If X is not connected, let R(X) denote the product of the
spaces of representations for the connected components. The space R (X) decomposes
into a disjoint union of affine schemes of finite type

R(X)= U Rn(X),

where

R^ (X) = ]~[ Horn (n, (X,), Gl (^, C))

(the product being taken over the connected components ofX). It has a structure of
scheme defined over Q, in other words there is a scheme R^ (X)p over Spec (Q) with an
isomorphism Rn (X) ̂  R^ (X)g x gp^ ^ Spec(C). The group }\G\(n,,C) acts on the

i
components R„ (X). Let M^ (X) denote the universal categorical quotient by this action,
and let M (X) denote the disjoint union of the M^ (X). Thus, what was refered to as
M (X) in the previous sections is now M^ (X) = R^ (X).

Note that we are conserving subscripts by using the notations M(X) and R(X) for
the algebraic varieties which would have been denoted Mg(X) and Re(X) in previous
sections (and the references).

Recall that there are varieties RDR(X), MDR(X), R^X), and Mi)oi(X)
([22], [19]). They are, respectively: the moduli spaces of vector bundles with integrable
connection framed at one point in each connected component; the union of universal
categorical quotients of its components by the actions of ]~[ Gl (n^ C); the moduli space

i
of semistable Higgs bundles with Chern classes vanishing in rational cohomology, framed
at one point in each connected component; and again the union of universal categorical
quotients. We have isomorphisms of sets of points

vt/:R(X)^R^(X)
V|/:M(X)^MDR(X)
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(p:R(X)^R^(X)

(p:M(X)^M^i(X).

The first and second are isomorphisms of complex analytic spaces; the fourth is a
homeomorphism of topological spaces. The third is, however, not even continuous.

Suppose X is a smooth projective variety defined over C. For each <jeAut(C/Q) we
obtain a smooth projective variety X° defined over C. There are natural maps

^NWX^M^X0),

^M^X^M^X0).,

and similarly for the representation spaces. These are the transport of structure maps
obtained from the fact that the spaces concerned are moduli spaces for algebraic geometric
objects.

A subset S c= M (X) is an absolute constructible subset if the following conditions are
satisfied. First, SDR=\|/(S) and Sooi=(p(S) are constructible subsets of MDR(X) and
MDoi(X) respectively. Second, for each aeAut(C/Q) there exists a constructible set
S^cNKX0) defined over Q, such that p, (Spp) = v|/ (S,) and ^ (S^i) = (p (S,) in
M (X°). And third, S^i is preserved by the action of C*.

An absolute closed (resp. locally closed) subset is an absolute constructible subset which
is closed (resp. which is an open subset of a closed absolute constructible subset).

We obtain the following theorem in the case of representations of rank 1.

THEOREM 6 . 1 . — Suppose X is a smooth projective variety over C and S c M^ (X) is
an absolute closed subset. Then S is a finite union of torsion translates of triple tori.

Proof. - There is a field K, finitely generated over Q, such that X, S^R and S^i are
defined over K. There is a subring A c= K, finitely generated over Q and with K as
field of fractions, such that Spec (A) is smooth and connected. Note that there is a
generic geometric point T| : Spec (C) -> Spec (A) corresponding to the inclusion
(p^: A c= C. We may choose A so that there is a variety XA smooth and projective over
Spec (A), such that r|*(XA)=X. Then the relative moduli spaces M^X^A) and
MD^X^A) may be constructed. If one wants to avoid refering to this construction,
note that these varieties can be obtained - from the varieties M^p and M^i defined
over K — by choosing A appropriately. By choice of A we may also assume the existence
of closed subvarieties S^R c= M^X^A) and S^i c= M^X^A) with ^(Si^S^ and
^(S^oi)^001. There are stratifications of S^p and S^i with the property that any
stratum which maps surjectively to Spec (A) is smooth over Spec (A), and by further
choice of A we may assume that all strata are smooth over Spec (A).

Let T denote the usual topological manifold underlying Spec (A) (C). For teT let the
subscript t denote the fiber over / in a variety over Spec (A) (e.g. X,). Note that r| is a
point in T, and X^=X. Choose a simply connected usual neighborhood U of T|. For
values oft in this neighborhood, we may identify the topological spaces X1^ in a
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continuous fashion, and hence we may naturally identify P( : M (X^) ̂  M (X) via isomor-
phisms defined over Q. On the other hand, we have continuous families of varieties
MDR(X^) and Mi)oi(X^). The compositions of the above identifications with the home-
omorphisms M (X^) ̂  M^p (X;) and M (X^) ̂  M^i (X^) provide continuous families of
homeomorphisms

BDR,^MDR(X^M(X)

and

BDOI^M^(X^M(X).

The continuous variation of the isomorphism M^i (X^) ̂  M (X^) when X^ varies with
parameters is easy to see for the case of rank one local systems, as the isomorphism can
then be described concretely. This is all we need for the proof of the theorem. The
statement of continuous variation with parameters for any rank should be a relatively
standard exercise in nonlinear partial differential equations—it will be included in the
final version of [22].

For any closed subset £ c= M (X), define V (S) c U to be the set of points t e U such
that BDR^(SDR^)=£ and B^i^SDol,^^ Note that V(S) is a closed subset; this uses
the fact that S x U -> U, S^p |u -> U and Sj^,i |u -^ U are ̂ ^ maps, in turn due to the
existence of smooth stratifications. Define U^" to be the set of generic geometric points
in U, in other words the set of points Spec(C) -> Spec (A) such that the image is contained
in U and the corresponding morphism A -> C is injective. The complement U-U^" is
a countable union of closed sub varieties.

Suppose ^eU^". Let q\: A -> C denote the inclusion dual to the geometric point with
image t. There is an automorphism a e Aut (C/Q) such that T| ° a = q\ (by the axiom of
choice). Then X^ == X° and

Ar (^p) = SDR, , c= Mop (X,)

^(SDOI)=SDR,^MDOI(X,).

The condition that S is absolute implies (after transporting from M(X^) back to M(X)
by our identifications Py) that there is a closed subvariety 2^ c M (X) defined over Q
with

BDR, t (^DR, t ) = "Dol, t ("Dol, t ) = —r

Thus^eV(£,).
There are countably many closed subvarieties S c= M (X) defined over Q. The Baire

category theorem states that U is not the union of countably many nowhere dense
subsets. But U - U^" is a union of countably many closed subvarieties, each of which
is nowhere dense. And we have seen above that U^" is contained in a union of
countably many closed subsets of the form V(S) for £ c= M(X) defined over Q. The
Baire category theorem implies that there exists £ c= M (X) defined over Q such that the
interior V(£)° is nonempty.
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There exists a point ^eV(S)0 algebraic over Q. Then S^R,^ c MDR (X^) and
SDOI, ^ c ̂ oi P^) are defined over Q. Furthermore, there is a subvariety
S^ = Pg~1 (Z) c M (X^) defined over Q, which is equal to Spp, ^ and S^i, ^ in M (X^). By
Corollary 3.5, S^ is a finite union of torsion translates of triple tori. Hence Z c M (X)
is a finite union of torsion translates of triple tori. By looking instead at a generic
geometric point in V(£)° we find that p^(S^) and ^(SpJ are finite unions of torsion
translates of triple tori, for some aeAut(C/Q). This implies that S^R and S^oi are, and
hence that our original subset S c M (X) is. This proves the theorem.

COROLLARY 6.2. — An absolute locally closed subset in the moduli space of rank one
local systems is the complement of a finite union of torsion translates of triple tori, within
another finite union of torsion translates of triple tori. If S is an absolute constructive
subset then it is a finite union of such absolute locally closed subsets.

Proof. — If S is an absolute constructible subset then its closure S is an absolute
closed subset and the complement S-S is an absolute constructible subset. If S is
locally closed then the complement is an absolute closed subset, whence the first
statement. In the constructible case, S1 = S - (S - S) is an absolute locally closed subset
contained in S, and the complement S — S' is an absolute constructible subset of smaller
dimension. By induction we can write S as a finite union of absolute locally closed
subsets.

Remark. - We may obtain the same result without including the condition that S^i
is preserved by C*, using Deligne's strengthening of 3.1. Similarly, throughout the
following discussion we could leave out the conditions relating to the C* action.

