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COMPOSITUM OF GALOIS
EXTENSIONS OF HILBERTIAN FIELDS

BY D. HARAN AND M. JARDEN (1)

Introduction

Hilbert [H] proved in 1892 that for given irreducible polynomials ^(TI. • • -.T,,X),
f = l , . . .,m, and a nonzero polynomial gCT\, . . .,T^) with rational coefficients there
exists (a^, . . ..a^e^ such that /i (a, X), . . . ,/„, (a, X) are irreducible in Q[X] and
^(a)^0.

Numerous proofs of Hilbert's irreducibility theorem have since been given. Many of
them apply to other fields. So, each field K which satisfies the theorem has been
called Hilbertian. The sets of a e YJ whose substitution in the polynomials leaves them
irreducible and nonzero have been called Hilbert sets.

The investigation of Hilbertian fields has been extended in the last 98 years since
Hilbert's original paper in several directions:

(a) Study of Hilbert subsets of Hilbertian fields (e.g. Dorge [D], Geyer [G], Sprindzuk
[S], and Fried [F]).

(b) Search for arithmetical conditions on afield which make it Hilbertian. Beyond the
classical example of fields of rational function over any field (Inaba [I] and Franz [Fr])
two results stand out: "Each co-free PAC field is Hilbertian" (Roquette [FJ], Cor. 24.38)
and "The field of formal power series in at least two variables over any field is Hilbertian"
(Weissauer [FJ], Cor. 14.18).

(c) Infinite algebraic extensions of Hilbertian fields. The first result in this direction is
due to Kuyk [K]: "Every abelian extension of Hilbertian field is Hilbertian" In particular
the field Q^yci obtained from Q by adjoining all roots of unity is Hilbertian. Uchida
[U] extended a result of Kuyk and proved that if an algebraic extension L of a Hilbertian
field K is contained in a nilpotent extension and if the supernatural number [L: K] (see
[FJ], Section 20.9) is divisible by at least two prime numbers, then L is Hilbertian. The
strongest result however in this direction, is again due to Weissauer: "Every finite proper
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740 D. HARAN AND M. JARDEN

extension of a galois extension of a Hilbertian field is Hilbertian". {See [W], Satz 9.7,
for a nonstandard proof and [FJ], Cor. 12.15 for a standard proof.) We make an
extensive use of this result and refer to it as Weissauer's theorem.

(d) Realization of finite groups over Hilbertian fields, especially over number fields via
Riemann existence theorem (see Matzat's exposition [M]).

(e) Properties of almost all e-tuples (cr^, . . ., <jg) of elements of the absolute Galois group
of a Hilbertian field K. For example, the group generated by almost all (a^, . . ., Og) is
a free profinite group [FJ], Thm, 16.13, and if K is countable, then the fixed field
K^CTI, . . ., (7g) of a^, . . ., (jg in the separable closure K^ of K is PAC [FJ], Thm. 16.18.

This note is a contribution to the study of infinite algebraic extensions of Hilbertian
fields. Weissauer's theorem implies that the compositum of a Galois extension M^ of a
Hilbertian field K and a finite extension M^ of K which is not contained in M^ is
Hilbertian. So, it is natural to ask whether the compositum N of two (infinite) linearly
disjoint proper Galois extensions M^ and M^ of K is Hilbertian. Indeed, this has been
stated as Problem 12.18 of [FJ]. However, the question goes back at least to Kuyk [K]
(see Remark 2.6) and Weissauer. Kuyk proved that N is Hilbertian if an extra condition
holds: "For each finite Galois extension L of K which is contained in N we have
L 0 Mi T^K or L H M^ ̂ K." In particular this is the case if the degrees [N: MJ and
[N: MJ are relatively prime. The main tool in Kuyk's proof is the possibility to realize
wreath products over K. Zorn [Z] gave a clearer exposition of Kuyk's proof while
strengthening Kuyk's extra condition to: "Each open normal sugroup of an open normal
subgroup of ^(N/K) is the direct product ^ (N/M^) x ̂  (N/M^), where M; is a finite
extension of M .̂ contained in N."

