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ASYMPTOTIC WINDING OF THE GEODESIC FLOW
ON MODULAR SURFACES AND CONTINUOUS

FRACTIONS

BY Y. GUIVARCH AND Y. LE JAN

ABSTRACT. — We study the statistical behaviour of renormalized integrals of harmonic 1-forms along
geodesies on modular surfaces, using their coding by continuous fractions. We are led to prove a similar
result for the continuous fractions transformation, by perturbation of the associated transfer operator.

Introduction

The chaotic behavior of geodesies on surfaces of constant negative curvature and finite
volume has been known since Hadamard (1898). Later were proved the ergodicity of
the geodesic flow and central limit theorems ([Si], Rat]). The general theory of Anosov
flows was developed in order to include various examples, e. g. geodesic flows on manifold
with non constant negative curvature. Independently, the geometry of Brownian paths
was studied by Levy and his followers. Clearly the existence of a central limit theorem
suggests an analogy between geodesies in negative curvature and Brownian motion
already observed by Sullivan ([Su]). Here we present, in a very specific case, a result
analogous to Spitzer's theorem which describes the asymptotic law of the windings of a
two-dimensional Brownian motion around a point cf. ([Spi], [LM], [RY], [F]).

The spaces we consider are modular surfaces obtained as quotients of the hyperbolic
plane by normal subgroups of finite index in the modular group SL^ (Z). In fact such
a modular surface has finite hyperbolic area and is naturally compactified in a compact
Riemann surface of genus g by adding c points (cusps) [Sch]. Then, roughly speaking,
our main result says that the normalized homological winding of the geodesic flow
converges toward the product of two non degenerate probability laws. The first one is
a 2 ̂ -dimensional Gaussian law associated with the compactification; the second one is a
(c-l)-dimensional Cauchy law which is itself the convolution ofc elementary Cauchy
laws corresponding to the cusps.

This result should be viewed as a first step since the problem of asymptotic laws of
normalized integrals and winding we address is meaningful on manifolds of finite volume
(possibly with different normalizations and with respect to suitable finite invariant
measure).
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24 Y. GUIVARCH AND Y. LE JAN

In our proof, an important idea is to reduce the problem to the study of harmonic
forms integrated along the geodesic and change the contour of integration along the
lines of the Farey tesselation. We transform the problem into the study of an additive
functional of a Markov chain involving continuous fractions, which occurs from the
coding of the geodesic flow given by the Farey tesselation. We are lead to prove a
result on continuous fractions, of independent interest, by perturbation of the transfer
operator.

These results were announced in a note [GL], together with other results which we
will detail in a forthcoming paper.

They were presented in the conference held in Paris, in Spring 1990, to honour
Professor K. Ito. ^

The authors wish to thank F. Ledrappier for indicating them useful references and the
referee for his advices.

1. Framework and notations

1.1. MODULAR SPACES. - Let G=SL2([R)/±I be the group of projective transforma-
tions of the projective line P.

Set

/cos6-sin9\ . (e^ 0 \
Re==± • A J9^/^ and ^^ . -,/J\sin9 cos9/ \ 0 e t11}

K = { R e , OeR/^}, K^Re, 6^0, jU D = { H , t^R}.

K and D are subgroups of G.
HI = G/K can be identified with the hyperbolic space, the hyperbolic distance between

gK and hK being 2Log||/^ - l^||, || || being the euclidean operator norm. The half
plane representation is obtained by mapping g K onto

,., ai^b ( a b\
g(i)=——— ^ g=^( J

ci-^-a \c a)

VgeG, {^U(0, teR} is a geodesic of H. G/D can be identified with the set of
(oriented) geodesies and G with the set of contact elements T^ HI (unitary tangent bundle).

g is associated to (g(z\ lim ̂ ^0-^(0 V/gH^^ i^d)-2}
\ e i o e / \ci+d )

If

/I ^\
g-l JHRe, gd^x-^ie1 and ^c+rf)-2^ ̂ (7t/2-29)
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GEODESIC FLOW ON MODULAR SURFACES 25

The flow of mappings on G:g->gV, is the geodesic flow. The end points of the
geodesic defined by g are g<ft) and g (oo), and therefore the space G/D can be identified
with P x P-A. The left action of g onto G induces an isometry of H, so that G can
be represented by a group of isometries of H. They map the geodesic (a, P) onto
fe(oO^(P)). The Haar measure of G, denoted [i (which is also the Liouville measure
on TI H) can be defined as follows

V/6C^(G), f/^=f7(a, P)-̂

[ * + 00

with/(a, (3)= f(gVt)dt, for any g such that ^(0)=oo and ^(oo)==P. Denote by
J — 00

VQ the modular group SL^(T)/±1.
Let r be a normal subgroup of FQ, such that £==r\To is finite. For geG, we set

g ^ T g , In particular, g e £ if ^ 6 JTo.
We are interested in the geodesic flow on the modular space P\H. The geodesic

flow on G clearly induces the geodesic flow on the unitary tangent bundle to P\H
which is isomorphic to r\G.

I f o c ( E Q U { < x ) } , set a = { R e Q U oo, 3geY, ̂ (a)-?}.
Let C be the space of cusps {a , aeQ U { oo }}.
2: acts transitively on C (as To on Q U { oo }), hence C is finite. The conductor of F,

denoted N, is the order of the stabilizer of any cusp. In particular

N=inf^, ±1 ler}. We have Z^NC'.

1.2. MODULAR FORMS. — To any holomorphic function / on the Poincare half
plane, we can associate a mapping / from G into C given by

f^-ngWg'W^nai+b/ci^d^ci^d)-2, for g^ ±(a ^
\c d )

ft r<7Uy(o
Note that/^Re)-/^)^-219 and /(^U,)^= f(z)dz,

JQ us(i)

If Y=±r JeG, /(Y^)=/fe) for allg i{ff(jz)d^z)=f(z)dz, i.e.
\c d/

f(yz)=f(z)(cz+d)2.
The space of entire modular forms of dimension - 2, denoted J( is defined as follows

(c/. [S]).

^t = \ f holomorphic in H, f(y g) =f(g), for any 7 e F and for any y = ± | ) e Fg,
C \c d/

00

/(yz) admits a development of the form (cz+rf)2^^1'^ forlm(z) large
o

enough^. We define/on the cusps by setting /(y oo)=Co with the notations above.
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26 Y. GUIVARCH AND Y. LE JAN

r\H U C is a compact Riemann surface ̂  whose genus g can be computed (cf. [Sch]).
Differentials on ^ having no poles outside the cusps and degree at most -1 at the

cusps are represented by entire modular forms of dimension — 2. A differential has a
residue at a cusp a if the corresponding form does not vanish at a. Entire forms
vanishing at every cusp (i.e. cusp forms) are associated with holomorphic differ-
entials. Their space has a finite C-dimension equal to the genus g.