A characterization of constructible subsets

Suppose X is a complex variety defined over a field K c= C. Let ^: X -> X denote
the conjugation maps for aeAut(C/K).

We say that a subset S c: X is topologically constructible if there exists a complex
algebraic variety Y with a constructible subset T c Y, and a homeomorphism of topologi-
cal spaces /: Y ̂  X such that /(T) = S.

THEOREM 6.3. — Suppose X is defined over a countable field K c= C, and S c= X is a
subset such that as a runs through Aut(C/K), ^(S) runs through countably many subsets
ofX. Suppose that S is topologically constructible. Then S is a constructible subset ofX.

Proof. - We first reduce to the case where S is fixed by iy. Let {Sj} denote the set
of subsets which occur as ^(S). For each pair (/, k) with S^S^, choose a point x^ in
one of Sj or S^ but not the other. Then, among all the subsets, a given one is determined
by the information of whether x^ is in it or not for all 7, k. On the other hand, there
are countably many points x^ so we may choose a countable field extension K//K so
that ^ (x^) = x^ fpr o- e Aut (C/K'). Then ^ (S) = S for a e Aut (C/K'). This completes
the reduction: we may assume that S is fixed by the iy.
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Suppose xeS, and let V be the smallest closed algebraic subvariety ofX, defined
over K, containing x. Then V is irreducible, and x is a generic geometric point
of V. For any other generic geometric point y, there is an automorphism cr e Aut (C/K)
such that iy(x)==y. This implies that S contains the set of all generic geometric points
of V. The closure S therefore contains V.

To complete the proof, we will use the following facts from topology
(cf. [25]). Suppose M is an w-dimensional manifold and N <= M is a subset. If N has
a structure of ^-dimensional manifold then n^m; and if n=m then N is an open subset
of M (the Brouwer theorem of invariance of domain). There is a topological notion of
dimension: a space Z has dimension ^n if every open covering has a refinement whose
nerve is a simplicial complex of dimension ^n. This agrees with the usual notion for
manifolds and simplicial complexes (hence with the real dimension of complex analytic
varieties), and decreases for closed subsets. If Z contains an open subset which is a
manifold of dimension n then the topological dimension of Z is at least n. If M is a
connected manifold of dimension m and Z c: M is a closed subset such that M can be
covered by sufficiently small relatively compact open sets M^ with dim(Zr^M^w-2
and dim (Z 0 5M,) ̂  m - 3, then M - Z remains connected. This follows from Alexander
duality: Ho(M^) is isomorphic to the Cech cohomology IT""1 (3M^), and the addition of
ZPlMf to 8M, doesn't change H'""1 so Ho(M,-ZnM,)^Ho(Mf); an argument with
the covering shows that M — Z is connected.

Continue the previous argument. Since S is a topologically constructible subset, there
exists a subset S'̂  <= S such that S'̂  is a dense open subset of S, and which decomposes
as a finite disjoint union

s^^usj^
j

where SJ^ are connected manifolds of real dimension m^. Suppose xeSJ^, and let V
be the smallest closed subvariety of X, defined over K, containing x. Then V r\ SJ^ is
a closed subset of SJ^ of dimension ^ dim (V). If dim (V) < w, then V 0 SJ^ is nowhere
dense (otherwise it would contain an open subset of dimension mj). There are countably
many subvarieties of X defined over K. The Baire category theorem implies that SJ08 is
not the union of subsets of the form VRiSJ^ for dim(V)<^.. Hence there exists a
point xeSJ^ such that the corresponding variety has dimension ^mj. Since V <= S and
SJ^ is an open subset of S, V n SJ^ is an open subset of V. In particular it contains a
smooth point ofV, hence it contains a manifold of dimension dim(V). Thus
dim(V)=w^. Let V^ denote the set of smooth points ofV; it is the complement
V^^v-D where D is a closed subvariety ofV. Now SJ^ is the intersection of S with
an open subset W c: X. Then W can be covered by small relatively compact open
subsets W, such that dim (D Pi W,) ̂  m^ - 2 and dim (D U aW .̂) ̂  w, - 3. This restricts
to a covering of SJ^ with the same property, so the fact mentioned above implies that
L^SJ^-DRlSJ^. On the other hand VH L^V^H SJ^ is a closed subset ofU
which also has a structure of manifold of dimension mj. By the invariance of domain
V n U is open in U, so V 0 U=U. But D Pi SJ^ is closed and nowhere dense in SJ^
(by consideration of dimension), so its complement U is dense in SJ^. As V is a closed
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subset of S, we have SJ^ c= V. Do the same for each of the components SJ^, and take
the union of the varieties; we get a closed subvariety V of X (no longer irreducible) such
that S^ c= V c S. But S^ is dense in S, so S=V.

We have proved that if S is a topologically constructible set which is preserved by the
action of Aut (C/K), then its closure S is a closed subvariety. In particular, the comple-
ment S-S is preserved by the action of Aut (C/K). The definition of topologically
constructible subset implies that S - S is a topologically constructible subset of strictly
smaller dimension. We may argue by induction on the dimension: then at the present
stage we will already know that S — S is a constructible subset. Thus S is the complement
of a constructible subset within a closed subvariety, so S is constructible. This completes
the proof of the theorem.

This theorem allows us to remove the conditions that S[)R and S^i are constructible
subsets of MDR and M^oi from the definition of absolute constructible subset. From
the maps py and q^ we obtain

P^^-lP^:M(X)^M(Xa)

and

Q^^'q^-.MW-.M^)

for oeAut(C/Q).

COROLLARY 6.4. — Suppose S c= M(X) is a subset such that for every aeAut(C/Q),
there exists an algebraic subset Sy <= M (X0) defined over Q with Py (S) = Sy and
Q(, (S) = Sy. Then S^R and S^oi are constructible subsets of M^p (X) and M^oi (X) respec'
lively.

Proof. — We may choose a countable field of definition K c= C for X. This consists of
a collection of isomorphisms a^:X^X0 for a e Aut (C/K), compatible with composition
of a. The induced maps oc^ : M (X0) ̂  M (X) are defined over Q. Let iy denote the
conjugations giving the definitions of M^R (X) and M^i (X) over K. The hypotheses of
the corollary now imply that ^ (SDR) = v|/ (o^ (S^)) and ^ (S^i) = (p (a? (S^)). In particular,
since \|/ and (p are homeomorphisms of topological spaces, iy (S^p) and iy (S^oi) are
topological constructible subsets. Furthermore, the a^ (S^) are defined over Q, so they
run through countably many possibilities. The hypotheses of the theorem are satisfied,
hence S^R and S^oi are constructible subsets.

COROLLARY 6 . 5 . — With the assumptions of the previous corollary, suppose also that S
is preserved by the action ofC*. Then S is an absolute constructible subset.

Proof. - This follows immediately from the previous corollary and the definition of
absolute constructible subset.
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7. Absolute functors

Denote by X, Y, Z, etc. various smooth complex projective varieties. Let L(X) denote
the category of local systems on X. A saturated subcategory is a full subcategory
D <= L(X) such that if U is isomorphic to an object ofD, then UeD. A partially
defined functor F from L(X) to L(Y) consists of a saturated subcategory Dom(F) c= L(X)
and a functor F: Dom (F) -> L (Y). Define the composition GF of two partially defined
functors in the following way:

Dom (GF) = { U e Dom (F) s. t. F (U) e Dom (G)},

and GF is the composition of functors.
Let LDR(X) (resp. Li)oi(X)) denote the category of vector bundles with integrable

connection (resp. semistable Higgs bundles with Chern classes vanishing in rational
cohomology) on X. We have equivalences of categories

V|/:L(X)-^R(X)

and

(p:L(X)^L^(X).

The first is the Riemann-Hilbert correspondence [7] and the second is the correspondence
between Higgs bundles and local systems given in [21]. These functors have quasi-
inverses which we denote by \|/~1 and (p~1; we pretend that they are strict inverses. We
are using the same notation for these equivalences of categories as for the corresponding
maps between moduli spaces.

The group of field automorphisms Aut(C/Q) acts in the following way. Suppose
aeAut(C/Q). Let X0 denote the variety obtained by conjugating the equations of X
by a. The categories LDR(X) and L^i(X) consist of algebraic geometric objects, so
there are natural equivalences of categories

^LDR(X)^L^(X°),

and

^L^i(X)-L^(X°).

