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AN EXCESS SPHERE THEOREM

BY PETER PETERSEN V (*) AND SHUN-HUI ZHU (**)

ABSTRACT. — We investigate manifolds with bounded curvature, bounded diameter and small excess. In
particular, we prove that any manifold with bounded curvature, Ricci curvature ^ n — 1 and diameter sufficiently
close to TC is a twisted sphere.

I. Introduction

Throughout this paper, let M denote a closed connected n dimensional Riemannian
manifold with n^ 2.

If the Ricci curvature ric(M)^w-l, then Myers' theorem (see [M]) implies that the
diameter diam (M)^ 71 and TCi(M) is finite. Furthermore, Cheng's maximal diameter
theorem (see [C]) says that if diam (M) = 71, then M is a sphere of constant sectional
curvature sec(M)=l. This has led to many investigations into what manifolds with
nc(M)^n— 1 and diam (M)^ n should look like.

Without further conditions, Anderson and Otsu showed that one can not hope for
such manifolds to be spheres.

Example 1. - ([Al], [02]) When /z^4, there are Riemannian manifolds with
H^ (M) ̂  0, ric (M) ̂  n - 1, vol (M) ̂  v, and diam (M) -> n.

Thus one must add some more conditions on M before one can show that M is a
sphere at least.

Before we proceed we will sort out the various ways a differentiable n manifold M
can be a sphere. Of course, M can be either homotopy equivalent, homeomorphic or
diffeomorphic to the standard sphere. The generalized Poincare conjecture (see
[Sm], [Fr]) asserts that if ̂ 4, then M is homeomorphic to the standard sphere provided
it is homotopy equivalent to the standard sphere. So when n^3, there is no difference
between these two concepts. In addition, M can also be what we call a twisted
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176 P. PETERSEN V AND SHUN-HUI ZHU

sphere. This means that M is the union of two discs glued together along their boundar-
ies by a diffeomorphism. A twisted sphere is naturally homeomorphic to a standard
sphere. One can, however, say more. Namely, as long as n^6, M has to be diffeo-
morphic to the standard sphere, while when n^7, all one can say is that M is a
differentiable manifold homeomorphic to the standard sphere (see [Mu] for n^3, [Ce]
for n = 4 and [KM] for n ̂  5).

The most general sphere theorem results so far are:

THEOREM 2. - ([GrS]) 7/'sec(M)^l, diam (M) > 7i/2, then M is a twisted sphere.

THEOREM 3. — ([GP1]) Given real numbers k, v>0, there is an £(n,k,v) such that if

sec(M)^—^, vol(M)^z;, r ic(M)^/2—l, and diam (M) ̂  n — s,

then M is a twisted sphere.

THEOREM 4. — ([P]) Given ;o>0, there is an &(n, io)>^ such that if

ric (M) ̂  n - 1, inj (M) ̂  i^ and diam (M) ̂  n - £,

then M is a twisted sphere.

Remark. — Bessa ([Be]) recently proved that M is in fact diffeomorphic to a sphere
under the conditions in theorem 4. Thus we have an optimal sphere theorem in this
case.

In this paper, we prove among other things the following,

THEOREM 5. - Given K>0, there is an ^(n, K)>0 such that any M satisfying

sec (M) ̂  K, ric (M) ̂  n — 1, and diam (M) ̂  n — e,

is a twisted sphere.
In the case when n==4, theorem 5 was proved by Shen ([S]).

Remark. - There is some room for improvements both in theorem 3
and 5. Example 1 still shows that we cannot make away with the sectional curvature
condition completely. However, theorem 3 could still be true if we eliminate the lower
volume bound, and in theorem 5, the upper sectional curvature bound could perhaps be
substituted by an upper Ricci curvature bound.

Theorem 3, 4, 5 are in fact all corollaries of more general theorems, which do not use
the assumption: ric(M)^-l, diam (M) ̂  n - s. Rather they use the only things we
know about manifolds of positive Ricci curvature and almost maximal diameter, namely,
such manifolds have finite fundamental group, bounded diameter and small excess, where
the excess ([GP1]) is defined as e(M)=mmp ̂  max^(^(/?, x)+^(x, q)-d{p, q)).