From the Riemann-Roch theorem, it is known that the dimension of the space of
entire modular forms is C^— 1 -\-g. Moreover, it is known that the sum of the residues
of a differential is zero ([Spr]). Hence, for any complex function g on C, such that
Z g(Qi)=^9 ^eir exists an entire form (p, determined up to a cusp form, such that (p=^

aec
on C. The R-dimension of the space M^ of entire forms taking real values at the cusps
is 2^+^-1.

We now fix an entire form (p, taking real values at the cusps. The real part of (p (z) dz
is a harmonic 1-form on H denoted co. It induces a harmonic 1-form on F\H also
denoted by co.

Given geG and t>0, denote y^fe) the arc of geodesic {^U^Q'), s ^ t ] and by y^g)
the corresponding arc on r\H.

We are interested in the asymptotic study of the integral of G) along geodesies, ;'. e. of

CD as ^+oo.
JY( (g)

2. Asymptotic winding

THEOREM 2 . 1 . — Under the normalized Liouville measure \JL on F\G,

a. \ft \ G) converges in law towards a Cauchy distribution with parameter
JY(

3/TiC' ^ |(p(a)|^-.oo.
a e C

r
b. If ̂ >c ls a cusp form ̂ I/ /t\ o ,̂ converges in law towards a non degenerate gaussian

JY(

distribution with variance o^2(co^.)=2 ||coJ|2^ (dv being the normalized volume
Jr H

element).

c. 1/M co and \ / t G)(, are asymptotically independent. ((Oc=Re(q\,(z)&)).
JY( «/9(

The proof of this theorem will be given in the next chapters. Coding and contour
deformation will allow us to show that this result can be proved via a theorem on
continuous fractions that will be proved in the final part. Before that we shall discuss
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GEODESIC FLOW ON MODULAR SURFACES 27

the scope of the theorem and give an equivalent formulation in terms of probabilities on
homology spaces.

Remark. — The integral of the form co on an elementary loop /„ around the cusp a is
N(p(a) and the volume of F()/H is [Fo/H|=7i/3, so that the parameter of the Cauchy
law can be rewritten as 1/[ H/F | ^ [< co, /,>|.

a e C

Let Jf be the space of harmonic forms which are the real part of an element of J(^.
To show that the asymptotic winding of the geodesies is completely described by the

integrals co, it is important to remark the following:
Jvt(g)

PROPOSITION 2.2. — Every C°° closed form on r\JFI is cohomologous to an element
of^.

Proof. — Note first that ^f contains no exact forms. The existence of such forms
would imply the existence of holomorphic modular functions on ^, which is known to
be impossible (cf. [Leh]).

Except three exceptional cases in which r\H is simply connected, the signature of F
is always (2, 3, N). Hence it is known that F has no elliptic elements (cf. [S], p. 81-83,
94-97). Therefore, F is a free group with d=lg+C^-\ generators (cf. [S], p. 202, [Leh],
p. 362).

Fix a base point b in F\H and let / be a loop from b to b in F\H. Its lift in H

defines an element 7 in F and fI'=lT1. If 7=7, o= co since H is simply connected
J i Jr

and co equals the integral of the pullback of co on any lift of /.

Hence, co defined by o(?)= co is an additive character of F, and ©=co' clearly implies

that co and co' are cohomologous, since F\H is arcwise connected. Now the result
follows from the fact that the space of additive characters on a free group with d
generators has dimension rf=dim^f.

Let e^fc be the space of real harmonic forms on 9i = F\H \J C induced by cusp
forms. It has dimension 2g. There are no exact forms in ̂  on F\H, hence
on ^. Besides it is well known that the dimension of the first cohomology space of ̂
is 2g. Hence we have:

PROPOSITION 2.2 bis. — Each C°°-closed form on ^ is cohomologous to an element of
^f,

Recall now that the first real singular homology space of a manifold M is the dual of
the first cohomology space (defined in terms of classes of C°° differential forms. (Cf.
[Die] 24-32-2.)

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



28 Y. GUIVARCH AND Y. LE JAN

Proposition 2.2 shows the existence of a unique specific representative © in Jf for
each cohomology class ©. Hence to each contact element u in P\G, we associate T^ u

in H? (F\H) defined by < T,M, co > = f oo.
JY( (u)

Let n be the natural projection from H"? (F\H) onto H^ (^). The kernel ̂  of n is
the orthogonal of the space ̂  identified with the first cohomology space of^ in
proposition 2 .2 to.

The vector space H^(^) has a natural scalar product. In fact an euclidean norm ||. ||

is defined on ̂  by || coj|2 == || coj|2 dv where dv is the volume element of F/H and || G)J|

is the norm of the linear form co^, on the tangent space of F/H. This corresponds to
the so-called Petersson scalar product. By duality a scalar product is defined on
H^^?). Again the corresponding norm is denoted by ||. ||.

On the other hand, the group Jf is | C | — 1 dimensional and is naturally generated by
| C | elementary loops /^ around each cusp a. For each cusp a we consider the cauchy
law C^ with support equal to the subspace

^/^{/zeJf-^; teR}

and defined by C^rf/O^O/Tc^A^A^^2) we can then reformulate theorem 2.1. as
follows.

THEOREM 2.3. — The image distribution of [i by (T(/^, KTJ /t) converge towards a
probability distribution v on Jf x H^(^).

This law is the product of a law of Cauchy type and a Gaussian law. The first law is
the convolution of the elementary Cauchy laws C^(oceC) with A=1/|H/F|. The second
law is the Gaussian law with density

J———^-(| | , | |2/2,2) ^ ^^L

(2 Tier2)0 |H/F

and \\h\\ is the norm associated with the canonical scalar product on H^(^).

3. The modular coding

Our presentation is very close (c/. [Se]), with minor variations. According to [Se] this
method appears to be very old.

There is a one to one mapping between F() and the (oriented) Farey geodesies

r o D ( ± ( I ' ^ t " ? - ) an(! ̂ e fractions are irreducible since the determinant is 1 ).
Y \c d ) \c a } )

A geodesic belongs to FgD if its two endpoints are adjacent in one of the Farey
sequences ^ ^ { p / q , p, qeZ, \q\^n], arranged in increasing order (cf. [HW]). Set
X = { g e G, g (0) and g (oo) are irrationals }. For g e X, consider the set of (t, y) e R x Fo
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GEODESIC FLOW ON MODULAR SURFACES 29

such that the geodesic gD cuts at ^U,(0 the geodesic yD, and the angle between gD
and yD is less than 71, i.e. {(t, y^UeyDK4- }. Elementary considerations on the
Farey sequences show that this set is countable and can be written as a sequence
{(^nfe)), Ynfe)),^eZ}, with ^ increasing, lim ^==±00 , ^0 and ^>0. Also, an

n -»• ± oo

easy geometrical argument shows that if gGDK+, i.e. if to(g)=0 and Yo (<?)== I, Yi(^)D
is either the geodesic with endpoints (1, oo), either the geodesic (0, 1). Hence y^ (g) is

either ti = ± ( ), either T_ i = ± [ ).