We obtain the following functors

P,==vrlA^L(X)-.L(XCT)

and

Q,=(p- l^(p:L(X)->L(X (^)

The group C* acts on L^i (X) by functors

m,: L^, (X) -^ Loci (X), m, (E, 9) = (E, 16);
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denote the corresponding action on L (X) with the same symbol,

m^^-^^'.LW-^LW

We note some further actions. Suppose K c= C is a countable field of definition for
X. This means that we have a system of isomorphisms dy'.X^X0 for (7eAut(C/K),
compatible with composition of CT. Composing the P^ and Q^ defined above with dy
we get functors

P,:L(X)^L(X)

and

Q,:L(X)-L(X),

for any CT e Aut (C/K); these are again compatible with composition of a.
We denote by the same letters the corresponding maps of sets of isomorphism classes

of semisimple objects. These give the Galois action on M(X) corresponding to the
definitions of M^oi (X) and M^ (X) over K.

We need to discuss a notion of a partially defined functor which is algebraic and
defined over Q (in the "Betti" realization). There is a universal family of local systems
W indexed by R(X) (to be precise, W is a local system of H°(R(X), ̂  p^-modules), so
there is a scheme representing the sets of morphisms between objects. That is, there is
a scheme H (X) with a map H (X) -> R (X) x R (X) such that for any scheme T with maps
M, v: T -^ R (X), the T-valued points of H (X) lying over (M, v) correspond to the elements
of Horn (u* W, v* W). There is a map H (X) x ^ ̂  H (X) -> H (X) representing composi-
tion of morphisms, and a section R (X) -> H (X) representing the identity morphisms. All
of these things are defined over Q.

Suppose/:U -> R(X) is a morphism of finite type, defined over Q. Suppose that U
is reduced. Then we obtain a little category of local systems Lu(X). The objects are
the C-valued points ofU, and the morphisms are the C-valued points of

Hu= l H(X)x^^)xR(x)) (UxU). There is a natural fully faithful functor
7:Lu(X)-^L(X). Suppose Fo:U-^R(Y) and Fi:Hu-^H(Y) are morphisms of
schemes, defined over Q, satisfying the conditions required for a functor (that is, F^
preserves the composition laws and identities). We obtain a functor
(FQ, Fi):Lu(X)^L(Y). Call a functor obtained in this way a little functor defined
over Q.

Here is a useful construction. Suppose /: U -> R (X) and g : V -> R (X) are two
morphisms. Let

P(U,V)c=(UxV)x^^H(X)

denote the set of triples (u, v, h) were h is an isomorphism from u to v. There are two
morphisms fp^ and gp^ from P(U, V) to R(X), so we obtain two little categories denoted
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^ (u, v), i (x) and Lp (u, v), 2 (X). There is a natural equivalence of categories

u : Lp (u, V), 1 (X) ̂  LP (U, V), 2 (X),

which is the identity on the set of objects and is on morphisms given by conjugation
with h. There are natural functors

P i ' ' Lp (u, v), i (x) -^ Lu (X) and Pi '•Lp (u, v), 2 (x) -^ Lv (X),

and a natural isomorphism n-J^p^j^p^Q, where y\: Ly (X)-^ L (X) and
72 : Ly (X) -> L (X) are as defined before.

Suppose /:U-^R(X), and Fo:U-^R(Y) and F^ as above form a little functor
(Fo, Fi): Lu (X) -> L (Y). Suppose g : V -> R (Y) is a morphism. Then, using the mor-
phisms Fo and g we can make a variety P(U, V) mapping to U x V . Using Fo^i and
gp^ we can make the little categories Lp ̂ , v), i (Y) and Lp (u, v), 2 (Y)- Furthermore, using
the morphism fp^ we can make a little category Lp(u,v)(X). There is a natural
functor (I, Fi): Lp ̂ , v) (X) ̂  Lp ̂  v), i (Y). Let q: Lp ̂ , v) (X) ̂  Ly (X) denote the pro-
jection. Let 7, be defined as above with respect to Y, and j with respect to X. There is
a natural isomorphism between j\p^(I, F^) and (Fo, F ^ ) q . Hence there is a natural
isomorphism between j\ p^ 9 (I, F^) and (Fo, P^)q.

Suppose (Go, Gi):Lv(Y)-^L(Z) is a little functor. We can now define a
composition. The functor (Go, G^Pz goes from Lp ̂ , v), 2 (Y) to L (z)' put

(Go, GO°(Fo, FO^Go, GO^e(I, FO:Lp^,v)(X)-^L(Z).

Note that there exist morphisms Eo=Go/?2. and a corresponding E^, such that
(Go,GO°(Fo,FO=(Eo,EO.

An algebraic functor defined over Q is a partially defined functor F: L (X) -^ L (Y)
together with a little functor defined over Q, (Fo, Fi):Lu(X) -. L(Y) and a natural
transformation TI, such that the image of Ly(X) is contained in Dom(F), the functor
j: Lu(X) -> Dom(F) is an equivalence of categories, and T| is a natural isomorphism from
(Fo,F,)toF°7.

Suppose F and G are algebraic functors defined over Q, from L (X) to L (Y), with
associated morphisms /: U -> R (X) and g : V -> R (X). Suppose that Dom (F) = Dom (G).
A natural transformation ^: F -^ G is algebraic, defined over Q if the corresponding
natural transformation (^2^2 9) (^ ô111 ^ J i P i to ChPi^ (which are functors from
LP(U Y)(X) to L(Y) naturally isomorphic to algebraic ones) has values in H(Y) varying
algebraically with the argument. In other words the values are given by a constructible
algebraic function P(U, V) -> H(Y) defined over Q.

Suppose F is an algebraic functor defined over Q from L (X) to L (Y), and G an
algebraic functor defined over Q from L(Y) to L(Z). We can define the composition
G ° F to be the composition of functors GF, provided with the algebraic structure of the
functor (Go, Gi)°(Fo. F!) defined above, and the natural isomorphism between
GF,^G(Fo, FO^G^eO Fi)^(Go, G,)p,Q(l, FO=(Go, GO°(FO, FO.
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With these preliminary definitions done, we can give our main definition. An absolute
partially defined functor F:L(X)-^L(Y) is a collection of algebraic functors
F^I^X^-^Y0) defined over Q, F^ being denoted by F, with the following data:
natural isomorphisms of the underlying usual functors

u • P F^F P"CT • A o x — ± cr L a

and

z^:Q,F^F,Q,

for aeAut(C/Q); a countable subfield K <= C and definitions {a,,} for X and Y over
K, together with natural isomorphisms (algebraic, defined over Q)

^:o^F^Fo^

for CT e Aut (C/K); and natural isomorphisms w,: m, F^oi ̂  F^i w,, such that some compati-
bility conditions hold. The compatibility conditions for d, u, and v say that if we put
P^a^ and Q<,=oc^Q^ then the systems of natural isomorphisms

P.F^FP

and

Q.F^FQ,

are compatible with composition of a; the compatibility conditions for the Wy are that
they are compatible with multiplication of t e C*. Included in the existence of the natural
isomorphisms is the condition that the domains of the functors are the same. Also put

FDR^'TVI/ and FD^CP^FCP.

We say that the field K which appears above is a field of definition (II) for F. The
roman numeral (II) is meant to distinguish this notion from the definition ofF and
the F^ over Q in the Betti realization. Note that any bigger field is also a field of
definition (II).

Suppose F and G are absolute functors from L(X) to L(Y). Suppose
Dom(F)=Dom(G) (note that this implies that Dom(F^)=Dom(G^)). Let K be a
common field of definition (II) for F and G. An absolute natural transformation
^ F -> G with K as field of definition (77) is a natural transformation of the underlying
usual functors together with a collection of algebraic natural transformations ̂ : F^ -> Gy
defined over Q, which are compatible with the natural transformations d^ u^ v^
and v^. This means that the following diagrams commute (the first one for all
a e Aut (C/K), the next two for all oeAut(C/Q), and the last for all teC*):

a;F-Fa: P.F-F.P, Q,F-^F,Q, m.F-^Fm,
i I . I I , I I , i I .

a;G-^Ga? P,G^G,P, Q^G^G.Q, m.G-^Gm,
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Note that the natural transformation ^ is determined by the corresponding natural
transformation of the underlying usual functors.