We extend here Kuyk's result to a complete affirmative solution of Problem 12.18 of
[FJ]. Our proof is an elaboration of Zorn's in the case where [N: MJ and [N: M^] are
relatively prime. For the case where the degrees are not relatively prime we generalize
a lemma of Chatzidakis on normalizers of elements in wreath products [FJ], Lemma
52. Then we apply the setup used in the first case to conclude the proof in the second
case.

An application of Weissauer's theorem gives even a sharper result:

THEOREM. — The composition of two Galois extensions of a Hilbertian field, neither of
which is contained in the other, is Hilbertian.

Of course, the solution of Problem 12.18 of [FJ] immediately supplies an affirmative
solution to Problem 12.19 of [FJ]:

COROLLARY. — The separable closure of a Hilbertian field K cannot be presented as the
compositum of two Galois extensions of K, neither of which is contained in the other.

1. Wreath products

Recall that the wreath product H = A wr G os finite groups A and G is the semidirect
product Gix A°, where A° is the group of all functions /: G -> A with the canonical
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COMPOSITUM OF GALOIS EXTENSIONS OF HILBERTIAN FIELDS 741

multiplication rule, and G acts on A° by the formula/' (a) =/(ra). Thus each element
of H is a pair (a,/) with oeG and/eA0. The product and the inverse in H are given
by

(1) (<V)(T^)=(aT,/^) and (a,/)-1^-1,/-0"1).

Let 7i: H -^ G be the canonical projection. Embed A in A0 by identifying each a e A
with the function which maps 1 to a and a to 1 for each a^ 1. Then A° may also be
considered as a direct product, A°= ]~[ A0, and each element of A° has the form cf

<T6 G

with aeA.
Our first result generalizes a lemma of Chatzidakis [FJ], Lemma 24.52.

LEMMA 1.1. — Let G and A be finite groups. For a^, . . ., a^eG and l^aeA let
GO == ̂  (J!^ • • • •» ^e ) ^"^ HQ = <( (cji, a), . . ., (<jg, a)). 77^ TT maps the normalizer
N=Nn(Ho) o/Ho in H wz^ Go.

Pnw/. - Since 7r(Ho)=Go it suffices to prove that 7c(N)^Go. Consider A°o as the
subgroup of A0 consisting of all functions f:G->A for which /(r)=l for each
TeG-Go. It follows from (1) that Hi={(a,/) | oeGo and/eA^} is a subgroup of
H. The main point to be observed here is that if (a,/), (T,g)eHi and peG-Go, then
Tp, a-^Go and therefore (/^)(p)=/(Tp)^(p)= 1 and /-^(p)^^1 p)-^ 1.
As (<Jf,a)eHi, i= 1, . . .,e, we have Ho^Hi. In other words

(2) (o,/) e Ho implies that a e Go and /e A°o.

Let(T,^)eN. Then (a,/)=(T,^)-1 (a^) (r.^eHo. By (1) and (2),

c^T^aiTeGo and f= g ' 0 a^geA^^o.

Let w = ord (o) and act with the powers of a on / to get

/^"'^ /CT=^-CT2^<^ . . ., /^-l=^-"^n-l^-l.

Hence

(3) /CTM-1- • •r^fe-1^"1^""1)' • •fe-02^0)^-^)^-1^1'1- • -^^^
As a e Go and/eA°o, the left hand side of (3) belongs to A^. Therefore, so does the
right hand side of (3). So if T^GQ, then the value of the right hand side of (3) at r~ 1

is 1. Thus

(4) g(T- l)- l^(Ta n- lT- l)••^(TaT- l)^( l )^(T- l)=l .

Finally, note that for j between 1 and n-\ we have Tc^T"1^!. Hence (4) reduces to
a = 1. This contradiction to the choice of a proves that T e Go, as desired. •
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742 D. HARAN AND M. JARDEN

As a result, a certain embedding problem for a direct product of profinite groups
cannot be properly solved:

LEMMA 1.2. —Let Ci, C^ be nontrivial pro finite groups. Let G^, G^ ^ nontrivial
finite quotients ofC^, C^, respectively, such that either

(a) the orders G^ and G^ are not relatively prime, or
(b) the orders ofC^ and C^ are relatively prime.