Note that t^g)=t^(g) and yn(j§)=J7n(g) for any yeFo. Also
Yn+ite)=YiteU^).

Set a, Qr) = y, (g) -1 y, ̂  (^) = y;-1 (g) y , (g U^ ̂ ) = y, (y^-1 (^) g U^ ̂ ).

Since (y^1 (g) g U^ ̂ ) e DK +, a^ equals T, for e = + 1 or - 1.
Let mk(g) be the sequence of integers n such that <j^(^)^a^_i (g), arranged in increas-

ing order, with WQ^O and m^>0. m^ is a doubly infinite sequence. For example, to
show that m^ (g) is finite note that m^ (g) ̂  N implies that Yo (g) ~1 g (oo) belongs to (N oo)
if (JQ = TI and to (0, 1/N) if (JQ == T_ 3 .

The geodesic defined by g is obviously determined by the sequence Yn and by the
subsequence y^ as well (since it is doubly infinite).

Denote T(^)= -t^(g) and S = { ^ e X , T(^)=0}. g^-r^ belongs to S and will be
denoted p ( g ) so that p maps X onto S.

A shift 9 is naturally defined by the return map on S. Precisely, 9^==^U . Set
h (^) = d(^, 6^). Note that S preserve p (|LI), and that T (g) is less than h (p (g)).

By (p, T), the geodesic flow on H can be identified to the special flow over S with
height function h. An element ^ of S is characterized by the sequence y^ (^) or equiva-
lently by a triple (^)), e, y) where

^k = Wfe (£,) - w^_ i (^), ^ e Z, do (^) = T, and Jo (^ = y.

The shift is given by 9((0, e, y)==((^+i), -e, y^i).
The endpoints of the geodesic defined by ^ are ^(0)= -y(x8-) with

X- = l/^o + l/^-i + 1/^-2 + . . . and ^(oo)==y(^)

with 7+ = l/^i + 1/^2 + 1/^3+ • • • (^)fe62 can be replaced by (/+, /_) and S identified to
[(U^Z/^xFo).

The shift 5 appears to be an extension of the continuous fraction transformation

90c-, /J^x-^^1]-1, x;1-^1])

/z(y equals 00c+, 5c_)= -(1/2) Log (x+ x- Oc+ /- °e)) and^(n) equals, up to a multipli-
cative constant, v ® (counting measure), where v is the 9 invariant probability
(l/Log2)(l/Oc^-+l))2^^_.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



30 Y. GUIVARCH AND Y. LE JAN

Note that T(y^)=T^ for any y in Fo and that p { y g ) = y p ( g ) . Hence p maps F\X
onto F\S and T is defined on F\X.

The geodesic flow on P\G is identified by (p, T) to a special flow over
F\S^[0, Ij^Z/^xS). The height function is given by 0>, the shift by
QftX^ X~)^(s, P))==(6(X+, X-), (-£, PT^-^)) where ^Oc)=[x~1], and the invariant pro-
bability by v=v (x) (equiprobability).

4. Contour deformation

Given any ^=((^), s, y) in S, note that ^(i) lies on the Farey geodesic yD.
Se tC + (0=y(a ) ) ,C- (y=y(0) i f£= l , andC + (y=y(0) ,C- (y=y(oo) i f£=- l .
It is easy to check that C"^ (^)=C~ (9^) (*).
Note that the integrals of co along yD between ^(i) and C1 (^) are well defined and

equal to
F±l 00

y*co with y*(co)=Re((p(yz)rf(yz))
Jy'^d)

this improper integral along the imaginary axis converges exponentially since (p is real
and holomorphic at the cusps.

A contour deformation (Fig. 1) shows that

/•QUO fC-^) ^(i)
C0= G)+£^(p(C+(^))+ CO

^(0 ^(0 Jc^)

Then by (*), the integral of G) along the geodesic defined by ^ until its n-th change of
winding orientation, T^ = t^ ,

F pe"uo ""^
G)= coequals ^ ^+1 (pO^ (9^))8(- I/

^yTn^) ^(0 fe=o|_
Fc+(9 fc^ ~| ^(0 Fe"UO

+ CO - CO+ CO.
Jc'o)^) J Jc" (^ Jc~(e"^(i)

/•C+^) p foo
Note that co = s y* co and s n^ (p (C^ (^)) depends only of ^.

Jc~ (^ Jo
Define \|/ and T| on S by:

^©-e^cpCC^^+er'y*^
Jo

r 1 ^
r|(^)=8 y*co,.

Jo

Except two boundary terms, co equals
J^(i)

4^^^ - TOME 26 - 1993 - N° 1



GEODESIC FLOW ON MODULAR SURFACES 31

Fig. 1. — Contour deformation with y=I, »i=3, e= 1.
/O -]The case s = — 1 is reduced to this one by applying (

1 0
and by symmetry with respect to the imaginary axis.

"-1 /• n-i
^ vl/0^ and ^ ^ (D, equals ^ T| ° 9^.
0 ^YT« (^) o

Hence it follows easily that to prove theorem 2.1., (T\H, n) can be replaced by

(F\S, v) and ( 1 [ (D,-^ [ coA r f oo
\ l J^ •\/t ^it ^

by

(^l^oem ^^^oe^ ^^
V^ 1 ^n 1 /

Moreover we have the two following easy lemmas.
n

LEMMA 4 . 1 . - ^ (0 ° Q^n) -^ (7C2/6 Log 2) v-^. ̂ .
i

LEMMA 4.2. - Z^r Zfc &^ ^ sequence of real r . v ' s such that for some a>0, the variables
^""Zfc converge in law towards a distribution \i. Let S^ be a sequence of random integers

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



32 Y. GUIVARCH AND Y. LH JAN

such that S^/k-> 1 in probability as k^\ co. Then ^""Z^ converge in law towards [i as
fc foo.

Hence the factors (x^ can be replaced by (n K2/6 Log 2)01. Therefore, except for the
calculation of a2, which will be done in the last chapter, the proof of theorem 2.1. can
be reduced to the following proposition proved in the next chapter.

( n n

PROPOSITION 4.3. - Under v, l/^^v)/0^, I/ /Tz^ri0^) converge in law towards the
i i

product of a Cauchy distribution of parameter (1/2 71 Log (2)) (S | (p (a) [/C^) and a non
degenerate centered gaussian distribution.