The composition of two absolute functors is defined by (G ° F)^ = Gy ° F^, with underly-
ing usual functors GF. The natural transformations are defined in the obvious
way. The field of definition is the field generated by fields of definition for F and G.

Let A c: L(X) be a union of isomorphism classes of local systems. We say that A is
algebraic, defined over Q, if the subset of points reR(X) such that W(r)eA is a
constructible subset defined over Q. We say that A is absolute if the following properties
are satisfied: for each aeAut(C/Q), the subsets P^(A) and Q(,(A) in L(X°) are both
equal to a subset Ay which is algebraic, defined over Q; and (p (A) c L^i (X) is preserved
by the action of C*.

Complements and finite unions and intersections of absolute subsets remain absolute.

LEMMA 7.1. - Suppose A is an absolute subset of local systems. Let
R^ (X) = { r e R (X) s. t. W (r) e A }, and let M^ (X) c= M (X) be the image of RA (X). Then
MA (X) is an absolute constructible subset in the sense of Section 6.

Proof. - For brevity, denote S = M^ (X) c= M (X) and let SpR and S^i be the corre-
sponding subsets. The definition of absolute subset of local systems implies that for
each a e Aut (C/Q) there is a subset S^ c M (X0), constructible and defined over Q, such
that V|/(S^)=^(SDR) and (P(S^)=^(SDJ. Corollary 6.4 implies that S^R and S^i are
constructible algebraic subsets of Mpp and M^i. The set of points underlying S^i is
invariant under the action of C*, so the variety S^oi is. Thus S is an absolute constructi-
ble subset.

LEMMA 7.2. — The domain of any absolute functor is an absolute subset. A subset A
(union of isomorphism classes) is absolute if and only if there exists an absolute partially
defined functor 1^: L (X) -> L (X) such that Dom (1 )̂ = A and 1̂  is the identity functor
on A.

Proof. - Suppose F is an absolute functor. Then its domain is an absolute
subset. This is mostly clear; it suffices to note that the subset of points in R(X°)
corresponding to elements of Dom (F^) is the image of the map U -> R (X) used to define
the corresponding little category and little functor. This image is a constructible set
defined over Q.

Suppose A is an absolute subset. Then the subsets RA(X°) are constructible. We
can choose morphisms U^->R(X°) with images equal to RA(X<^). Use these, along
with the appropriate liftings to the schemes of morphisms, to define the little functors
associated to 1^ y. Thus we get algebraic functors 1̂ , a defined over Q. The functors
IA, DR an^ IA, Doi are defined in the obvious way, and the C* action on 1^ ̂  is given by
the identity maps.
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COROLLARY 7.3. — IfF is an absolute functor from local systems on X to local systems
on Y, and A is an absolute subset of local systems on Y, then

F-1 (A)^ U e Dom (F), F (U) e A }

is an absolute subset of local systems on X.

Proof. — It is the domain of the functor IA ° F.

LEMMA 7.4. — If F ^ a^z absolute functor from local systems on X to local
systems on Y, and A ^ an absolute subset of local systems on X, then

F(A)dlf{UeL(Y), 3VeDom(F)nA, U^F(V)} is an absolute subset of local systems
onY.

Proof. — The image of an algebraic subset of local systems defined over Q, by an
algebraic functor defined over Q, is again algebraic defined over Q. This is seen by
noting that it is the image in R (Y) of the fiber product over R (X) of the variety U used
to define the functor, and the variety U' used to define the subset of local
systems. Here U' should be chosen so as to map surjectively to the union of orbits
corresponding to the elements of the subset. Using this fact, the natural isomorphisms
F^P^^P^F and F^Q^Q^F and the conditions that P^ (A) = Q^ (A) = A^ are algebraic
defined over Q imply that P^ (F (A)) = Q^ (F (A)) == F^ (AJ are algebraic, defined
over Q. Similarly, the natural isomorphisms m^F^Fw^ and the condition that A is
preserved by m, imply that F(A) is preserved by the action ofC*. Thus F (A) is
absolute.

Suppose AoeL(X), and A is the isomorphism class containing Ao. We say that Ao
is absolute if A is absolute.

We note some properties of an absolute semisimple object AQ. The underlying local
system is defined over Q, hence it has an automorphism group Aut (Ao) defined
over Q. Furthermore, suppose K is an algebraically closed field of definition for X. All
of the local systems Py (Ao) ̂  oc^ Ao, ^ are defined over Q, so there are only countably
many such. If the vector bundle with integrable connection \|/~1 (Ao) were not defined
over K, then it would have uncountably many different conjugates. Thus \|/ (Ao) and
similarly (p (Ao) are defined over K. The local system Ao is preserved up to isomorphism
by the action of C*; this implies that it underlies a variation of Hodge structure, and
that (p (Ao) has a structure of system of Hodge bundles [21]. In particular, we can choose
an action ofC*, namely a compatible system of isomorphisms Ao^w^Ao (although this
choice is not unique). We may assume that these isomorphisms act algebraically on the
Higgs bundle (p (Ao).

LEMMA 7 . 5 . — The trivial local system of rank n on X is absolute.

Proof. — The images under the Galois action of the trivial vector bundle with integrable
connection, or Higgs bundle, are themselves trivial. The orbit of the trivial local system
in any R^X0) is algebraic, locally closed, and define over Q. Finally, the trivial Higgs
bundle is preserved by the C* action.
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LEMMA 7 . 6 . — Suppose U is a rigid semisimple local system on X. Then U is absolute.

Proof. - Let (N, V) be the associated vector bundle with integrable connection, and
(E, 9) the associated Higgs bundle. The fact that U is rigid implies that it is defined
over Q, and (E, 9) is preserved by the C* action. In particular, (E, 9) has a structure
of system of Hodge bundles and U a structure of complex variation of Hodge structure
(cf. [21]). Suppose aeAut(C/Q). Then ^(N, V) and ^(E, 9) are rigid; thus P^U
and Q^U are rigid, in particular they are defined over Q. We have to show that
Py U ̂  Q^ U. For this, we make use of a result about moduli spaces which will appear
elsewhere. It says that there is a quasiprojective moduli space MpR/po^X) with a
morphism ^: MDR/D^X) -> A1 and an action of C* covering the standard action on A1,
together with an identification X~ 1 (I)^MDR(X) and ^-1 (9)^M^i(X). The space
MDR/DOI (x)ls a coarse moduli space for triples (^, V, V) where ^ e C, V is a vector bundle
with vanishing rational Chern classes, and V is an operator satisfying Leibniz's rule with
respect to U with (V, V) required to be semistable if X=9. The action of C* is given
by^,V,V)=(^,V,^V).

We will show that the C* orbit of the point (1, N, V) corresponding to U has as its
limit (for t -> 9) the point (9, E, 9). Write N= © W as a C°° direct sum of its Hodge
components. Decompose the flat connection D (equal to V plus the holomorphic struc-
ture ofN) into pieces in the usual way [21],

D=B+3+9+9.

Then the orbit of C* consists of the points

(r,(N,3+9), t8-^t6).

Because of the Hodge types of the components of D, these objects are isomorphic, via
isomorphisms obtained by multiplying by ^ on W, to the points

(t, (N, 3+^8), t8+6).

These have as limit when t -> 9 the point

(9,(N,3),9)^(9,E,9),

which is semistable. Hence the limit of the C* orbit is the corresponding Higgs bundle
(9, E, 9). Note that this limit is unique since M^p/DoiC^ ls separated. The construction
of the moduli space (with its C* action) is an algebraic geometric operation compatible
with field automorphisms. Also the process of taking the limit is algebraic (it consists
of filling in the orbit in a unique way to a map from A1). Therefore the limit of the
C* orbit of (1, N°, V°) in M^^(X°) is (9, E°, 9°). If we already know that (N", V°)
is a variation of Hodge structure (as in the present case by rigidity), the same argument
shows that the limit of its C* orbit must be the corresponding Higgs bundle. Thus
(E0, 9°) is the Higgs bundle corresponding to (N0, V°). This completes the proof that
P^U=Q^U, so U is absolute.
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Suppose V is a semisimple local system and X. Write V == © V^ ® W, with V, distinct
irreducible local systems, and W, vector spaces. Let r,=rA:(V,) and
^=dim(Wf). Define the type of V to be the set of pairs ( .̂, d^) (considered with their
multiplicities of occurrence). If we fix some irreducible local systems U^, . . .,U^, then
the type o/V with respect to the Uy is again the set of pairs (r^ d^ with multiplicities,
but also with the pairs corresponding to each \Jj singled out.

