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SKEIN QUANTIZATION OF POISSON ALGEBRAS
OF LOOPS ON SURFACES

BY VLADIMIR G. TURAEV

Introduction

0.1. The aim of the present paper is to establish a relationship between two previously
unrelated subjects: the skein invariants of links in 3-manifolds generalizing the Jones-
Conway polynomial and the Poisson algebras of loops on surfaces, due to W. Goldman
[4]. The nature of the relationship may be expressed by the word "quantization". We
show that skein algebras of links lying in the cylinder over an oriented surface F quantize
Poisson algebras generated by the homotopy classes of loops on F.

The quantum nature of knots and links does not come as a surprise after the
considerable work done on relationships between the knot theory and the quantum R-
matrices (see, in particular, [12], [18]). It is more surprising that some deep algebraic
notions (such as Lie bialgebra and Poisson-Lie group), introduced by V. Drinfeld ([I],
[2]) in the frameworks of his algebraic formalization of the quantum inverse scattering
method, naturally come up in the purely topological study of loops on surfaces. On
the other hand, an adequate treatment of the geometric situation leads to new algebraic
notions (such as "bi-Poisson bialgebra" and "biquantization"), interesting in themselves.

It should be emphasized that quantization is considered in this paper from a purely
algebraic point of view, the analytical aspects of the notion being ignored.

0.2. Everywhere in the paper the symbol F denotes an oriented surface and K denotes
a commutative associative ring, containing the field of rationals Q.

0.3. The notion of algebraic quantization is suggested by the following well known
construction. Let A be an algebra over the polynomial ring K [/?], which is free as the
K [/?]-module. Assume that the quotient algebra A/hA is commutative so that
ab—baehA for any a, be A. The formula

(0.3.1) [amodhA, bmodhA]=h~1 (ab-ba)modhA

equips A/h A with a Lie bracket which satisfies the Leibniz rule

(0.3.2) [ab,c]=a[b,c]^[a,c]b.
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636 V. G. TURAEV

The algebra A/h A with this bracket is a Poisson algebra. The inverse to this construc-
tion is called a quantization of the Poisson algebra (see, for instance, [2], [21]). In this
paper we will use somewhat weaker notion of quantization, avoiding the freeness condi-
tion (see § 1).

Speaking informally, quantization is a non-commutative extension (or /^-deformation)
of the Poisson algebra so that the first approximation to non-commutativity is determined
by the Lie bracket. Of course, h is the "Planck constant".

Dually, one may define co-Poisson coalgebras and their quantizations.

0.4. The main objects considered in the paper are the Lie algebra Z over K, generated
by free homotopy classes of loops on F, and the skein algebra ^ over the polynomial
ring K [x, x~ \ /?, ft]. The Lie algebra Z was introduced by W. Goldman [4]. (A related
Lie algebra ZQ generated by homotopy classes of non-oriented loops on F was implicit
in the earlier paper of S. Wolpert [23]). The Lie algebras Z, ZQ are intimately related
to Poisson algebras of smooth functions on the spaces of linear representations of n^ (F)
(see [4] or § 2).

The algebra ^ is additively generated by isotopy classes of oriented links in F x [0,1]
modulo a relation which imitates the famous Jones-Conway relation for links in S3. The
Jones-Conway relation says that if three oriented links L+, L_, L() coincide outside a

< / . /\^f\
• ' X 1 ^ l !''yv '-J I-'

L^ L- Lo
Fig. 1.

ball and look as in Figure 1 inside the ball then one must put (formally)
xL+-x~lL_-hLo=0. We use a refined form of the relation, depending on whether
two branches of L+ depicted on Figure 1 lie on different components of L+ or they lie
on the same component. In the first case we leave the relation as it is, whereas in the
second case we replace h by another variable h. The distinction between h and h plays
an important role in the paper. Note, however, that for links in S3 this distinction does
not lead to new invariants of links (cf. § 5).

We establish three quantization theorems relating ^ and Z. First we show that ^
gives rise to a 1-parameter family of algebras ja^, keK which quantize certain Poisson
brackets in the symmetric algebra S(Z), induced by the Goldman-Lie bracket in Z and
the homological intersection form in H^ (F). This result admits a non-oriented version
in which the role of ^ is played by an algebra of non-oriented link diagrams on F
modulo Kauffman-type relations.