Remark. — The theorem given in the next chapter proves the non degeneracy given
the fact that T| is not identically 0, which can be proved as follows: We observe that T|
cannot vanish unless (p^ vanishes. Since the signature of T is alway (2, 3, N) (c/. the
proof of Proposition 2.2), we can find a fundamental domain for F\H limited by
geodesies of the Farey tessellation, i. e. images of geodesies between the cusps.

If (p^ is non zero, there is a loop y on F\H along which its integral does not vanish.
Clearly y has to cut some geodesic between the cusps. (Otherwise it would be

homotopic to 0 by our remark on the fundamental domain).
In ^=(=r\HUC), Y is clearly homotopic to a loop ^ cutting the Farey geodesies

at the cusps (add a thin loop along the geodesic arc between the intersection point and
f

the cusp). The vanishing of r[ then yields a contradiction since co'' is clearly a finite
J7

sum of [q)J (p)'s.
But a2 will be computed in the last chapter via another method.

Proof of Lemma 4 . 1 . — Since @ is ergodic, it follows from the calculation of

f<^v= ———— f^a f^P-^Logf13^00)
J 2Log2Jo Ji (a-P)2 "WP-rp])/

-————I F^P 1 .Logf^^)
2Log2^Jo Jo (a+P+n)2 "V ap /

= E 7-1-, f f/——^——2 (^ (a + ") - ̂ S (a))iLog2JJ(a+P+n)2

a) i r1 / i i \
=E,—— ——-————. (Log(a+«)-Log(a))i Log2Jo \a+« a + « + l /

1 / f " 1 , . p L o g ^ , ^=——— ————Logxdx-\ ——dx\
Log2\Ji x(\+x) Jo \+x )

- "2 F0^- n2

Log2Jo l+x 6Log2

4's6RiE - TOME 26 - 1993 - N° 1



GEODESIC FLOW ON MODULAR SURFACES 33

Proof of lemma 4.2. - Since the laws of the r . v ' s n~^Z^ are tight, for any e>0
3 M, > 0 such that P (n ~ a Z^ > M,) < e for every n.
SetA^lE^""^-^"^^!.

N

ThenA^I:E(|. lfc-a^-l|^^,,)+P(|S^^|>N).

Each term of the first sum is dominated by

<^/eT?/,P(S^) if N^Ke/M)170^

Hence A, ̂  | ̂ iTF/2 + P (| (S,/^) - 1 1 > (e/M)1/01)

^ £ + ̂ /e + £^2 for ^ large enough.

5. The transfer operator and limit theorems
for continuous fractions

Here we prove the proposition 4.3 and the more general theorems 5.1, 5.10 which
have independent interest in the context of continuous fractions.

We consider the one-sided shift 6 on N^ this shift will be identified with the continuous
fraction transformation and the correspondance is given by x== 1/(^ +(1/^+ . . .) where
xe[0, 1] and (^^eN^ We shall write 9 x = { 1/^}= 1/^+(1/^+. . .),
n^n(x). The Gauss measure m on I is the projection ofv and is given by
dm (x) == (I/Log 2) (1/1 + x). We shall consider also a finite set F and a family of permu-
tations ^=^~1 of F(fe^l). Then we can define a skew product transformation 9 on
I x F b y

9(x,a)=[9x,^)a].

We consider a function/from I x F to R2 which is given by

/(x, a)==[̂ Ma), A(a)]=[v|/(x, a), &(a)]

with P>(1/2) and a, b are two functions from F to R.
The following theorem gives in case P == 1 the asymptotic behaviour in law of the

n-l

Birkhoff sum S^== ^ /^^(S^, S^) under the product measure of m and the counting
o

measure on F.

THEOREM 5.1.- With the above notations suppose that a is non zero but
^ fl(o)= ^ 6(a)=0 and take p= l .

< T 6 F < T 6 F

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



34 Y. GUIVARCH AND Y. LE JAN

Suppose also that the group generated by the permutations Sj, is transitive on F. Denote
by Y the number

p^J^(a)Log|.(a)[.

Then the sequence [(S^ — n y)/n, (S^/Az)] converges in law toward the product of a Cauchy
law and a Gaussian law. The Fourier transform r (^, a) of this law is given by

r^^=e-D^^^2^2

with D = (Ti/2 F^ Log 2) ^ a(<j)\ and a2 is described below (lemmas 6, 7). Ifb^O, then
o e F

a2 is positive.

Remarks. — a. In the case when the law of a is symmetric we have y=0. The
proposition 4.3. is obtained with F=Z/2z x ^ ^=^ p) £= ±1 ^(c, p )= (—e , pr^). It
is clear that T^ and T _ i generate the group F(), the quotient group F\Fo is S and
consequently the group generated by the permutations Sj, is transitive on F. In this case,

f*i oo
a(\, p)=(p(p(oo)), a(— 1, p)=(p (0(00)) and Z?(c, p)=£ P*(0c- ^ ̂ d ^ have clearly

Jo
a symmetric law.

If we consider a more general function /' of the form/' (^, a) = [̂  (x) ̂  (a) + c (a), b (a)]
with c (a) e [R and ^ c (a) = 0 we get the same result as a corollary of the theorem

o e F

because the normalisation by \/n destroys the Birkhoff sum associated with c(a). This
is valid too in proposition 4.3.

b. This type of limit theorem for continuous fractions and positive functions of n (x)
have been considered by P. Levy in [L], but in a more qualitative form. See [JK] for
general theorems on the topic of convergence toward stable laws for sums of stationary
random variables. Here in theorem 5.1 when Z?=0, we get only the Cauchy law and
not the other stable laws of index 1, because of the condition ^ a(a)=0. Otherwise

o e F

the Fourier transform of the limit law would have a logarithmic term. An example of
n

application in this area is given by the convergence in law of 1/^^(— l)^'^1 ̂ (x) towards
i

the Cauchy law with Fourier transform ^-(7t/2 Log 2 ) ' ^ ) .
c. A more general result for P>(1/2) is given below; then the constant y does not

occur. Also much more precise results for limit laws can be obtained by the same
method.

d. The method of proof relies on the use of a transfer operator like in [GH]. This
transfer operator Q is the adjoint of 9 relative to the measure m; it plays the role of @ ~ 1

and defines a Markov chain on I x F. In fact Q is given by the conditionnal expectation
relative to the future ^r+ on N^F with respect to the natural 9-in variant measure:
Qu=E[uoQ~l/^'+]. This appearance of N2 may seems to be redondant at first sight
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but it is the natural way to use stationarity. Because of stationarity, the sums
n-l -1

Sn = E f° ̂ k a"^ S^ = ̂  /° 9^ have the same law. If we consider the trajectories
o -n

(^=(xk)keN==(x^ ^feeN °^ Ae Markov chain Q under the Markov measure with initial
n-l

distribution m on I x F, the law of S;. is the law of ^ /(^) = S^. The Fourier transform
o

p^, n) of this law is p^, n)= ^ < a ' ̂ ' s"7((0) > d^ (co) ̂  (x) where Q, is the canonical

Markov measure on the trajectories starting from x. If we denote by Q^ the operator
defined by Q ^ ^ M = Q [ ^ < a ' ^ ) ' / > M ] the Fourier transform above is expressed via the
iteration of Q^ ^:

P n ( ^ H ) = [ Q ^ l W ^ W = < Q ^ l , l >
J

using the natural scalar product on O-2 (I x F). In order to prove limit theorems for S^
we are thus reduced to a spectral study of Q^ ^ and in this case, it is sufficient to take
(^, |Li) small and then to apply perturbation results in convenient functional spaces. This
is in fact an extension of the classical method of characteristic functions.