LEMMA 7.7. — The set of semisimple local systems on X is absolute, as is the subset of
those with a given type. IfV^, . . . ,U^ are absolute local systems, then the set of local
systems which has a given type relative to the Up is absolute.

Proof. — The property of being semisimple, and the type, may be seen algebraically
from the de Rham or Dolbeault realizations of a local system. In particular, these
properties are preserved by the P^ and Qy. They are defined over Q, and are also
preserved by the C* action on the Dolbeault category. Furthermore, the dimension of
the isotypic component corresponding to a given local system may be seen from the
de Rham or Dolbeault realizations; and absolute local systems are preserved by the
action of C* and the functors Q^1 Py (see below).

Suppose { x } is a variety consisting of one point. The category L ( { x }) is then the
same as the category of vector spaces; we will denote this by Vect. Suppose X^, . . ., X^
is a collection of smooth complex projective varieties. Let X be the disjoint union of
the X,. Then

L(X)=L(X, )x . . .xL(X, ) .

Via this isomorphism, we may use all of the above definitions for functors between
products of categories of local systems on several varieties.

PROPOSITION 7.8. — Suppose X and Y are smooth complex projective varieties, and
f: Y -> X is a morphism. There is an absolute functor /* : L (X) -> L (Y) whose domains is
L(X) and whose underlying usual functor is the inverse image.

Proof. — It is easy to see that the Riemann-Hilbert correspondence is compatible with
inverse image, and that inverse image of local systems has a structure of algebraic functor
defined over Q. One can define the inverse image of a semistable Higgs bundle, and this
is compatible with the inverse image of local systems (cf. [21]). The inverse image for
Higgs bundles is compatible with the multiplication by C*. If K is a field of definition
for X, Y, and/, then we obtain the natural isomorphisms dy by functoriality of the
inverse image construction.

PROPOSITION 7.9. — Suppose X is a smooth complex projective variety. For 'any i^O
there is an absolute functor H1 from local systems on X to Vect, with Dom (H1) = L (X)
and underlying functor given by H1 (V) = H1 (X, V), the i-th cohomology with coefficients
in V.

Proof. — There is a constructible decomposition R (X) = U Rj (X) into locally closed
strata, defined over Q, with the following properties. For each stratum R^-(X), there is
a number m^ such that dimH^X, W(r))=Wj for reR^(X). It follows that there is a
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vector bundle of rank rrij on R^-(X) whose fibers are the cohomology groups. These
vector bundles are defined over Q. We may further assume that these vector bundles
are trivial, and that trivializations are chosen (also defined over Q). Let U be the
disjoint union of the strata, mapping to R (X). The trivializations give a little functor
Ly(X) -> Vect defined over Q. In this way we obtain algebraic functors defined over Q,
whose underlying functors are Vi-^H^X, V). Do the same for each X°.

One can define the algebraic de Rham cohomology with coefficients in a vector bundle
with integrable connection, and so obtain HDR : L^ (X) -> Vect. For this (c/. [16]) one
defines the cohomology of (N, V) to be the hypercohomology of the algebraic de Rham
complex

. . . -^ N ® Qx -^ • • •

There are natural transformations of compatibility u^ the natural isomorphisms between
this hypercohomology (transported to X°) and the usual cohomology of the corresponding
local systems of flat sections.

Similarly for the functor H^i, Dolbeault cohomology of a Higgs bundle (E, Q) is the
hypercohomology of the complex

e . e
. . . -> E ® Qx -> • • •

In case (E, 9) is a direct sum of stable Higgs bundles, the Dolbeault cohomology is
shown in [21] to be naturally isomorphic to the cohomology of the corresponding local
system.

We need the same statement for semistable Higgs bundles. This unfortunate omission
from [21] actually follows easily from the discussion there. The equivalence of categories
between semistable Higgs bundles with c,=0 and local systems comes from a quasi-
equivalence between the differential graded categories ^oi and ^^ (in the notation
of [21]). This gives, in particular, natural isomorphisms

Ext^(l,E)^Ext^(l,V)

If E is the Higgs bundle corresponding to a local system V. But these Ext1 are,
respectively, the Dolbeault cohomology of E and the ^°° de Rham cohomology
of V. Hence we obtain a natural isomorphism between the Dolbeault cohomology of E
and the cohomology of the local system V.

If K is a field of definition for X then we obtain the natural isomorphisms d^ (by
functoriality of the cohomology groups) needed to make K a field of definition (II).

Finally, note that multiplication by t1 in the ;-th term of the Dolbeault complex
provides the required natural isomorphism between Hooi(E) and H^i^E). This com-
pletes the definition of the absolute functors H1.

PROPOSITION 7.10. — Suppose X and Y are smooth complex projectile
varieties. Suppose f\ X -> Y is a smooth morphism. There exist absolute functors P'from
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local systems on X to local systems on Y, with Dom (F1) equal to the set of semisimple
local systems, and with underlying functors F1 (V) = R% (V). The image of F1 is contained
in the set of semisimple local systems.

Proof. - To define the algebraic direct images over Q, use the same method as in the
previous proof (using a stratification of the constructible subset in R (X) corresponding
to semisimple local systems). Similarly, one can define the direct image of a vector
bundle with integrable connection, using the relative de Rham complex (one replaces Qx
^ °X/Y)- one can also define the direct image of a Higgs bundle in this way. In [23]
it is shown that the direct image of a Higgs bundle corresponds to the direct image of
the corresponding local system, in the case where the local system is semisimple. Also
shown at the same time is the fact that the direct image of a semisimple local system is
semisimple. The natural isomorphisms dy again come from functoriality of the direct
image construction.

Remark. - One expects a similar compatibility for direct images of non-semisimple
local systems and the corresponding semistable Higgs bundles-then one could define
the F1 with no restriction on the domain.

LEMMA 7.11. - Tensor product (U, V) i-» U 00 V is an absolute functor from
L(X)xL(X) to L(X); dual V^VV is an absolute functor from L(X) to L(X); and
similarly for the other linear algebra operations.

Proof. - The correspondences between local systems, vector bundles with integrable
connection, and semistable Higgs bundles with vanishing Chern classes are compatible
with tensor product and dual (they have structures of tensor functor [21]). The conjuga-
tions Py and Qy are also compatible with tensor product and dual (as these are algebraic
geometric operations on the corresponding vector bundles with integrable connections
and Higgs bundles). It is easy to construct the required data to make tensor product
or dual into an algebraic functor defined over Q; do the same for each X°. The dy are
obtained by functoriality. The symmetric group acts by absolute natural transformations
on multiple tensor products, from whence the other linear algebra operations are deduced.

PROPOSITION 7.12. -Cup product gives absolute natural transformations
H1 (U) ® W (V) -> Hi+j (U (x) V). ///: X -> Y is smooth then for the functors F1 defined
in Proposition 1.10, the relative cup product gives absolute natural transformations
F1 (U) ® F7 (V) -^ F1 +j (U ® V).

Proof. - Treat the case of the H1 first. It suffices to show the following things: that
cup product is algebraic, defined over Q, and compatible with the dy, that the isomor-
phisms between cohomology of a local system, de Rham cohomology of the vector
bundle with integrable connection, and Dolbeault cohomology of the Higgs bundle, are
compatible with cup product; and that cup product is compatible with the action
of C*. The cup products in de Rham and Dolbeault cohomologies are defined in terms
of algebraic geometry, so they are compatible with the action of field
automorphisms. One then obtains, from the compatibility of these cup products with
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the topological one, the required compatibilities of the cup product transformation with
the Uy and Vy.

First, calculate the cohomology with coefficients in U by a triangulation, and that
with coefficients in V by a transverse triangulation. Then the cup product is the dual
of the intersection of simplicial chains. The chain complexes calculating cohomology
depend algebraically (over Q) on the monodromy representations of U and V. The
morphism of complexes given by intersection of simplices (with values in a complex
calculating the cohomology of U ® V via a common refinement of the triangulations) is
algebraic, defined over Q. The cup product is natural with respect to the isomorphisms
oc^, so it is compatible with dy. The cup product defined in this way is the same as that
obtained by wedging C°° de Rham representatives. On the other hand, the C00 de Rham
complex is a resolution of the analytic de Rham complex, so this cup product is the
same as the cup product in analytic de Rham cohomology. In turn, there is a natural
inclusion of the algebraic de Rham complex in the analytic one, compatible with wedge
product and giving the de Rham isomorphism on cohomology. Thus the de Rham
isomorphism is compatible with cup product.