Let G= GI x G^ and let p: C^ x C^ -> G ̂  ̂  product of the quotient maps.
Let A be a nontrivial finite group, H=AwrG, and n:H->G the canonical

projection. Then there exists no epimorphism 9: C^ x C^ —> H such that K ° 9= p.

Proof. — Assume that there exists an epimorphism 9: C^ x C^ —> H such that
7i ° 9 = p, We derive a contradiction in each of the two cases.

Case (a): There exists a prime p and elements c^eGp ^=1,2, of order p. Then the
order of CT==CTI a 2 is also p . Use Lemma 1.1 for e= 1 to find heH such that 7i(A)=a
W 7i(N)=<o>, with N = N H < A > . Write h=h^h^ with ^=9(c,) and ^eC,. Then
Ci commutes with c^ and therefore /^eN. Hence 7i(^)=p(^)e( cr) HG^= 1. It fol-
lows that a = 7i (h)=\. This is a contradiction.

Case (ft): 77^ orders of C^ and C^ are relatively prime. For ;=1,2 put H^=9(Q).
Then H, < H, n (H,) = G, and there exists h e H, such that a = 71 (h) ̂  1. Thus /? = (a,/),
where /eA0. As A^A0, we have A^ = (A0/= A0. It follows that
A = (A^ -' ̂  H,. A0, and therefore

A°=A- n A^H,' n AT-
T e G T e G
T7' 1 T^ l

Hence, with n = | G |, the order of A" divides H^ | ' \ A |"~1, and therefore | A | divides [ H^ [,
for i= 1, 2. This is a contradiction, since [ Hj and | H^ | are relatively prime. •

REMARK 1 . 3 . — Characterization of wreath products. Although we shall not use it in
the sequel it is interesting to note that wreath products can be characterized by less data
than above:

Given an extension of finite groups

(5) 1->B-^H-.G->1,

the lifting of elements of G to elements of H determines a homomorphism
\|/: G -> Aut (B)/In (B). The set of all congruence classes of extensions with the same \|/
bijectively corresponds to the group H2(G,Z(B)) [Me], p. 128. In particular let B=A°
and \|/ be the homomorphism obtained from the natural action of G on B. Then the
G-module Z (B) = Z (A)0 is the induced module Ind° Z (A). Hence H2 (G, Z (B)) is trivial
[R], p. 146. It follows that the only extension (5) such that \|/ is induced by the natural
action of G on B = A0 is the wreath product.
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COMPOSITUM OF GALOIS EXTENSIONS OF HILBERTIAN FIELDS 743

REMARK 1 . 4 . — Interpretation of wreath products in Galois theory. Consider a tower
of fields K ^ L ^ F g F where L/K, F/L and F/K are finite Galois extensions. Let
also K' be a field such that K'OI^K and LK/=F. Put G = ̂  (L/K) ̂  (F/K') and
A=^(F/L). Suppose that the fields F°, ae^(F/K') are linearly disjoint over L and
their compositum is F. Then there exists an isomorphism cp: ̂  (F/K) -> A wr G which
maps ^ (F/L) onto A° and induces the identity maps ^ (F/L) = A and ^ (L/K) = G. We
say in this set up that the fields L, F, F realize the wreath product A wr G over K.

K^FoOK', and Ao=^(Fo/L). Then K o H L = K and LKo==Fo. Hence L, Fo, F.
realize AQ wr G over K, as above.

o? 1 o

2. Main results

We take the crucial step toward the solution to Problem 12.18 of [FJ] in the following
lemma. It involves a construction of wreath products over fields of rational functions
as in [K], Prop. 1.

LEMMA 2.1. — Let Mi, M^ be linearly disjoint infinite Galois extensions of a field K,
and let N=M^ M^. L^/eK[T,X] be an absolutely irreducible polynomial, monic in X,
and Galois over K(T). Then there exists a finite Galois extension L ofK contained in N
such that for every basis c^ . . . , ( ' „ ofL over K there is a Hilbert subset B ofK" such that
for each (b^, . . ., &„) G B the polynomial f(b^ c^ + . . . + b^ €„, X) is irreducible over N.