The idea of using excess to solve the diameter sphere problem was initiated in
[GP1]. It is easy to see that manifolds with e(M)=0 are twisted spheres. Conversely,
Weinstein has proved that any twisted sphere admits Riemannian metrics with e (M) = 0
(appendix C in [B]). As with the almost maximal diameter question discussed above, it is

46 SERIE - TOME 26 - 1993 - N° 2



AN EXCESS SPHERE THEOREM 177

therefore natural to believe that manifolds with small excess are related to spheres. Note,
however, that any manifold can be scaled to have arbitrarily small diameter and hence
also arbitarily small excess. An even more dramatic example by Anderson is the
following.

Example 6. - ([A2]) There are four dimensional manifolds M satisfying:

H2(M)^0, |ric(M)|^K, vol(M)^, diam(M)^D, and ^(M)-^O.

Therefore, to get any kind of sphere theorem for manifolds with small excess, we
must use conditions such as injectivity radius or sectional curvature. The two results
generalizing theorem 3 and 4 are,

THEOREM 7. - ([GP1]). Given k, v, D>0, there is an s(n, k, v, D)>0 such that any M
with

sec(M)^-A:, vol(M)^, diam(M)^D, and (?(M)^£,

is a homotopy sphere.

THEOREM 8. - ([P]). Given k, i^ D>0, there is an s(n, k, i^ D)>0 such that any
M "with,

ric (M) ̂  - k, inj (M) ̂  ̂  ^am (M) ̂  D, and e (M) ̂  s,

is a twisted sphere.
Likewise, in this paper, we prove the following,

THEOREM 9. - Given K, D>0, there is an £(n, K, D)>0 such that any M with,

|sec(M)|^K diam(M)^D, ^(M) finite, and ^(M)^£,

is a twisted sphere when n -^ 3, and M or a double cover of M is a lens space when n = 3.
In view of Weinstein's result and example 6, we cannot hope to improve theorem 7

and 8 in any way. The following simple examples show that also theorem 9 is optimal.

Example 10. - Let (M.^) be S^xS^ with n^4 and k^2, where S""^ has sec=l
and S^ has sec==s~2. As e -^ 0, (M, ^) -^ S""^. Thus <?(M, ^) -^ 0. Hence the upper
curvature bound is necessary.

Example 11. - Let (M, g^) be a flat torus with diameter e. As s-^0, (M, ^g)-^a
point, so e(M, g^) -> 0. Thus the fmiteness of n^ (M) is necessary.

Example 12. - (Example 1.4 on P326 of [CG]) Any 3 dimensional lens space L(p, q)
collapses with bounded curvature and diameter to a rotationally symmetric compact
surface (football shaped). Such spaces obviously have (?(M)=O. Thus theorem 9 is
also optimal in dimension 3.

Remark. - We do not know yet whether all 3-manifolds which are double covered
by a lense space, admit metrics with small excess.
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178 P. PETERSEN V AND SHUN-HUI ZHU

Note that when ^=3, theorem 9 does not imply theorem 5. In this case, we need a
special 3 dimensional noncollapsing result proved in [BT]. It is still possible that 3-
manifolds with ric^2 and diam (M) > Tr/2 are spheres. But not much is known about
this except Hamilton's classification of 3-manifolds with positive Ricci curvature. See,
however, [W] for a discussion on 3-manifolds with almost maximal diameter and a lower
volume bound.

We would like to point out a difference between theorem 9 and previous sphere
theorems. Without the condition on the excess, the classes of manifolds considered in
theorem 7 and 8 are well behaved, by which we mean they are either compact or contain
only finitely many topological types. Thus they are all proved by showing that the limit
space is a sphere. The class in theorem 9, however, can collapse. In this case, it is not
possible to show the limit is a sphere. We therefore need to use the full force of the
collapsing result of Fukaya. The class in theorem 2 can also collapse, but it is not
relevant for the proof. Our results in this paper are the first sphere theorems where
one has to deal with the collapsing phenomenon. (See, however, [FY1] and [FY2] for
other pinching results which use collapsing techniques.)