We shall consider the space L of Lipschitz fonctions on I x F; the uniform norm of u
we be denoted by

u\^=sup\u(x,o)\

and the Lipschitz coefficient of u will be denoted by

M=sup l"^)^^)!
X, X ' , CT X X

The space L is normed by

HH^ oo^M

and it is then a Banach space included in the space B of continuous fonctions; the natural
injection of L into B is compact.

With respect to the measure m the adjoint of 8 in L2 (I x F) is given by

/ 1 \Qu(x, a)==^(x, k)u( -——, ^a
i \k+x )

^u(x, cj)==^p(x,k)u\
i
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00

with p (x, k) = 1 + x/(k + x) (k + 1 + x). Clearly ̂  (x, ^) = 1 and we shall denote \l(k + x)
i

by ^. x. In fact Q operates on L, as well as Q^ ^ which is explicitly given by
oo

Q,, H u (x, a) = ̂ > (x, fe) ̂ l < a ' ̂  f ̂  ^CT) > u (k. x, s, a).
i

The spectral theory of these operators on L follows from the

PROPOSITION 5.2. — For ueL, we have

|Qx,^|oo^Hoo

[Q^]^M+2|^.
0

In particular || Q?, p || is bounded.
oo

Proof. — From the condition ̂ p (x, k) = 1 we get | Q M |^ ̂  | u \^
i

10 77 I <\pi<^^f>1J\ —\U\\Y<.\,\Jiu\ao•=\e u |oo ~ 1 ^ 1 oo-

From routine calculations we get the following inequalities

\p(x, k)-p(x\ k)\^\x-x'\\p(x, A:)+ F - - _ — — ^

00

^\p(x,k)-p(x',k)\^2\x-x'\
1

fz^l^^^l)^^ i)^^[i-^(^ i)]+^(^ i)=^(^ i)+^j-\ 2 ^ / 4 4 4 8

Then we estimate [Q u] as follows
oo oo ^

I Q M ^ ^ - Q ^ ^ ^ I ^ ^ I ^ ^ ^ - ^ ^ ^ H ^ I ^ + ^ ^ ^ — — I X - ^ I M
1 1 ^

^ 21 M | oo | x — x | + - [u] | x — x ' I .

The same estimation works for [Q^ ^ M] because of the expression
00

Q^^u(x, a)^^'^' ̂ ^^(^ k)u(k.x, ̂ a)
i

and the special form of/which implies: f(k. x, s^ a) -f(k. x ' , ^a)=0.
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The boundedness of HQ^J I follows formally from the two properties already proved.

PROPOSITION 5.3.- The equation Q u = u (u e B) is possible only if u = Cte. The restric-
tion of I - Q to the subspace H of L ^z^ by H == { u e L; w (^) = 0} ^
invertible. Furthermore 9 ^ ergodic mth respect to the measure m.

Proof. - As u is continuous, the supremum M of u is attained at (XQ, Go).
00

Then the equation Y , p ( x , k ) u(k.Xo, ^Oo)=M implies, because /?(x, k)>0,
k=l

^p(x, k)=\ :u(k.Xo, ^(7o)=M for every k. If M = { x , a), M(^, a)=M}, then M is
i

invariant under the transformations (x, c5)->(k.x, s^a). The projection of M on I, it
also invariant under x->k.x and is consequently by equal to I. Denote by F^(xel)
the set F^ = { CT e F; u (x, a) = M}. From the continuity of u we get

lim F^ c F^
X' -* X

or the other hand by invariance

^^F^-

These two properties implies that F^ is constant and then ^ F^ = F^ for every A:. The
transitivity of the group generated by the ^(A:eN) implies F^=F. Finally M=M.

For the second property we use and argument from [N].
As I - Q injective on H, we have only to show that (I - Q) v = u has a solution for

every u e H, Because || Q" || is bounded we can solve ̂  (1 + (l/^)) - Q ̂  = u in H.
From the inequality in the lemma above: | |Qw| |^p | |w | |+K|w|^ with p < 1, it follows

that

hJl^h/i+^ll^ll^ll+phJI+Kl^l,
\ n )

|H|(l-p)^||+K|z^.

Suppose for a moment lim | ̂  \^ = oo.
n

Then ^n=^/|^n|oo ls bounded in the norm ||.|| and consequently relatively compact in
the uniform norm. If v === lim v'^ we get v - Q v = 0, v e H because a uniform limit of

n

Lipschitz functions with bounded Lipschitz norm is also Lipschitz. This is impossible
because

w(z/)=0, z/=Cte, Hoo==l.

Now we get from the relation

||z;J|(l-p)^||^||+K|z;,|,
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the fact that || v^ || is bounded.
Taking a convergent subsequence in the uniform norm we get

v—Qv=u

with veH c= L for the reason above and finally I — Q is invertible on H.
Now L is the direct sum of the constants and H, and furthermore, 1 is not a spectral

n-l

value of the restriction ofQ to H. This implies the convergence of \/n ^ Q^co to
o

m (w) in L. The density of L in L2 (I x F) implies the convergence in L2 (I x F) of the
same expression, and the ergodicity of the adjoint @ follows.

The following proposition is an abstract "operator" version of the convergence of
normalised characteristic functions towards characteristic functions of stable laws.

PROPOSITION 5 . 4 . — Denote by E a Banach space, Q a bounded operator ofE. Suppose
that 1 is an isolated spectral value ofQ corresponding to a simple eigenvalue with
eigenvector e.

Suppose that Q^ is a continuous family of operators such that ||Q^ H^Cte^ed^, ^eN)
with Qo=Q. Denote by k(f} the eigenvalue of Q( defined by perturbation from
k (0) = 1. Suppose that a^ is a family of endomorphisms of ̂  with lim a^ = 0 and

n

lim k [a^ (^)]" = r (t) for t small. Then the sequence of vectors Q^ ̂  e converges (for t small)
n

towards r (t) e.