The other two quantization theorems deal with the structure of Lie bialgebra in Z
introduced in this paper. We provide the K[/?, ft]-algebra A=^/(x- \)s/ with a struc-
ture of bialgebra (Hopf algebra) and show that this bialgebra quantizes the Lie bialgebra
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Z in the sense close to the one discussed in [4]. Technically, this means that A quantizes
certain co-Poisson bialgebra V^(Z) associated with Z. Here the role of the Planck
constant is played by h.

The third quantization theorem is formulated in terms of the Lie subbialgebra ZQ of
Z generated by non-contractible loops. We associated with ZQ an "infinite dimensional
Poisson-Lie group" Exp^(Zg) which gives rise to a Poisson bialgebra e^(Zo) consisting
of "polynomial functions" on the group. We show that the quotient bialgebra
Ao=A/8A, where 5 is the class of the trivial knot, quantizes £^(Zo).

The quantization theorems mentioned above imply that the bialgebra Ag quantizes
both £^(Zo) and V/,(Zo) with the Planck constants respectively h and h. In particular,
AQ/A AQ = s^ (Zo) and Ao/ftAo=V^(Zo). To formalize the situation we introduce the
notion of biquantization and show that A() is a so-called normal biquantization of the
Lie bialgebra Zo.

The algebraic structure of the skein algebra s^ is rather mysterious. We compute the
algebra in the simplest cases when F is the 2-disc, the 2-sphere or the annulus. For
arbitrary F we compute the quotients s / / h ̂  and j^/(8 ̂  + h jaQ in terms of Z.

0.5. The main results of the present paper were announced in [20]. At the same time
E. Witten [22] gave a treatment of the Jones-type invariants of links in 3-manifolds from
the viewpoint of the quantum field theory defined by the non-abelian Chern-Simons
action. For a mathematical treatment of similar invariants, see [8], [13]. The full
relations between the constructions of [8], [13], [22] and the theory developed here are
still to be explored. Note only that for K = C the skein algebras ja^ canonically act in
C[y, y'1]®^}-^ where H is the finite dimensional Hilbert space associated with F in [8],
[13], [22].

0.6. The paper consists of four chapters. The first three chapters are centered around
the three quantization theorems mentioned above. The fourth chapter deals with
biquantization. Each chapter includes a dose of Poisson Algebra which makes the paper
essentially self-contained.

CHAPTER I

POISSON ALGEBRAS OF LOOPS
AND THEIR TOPOLOGICAL QUANTIZATION

1. Preliminaries on Poisson algebras and quantization

1.1. POISSON ALGEBRAS. — A Poisson algebra is a commutative associative algebra S
equipped with a Lie bracket which satisfies the Leibniz rule (0.3.2) for all a, b,
ceS. Such a bracket is called a Poisson bracket in S.

The following examples of Poisson algebras play a central role in the paper. With
each K-module Q one associates its symmetric (commutative and associative) algebra

S (9) =0^(9),
i^o

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



638 V. G. TURAEV

where S° (9) = K, S1 (9) = g and S1 (9) is the i-th symmetric tensor power of 9 for i^2. If
9 is a Lie algebra then the Lie bracket in 9 uniquely extends by the Leibniz rule to a Lie
bracket in 8(9). This makes 8(9) a Poisson algebra which is called the symmetric
Poisson algebra of 9.

The category of Poisson K-algebras is a tensor category. The tensor product of two
Poisson K-algebras S, T is defined to be the algebra S®T equipped with the Lie bracket

( I . I . I ) [a®b, a'W^aa'®^ b']-^[a, a'}®bV'.

(Unless the contrary is stated explicitly the symbol 00 denotes tensor product over K).
One easily verifies that S®T is a Poisson algebra.

1.2. QUANTIZATION OF POISSON ALGEBRAS. — Let Q be a commutative associative K-
algebra with unit. Let (p:Q-»K be a unit preserving K-algebra homomorphism (an
augmentation of Q). An additive homomorphism p '. A -^ S of a Q-module A into a K-
module S is called linear over (p (or (p-linear) if p(qd)=^(q)p(d) for any ^eQ, aeA.

Let /zeKercp. A quantization over (Q, (p, h) of a Poisson K-algebra S is a pair (a Q-
algebra A, a surjective (p-linear ring homomorphism p '. A -> S) such that for any a, be A

( 1 . 2 . 1 ) ab-ba^hp-^^^p^mod^hKerp)

where [ , ] is the Lie bracket in S. Note that the indeterminacy of hp~1 ([p(a\ p(b)})
is exactly hKerp so that (1.2.1) makes sense.