The proof of theorem 9 is divided into a geometric part (§ 2) and a purely topological
part (§3). In section 2 we use the results in [F] to exhibit M as the union of two disc
bundles over infranil manifolds. Finiteness for the fundamental group is not used
here. This structure is then used in Section 3 with some fundamental group consider-
ations to prove theorem 9. In Section 4, we will prove theorem 5 for the case n=3,
which is the only case not covered by theorem 9. Finally, we conclude in Section 5
with some remarks and questions about manifolds with small excess.

For related results about excess and similar invariants, see [GP1], [P], [S], [01] and
[PSZ].

We would like to thank Professor Karsten Grove for promoting the idea that some
positive curvature questions can be attacked by proving a double soul type theorem as
we do in Section 2.

II. A double soul theorem

In this section we prove the following result,

THEOREM 2.1.- For any positive integer n^2 and positive numbers D, K, there exists
a positive constant e(^, D, K) such that ifM" is a connected Riemannian manifold satisfying

|sec(M)|^K, diam(M)^D, ^(M)^£,

then either M is infranil or there exist two embedded connected infranilmanifolds F^ and
F^ in M, and M is diffeomorphic to the union of the normal bundles of F^ and
F^. Furthermore, there is a gradient-like vector field ^ on M\{Fi, F^} along whose
integral curves the distance to F^ (F^) is decreasing (increasing.)
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AN EXCESS SPHERE THEOREM 179

Proof. — We prove this by contradiction. Suppose there is a sequence of manifolds
{M,} such that

|sec(Mf)|^K, diam(M)^D, ^(M^O,

but {Mi ] does not satisfy the conclusions of the theorem.
By the fibration theorem of K. Fukaya (theorem 0.12 in [F]), the frame bundles FM^

with the canonical metric (sub)converges in C0'" topology to a C0'" Riemannian
manifold Y, and the 0 (n) action on FM^ induces an 0 (n) action on Y, the quotient
Y/0 (n) = X is the Hausdorff limit of {M^.}. Furthermore, there is a diagram

9i
FM, -> Y

(l) ^ i<?

M, f^ X

that commutes. Here ^ is an 0 (^-invariant almost Riemannian submersion with
infranil fibers.

In the trivial case when X is a point, M is diffeomorphic to an infranil manifold. In
what follows, we assume X is not a point. Since e(Mi)->0 when ;->oo,
^(X)==0. Hence there exist two points p, qeX, such that for any point xeX,

d(p,x)+d(x,q)=d(p,q).

We claim for any point xeX\[p, q}, there exists a unique geodesic y from p to q
passing through x. In fact, let jp: [0, y -> X, jq: [0, /J -> X be two geodesies such that

Yp (0) =P, Y (lp) =x, y, (0) = x, Y, (/,) = q.

Then jp \J y^ must be smooth at x. Otherwise, let jp be a geodesic from p to y^ (^) for
some small to. Since

L(y^)+L(y,)=rf(^)

L(y,)+L(yj^^)=^(^,^

Y p U Y ^ and YpUy^l i to ,^] are both (minimal) geodesies having the segment yj^,^] in
common. This contradicts the fact that geodesies in the limiting space of manifolds
with lower curvature bounds do not bifurcate ([GP2]). Thus JpUjq is the unique
smooth geodesic from p to q passing through x. Hence X is a suspension over a space S.

From now on, we will drop the subscript; in our discussion. Let F^/"1^),
F^/"^). The above quoted theorem of Fukaya implies F^ and F^ are embedded
connected infranil manifolds ofM.

To show that M is the union of the normal bundles of F^ and F^, we only need to
construct a gradient-like smooth vector field on M\{Fi,F2}. Note the tangent
vectors T| to the geodesies from/? to q constructed above in X is a gradient field. The
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180 P. PETERSEN V AND SHUN-HUI ZHU

idea is to try to lift T| to a vector field in M. The difficulty is that f^ is not well-
defined. (By a more elaborate result of Fukaya, f^ is well-defined along each strata
ofX. This, however, will not really help us.) We note that in the diagram (1) the
map/comes from g, and g is a well-defined submersion (since Y is a manifold). Thus
to circumvent the difficulty, we first lift T| to Y, then use g to lift to FM, then pushdown
to M to get the desired vector field.