Proof. — Denote by n the projection on the eigenspace generated by e, n^tne perturbed
projection which exists by perturbation theory [cf. Ka]. Then I=7^+(I—7^) and I—T^
is also a projection. We can write e = n^e + (I — T^) e,

tn = ̂  (0, Q^e = k W ̂  e + Q^ (I - ̂ ) e

\\^e-kW^e\\^\W\ ||(I-^).||.

But: l lQ^H^Cte, lim 71^^=71 e=e and the right hand side tends to zero. On the other
hand by hypothesis lim k (t^f = r (t) and lim||Q^—r(^||==0, proving the claim.

n n

We estimate in the following lemmas the operators Q^ ^ for ^, ^ small and the pertubed
eigenvalue k (^, [i) with A: (0, 0) = 1.

In fact, for the theorem, the case P = 1 is sufficient but similar estimations are valid is
the more general case P>(1/2) and will be useful later. We define a=(l/(3) (0<a<2)
and write Q^, Q^ instead of Q^ o? Qo, n-

LEMMA 5.5. — There exist a constant C>0 such that for a 7^ 1:

||Q,-Q||^C|4 ||Q,-Q||^C|H|

llQ^-Qll^Ctl^+lHl]

IIQ^-Q^Q.-Q)!!^!^^.
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For oc= 1, the term \ \ j" in the above relations has to be replaced by \ ̂  | Log | U

Proof. — By definition

(Q^ - Q u) (x, a) = ̂ P ̂  k) [e1 ̂  ̂ ' s^ - 1] u (k. x, ̂  a)
fc

IQ^-Q^I^I^I,^2!.1^^.-!!
fc ^

with \|/ (^. x, s^ a) = <2 (^ a) ̂ p = ̂ P ̂ .
By routine estimations we obtain

E^sin^^Ctel^ (o^l)J^2

or

^ ! sin^ ^Cte|X|Log|^| (a=l).

For the Lipschitz coefficient, write:

|Q^-QM)(x,CJ)-(Q^-Q^,)(x/,a)|^^|/?(x,/^)-^(x/,A:| l^ l^ l^^^^- l
k

+1X^)1^^-1 iM^.^^a)-^^.^,^^!
fc

because e1 ̂ (k^' ̂  CT) is in fact independant of x. Also

| u {k. x, ̂  a) — u (k. x', ^ a) | ̂  —11 x — x ' \
k

\p^k)-p{x\k)\^-,\x-x'\
k

from the expression of p ( x , k):

1+x
P^k)=

(x+fc)(x+^+l)

Finally, estimating as above:

[Q^-Q^Ctel^HMH or Cie\\u\\ \^\Log\K\

according as a 7^ 1 or a = 1.
This gives the announced result for ||Q^-Q||.
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For QH — Q we can write:

(Q^-qu)(x,a)=^p(x,k)[eitlb(s^^l]u(k.x,s,a)
k

comparing with the calculation above we see that the sum ̂ p(x, k)\eiKk^ak-l\ has to
k

be replaced here by ^>(x, k)\e1^- 11 with b^b(s^) bounded. Then the second
k

result follows from

v^ 1 . jLi&i. , ,
^sm^Ctelnl.

The third inequality is obtained from the following relations

||Q.,-Q||^||Q.,-QJ|+||Q.-Q||

Q^-QJ^1"'"]
||Q^"-Q^||^||Q,(^lli'-l)^<||^Cte||(e"•fc-l)«||

ll^-l^ll^l^-lUHI^CtelHllHI

||Q4.-Qj|^Cte|u|.

In order to deduce the fourth inequality observe that:

(Q^-QM)«=(Q.-Q)(e•^''M)
(Q^-Q^)-(Q.-Q)=(Q,-Q)[(^^i>-l)M]

llQ.,-Qp-(Q.-Q)||^||Q,-Q|| |^''-l|oo |H|^Cte|X|«|4

LEMMA 5.6. — Set

r2(X,^l)=(|?.|l'+|u|)|^|« if o^l

or

r2(X,u)=(|)i|Log|X|+|u|)|?i|Log|?i| ;/ oc=l.

Then there exist a constant such that for (^, u) small

\k(K, Vi)-k(\, 0)-k(0, u)+l|^Cter2()i, u).

Proof. - By perturbation theory, kCk, u) exists and is continuous for (X, u) small
[Kaj. Let us fix the eigenvector c^ such that m(e^=m(\)= 1. Also we use the
notations <y, v}=m(uu), e^=e^o, e=l, e^eyy

From the equation

Q)l^>e».n=^(^ 1-0 c^
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we get k(K, ^i)=<Q^ e^, e) k (X, 0) = < Q^ e^, e>, k(0, u)=<Q^, e> and then

(k(l, ̂ -kCk, 0)-k(0, H)+l=<(Q^)(^-c), e>

+<(Q^-Qu)^ e>-<(Q.-Q)^. e>

= < (Q^ - Q) (̂ , - ̂ ), c > + < (Q,, - Q,) (e, - e), e >

+<(Q.,-Q,)-(Qx-Q)^<'>+<(Qx-Q)(^-^e>
|^(x,n)-A:(X,o)-A:(o,n)+i 1 ^ 1 1 Q^-QII ll^-^lj

+l|Q.,-Qpll II^II+IIQ.-QII 11^-^11+1|Q.,-Q.-Q.+Q||.
Furthermore:

llQ^-Qpll^llQ^-Q.-Q.+Qll+HQ.-Qll
and by perturbation theory:

ll^-.JI^CtellQ^Qj

||^-.||^Cte||Q,-Q||

||^-^||^Cte||Q,-Q||.

Now it is easy, by the above lemmas to see that each term in the estimation of
\k(k, [ i ) - k ( ' k ) - k ( [ i ) ^ - 1 1 is bounded by Cte r^(k, [i).

LEMMA 5 . 7 . — With the above notations, the following equations are valid:

^(X,0)=<Q^>+<(Q,-Q)(^-60,e>

^(0, H)=<Q^, ̂ >+<(Q,-Q)(^-^ e}.

Proof. — Trivial from the definitions.

LEMMA 5.8. — With the above notations, there exist C>0 such that

|<(Q.-Q)(^-^>|^Cr^,0).

Furthermore if b' is defined by
00

b'=Wb [i.e.(I-Q)b'=b]
0

then ((Q^Q^-^^-H^Q^+OOl2).