For the sake of brevity the quantization (A, p : A -> S) over (Q, (p, h) is also called
a quantization over Q or over (p. The homomorphism p is called a quantization
homomorphism. Clearly Kerp =) Ker (p • A If this inclusion happens to be equality then
the quantization (A, p) is said to be reduced.

Remarks. - 1. Our definition of quantization differs in certain details from the one
given in [2]. In particular, we do not require the algebra A to be free as the Q-module.

2. It is a simple fact, often used below, that if (1.2.1) holds for generators of A then
it holds for arbitrary a, be A.

3. Quantizations over the polynomial ring K[h] (with the usual augmentation) are
universal: each such quantization p : A -> S induces a quantization (p®/?: Q®K[/I]A -)> S
over (Q, (p, h).

1.3. ALGEBRA V^(9). - Symmetric Poisson algebras of Lie K-algebras admit rather
simple canonical quantization over K[h]. Recall that with each K-module 9 one associ-
ates its tensor algebra T(9)= © 9^ where 9®'" is the tensor product over K of m

m^O

copies of 9. (In particular, 9<2)0=K.) The algebra multiplication in T(9) is defined by
the rule

(^i®. . .®aJ(6i®. . . .®^)=^i®. . .®^®&i®. . .®&,.
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SKEIN QUANTIZATION OF POISSON ALGEBRAS 639

Let g be a Lie algebra over K. Consider the K[/z]-module a=K[/?]®g and its tensor
K [/z]-algebra T(a). Let V=V^(g) be the quotient of this algebra by the two-sided ideal
generated by { ab - ba - h [a, b] \ a, b e g c= a } . Clearly V is an associative K [/?]-algebra
with unit, generated by g. Obviously, V//?V=S(g) and V/( /z—l)V is the universal
enveloping algebra U(g) of 9 (see [15]). Denote the projection V -> V//zV=S(g) by v.

1.4. THEOREM. — (F, v) is a reduced quantization o/S(g).

Proof. — Clearly v is a surjective algebra homomorphism linear over the augment-
ation aug:K[/z]-^K with Ker^=/?V=Ker(aug)V. For generators a, beQ we have
v ([a, b]) == [v (a), v (b)] and therefore

ab - ba == h [a, b]=hv~1 ([v (a), v (b)]) mod h V.

2. Poisson algebras of loops

2.1. LIE ALGEBRA Z. - Let F be an oriented surface. Denote by n the set of free
homotopy classes of loops S1 -> F. Denote by Z the free K-module with the basis n.
Recall Goldman's definition of the Lie bracket in Z {see [4]).

For a loop a: S1 -> F we denote its class in 71 by < a ). Let a, |3 be two loops on F
lying in general position. Denote the (finite) set (^(S^riP^S1) by a#P. For ^eoc#P
denote by s(^; a, P)= ± 1 the intersection index of a and (3 in q. Denote by oc^ the
product of the loops a, (3 based in q. Up to homotopy the loop (oc^)(S1) is obtained
from (^(S^UFKS1) by the orientation preserving smoothing of the crossing in the
point q. Set

(2.1.1) [ < o c > , < P > ] = ^ s to ;oc ,P)<a ,P ,>
q ea# P

According to Goldman [4], Theorem 5.2, the bilinear pairing [ , ]: Z x Z -^ Z given by
(2.1.1) on the generators is well defined and makes Z a Lie algebra.

2.2. POISSON ALGEBRA S (Z) AND ITS DEFORMATIONS. - According to the results of
Section 1.1 one associates with the Lie algebra Z its Poisson symmetric algebra S (Z).

The Lie bracket [ , ] in S(Z) admits a canonical deformation depending on one
parameter keK. (This deformation is implicit in [4], Theorem 3.12.) Namely for a,
ben set

[a,b]k=[a,b]-k(a.b)ab

where a. b is the integer (homological) intersection index of a and &, and ab is the
product of a and b inS (Z). The bracket [ , ]j, may be extended by the Leibniz rule to
a pairing [ , ]^:S(Z) x S(Z) -> S(Z). This pairing is actually a Lie bracket: the skew-
commutativity is obvious and the Jacobi identity follows from the Jacobi identity for
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640 V. G. TURAEV

the Goldman bracket. Indeed, for a, b, c e n we have

[la, b}^ c], = [[a, b], c\-k[(a.c) [a, b] c + (b. c) [a, b\ c
^(a.b)[a,c}b+(a.b)[b,c}a}^k2({a.c)+(b.c))(a.b)abc.