To lift T| to Y, we work with geodesies. For any point ^eY\cp~1 ([p, q}\ denote
x= (? (^)- Let y be the unique geodesic of X from p to q passing through x. We claim
there exists a unique lift of y to a geodesic y in Y\(p~1 ({p, q}) passing through y . In
fact, denote the two segments of y divided by x as y^ and y^. By the proposition in the
appendix (see the remark there), y^ and y^ can be lifted to y^ and y^ passing
through y. Since y^ and y^ are "horizontal", i. e., they realize the distance between their
end points, therefore L(y^+L(y^)=L(y^)+L(y^)=d(p, q). If y^ U V z is not smooth
at y, there is a geodesic from (p"1^) to ^~l(q) with length shorter than
L(yi)+L(y2)=^(7?, q). After projecting down to X, we get a geodesic shorter than
d(p, q\ which is impossible. Thus y^ UVi is smooth at y . This implies the existence
and uniqueness of the lift through y . Let ^ = the tangent vector to y.

We now show the vector field ^ is continuous. This follows easily from the uniqueness
of lifts. In fact, we only need to show the collection of geodesies y is continuous (this
is why we work with geodesies instead of vector fields.) Let y^ -> y , and corresponding
y,, y such that y, -> a which are defined on [0, T\ with l=d(p, q). Since geodesies
converge to geodesies, a is a geodesic through y . The continuity of the collection of
geodesies { y } in X implies that y and a are the lifts of the same geodesic in X, the
unique one passing through ^=(p(^). Now the uniqueness of lifts we just proved in
the previous paragraph implies that cy=y. Thus £, is continuous.

The lifting of ^ from Y to a vector field % in FM is easy, since Y is a C°'a Riemannian
manifold and g is an almost Riemannian submersion. To make a canonical lifting, we
proceed as follows. For zeFM\((p°g)~1 ({p, q]), let y=g(z). Consider the subset
of vectors at z defined by A ^ = { ^ g^(?)=^(^)}. Since g is an almost Riemannian
submersion, there are vectors in A^ of length less than, say, 2. Thus min^||^|| is
achieved by a vector 7(z). Obviously such minimum is unique since if v^ and z^ are
two such minimums, then l/2(^+z^)eA^ and its length is strictly shorter than
ll^i 1 1 (|| ̂ 21|) unless z5\ and ^ are parallel. We thus obtain a vector field ^ in
FMYcp^)-1^,^}).

To see % is continuous, let z, -> z and ^ (z^) -> u. Since g^ is continuous, we have

^ (u) = ̂  (lim X (^))= lim ̂  (x (z,)) = lim ^ (g (z,)) = ̂  (g (z)).

Thus ueA^. If | |M| | is not the minimum in A^, there is a vector u' in A^ with H ^ l ^ l u\\.
Thus for ;' big, H^^H^z^ l l . Now since g is a fiber bundle, there are vectors U\E\^
such that limu'i=uf. In particular, when ; is big, ||^||<|| ̂ (Zf)||. This contradicts the
definition of^. Thus uhas minimum length in A^, hence u=%(z). This proves that ^
is continuous.
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AN EXCESS SPHERE THEOREM 181

We note that ^ is 0(n) invariant and perpendicular to the 0(n) orbits. Also ^ is a
gradient vector field. Since g is an almost Riemannian submersion, we conclude that /
is almost perpendicular to the 0 (n) orbits and is almost a gradient field. The construc-
tion also implies that % is 0 (^-invariant (since g is). We now take the projection of %
in the directions which are perpendicular to the 0 (n) orbits and, by abuse of notation,
denote the resulting vector field again by ^. It follows that % is continuous, 0 (n)-
invariant and gradient like, i.e., if 8 is a integral curve of/, then dist(((p°^)~1 (/?), 5(0)
is strictly increasing, and dist(((p°^)~1 (q), 8(0) is strictly decreasing.