Proof. — The first relation follows from the lemmas above.
Observe that the derivative D of Q^ at 0 exist and is defined by

lim(Q,-Q)^i^Q[^].
n - ^ o
Furthermore

||Q,-Q-HD||^Cte|H|2.
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From the expression

^(0,n)-l=<(Q,-Q)^>

it follows that the derivative of k (0, [i) at (0, 0) equals ; < Q (be), e > = i < b, e > = 0.
Then, by perturbation theory we can write the expansions

^(0 ,H)=l+OOi)

^=6?+/HC+0(|Ll)

Q,=Q+HD+OOi)

and by identification in the relation Q^ e^ = k (0, n) ̂  we get:

D e +; Q c = ;c

(I-Q)c=Q^.

Because < ^ , c ) = < < ? , f t ) = 0 w e obtain

^EQ^=Q^.
o

Finally

<(Q.-Q)^-^>^Q^_____^Q^lim
n-o H

LEMMA 5.9. — ( ^^/? ̂  ^oz;^ notations, set

02=<Z/2_(Q^2^

^^rf

c=F*I log2SJ f l (CT)l' ^F^J/^0^'-

T^TZ w^ A^z;^ the following expansions, if^= 1

^(0,^i)=l-^^i2+0(^2)

^(?l ,0)=l-C 7 ^ | ? l |+^y^+0(?l) .

Proof. — We use the two lemmas above.
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First

<Q^^>=-E^^6((^)=l+^-E^(o)
r CT r 0

-^-T.b2(a)+o(^i2)=l--^b2(a)+o^2)
z r CT I" 2 (y

so we are left to show

a2=<^>+2<^^QZ/>.

But b=bf-Qbf gives

<^>+2<^, QZ/>=<^_(Q^2^

For the second relation, we have only to expand < Q^, <?) up to order one. But this
quantity is nothing else than the Fourier transform of the law of \|/ (^, a) under the
arithmetic mean of F^ laws of random variables which takes the value na (a) (a e F) with
probability

i f1 , , dx i _ r 1 1r1 . ^ d x 1 T r,-\ p(n,x)——=-——,Log 1+
Uo 1+^ Log2 L

Pn=,——.\ P(n,x)-——=_——-Log ! •
Log2jo 1+x Log2 L n(n^-2)

00

The Fourier transform of ̂ ^ 8^ is of the form
i

\+iK\-]—\'k\[n+isgn^Log\K\\+OW
Log 2 [_ 2 J

with a numerical constant K because this law is one sided and satisfies the tail expansion
00

^>,-l/NLog2.
N

Replacing in this expansion X by a (a) ̂  we obtain finally

<Q^>=l+|^|^^^>(a) +^^^^a)Log|^(a)|+Oa).

LEMMA 5.10. - a^O implies Z?=0.

Proof. — By definition

o2=<^_(Q^2^^^^,,g-l_Q^2^^^^,g-l^^_^^

using the natural scalar product in N2 x F.
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Then the condition a2 == 0 implies b == V - b' ° 6~ \ b' ° 9 = V ° 9 - V. But then the sum
M

Y^b0^ is uniformly bounded in (j, a, M).
o

M

In explicit form, for every sequence ^ and aeF, the sum ̂ (^. . . ̂  ^i <^) is bounded.
o

This is clearly impossible if b^O, because we can choose the ^ independantly so that
^. . . t^ t^ a visits the whole of F and then the central limit theorem for a Markov chain
on F implies ^ \b(a) 2=0, b==0.

< r e F

PROOF OF THE THEOREM 5.1.- According to the beginning of this paragraph we have
to show the convergence of

p,(^, n)= p<(^./^^(x,o)-n(.,o)>^^ a)=<Q^^l, \}e-1^.
J

We use proposition 5.3. with E == L, Q, = Q^ ^ a^ (k, a) = (k/n, [ i / / n ) , e = 1. The spectral
properties of Q are clear from proposition 5.3 and the continuity of the family Q^
follows from lemma 5. 8. The boundedness of Q51 ^ is stated in proposition 5.2.

From lemmas 5.6 and 5.9, we have

,7i,., a2

^(^^)=l-C, |X |+fY^-—^ 2 +0(?l )+0(^ 2 )+0[) lLog | ) l | ( |^ |+ ^|Log|?i|)]

and consequently

lim k ( ' ^_ Y = e ~ c (7t/2) ^ I ^ I + l ̂  - (°2/2) ̂^ JLV=.-<
^.9/^\n ^.

Proposition 5.4. then gives us

1im0 /-I ^^-COi^l^l+fY^-^^H2
llnl ^Oi/n, p/^n 1 e 9

n

limp„(^^l)=e-c<'•/2)l^-<<T2/2)^•2=r(5l,^l).
M

The values of C, 'k have been calculated before and lemma 5.10 implies the non
degeneracy of the Gaussian part (a^O) if b^O.

We have obtained finally

Y^-p.——,^>(a)Log|^(a) |
r 1-̂ Og z CT

C=——1——T|fl(o)|.
F*Log2^' ' I
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In order to extend theorem 5.1. to functions/of the form

/(x,a)=[^(xMa),^(a)] (3>1

let us recall some notations for stable laws.
The Cauchy law with density I/TC A^A^x2) has Fourier transform ^-A^! and tails

of the form

j_ r°° Adx A
Til A^X^T'

It is the simplest example of stable laws (except the Gaussian law). Such a stable law,
for a fixed index a(0<a<2) is defined, modulo translation, by two parameters C>0
and p (0^/7^ 1) and will be denoted y ^ c , p ' For a ̂  1, the Fourier transform of y^c,p
is given by

y n)=^l^|Cr(3-a)/a(a-l)[cos7i(a/2)-i(p-^)sin7t(a/2)]

with X ^ O , / ? + ^ = L
Of course the change of ^ in — ^ replaces — ; by i.
The constants C, p have the following sense. The tails of y^ c, p are of the form

TO

7,,c,p[^ GO]~^ (?-»+oo)

TQ

Yoc,c,p[-°o. ̂ Ha ^-> -00)

and we have C(2-a)/a=B_ +B+, /?=B_/(B_ +B+).
In the case a== l , the Fourier transform has in general a logarithmic term. For

symmetric laws (^=(1/2)) that is to say the Cauchy laws, we have

„ /n,\_ -C(n/2) |^ |
Tl,C, 1/2 W~e

with y^c, 1/2^ oo]-(C/2/)(^+(X)).
For the Cauchy law of density (l/7i) A^A^x2) the parameters are consequently

C== (Ti/2) A and/? =(1/2).
We shall say that the stable laws considered above are the centered stable laws. The

effect of a translation of amplitude y, is to introduce a term i y ' k in the Fourier transform.