When we cyclically permute a, b, c and sum up, the coefficients at k and k2 cancel; thus
the sum does not depend on k and equals 0.

The algebra S (Z) equipped with the bracket [ , \ is a Poisson algebra. It is denoted
by Sfe (Z). In particular, So (Z) = S (Z).

2.3. POISSON ALGEBRA S (Z^). According to [4] there is a Lie algebra similar to Z but
based on homotopy classes of unoriented loops. Namely, the map a i—^ a ~1: n -> n which
reverses the orientation of oriented loops extends to an automorphism, say y, of Z of
order two. Denote its stationary set [xeZ\j(x)=x] by ZQ. For a en put
a^~=a-\-j(a). Clearly, ZQ is a Lie subalgebra of Z which is additively a free module
based on the set of all a^ for a en. These generators bijectively correspond to free
homotopy classes of unoriented loops on F. The following formula given in [4] computes
the bracket of generators <^ a)o, < ^ P ) n

(2.4.1.) [<a>n,<P>n]= E £(9; a, P)«a,p,>n-<a,P,-1 >„)
4 e a # P

The Lie algebra Z^ is implicit in [23].
As above, one associates with ZQ its symmetric Poisson algebra S(Zn).

2.4. POISSON ACTIONS OF ALGEBRAS OF LOOPS. — The Poisson algebras Sfe(Z), S(Zo) are
intimately connected with Poisson algebras of functions on the spaces of conjugacy
classes of linear representations of n^ (F) (see [4]). Though this connection is not used
in the present paper, it establishes a proper framework for the results of the paper and a
conceptual point of view on the results. I briefly describe here the relevant results of [4].

Recall that a Poisson manifold is a smooth finite-dimensional manifold N equipped
with a Lie bracket in the algebra C°° (N) of smooth real-valued functions on N so that
C°° (N) becomes a Poisson algebra. A Poisson action of a Poisson algebra S on a
Poisson manifold N is a Poisson algebra homomorphism S -> C°° (N) (i. e. an algebra
homomorphism preserving the Lie bracket).

Assume that the surface F is connected and denote its fundamental group by n. As
usual the basis n of Z is identified with the set of conjugacy classes of elements of
7i. Assume also that K= IR.

For a Lie group G satisfying fairly general conditions Goldman [3] constructs a
symplectic structure on the smooth part NQ of the space Hom(7i, G)/G of conjugacy
classes of representations n -> G. This symplectic structure generalizes the Weil-Peters-
son Kahler form on the Teichmuller space and induces a Poisson structure on No. It
turns out that for some classical Lie groups, one of the Poisson algebras of loops
considered above canonically acts on N^. In particular, S (Z) acts on N^ when
G=GL(n, ^), ^ = ( R , C , H I . The corresponding Poisson algebra homomorphism
S(Z) -> C°° (No) associates with a generator a en the function
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SKEIN QUANTIZATION OF POISSON ALGEBRAS 641

\|/ \—> 2 Re tr \|/ (a): No -> R. The same formula defines a Poisson action of S^ (Z) on No
for G=SL(^,IR). Similarly, S(Z^) acts on N^ for G=0(/?, ^), 0(n, C), 0(^ H),
U(/^),S7?Q2,R),S/^,^).

2.5. Remark. - With the Lie groups G=SL(^z, C), SL(^, H), SU(/?, ^) one may also
associate somewhat more complicated Poisson algebras of loops and their Poisson actions
on No. Here the underlying commutative algebra is S(Z)(x)^S(Z) and the definition of
the Lie bracket mimics the formulas given in [4], Theorems 3.16, 3.17. Note that the
Poisson algebra of loops corresponding to G=SL(^, C), SL(/2, H) is a real form of the
complex Poisson algebra S^^Z)®^-^^7) where K=C, i = / - \ . The action of
the latter algebra on No maps ^®1 and \®a with a en into the complex valued functions
respectively v|/ \-> tr v|/ (a) and \|/1-> tr v|/ (a) on N^. (When G=SL(n, H) the trace tr is
defined via the inclusion G -> GL(2^z, C), cf. [4], § 1.)