Proof. — There are three parts in the proof.

Part A: Construction of L. Let Ci=^(N/Mi) and C^^N/M;,). Then
^(N/M)=Ci xC^. Choose nontrivial finite quotients G^, G^ of C^, C^,
respectively. If the orders of C\ and C^ are not relatively prime, choose G^ and G^
with orders having a common prime divisor. Let p: C^ x C^ -> G^ x G^ be the product
of the quotient maps. Consider the fixed field L of Ker(p) in N. Then
G=^(L/K)=Gi xG^. By Lemma 1.2, for no nontrivial finite group A() there exist
fields L ̂  E g E ^ N such that L, E, E realize AowrG over K.

Part B: Construction of weath product over a field of rational functions. Choose a
$et { u01 <7 e G } of algebraically independent elements over K. For each a e G let x° be
a root of/(M°,X). As/is absolutely irreducible, the field K^.x0) is a regular extension
of K. Hence L^0,.^) is a regular extension of L. As these fields are algebraically
independent over L, the field Q = L (M°, x° | o e G) is a regular extension of L [FJ],
p. 112. Moreover, the field (^^(^laeG) is linearly disjoint from K^0,^) over
K^). Hence Q(x°)/Q is a Galois extension with Galois group isomorphic to
A=^(/(T,X),K(T)). The set of all Q(x0) is linearly disjoint over Q. So,
^(Q/Q)^A0

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



744 D. HARAN AND M. JARDEN

Put ^=[L:K]=|G|, and let c^ . . .,c, be a basis for L/K. Let t,, . . .,^ be the
unique solution of the following system of linear equations:

0) T^+...+T^=^, aeG

As the matrix (c?) is invertible [L], p. 212, L(^, . . .,Q==L(u°\aeG)=Q. Since n is
the transcendence degree ofQ over L, the elements ^, . . . . ̂  are algebraically independent
over L and hence also over K.

Extend the action of G on L to an action on Q in a natural way: (uaY=uar and
(x0)^^. In particular T permutes the equations of the system (1). As (t\, . . ., ̂ ) is
also a solution of (1), it coincides with (^, . . .,/„). Thus T leaves each element* of
P = K (t^ . . ., /„) element wise fixed. So, the fixed field Q (G) of G in Q contains P. In
particular n ̂  [Q: P]. As LP = Q, this implies that P = Q (G) and that L n P = K.
^ The subgroup H of Aut (Q) generated by G and ^ (Q/Q) is contained in Aut (Q/P). As
Q/P is separable, the latter group is finite and therefore so is H. Since P is the fixed
field of H, the field Q is Galois over P and H=^(Q/P).

Now consider the fixed field P'=Q(G). Its intersection with Q is P and their
compositum is Q. So, Q, Q(x), Q realize AwrG over P.

Part C: Definition of B and conclusion of the proof. Write Q as P (z) with z integral
over K [^, . . ., rj and let h (^, . . ., ̂  Z) = irr (z, P). Then /(T^ c, + . . . + T^ ̂ , X) is
irreducible over L. Use [FJ], Lemma 12.12 and Cor. 11.7, to find a Hilbert subset B

n

of K" such that for each beB and for a== ^ b.c,.
1=1

(2 a) ^ (h (b, Z), K) ̂  ̂  (h (t, Z), P),
(2 b) f(a, X) is irreducible over L,

and the specialization th-^b extends to a place of Q over K such that the residue fields
of P, Q, QCO, P', Q, respectively, are K, L, F°, K', F, where F0 is the splitting field of
/(^,X) over L, for aeG. In particular L, F, F realize AwrG over K and
[F:L]=deg(/(^,X)).

n

Let beB, a= ̂  b,c^ and assume that f(a, X) is reducible over N. Then E = N H F

is a proper Galois extension of L. Extend each a e ̂  (F/K/) to an element a of the
absolute Galois group G(K) of K to observe that E°=N H ¥° is contained in N. Let
Ao=^(E/L) and E= ]~[ E°. Then E g N and, by Remark 1.4, L, E, E realize