As for the Dolbeault isomorphism, we first indicate what happens when the local
systems are semisimple (cf. [21]). The flat connection decomposes D=D / +D / / with
D"=S+Q the operator giving the Higgs bundle structure. Let A'denote the complex
of forms with values in the vector bundle (either U, V, or U ® V). The complex (A', D)
calculates the de Rham cohomology, while the complex (A', D") calculates the Dolbeault
cohomology. There is a subcomplex (ker (D'), D") which maps quasiisomorphically into
both of these complexes. This gives the Dolbeault isomorphism on cohomology. But
this subcomplex is stable under the operation of wedging forms (with coefficients in the
appropriate bundles). Hence there is a cup product in the cohomology of (ker(D'), D")
and the two quasiisomorphisms are compatible with this. Thus the Dolbeault isomorph-
ism is compatible with cup product. To treat the case of nonsemisimple objects, we
hide more deeply behind the notation of [21]. The fact that the differential graded
categories ^R and ^^ are quasiisomorphic means that we have a isomorphisms
Ext^(l, U)^Ext^(l, IT) where U'e^oi ls tr[e object corresponding to
U e ̂ DR- Tne ^act trlat ^is quasiisomorphism extends to a quasiisomorphism of differen-
tial graded tensor categories means that these isomorphisms are compatible with the
transformations (which are cup products)

Ext^l, U) ® Ext^l, V) -^ Ext1"^!, U ® V).

As noted before, the Ext1 (1, U) are the same as H1 (U). Thus the Dolbeault isomorphism
is compatible with cup products. Finally, suppose E is a Higgs bundle. The isomorph-
ism between H* (E) and H* (m^ E) is given by multiplying by i3 in the component E 00 Q^
of the Dolbeault complex. This is compatible with wedging forms (and tensoring the
coefficients). This completes the proof for the H1.

Now we treat the relative case. The cup product morphism on the direct image local
systems is determined by its values in the fiber over one point. Thus, the fact that it is
algebraic and defined over Q follows from the case of the H1. The cup product mor-
phisms on the direct image vector bundles with integrable connections, or Higgs bundles,
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may be defined in terms of algebraic geometry (by a product on the level of the relative
de Rham or Dolbeault complexes). These morphisms are determined by their values in
all of the fibers considered separately. But in each fiber one is reduced to the case of
the H1 considered above. Note that compatibility between direct image of a Higgs
bundle and direct image of the local system is at present only established for semisimple
local systems [23] (and this compatibility is itself compatible with inverse image, so when
restricted to the fiber over one point it is the same as the quasiisomorphism refered to
above). This completes the proof of the proposition.

LEMMA 7.13. — Suppose ^ :F-^G is an absolute natural transformation between two
absolute functors (with Dom(F)=Dom(G)). Then there exist absolute functors}^ and
C, with the same domain, whose underlying usual functors are ker(^) and coker(^)
respectively.

Proof. - By using the construction P (U, V) defined above, we may assume that the
little functors corresponding to F and G have the same domain category Ly(X). Define
the algebraic functors K and C using the same type of argument as in Proposition 7.9:
one can divide U into a union of locally closed strata defined over Q, such that the
kernel and cokernel of^ form trivial vector bundles over the strata. Let U' be the
disjoint union of the strata, and define accordingly on Ly (X) the little functors corre-
sponding to K and C. Do the same for each a, to obtain the K^ and C^. To complete
the construction, the de Rham and Dolbeault functors are just the kernels and cokernels
in the categories of vector bundles with integrable connection and semistable Higgs
bundles with vanishing Chern classes respectively.

Using 7.2-7.13, and taking compositions of functors, one can create many absolute
functors between categories of local systems, and many absolute natural transformations
between them. We obtain several corollaries. For example, the following.

COROLLARY 7.14. — The subset of local systems V on X such that dimH'fV^m is
absolute.

COROLLARY 7.15. — Let f: X -> Y be a smooth morphism of smooth complex projective
varieties. Then R1/^ (C) is absolute.

COROLLARY 7.16. — Suppose f: X -> Y is a smooth morphism of projective varieties,
and suppose U^, . . ., U^ are given absolute local systems on Y. Then the set of semisimple
local systems V on X such that R1/^ V has a given type with respect to the \Jp is absolute.

COROLLARY 7.17. — Suppose /:X->Y is a smooth morphism of projective
varieties. For semisimple local systems U and V on X, let K1-7 (U, V) be the kernel and
C1-1 (U, V) be the cokernel of the cup product map

R% (U) ® R^ (V) ̂  R1^/* (U ® V).

If Ui, . . . ,Ufc are fixed absolute local systems, then the subsets of (U, V) such that
K^U, V) and C^U, V) have given type with respect to U^, . . ., U^, are absolute.

4eSERIE - TOME 26 - 1993 - N° 3



SUBSPACES OF MODULI SPACES 393

Many more statements may be obtained by composing functors, for example:

COROLLARY 7.18. — Suppose /i ,/2:Y^X are two morphisms. The set of local
systems V on X such that dim H1 (Y, /f V ®/$ V) = m is absolute.

Hodge type

Our definition of absolute natural transformation includes, implicitly, a notion of
Hodge type (0). (Here we use one index for Hodge type, corresponding to the first p
of the usual (p, q).) We may extend the notion of absolute natural transformation in
the following way. Suppose U is an absolute local system, provided with an action of
C*, m^LJ^U (giving an algebraic action on the Higgs bundle cp(U)). This is equivalent
to saying that U is provided with a structure of variation of Hodge structure. Then the
functor Vi-^V®U is an absolute functor. We may define one such local system on
any X, the "Tate twist" Cx(l), by taking the trivial local system with t acting by t (in
other words the Hodge type is (1)). Set Cx (p) == Cx (1)^ tor p e Z. Suppose F and G
are absolute functors from L(X) to L(Y). An absolute natural transformation of Hodge
type (p) from F to G is a natural transformation

^(V):F(V)^G(V)®CY(^).

This is essentially the same as an absolute natural transformation from F to G, except
that the condition of compatibility with the natural isomorphisms w^ is replaced by the
requirement that the diagram commutes after multiplying one of the maps by ^. Note
that if p = 0 we recover the previous notion of absolute natural transformation. All of
our results about natural transformations can be carried over to natural transformations
of Hodge type different from zero.

We obtain the following relationship with Deligne's notion of absolute Hodge
cycle [9]. Suppose

MeH^X.C)

is an absolute Hodge cycle (necessarily of Hodge type (/?)) on X. Then cup product
with u is an absolute natural transformation of Hodge type (7?) from H1 (V) to
H^^CV). Similarly, i fU is an absolute local system with action ofC*, one could
make a definition of absolute Hodge cycle of type (p) in W(U). Then cup product
with an absolute Hodge cycle of type (p) would be an absolute natural transformation
of Hodge type (p) from H^V) to H^^V ® U).

One is tempted to think that our results give some new topological conditions satisfied
by absolute Hodge cycles (for example that the jump loci in Mi(X) for kernels and
cokernels of the cup product morphisms are torsion translates of triple tori). However,
it is not clear that these conditions give any distinction vis-a-vis general cohomology
classes: it looks like an argument similar to the one given below should show that all
cohomology classes satisfy the same conditions. Of course this is worth looking at more
closely.
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Isomorphism classes of natural transformations

Suppose A()GL(Y) is an absolute object, and A is the absolute isomorphism class
containing it. Suppose F: L (X) -> L (Y) and G, H: L (Y) -> L (Z) are absolute functors;
and finally suppose ^: GF -> HF is an absolute natural transformation. The complex
algebraic group Aut(Ao) acts linearly on the vector space HOI-HL (z) (G (Ao), H(A())).
Note however that Aut (Ao) is defined over Q and the vector space
HoniL (z) (G (Ao), H (Ao)) has a Q structure.