3. Topological quantization of Sj^ (Z)

3.1. SKEIN MODULES ^(M) AND ja^(M). — Let M be an oriented 3-manifold. By a
link in M we mean a finite family of non-intersecting smooth imbedded circles in
IntM. Two links in M are isotopic if they may be smoothly deformed into each other
in the class of links. The empty set is considered as the unique (up to isotopy) link 0
in M with 0 components. The number of components of a link Lc=M is denoted by
| L |. The oriented trivial knot (i. e. the boundary of an imbedded 2-disc) will be denoted
by^P.

A triple of non-empty oriented links L+, L_, L() in M is called a Conway triple if L+,
L_, Lo are identical outside some ball Bc:M and look as in Figure 1 inside B. Clearly
| L+ | = | L_ | = | LQ | ± 1. We define the type of the Conway triple L+, L_, L() to be 1 if
| L+ | = | Lo | + 1 and to be 2 if | L+ | = | L() | — 1. For example if L is an arbitrary non-
empty oriented link in M then (L, L, L -u- (9) is a Conway triple of type 2 (see Fig. 2). In
what follows the triple (0, <S>, (9) is considered as a Conway triple (of type 2).

b b o
L L LllO

Fig. 2.

The skein module ^ (M) is a module over the commutative polynomial ring
K[x, x~1, h, h] defined as follows (cf. [II], [19]). Let ^ be the set of isotopy classes of
oriented links in M. Then J^(M) is the quotient of the free K[x, x~1, h, ft]-module
with basis ^ by the submodule generated by elements of 2 types: (i) the elements
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642 V. G. TURAEV

x L + — x ~ l L _ — / ^ L o corresponding to arbitrary Conway triples of type 1; (ii) the ele-
ments xL+—x~lL_—hLQ corresponding to arbitrary Conway triples of type 2. The
element of this quotient module represented by an oriented link L will be denoted by
[L]. This element may be viewed as the universal Jones-Conway invariant of this
link. Note the identity (x - x~1) [0] = h [0}.

Consider the ring K [ft] [[h]] whose elements are formal power series of h with coefficients
in the polynomial ring K[ft]. The skein module s^ (M) gives rise to a one parameter
family ^(M) of modules over K [h] [[h]\ parametrized by keK. The module ^(M) is
obtained from ^/(M) by the substitution x=exp(kh). More precisely,

^fe (M) = ̂ / ( x - exp (kh)) ̂

where

^=K[x, x-\ ̂ ]P]]®K[:c,:c-^,^(M).

When one puts h == h = 0, x = 1 in the defining relations of s^ (M) one gets the ordinary
homotopy relation for families of loops in M. This observation relates the skein modules
of M with 71^ (M) as follows. Let n be the set of free homotopy classes of loops in
M. Let S be the symmetric algebra of the free K-module with basis TC. Each oriented

i
link L<=M with components L^, . . ., L( gives rise to an element < ( L ) = ]~[ (L^ )eS

1=1
where <( L^) is the class of L^ in n. In particular (<D ) = 1. The formula [L] ̂ -> ( L )
determines an additive homomorphism ^ (M) -> S linear over the coefficient ring homo-
morphism

h^Q, h^O,x^l:K[x,x~\h, h]->K.

This homomorphism ^ (M) -> S induces an additive homomorphism s/^ (M) -> S linear
over the coefficient ring homomorphism

/^0,^0:K[ft]p]]-.K.

Denote this homomorphism ^(M) -> S by p ( k ) . It is easy to see that

(3.1.1) Kerp (k) = h ̂  (M) + h ̂  (M).

3.2. SKEIN ALGEBRAS s^ AND ̂ . — Consider the 3-manifold Fx [0, 1] where F is an
oriented surface and provide F x [0, 1] with the product orientation of the given orienta-
tion in F and the standard orientation in [0, 1]. For links L, L'<=Fx[0, 1] define the
product LL' by the formula

LL'={(^ QeFx[0, 1]|^1/2 and (a, 2t-l)eL, or ^1/2 and (^, l ^ e L ' } .

Clearly LL7 is a link in F x [0, 1]. The formula L, L'h—^LL7 defines a structure of
associative algebra in J^(FX [0, 1]) with the unit [0] (cf. [19]). This structure descends
to j3^(Fx[0, 1]) (with feeK) and makes ^(Fx[0, 1]) an associative algebra with
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SKEIN QUANTIZATION OF POISSON ALGEBRAS 643

unit. Denote the algebras ^ (¥ x [0, 1]), ja^(F x [0, 1]) respectively by ^(F), ^(F) or
simply by ja^, ja^.