06^ (F/K')

AowrG over K. This contradiction to Part A proves that/(^,X) is irreducible over N,
as desired. •

LEMMA 2.2. — Let N be a field, N' a finite Galois extension of N, /eN[T,X] an
irreducible polynomial, which is separable in X, and ^eN^T.X] a factor off which is
irreducible over N'. Then, for almost all ^eN, if g(a,X) is irreducible over N', then
f(a, X) is irreducible over N.
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Proof. - The polynomial/decomposes over N' as/(T,X)= ]~[ ^(T,X) where each g,

is conjugate to g over N and for i+j, g, is not a multiple of gj by an element of
N'(T). Suppose that for ^?eN and each i^j, gi(a,X) is not a multiple of gj(a,X) by
an element of N' (this happens for almost all ^eN) and g(a,X) is irreducible over
N\ Then/(^, X) is irreducible over N. Indeed, let f{a, X) = h^ (X) h^ (X) be a decompo-

m

sition over N. Then h^(X)h^(X)=Y[ g^a,X). As g(a,X) is irreducible, it divides,
1=1

say, AI (X). Since each g, (a, X) is conjugate to g (a, X) over N, it also divides h^ (X). As
w

g^ (a, X), . . ., g^ (a, X) are relatively prime,/(<3, X) = ]~[ g, (a, X) divides h^ (X). Conclude
1=1

that f(a, X) is irreducible over N. •

PROPOSITION 2.3. — Let Mi and M^ ̂  infinite Galois extensions of Hilbertian field K
5'McA that M^OM^K. 77^2 ^^r compositum N = M i M 2 ^ Hilbertian. Moreover,
given an irreducible polynomial fe^[J,X\, separable in X, there exist c^ . . . ,c^eN ^^

n

^ Hilbert subset B o/ K" ^MC/? ^^ /or ^^c/z (Z?i, . . .,^)eB, and for a= ̂  ^c^, ^
1 = 1

polynomial f(a,X) is irreducible over N.

Proof. — Note that the second statement means that if K is only separably Hilbertian
[FJ], p. 147, then so is N. If K is Hilbertian, as we suppose, then it is imperfect. Hence,
the second statement implies in this case that N is Hilbertian [FJ], Prop. 11.16.

To prove the second statement consider a transcendental element t over K. Let N be
the splitting field of/(^,X) over N(Q. Choose a primitive element y for N over N(^)
such that h = irr (y, N (t)) has coefficients in N[^]. Then h is monic and Galois in X. If
we find Ci, . . . ,c^eN and a Hilbert subset B of K" such that for each (b^ . . .,^)eB

n

and with a = ^ b^ Cp the polynomial h (a, X) is irreducible over N, then K" has a Hilbert
1=1

subset Bo of B such that for (^i, . . .,Z^)eBo the polynomials f(a, X) is also irreducible
over N. Indeed, the proof of [FJ], Lemma 12.12, shows that if a is not a zero of a
certain nonzero polynomial with coefficients in N and h(a,X) is irreducible, then
^ (/((2, X), N) and ^ (/(r, X), N (Q) are isomorphic as permutation groups of the
roots. In particular the former group operates transitively on the roots of/(^, X). This
implies that /(a,X) is irreducible. Note that the exclusion of finitely many values
a^, . . ., a,, for a imposes the extra condition

nfz^-^o
/=! \ i=l /J=l \i=l

on (Z?i, . . .,^)eB. This defines B(). So, without loss, assume that / is monic and
Galois in X.
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746 D. HARAN AND M. JARDEN

Choose an absolutely irreducible factor g off. Let Ko be a finite Galois extension of
K which contains the coefficients of g. Let K^ and K^ be finite Galois extensions
of K contained in M^ and M^, respectively, such that K o H N g K i K ^ . Then
K^K^K^Ko satisfies N n K ^ K ^ K ^ and M^ K^ U M^K^K^ K^ (use the tower
property of linear disjointness [FJ], Lemma 9.3).