THEOREM 5.11. - Denote byf(%, a) a function from I x F to R2 of the form

/(X^-t^Mo),^)]
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with P>(1/2)W|3^1, Y aW== Z ^(a)==OWa(a)^0. FF^ oc =(1/(3) and define
o e F < r e F

^( Z I^I-HE i^a)")-1 c= 1 v 10(0)1- .
f l (<T)>o c r e F r Log2^gF

Moreover let a2 defined from b as in lemma 7. Suppose that the group generated by the
permutations s^ is transitive on F and consider the Birkhoff sum S^(^, a) associated withf

n- 1

and 9: S, = ^ /° ̂  == (S^, S,2). 77^ ̂  ̂ ^c^? (S ,̂ S^2/ /^) co^r^ ̂  /aw towards
o v

r/?^ product of a centered stable law of index a, parameters C, /? ̂ 'z^ above and a Gaussian
law of variance a2. Ifb^O, then a^O.

Remarks. - a. As an example take the special case &=0, F = { ± 1 } , ^(e)=-8
2p

a (£)=£. Then the theorem 5.11. applies to S^Oc, £)= E (- l)^1^^) and conse-
i

2p

quently to S^ (x) = E (- 1)'"1 ̂  W.
. i

Here /?=(1/2), C= (I/Log 2), and the law J^ c p ls symmetric. The theorem implies
2 p

the convergence in law of l^^ ̂  (- I/-1 n[(x) towards y^c,p. In particular if we
i

i p
take P=2, then S^= 1/(2/?)2 ̂  (-l^-^^x) converges towards the stable law of with

i
Fourier transform ^-3v/7t/2 N. This law is the convolution the law on ^+ with density
K^/^yiTi"? ^-K/2 x (K = 3/2 ̂ /n/2) with the symmetric law on 1R_. It is easy to deduce
that lim| S^p = + oo and S ' ^ p changes sign infinitely often a.e. On the contrary, in the

p
2 p

situation of theorem 5.1, the sum 82 p Oc) == E (- 1)^ ~1 n^ (x) takes the value zero infinitely
i

often a. e. and furthermore:

nmS^Oc)=+oo, limS^Oc)=-o).

b. In theorems 5.1, 5.10, the form of the permutations s^ does not change the values of
the constants in the limiting law.

This is because the random variables s^^ define a stationnary process on F with
invariant measure equal to the counting measure.

Proof of the theorem. - It is the same proof as theorem 5.1 except that lemma 5.9
has to be replaced by the following lemma 5.12. The expansion of k(k, [i) is now
changed into

^(^^t)=Ya,C,pa)^~ ( 0 2 / 2 ) ^ 2[ l+0( |^^l |+|) l |2 a)]

by lemmas 5.6, 5.9, 5.12.
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LEMMA 5.11. - With the above notations, consider the centered stable law y^ c of
index a = (1 /(3) ̂  1, and parameters C, p given by C = (1 /F^ Log 2) ^ | a (a) j"

a e F

/»=( S |a(o)|'')(S ^(a)!")-1.
a (o) > 0 o e F

Then we have the following expansion

^.o) =9^0)+o(|^ Ist).

Proof. - We use the two lemmas as in lemma 5.8.:

^(^(Q^Q+Od^l201).

So we have only to show that, up terms of order | X |01, the expansion of < Q^ 1, 1 > is the
same as y^ c, p ^th a, C, p given as above.

As in lemma 5.9. we are reduced to the arithmetic mean of F* probability measures
corresponding to random variables taking the value n^a(a) with probability^.

Consequently we have

-' C1

^{(X, )̂; vKx, o)>t}^-^- (t-, +00)

~ C1

w{(X. ^);\|/(5c, a )<- / }~—— (t-> -oo)

with

^-——o^ s }aw
b L0g2a(a)>0

c-=——— E 1^(0)1-
F f fLog2^„)<o

so that we get the relevant expression for C=C_ +C+ and p=C+/C. If a < 1, we are
done because the law of\|/ has the same tails as y^c,p and consequently <Q^1,1 > has
the same expansion as y^c.p up to order a. If a> 1, the same reason is valid but we
have also to show that the derivative of < Q ^ 1 , 1 > for ?i=0 is zero From
<Q.l , 1>=(1/F') Z S/^"^ it follows:

creF n

W^<Q,1, l> \=o=0=( l /F f f ) ^ ̂ a (0)^=0-^) ^ ^(a)^^=0 ((3<1).
o e F n C T 6 F 1
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6. Calculation of a (co,)

For zeH and t>0, let \\ be the uniform distribution on the (non euclidean) circle of
radius t centered in z.

Let ^ be a fundamental domain for the action of F.
Let us denote by dv the normalized volume element on y and P\H and by F^ (^)

^
the function Re (q> (^) ̂ .

Jz

Then

/ * / ' f* \ / * (* / • \
exp(— (0,)^= dv exp(—F,)^.

Jr\G \^/UY( / Jy J \^/t )

Similarly, let K^ denote the heat kernel on H, K^ (x, dz) = v^ (dz) p, (r) dr, p, (r) rfr being
the law of the distance ^ of the Brownian motion on H at time t to its starting point.

Set Pi^Qc, &)=K,(x, ^z)^^00, then

| P^ldv^ [dr^(r) [ ^expf^F^^.
J^ J JjF \^ /

Besides, we know that ^ is a diffusion with generator l/2(d2/dx2-^cothx(d/dx)), that
^/f converges a.s. towards 1/2 as ^ f o o , and hence that t^(y.t)d^ converges weakly

towards 5 ̂  which allows to conclude that P^ 1 dv converges to exp^a^co^).

Recall that the Laplacian on F/H has a non positive spectrum, 0 being a simple
isolated eigenvalue (the continuous spectrum starts at -1/4).

For each a, P}00 induces a semigroup of self adjoint hermitian contractions P^\ on
L2 (F\H, dv) which verifies, for / bounded with two bounded derivatives,

d f ^fdv\^~ f(A/+2af<co, ̂ -a^HcoJI2/)^
^JrvH ^J

= - a^2 || co, ||2/^ (since 5co, = 0).

More generally, if L030 is the infinitesimal generator of P^, for any/in ^(L^) (since C2

is dense in L2 and mapped into itself by (L^- 1)~1),

\^fd^^[\Wfdv. (*)

By perturbation theory, for oc small enough, L^ admits a simple isolated eigenvalue
X^O, associated to a unique eigenvector ^ such that <^, 1>=1, with \ and ^
continuous in a, XQ = 0 and ^o = 1 •
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From(*), K ^ - ^ I I ||o)J|2^ as o^O. Equivalently, ^-1/2- -(1/2) j||(oj|2^,

L^.

(Pr172^-^, ̂ -l/2>^-1/2 [||COJ[2^.

Since

<p^ l / 2 l , l> = <pr l / 2 ) ^-^^-^>+o(r l / 2 ) .
We conclude that a2 (c^) =2 || o)J|2 ̂ .

Jr/H
This quantity is known as the Petersson scalar product (cf. [Leh] and [K-S] for a

related result).
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