We now let ^=v|^(x) (since ^ is 0 (^-invariant). Note that ||^||=||x|| since/ is
perpendicular to the 0(n) orbits (i.e., / is the horizontal lift of^ with respect
to \|0 Let a be a integral curve of^, then dist(Fi, (7(0)=dist(((p°^)~1 (/?), 8(0) is
strictly increasing. Similarly, dist(F^, a(Q) is strictly decreasing. Thus ^ is a gradient-
like vector field. Obviously ^ is continuous. We can now use the standard procedure
to approximate ^ to get a smooth vector field (see [GS]), still denoted by ^. This is the
desired smooth vector field. This contradicts the assumption at the beginning of the
proof.

Q.E.D.

III. Van Kampen's theorem for double soul manifolds

We are going to use the double soul theorem 2.1 to prove theorem 9. Since the
manifolds F^ and F^ are compact K(TC, 1) spaces, the fundamental groups yield enough
information about the manifolds. So our argument will use heavily van Kampen's
theorem. The technical difficulty is caused by the fact that, after lifting to the universal
cover, the sets involved are not necessarily connected in general, while van Kampen's
theorem requires connectedness.

Let n: M -> M be the universal covering map. Let F\ and F^ be the preimages of F^
and F^ under 71. Denote by ^ the lifting of the vector field ^.

Since n^ (M) is finite, M, F^ and F^ are all compact. Note that F\ does not have to
be connected, and that when it is not, all connected components are diffeomorphic and
have identical normal bundles (identified by the deck transformation.) We will show
that when the dimension of M is not three, M is homeomorphic to a sphere, and in
dimension three, M or a double cover of M is a lens space. We will divide the proof of
theorem 9 into three cases depending on the codimension of F,.

1. codim (F\) ̂  2, codim (F^) ̂  2.
We first show that both F\ and F^ are connected. If F\ is not connected, let C^, C^

be two of its connected components. Take ^eC^(?= 1,2). Since M is connected, there
is a curve y from x^ to x^ in M. If y 0 F^ = 0, then deform y along the vector field ^
will give a curve y lying entirely in F\. This is not possible since C\ and C^ are different
components ofF^. Thus y ( ^ F ^ ^ 0 , say, ynD^0 with D a connected components
ofF^ Consider the sphere bundle S(D) of the normal bundle ofD. Since D is con-
nected and codim (D) == codim (F^) ̂  2, S(D) is connected. Hence we can replace the

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



182 P. PETERSEN V AND SHUN-HUI ZHU

portion of y near D by a curve lying in S (D), the resulting curve y does not
intersect D. Do the same for all components of F^ with which y intersects (a finite
number of such), we will get a curve from x^ to x^, not intersecting F^. Using the
flow ^, we will again get a contradiction. Thus F\ is connected. The same argument
shows that F^ is also connected. This argument shows that if the sphere bundle of the
normal bundle of each connected components of F^F^) is connected, then F^F^) is
connected.

Let Ui, U2 be the normal bundles of F\ and F^, then M=LJi U U^. T=Ui 0 U^ is
the sphere bundle over F^ (and F^). Since codim (F\)^ 2, I is connected. A version
of the Van Kampen theorem says that in the following diagram

^i(Ui)

(2)
_ ^ h^

Tii (I) ^(M)^H

J2
^

k2

7i,(u,r
for any group H, if there are maps k^ k^ making the diagram commute, then there
exists a map h making the diagram commute.

1. a. codim (F^) ̂  3 (or codim (F^) ̂  3).
Since I is the sphere bundle over F^, the homotopy sequence for sphere bundles is

reduced to,

0^(T)^(F,)^0,

where we have used the map ;\ in the above sequence since F\ is homotopic to U^.
Thus ;\ is an isomorphism. If we choose Vi=n^(Q^) and k^^id, k^k^i^i^1, then
diagram (2) commutes. Since n^ (M) = { e }, h does not exist unless K^ (U^) = { e }. Thus
F^ = { a point} since F^ is a compact K (n, 1) space. Thus T= S^(M)-1, and the homo-
topy exact sequence for Ui-^Fi implies 7i;i(F\) = = { < ? } . Hence F \ = = { a point}, and
Fi ̂  F^ = { a point}. It follows that M is a suspension, and therefore homeomorphic to
a sphere, since M is a manifold.

l.b. codim (F\)= codim (F^)^ 2.
In this case the exact homotopy sequence is,

0 ̂  Z-^TTi (T)-^7li (F,) ̂  0.