Let M[=M,K^K1, M^M^K', N^NK'. Then M^M'i are linearly disjoint
Galois extensions of K' and N^M^M^. By Lemma 2.1 there is a finite Galois
extension L' of K' contained in N' such that for every basis c^ . . . , €„ of L ' / K ' there
is a Hilbert subset B' of (K71 such that for each b ^ . . . , b ^ e B ' the polynomial
g(b^c^+ . . . +^,X) is irreducible over N\ As ^(NVK^^N/Ki K^), there is a
finite Galois extension L of K^K^ in N such that L^LK'. A basis c^ . . . ,c^ of
L/K^K^ is also a basis of L ' / K ' . By Lemma 2.2 and by [FJ], Cor. 11.7, K" has a
Hilbert subset B g= B7 such that/(^iCi+ . . . +^c^,X) is irreducible over N, for every
& i , . . . , & , e B . •

We are now ready to solve Problem 12.18 of [FJ] in a much stronger form:

THEOREM 2.4. — Let Mi and M^ be Galois extensions of Hilbertian field K neither of
which is contained in the other. Then their compositum N=M^ M^ is Hilbertian.

Proof. — If N is a finite extension ofM^ or ofM^, then it is Hilbertian, by Weissauer's
theorem. So, assume that N is an infinite extension of both M^ and M^. In particular
Ki=Mi QM^ has a finite proper Galois extension K' which is contained in M^. Let
M[=M^K'. By Weissauer's theorem, K' is Hilbertian. Also, M[ and M^ are infinite
extensions of K7 whose intersection is K' and whose compositum is N. Conclude from
Proposition 2.3 that N is Hilbertian. •

One of the consequences of Theorem 2.4 is a solution of Problem 12.19 of [FJ]:

COROLLARY 2.5. — The separable (resp. solvable, p - ) closure K^ (resp. K^, K^) of
a Hilbertian field K is not the compositum of two Galois extensions of K neither of which
is equal to K,(resp., K,^, K^).

Proof. — None of the above fields is Hilbertian. So the corollary follows from
Theorem 2.4.

Nevertheless, as the separable case was the subject of an open question we sketch a
short cut in the above proof in this case.

Assume that M^ and M^ are Galois extensions of K which are not separably closed
such that Mi M^ = K^. Use Weissauer's theorem to replace M^, M^, and K, if necessary,
by algebraic extensions to assume that M^, M^ are Hilbertian and M^ F}M^=K. In
particular M .̂ has a cyclic extension M,' of degree/?, i= 1,2 [FJ], Thm. 24.48.

LetK^MiUM;, K^=M^r\M\ and L=K^ K^. Then

G=^(L/K)=^(L/Ki)x^(L/K2)^Z/^ZxZ/^Z.

By [FJ], Prop. 24.47, there exists a Galois extension F of K which contains L and there
exists an isomorphism (p: (Z//? Z) wr G -> ̂  (F/K) such that res^c? is the canonical
projection of the wreath product on G.
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COMPOSITUM OF GALOIS EXTENSIONS OF HILBERTIAN FIELDS 747

Now choose a generator c .̂ oi^(L/K^), ;= 1,2 and let a=a^ c^. Chatzidakis' Lemma
[FJ], Lemma 24.52, extends a to an element T of ^ (F/K) such what restriction to L
maps the normalizer of < r ) onto (a). This gives a group theoretic contradiction as
in Lemma 1.2.

Note that this proof actually works for each normal extension N of K which admits
no /^-extensions. In particular it works also for Kg^y and K^. •

REMARK 2.6. — Kuyk [K], p. 120, states, contrary to Theorem 2.4, that the composi-
tum of linearly disjoint Galois extensions of a Hilbertian field need not be Hilbertian. He
adjoins p-th roots of all elements of Q to K=Q(y to get a Galois extension Q0^ of
K. Then ^(Q^/K) is isomorphic to the direct product of infinitely many cyclic exten-
sions of order p. Kuyk claims, without a proof, that Q^ is not Hilbertian. However,
as Q^ is the compositum of a linearly disjoint finite Galois extension and an infinite
Galois extensions, already Weissauer's theorem implies that Q^ is Hilbertian, contrary
to Kuyk's statement.
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