If F is the 2-disc or the 2-sphere, or the annulus S1 x [0, 1] then the algebra ^ is
commutative. For other surfaces the skein algebra is non-commutative. Note, how-
ever, that the quotient algebra s / / h ^ / is always commutative (c/. the proof of
Theorem 3.3 below).

It is convenient to present links in F x [0, 1] by link diagrams on F in the same fashion
in which links in R3 may be presented by plane link diagrams. A link diagram on F is
a finite general position collection of loops on F provided with an additional structure:
at each intersection or self-intersection point of the loops one branch is cut and considered
as the lower one (the undercrossing), the second branch being considered as the upper
one (the overcrossing). The empty link is presented by the empty diagram. The
oriented links are of course presented by oriented diagrams. The product of two links
is presented by the diagram obtained by placing the diagram of the first link over the
diagram of the second link. Note that trading overcrossings for undercrossings one
may change an arbitrary link diagram into a diagram of a product of several knots. This
argument together with an induction on the number of self-crossing points of diagrams
easily show that the algebras s/, ̂ \ are generated by classes of knots.

According to the results of Section 3.1 we have a homomorphism p (k): ja^ —> S (Z)
where Z is the Goldman-Lie algebra of F. Clearly p ( k ) is an algebra homo-
morphism. This homomorphism is an algebraic counterpart of the projection
proj:Fx[0, 1] -> F. Indeed, if one represents additive generators of S(Z) by finite
collections of loops on F considered up to homotopy then one observes that p (k) maps
the class of any link L into the generator of S(Z) represented by proj (L).

3.3. THEOREM.—For any oriented surface F and for any keK. the pair
(j^fc (F), p (k): j3^ (F) —> S (Z)) is a reduced quantization of the Poisson algebra S^ (Z) over
K[ft][[A]].

Proof. — Surjectivity of p(k) is obvious, the kernel of p ( k ) is given by (3.1.1). It
remains to verify (1.2.1) where [ , ] is the bracket [ , ]^ in S(Z). Since the algebra
^ is generated by the classes of knots it suffices to verify (1.2.1) in case where a, b
are classes of oriented knots, say L, I/ in F x [0, 1]. Let a and P be loops in F
parametrizing the projections of L, I/ into F. It is obvious that L7 L may be obtained
from LI/ by moving L down through L\ During this process L intersects U card (a # p)
times. For each such intersection we have the relation

exp (kh) [LJ, - exp (- kh) [L_], = h [Lo],

where [L]^ denotes the class of the link L in ja^. Modulo h1 the latter equality amounts
to

[LJ,-[L_],=/z[LoL-^([LJ,+[L_U
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Combining together such relations corresponding to all intersections we get
ab - ba = [LL^ - [L/ L]^ = hd where

d= ^ £(^;a,P)([L^-fe[L^-^[L^).
qea# P

Here: Lq is an oriented knot in F x [0, 1] whose projection into F is parametrized by the
loop a^P^ (see Section 2.1); L^ and L^ are 2-component links in Fx[0, 1] whose
components are homotopic to L and U. Therefore, p(k) maps d into [<(a), (P)^-
This finishes the proof.

3.4. SPECULATIONS. — Goldman's results quoted in Section 2.4 show that loops on F
may be treated as functions on the representation spaces of n i (F). In the language of
classical mechanics these functions are (classical) observables. Theorem 3.3 shows that
knots and links in F x [0, 1] may be treated as quantum observables. Projection to the
surface or, what is the same, forgetting the under/over crossing information, is the usual
degeneration of quantum objects into the classical ones.

Heuristically, a space is equivalent to the algebra of functions on it. Thus, on the
heuristic level, the skein algebras quantize the representation spaces of n^ (F). From
this point of view the variable h is somewhat redundant. One may eliminate it, replacing
everywhere ft by a formal power series a^ h 4- a^ h2 + . . . e K [[h]\ with a^ + 0. The condi-
tion a^^O ensures that the relation exp(kh)-exp(-kh)=h[(r)], which holds in ̂ , is
non-singular.

Theorem 3.3 also suggests viewing the skein module ^ (M) of an arbitrary oriented
3-manifold M as "the quantization" of K^ (M).