Let / ,(Z)=<^,>, then in diagram (2) take H=7ti(T)/<^, ^>. and let k^ k! be ttle

natural projections. Then diagram (2) commutes. Again since n^ (M) = {e}, the map h
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AN EXCESS SPHERE THEOREM 183

does not exist unless H = { ^ } . Thus n^(T) is generated by a^ and a^ Hence
^iCOi)=7i;i(U2)={6?} orZ. Therefore ^(F^^i (F^^} or Z. It then follows
that F i = F 2 = { a point} or S1. Note that codim (F\)= codim (F^ 2, thus if
F\^F2={apoint}, then F i = F 2 = { a point}. Thus M=S2. If P^P^=S\ also
F^F2=S1. Therefore M has a genus one Heegaard splitting. This implies that M is
a lens space because n^ (M) is finite (see [He].)

2. codim (Fi) == 1, codim (F^) ̂  2 (or codim (F^) = 1, codim (Fi) ̂  2.)
Since codim (F^)^ 2, exactly the same argument as in 1 (verbatim) shows F^ is

connected. Since 7ii(JV[)=0, F\ disconnects M into two components, in particular,
Ui=F\ x (— 1, 1). Thus F^ has two connected components (since F\ is
connected.) Thus M ==V\ U V^ with V^ the normal bundle over a connected components
of F^. This is exactly the situation we treated in (1) (codim ̂ 2 case). Note that in this
situation, although the vector field does not give the flow as in (1), the connectedness is
already known. Hence if codim (F^)^? then F^ is a point, which implies I is a
sphere. Thus F\=={apoin t} or S1. Note that codim (F^)=l, thus dim(M)=l or 2,
this contradicts the assumption that codim (F^)^ 3. If codim(F2)=2, then the same
argument as in (1.&) implies M is three dimensional. Denote U^=7c(Uf) for ;'=!, 2,
and I=7t(T). Since F^ is a two dimensional infranil manifold, F^ is a torus T2 or a
Klein bottle K. Note that F^=S1. Thus U^ is a line bundle over T2 or K, and U^
is a 2-disc bundle over S1. There are only two 2-disc bundles over S1 up to diffeomor-
phism, the trivial S^D2 and a nonorientable bundle. In the latter case, M then
also becomes nonorientable. But then n^ (M) will be infinite (since
0 = 1 — b^ + b^ — b^ == 1 — &i + &2 implies that b^ ̂  1). In the former case, we know that
I=S1 x S1. If Fi =T2, then the cohomology Mayer-Vietoris sequence says,

H1 (M) -^ H1 (F,) © H1 (F,) ̂  H1 (I)

is exact. Taking, say R as coefficients, we then get that,

H1 (M, R) -> R © R © R -̂  R © R

is exact. Thus b^ (M, R)^ 1, which contradicts that n^ (M) is finite. If F^ ==K, we get
the following diagram from the van Kampen theorem (note that I is connected),

^i(K).

h
\

K,(I) ^(M)-^

J2
^

k2

n, (S1)

where k^=0 and k^ is the natural projection n^ (K) -^ K^ (K)/7ti (I). Let M denote the
double cover of M corresponding to the kernel H of h: n^ (M) -> Z^. Clearly the image
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184 P. PETERSEN V AND SHUN-HUI ZHU

of Tii (K) in 7i;i (M) does not lie in H while the image of n^ (S1) lies in H. Thus the lift
K of K is connected and the lift S1 of S1 is the union of two disjoint circles. We then
have a genus one Heegaard splitting of M. This implies as before that M is a lens
space.