Let B <= L(X) be the inverse image F~1 (A). For each VeB, choose an isomorphism
/(V):F(V)^AO. Then put

^(V)=H(^V))^(V)GO•(V)-l)eHomL(z)(G(Ao), H(Ao)).

THEOREM 7.19. — Keep these notations. Suppose that Dom(F) is contained in the set
of semisimple objects. As V runs through the elements ofB, the points ^(V) occupy a
finite number of orbits 0, under the action of the group Aut(Ao). These orbits are defined
over Q.

Proof. - Before beginning the proof, we streamline the notation. Let F=Aut(Ao),
and let H = Hom^ (z) (G (Ao), H (Ao)). The group F is an algebraic group defined over Q,
and the vector space H is a linear representation defined over Q. Let K be a countable
algebraically closed field of definition for X, Y, Z, for the functors G and H, and for
the objects v|/(Ao) and cp(Ao). Then the vector space H has two structures of K-vector
space as well as its structure of Q-vector space. By enlarging K, assume that all three
structures of K-vector space coincide. Let P^: H -> H denote the resulting action of
<jeAut(C/K).

We have compatible systems of isomorphisms P^AQ^AQ and Q^AQ^AQ. We then
get four systems of isomorphisms, the first being Py GA() ̂  GA() with the rest obtained
by substituting Q and H. The conjugation P^ is equal to the composition

Hom(GAo, HAo)^Hom(F,GAo, F,HAo)^Hom(GAo, HAo);

it is also equal to the same with P replaced by Q. (Note that the compatibility between
Py or Q^ and composition of a implies that the P^ satisfy the cocycle condition necessary
to give a definition of the vector space H over K.)

For each VeB we have a point ^(V)eH. Up to the action ofF, this point is
independent of the choice of representative for an isomorphism class of objects V. The
objects in B are by hypothesis semisimple, so their isomorphism classes are parametrized
by points of an absolute constructible subset Sg c M (X). Hence we obtain a map from
SB to the set of orbits of the action of F on H. Let

A c M ( X ) x H

denote the graph of this correspondence. It is a constructible subset defined over Q
(since ^ is algebraic, defined over Q).
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We claim that

(F,,P,)(A)=(Q,,P,)(A)=A.

The compatibility between ^, ̂  and the dy and u^ means that the diagrams

P<,GFV^ GPP^

I I
P^HFV^HFF^V

commute. We can use our original choice FV^Ao to obtain choices of isomorphisms
FF^V^F^FV^F^AO^AO. With this choice, we obtain (after following the arrows in
a big diagram) ^(F^V)=P^(V). In particular, on the level of correspondences we get
(F^, PJ (A) = A. The same argument holds with P replaced by Q, so this completes the
proof of the claim.

Using this claim. Theorem 6.3 implies that A is a constructible set with respect to
both the algebraic structures, that of M^ and that of M^i.

Before completing the proof of the theorem we need a lemma.

LEMMA 7.20. - There is a stratification H= U H, into a finite number of disjoint locally
closed Y-invariant subsets such that for each a a quotient H, -> J,, which is a surjective
r'-invariant morphism such that the fibers are single orbits, exists.

Proof. - We will show that if Z is a quasiprojective variety with the action of an
algebraic group F, then there exists an open F-invariant subset Z^ and a quotient
Z^->J^. This statement, applied inductively, gives the desired stratification
of H. Choose a projective closure Z containing Z as an open subset. Let R c= Z x Z
be the graph of the relation of points lying in the same F-orbit. It is a constructible
subset. Let R denote its closure in Z x Z. Let F act on Z x Z trivially on the first
factor, and by its given action on the second factor. Then R and hence R are
F-invariant subsets. Let p:R-^Z denote projection on the second factor, and let
Zi c Z be the largest subset over which p is flat. This is a nonempty F-invariant
open subset. Let R^ =p~1 (Z^). The flat subscheme R^ <= Z x Z^ gives a morphism 0
from Zi into the Hilbert scheme of subschemes of Z. The universal property of the
Hilbert scheme and the fact that R^ is F-invariant implies that 0 is
F-invariant. Furthermore, if z and z ' occupy different F-orbits then p ~ 1 (z) and p ~ 1 ( z ' )
have different intersections with Z c: Z, so 0(z)^0(z'). Let J^ be the image of <S>. It
is a constructible subset of the Hilbert scheme, so we may divide it into locally closed
subsets. This pulls back to a division of Z^ into locally closed subsets. One of these
will be an open subset Z^ with the restriction of 0 giving a quotient 0: Z^ -> 3^ (where
J2 is the corresponding locally closed subset of J^). This proves the lemma.

We continue the proof of Theorem 7.19, using the stratification and quotients H, ̂  J,
given by the lemma. Let S, c: SB be the subset of points -u such that there exists a point
(v, w) e A with w e H,. Then S^ are disjoint constructible subsets whose union is Sg. The
quotient of the corresponding piece of A by the action of F is the graph of a map
S, -^ J,. This map is constructible in terms of all three algebraic structures of S,.
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We may further divide up the S^ into a finite union of disjoint locally closed pieces
S^p compatible with the algebraic structures of Mpp and M^oi, such that: the map
defined above restricts to a map S^ j -» J^ which is a morphism with respect to all three
algebraic structures; a universal family of local systems, which is a direct sum of families
of irreducible local systems (resp. vector bundles with integrable connection, Higgs
bundles), exists over an etale covering of S .̂; and the isotypic decomposition is of
constant type in this family.

Choose a regular function on an open set in J^. We will show that it pulls back to a
constant function on S^ p by showing that the differential vanishes on the set of smooth
points S .̂ Suppose v e S .̂ is a point corresponding to a local system V which
decomposes as a direct sum

v=©v,®w,

where V, are distinct irreducible local systems and W^ are vector spaces. The real
tangent space is a subspace

T^(S,,,),c=©T^(M(X))v,

For the purposes of this calculation we may reduce, by taking hyperplane sections, to
the case where X is a curve. Then the moduli spaces M (X) are smooth at the irreducible
representations V,. There are two complex structures on the real tangent space
Tn(M^(X))v^. Letj denote the complex structure corresponding to the topological and
de Rham realizations, and let k denote the complex structure corresponding to the
Dolbeault realization. These form part of a quaternionic structure for the tangent space
(Hitchin proved this in the rank 2 case [17]; Fujiki treats the general case [12]). The
subspace Tn(S^)^ is preserved by both complex structures, so j and k also induce a
quaternionic structure there. The differential of our function is a complex-valued linear
function on this space, which is complex-linear for both j and k. The real part is an
element 'k of the dual space Tj^(S^ with the property that j ^ = k X is the imaginary
part of the linear functional. But the quaternion equation jk = - kj gives

jk^j2^ -)i== -kjX= -k2^^,

whence ^=0. This argument holds at every point veS^p so the pullback of the
holomorphic function is constant. This shows that the map S^ j -> J^ is constant. Since
there are only finitely many strata S^p this shows that there are only finitely many
orbits of r which are in the image of the correspondence A. As A is defined over Q,
and there are only finitely many orbits in the image, each of the orbits is defined
over Q. This completes the proof of the theorem.

Remark. - We would like to know that the subset B^ of objects V such that ^ (V) e 0 •
is absolute. The only problem is to know if P^O^Q^O). I don't see how to
deduce this in general; so we include some additional hypotheses in the next
lemmas. Another possible route to take would be to note that it is true for a subgroup
of finite index in Aut (C/Q) (because there are only finitely many orbtis 0 •); one could
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then proceed as above but using a definition of absoluteness over an extension of Q. On
the other hand I do not know of an example where P^O^Q^O^).

LEMMA 7.21. — Suppose, in the situation of the previous theorem, that Oj is a V-orbit
in H such that P^ (Oj) = Q<, (Oj) for all a G Aut (C/Q). Then the subset B, of objects V e B
with ^ (V) e Oj is absolute.

Proof. - Choose objects Ao^eI^Y0) with isomorphisms ^:P^Ao^Ao^ and
a^C^Ao^Ao,^. Choose a point (peHom(GAo, HAo) representing the orbit Oj. We
obtain isomorphisms which we denote (with some shorthand)

^^:P,GAo^G^Ao,,

and

a^:Q,GAo^G,Ao,,,

and similar ones with H. By hypothesis Ad (a^ u^) Py (p and Ad (^ z^) Q(, (p both represent
the same orbit Oj ^ in Horn (G^ Ao, ̂  H<, Ao, ̂ ). Let

B,,,={WeF; l(A,)cL(X f f)s.t.Ad(H-)^(W)eO,,, for w:F,W^Ao,,}.