3. codim (F\) = codim (F^) = 1
Since 7ii(M)=0, both sphere bundles of the normal bundles of F\ and F^ are

disconnected. Thus H.=F,x(-l, 1) for ;=1, 2. It then follows that F\ and F^ are

diffeomorphic. We now show that M is a fiber bundle over S^ with F\ (F^) as
fibers. The homotopy sequence will then give a contradiction. In fact, if we enumerate
the connected components of U^- Q'=l, 2) as C^, C^, . . .,C^ (m is finite since ]vl is
compact), then all { C y } are diffeomorphic to F x (— 1,1) with F a connected component
of FI (F^). M is obtained by identifying the boundaries of {Cj ] (which is diffeomorphic
to F). Notice that after identifying one component of 8C^ to that of, say, 8C^, the
resulting set is still diffeomorphic to F x ( — l , l ) . By induction, Mis obtained by
identifying the two components of the boundary of F x ( — l , 1), and therefore it is a
fiber bundle over S1 with F as fibers. But this contradicts that n^ (M)=0.

This completes the proof of Theorem 9 in all cases.
Q.E.D.

IV. Noncollapsing in dimension three

In this section we prove theorem 5. Note that when dim(M)^3, theorem 5 is an
immediate consequence of theorem 9 and Myers' theorem. We will thus concentrate on
the three dimensional case. The argument in (1. b) and 2 of the previous section implies
that we only need to prove M is simply connected (this of course also follows from
Hamilton's result, see [Ha]).

In the proof we need to use the following result,

THEOREM 4 . 1 . — Given fg, K>0. If a Riemannian manifold M satisfies,

sec(M)^K, inj(M)^

then any subgroup G of the group of isometrics o/M, with

d(G (p\ p) ̂  £ = 1/2 min { ^ Tr/4 ̂ /K}

for some point p e M, has a fixed point.

Proof. — This is basically the Cartan's theorem which says that any compact group
action on a simply connected manifold of nonpositive curvature has a fixed point. In
our situation, the condition d(G(p), p)^G implies the existence of the center of gravity
of the set G (p) (see 8 .1 .3 of [BK], also [GK]). Theorem 4.1 then follows since a group
always fixes the center of gravity of an invariant set.

Q.E.D.
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We now prove theorem 5 in dimension three by contradiction. Suppose there is a
sequence of three manifolds { M ^ } satisfying,

(3) | sec (M,) | ̂  K, ric (M,) ̂  2 diam (M,) ̂  n - s,

with £-^0, but { M j are not simply connected. Let TI^M^M^ be the universal
covering maps. It is easy to see that M^ with the pull-back metric satisfies
condition (3). Let p,, q,eM, such that d(p,, ^)=diam(M,). For any ^en^M,, q,)
which a, a geodesic loop at ^. Fix q^eM, such that ^(^)=^. Let a, be the liftings
of o^ with base point at q,. A simple volume comparison argument (Lemma in § 3
of [W]) implies d(p^ a, ( .̂)) ̂  T, (s,) where T, <£,) -> 0 when E, -> 0. This implies
^(7t,(M,)(^),^)^T,

A theorem of Burago and Toponogov ([BT]) shows that the sequence of manifolds
{Mi ] has a uniform lower bound on the injectivity radius. Theorem 4.1 then implies
n i (M^) has a fixed point when ;' is big. This contradicts the fact that oc^ is a deck
transformation, hence fixed-point free. This contradiction implies that { M j are simply
connected, thus completing the proof of theorem 5.

Q.E.D.
Remark. — In dimension three, because of the relation between sectional curvature

and Ricci curvature, what we have actualy proved is that any three manifold with
2^ric(M)^K, diam (M)^ n— 8 is a twisted sphere.

V. Some remarks

The double soul theorem in Section 2 does not depend on the fact that K^ is
finite. Thus we still get a structure result for manifolds with infinite n^ and small
excess. In fact one can go through the fundamental group argument in this case as
well, just as we did in Section 3. In the case where one of the F^s have codim^3, we
get as before that F^ c: M is simply connected and therefore diffeomorphic to some
Euclidean space R^. Both of the sets F^ will then be R^ and the universal covering M
is a disc bundle over a twisted sphere, because the normal bundles to F\, F^ are
trivial. In the special case when both F^ have codim^2, it is harder to say what
happens. On the other hand, this can only happen if M collapses to a space X with
dimension ^2. There are basically only four spaces X with dim(X)^2, ^(X)=0, and
sec(X)>—oo. Either dim(X)=l in which case it must be an interval or a circle, or
dim(X)=2 in which case X is the suspension over an interval or a circle. It is therefore
in general quite restrictive for a manifold to have bounded curvature, bounded diameter
and small excess. One might even ask if such manifolds, or at least a finite cover, fiber
over a twisted sphere with infranil fibers (see [PSZ]). We leave it to the interested
reader to classify all 2, 3-dimensional manifolds satisfying the conclusions of the double
soul theorem 2.1.

One might also wonder what happens if there is no upper curvature bound. In that
case we have the following
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DOUBLE SOUL CONJECTURE (Grove & Petersen). - Let n^2, K, D>0 be given, there is
a positive constant s (n, K, D) such that any Riemannian manifold M" with,

sec(M)^-K, diam(M)^D, and ^(M)^s,

is the union of the normal bundles over two submanifolds, which are almost nonnegatively
curved.

APPENDIX

GROUP ACTIONS AND LIFTINGS OF GEODESICS

In this appendix, we give the lifting properties for certain singular spaces. We used
such a property in the proof of Theorem 2.1. To be more precise, let (M", g) be a
/2-dimensional Riemannian manifold, and G a compact group acting on M by
isometries. The quotient space M/G has a natural metric d, defined as
d(x, y)=dM(Gx, Gy). The compactness of G implies that (M/G, d) is an inner metric
space, i. e., the distance between two points is realized by a continuous curve connecting
them. By definition, a geodesic in M/G is a curve realizing the distance between any of
its two points. Consider the natural map n: M -> M/G. We are interested in when a
given geodesic in M/G admitts a "horizontal" lift in M with given initial point, i.e.,
when there is a geodesic y in M such that 7i(y)=y and y realizes distance between the
orbits it passes through. The following proposition gives an affirmative answer without
any conditions.

PROPOSITION. — For a fixed manifold M and a compact group G of isometries,
1. geodesies in M/G do not bifurcate,
2. n: M —> M/G ;>s' distance nonincr easing,
3. any geodesic in M/G has a ^horizontal" lift, given an initial point.

Proof. - 1. It is well-known that there exists a sequence of metrics gj, on M such that
sec(^)^ -A2 for some A and (M, g^) converges with respect to the Hausdorff distance
to M/G (see, for example. Example 1.2c in [Y]). 1) follows since geodesies in the limit
space of a sequence with lower curvature bound do not bifurcate ([GP2]).

2. Let y be a minimal geodesic in M from x to y . Consider the orbits Gx and Gy,
if Gxp\Gy^0, we then have d(x, y)=0, 2) holds trivially in this case. Thus we
consider the case when Gx(^Gy=0. Let 8 be a geodesic realizing the distance
between Gx and Gy (8 exists since G is compact). Using the group action, we can
assume that 8(0)=x and 8 realizes the distance between x and Gy. Thus
L(y)^L(S)=d(x, y), i.e., n is distance nonincreasng. It follows that n maps minimal
geodesic between two orbits to a geodesic.

3. Let a: [0, b] -> M/G be a geodesic. Given p e n~1 (a (0)), let to = sup { t \ a |[Q, (] has
a "horizontal" lift starting at/?}.
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We claim that to>0. To see this, we first note that for 0<t<b, a is the only geodesic
from a (0) to a (/). This follows because a different geodesic will give a bifurcation of a
at a (0, which is not possible by 1). Consider the orbits n~1 (a (0)) and n~1 (a (Q). Let
a be a minimal geodesic from 71-1 (a(0))to n~1 (cr(0). Using the group action, we can
assume a==p. Then 71(0) is a geodesic from a(0) to a(0 (by 2)). The uniqueness of
geodesies we just proved implies TC (a) = a. Thus a is a "horizontal" lift of a.

If to<b, we can pick a number / such that to<t<b and use the same argument as
above to get a continuation of the lift to [0, t], which contradicts the choice of to. Thus
to=b.

Q.E.D.

Remark. — In the proof of (3), we only used the property that geodesies do not
bifurcate, this is guaranteed by the presence of a lower curvature bound. It was in this
context we used the above proposition in the proof of theorem 2.1.
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