If\y=p^V for VeB, we may take as the isomorphism w the composition

F,P,V^P,FV^P,AO^AO,,.

We have a collection of isomorphisms, obtained from the above natural isomorphisms
(and in some cases a choice of isomorphisms) - but which we denote by indexed letters i
for convenience:

i, G,F,P,V^G,P,FV,

i, G,P,FV^G,P,Ao,

h G,P,AO^G,AO,,,
4 G,P,FV^P,GFV,

i, P,GFV^P,GAo,
i, G,P,Ao^P,GAo.

Isomorphisms i^ and 75 result from the same choice of isomorphism
FV^AQ. Isomorphisms ?\, 4, and ^ come from those denoted u^ above, while ^ comes
from a^. There is a commutativity ^ ̂  = h 4» while h ̂  1 == ^o ^a-

We have the same collection of isomorphisms between objects obtained using H. For
convenience we denote these by the same letter, and denote "conjugation" (involving the
isomorphisms carrying the same name but related to G and H) by Ad.

We can choose w: Py Py V ̂  AQ^ as above such that Gy w = ̂  ̂  ̂ . Then the condition
that P^VeB,^ is by definition equivalent to the condition that

Ad(/3^^)^(P,V)eO,,,.
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By the definition of Oj y this is equivalent to the condition that

Ad(^i)UPoV)-P,(p

0'. e. these are equal up to an element of Aut (A())). The compatibility between ̂  and Uy
gives

Ad(4;\)^(P,V)=P^(V).

By the definition of ^ (V), we have

AdQ-5)P^(V)-P^(V),

hence (using ^ ̂  = h 4)

Ad(w\)UPaV)-P^(V).

Hence V e B^ „ if and only if ^ (V) - (p, which is to say ^ (V) e 0^ or V e B^. Thus

PJB,)=B,,,.

A similar argument gives

Q,(B,)=B,,,.

By the theorem above, B^ is algebraic, defined over Q. Similarly, by looking at the
graph of the correspondence associated to ̂  one can see that the Bj y are also algebraic,
defined over Q. This almost completes the proof that Bj is absolute-we just need to
note that it is preserved by the action of C*. This is because one can choose an action
of C* on Ac; and via this, C* acts on H and F, in a way compatible with the action
of r on H. Hence C* acts on the set of orbits. It preserves B, so it preserves the
image of the correspondence A. But this image consists of a finite set of orbits, and C*
cannot act nontrivially on a finite set (since it is a divisible group). Hence the orbit Oj
is fixed, which implies that Bj is fixed.

COROLLARY 7.22. — Suppose that Y and Z consist of finitely many points (i. e. L (Y)
and L(Z) are products of Vect) and that G and H are standard linear algebra
operations. Then for each of the finitely many orbits Oj given in Theorem 7.19, the set
Bj ofN such that ^(V)eO, is absolute.

Proof. — Under these hypotheses, we have (for Y and Z) natural isomorphisms Py^Qy
commuting with the structural isomorphisms for G and H, in other words the two
isomorphisms PyG^GyQy are equal, and similarly for H. Using reasoning similar to
that of the previous proof, one can show that Po(0^)=Q^(0^). Then the previous
lemma applies to give the desired conclusion.
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Example

Suppose F = (Fo, . . . , Ffc): L (X) -> Vect x . . . x Vect is an absolute functor, and

^:F,(V)®...®F,(V)^Fo(V)

is an absolute natural transformation. Let A() = (C^, . . ., C^) eVect x . . . x Vect. This
is an absolute object (see Lemma 7.5). The group acting is

Aut(Ao)=Gl(^o, C)x . . . xGl(^, C).

Let B be the subset of objects VeL(X) such that rk(F^(y))=ai. This is an absolute
subset. Apply Theorem 7.19 and Corollary 7.22, with G being the tensor product of
the last k factors, and H the projection on the first factor of Vect x . . . x Vect. The
conclusion is as follows. The number of isomorphism classes of the pairing £, (V)
(modulo Aut (Ao)) which occur is finite; each of these is defined over Q; and the
subsets Bj of objects V with a given isomorphism class of pairing ^ (V) are absolute.

An example of this situation is given by cup product of cohomology classes
(Proposition 7.12). Fix a smooth complex projective variety X, and integers ;o, . . .,^
with ;'o = ;\ + . . . + i^. Cup product gives an absolute natural transformation

^(V,, . . ..V^H^VO®. . ̂ H^V^H^V,®. . .®V,).

Once the ranks of the cohomology groups are fixed, there are only finitely many
isomorphism classes of this pairing, and the subsets B^ c: L (X) x . . . L (X) of (V^, . . ., V^)
such that ^(Vi, . . .,Vfc) has a fixed isomorphism class, are absolute. One can make
more elaborate examples in the same direction. The finiteness statements for the iso-
morphism classes of the pairings give some concrete results even in the case of local
systems of higher rank.

We can put these together in the following way. Let C(Vi, . . ..V^) be the cohomol-
ogy ring for twisted coefficients,

c(Vi,.. .,v,)= e W(x, v?1 !®.. .®v^)
l=(4,. . . , ifc),j

with the sum taken over ^0. For N=(^1, . . .,^) let C^(V^, . . .,V^) be the quotient
ring given by taking the sum over O^ij^nj.

THEOREM 7.23. — Fix N and an integer b. As the local systems V^, . . ., V^ run through
the set of all semisimple local systems of rank less than ft, the twisted cohomology rings
CN(YI» • • -»Yfc)/a// into finitely many isomorphism classes of rings graded by 1,7. The
set of k-uples (V^, . . .,V^) corresponding to a given isomorphism class is an absolute
constructive subset ofM (X) x . . . x M (X).

Proof. — The ring C^ is determined by its structure of a collection of vector spaces
indexed by I and 7, together with the map

CN ® CN —^ CN,
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where OO^ is a truncated tensor product involving only the terms with the total
ij^Uj. Choose Y and Z to be collections of points indexed by I and/ Let X' be the
disjoint union of k copies of X. Then the twisted cohomology ring is a functor

CN:L(X')^L(Y)

(with domain put equal to the set of semisimple local systems of rank ^b, absolute by
Lemma 7.7). Let G(C)=C® ( N )C be the truncated tensor product, and H(C)==C the
identity. By Proposition 7.9 and Lemma 7.11, CN, G and H are absolute functors;
and by Proposition 7.12, cup product is an absolute natural transformation
^: GCN -^ HCN. The set of possible ranks of IP(X, V01! ® . . . ® Vf ^) is finite (this
can be seen by calculating the cohomology using a finite triangulation ofX). Hence
there is a finite set of absolute objects A^ in L (Y) which can be isomorphic (as collections
of vector spaces) to CN(V\, . . .,V^)-an A^ is given by specifying the ranks of the
components of indices I, j. For each A^, Theorem 7.19 implies that as (V\, . . ., V^) run
through the set of objects with C^\^ . . .,V^)^A^ the cup product transformations
^(V\, . . .,Vfc) occupy a finite set of isomorphism classes modulo Aut(A^). In other
words, the set of ring structures which arise is, up to isomorphism, finite. As there are
finitely many A^, this shows that there are finitely many rings
CN(VI, . . . ,Vfc). Furthermore, Corollary 7.22 implies that the set of (Vi, . . . .V^) such
that CN(VI, . . .,V^ is isomorphic to a given ring, is absolute.

Question. — Can we use this theorem to deduce a similar finiteness statement for the
set of twisted cohomology rings obtained by taking coherent sheaf cohomology (as
in §5)?

Conclusion

We close by applying Corollary 6.2 and Lemma 7.1. Whenever one obtains an absolute
subset A c: L (X) by one of the above constructions, it follows that the set
MA, i (X)=MA(X) HM^ (X), of points in the moduli space of rank one local systems
corresponding to elements of A, decomposes as a finite union

MA,I(X)=US,

where S^ are locally closed subsets with S^ a torsion translate of a triple torus, and S .̂ - S^
a finite union of torsion translates of triple tori.

Question. — Is there a similar classification of absolute constructible subsets in the
higher rank case ?
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