3.5. Remark.— The defining relations of the skein module J^(M) considered in
Section 3.1 may be presented in the following form. Set h^=h and / ? _ i = f t . Then to
each Conway triple L+, L_, Lo of oriented links in M there corresponds the relation

(3.5.1) ^[LJ-x-^LJ^i^i-iLoitLo].

It is easy to verify the following consistency property of the relations. If an oriented
link L' is obtained from an oriented link L by several crossing changes then one may
employ (3.5.1) to compute [L'] via [L] and classes of "intermideate" links obtained by
smoothing certain crossings. It turns out that the resulting expression does not depend
on the order in which we apply (3.5.1) to the crossings. This consistency lies behind
the theory of skein modules though formally we have not used it. The proof of this
consistency property is quite similar to the proof of Proposition 1 (n) of [10].

4. Algebra A. Computation of ^//h s^

4.1. ALGEBRA A. — We define A=A(F) to be the quotient of ^ / = ^ / ( ¥ ) by
(x—\)^/. Clearly A is an associative algebra over the polynomial ring K[A, h}. This

4eSERIE - TOME 24 - 1991 - N° 6



SKEIN QUANTIZATION OF POISSON ALGEBRAS 645

algebra is a refined version of ^o'- it follows from definitions that

<=K[ft]p]]®,^A.

The algebra A may be defined directly along the same lines as ^ though instead of
K[x, X"1, h, h] one should use K[h, h] and in the defining relations the factors x, x1

should be omitted.
Substituting x= l in the Jones-Conway polynomial one gets the Alexander-Conway

polynomial. Thus the algebra A may be viewed as the Alexander-Conway reduction
ofj^.

4.2. THEOREM.—There exists a canonical algebra homomorphism p : A (F) -> V^ (Z)
linear over the projection h \-> 0: K [h, h] -> K [h] and such that lmp=\^(Z) and
Kerp = h A. Thus A/h A = V^ (Z).

For the definition of the algebra V^(Z), see Section 1.3. To construct p we need the
following Lemma.

4.3. LEMMA. — There exists a unique mapping ^ which associates with each oriented
link LcF x [0, 1] an element ^(L) of the algebra V^(Z) such that:

(i) ^(L) is an isotopy invariant ofL;
(ii) ifL is a knot then ^(L) is the class < a ) e Z of the loop a on ^parametrizing the

projection ofL into F;
(iii) for any Conway triple L+, L_, LQ of type 1 (resp. 2) we have

^(LJ-^(L_)=/z^(Lo) [resp. ^(LJ=^(L_)];

(iv) for any oriented links L, L' we have ^ (LL') = ̂  (L) ̂  (L').

Proof. - By a product link we shall mean an oriented link which is a product of
knots. For product links the value of ^ is fixed by Conditions (ii), (iv). The diagram
of any link may be transformed into a diagram of a product link by changing certain
overcrossings to undercrossings. Thus applying (iii) and inducting on the number of
crossing points we may reduce the calculation of ^ (L) to the case of product links. This
shows that if there exists ^ satisfying fi-iv) then ^ is unique.

The arguments of the preceding paragraph being specialized actually give a construction
of ^. It is quite similar to the construction of the 2-variable Jones-Conway polynomial
of links in S3 given in [10], § 1. I will point out the necessary changes (in fact,
simplifications) in the arguments of [10], § 1, leaving the details to the reader. In the
Inductive Hypothesis instead of ascending ordered diagrams one should use ordered
diagrams, such that each component lies below the preceding ones and over the next
ones. The Propositions 1 (n), 2(n), 3(n), 4(n) and their proofs transfer directly to our
setting whereas instead of the formula / K + + / ~ l K _ + w K o = 0 one should use the
formula L + - L _ -j\ ̂  ̂  , _ , ^ _ | L() = 0 where j\ = h and 7-i=0. [In the proof of
Proposition 2 (n) case (b) is obvious since the homotopy type of a knot projection in
preserved under changing an overcrossing to undercrossing.] The analogue of
Proposition 5 (n) is unnecessary. The analogue of Proposition 6 (n) (independence of
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the invariant on the ordering of components) is straightforward: one just notes that if
Li, L^ are two knots and we calculate ^(L^ L^) via the process of altering the crossings
then we will get

^ ( L , L , ) = = ^ ( L l L 2 ) + / ^ [ < o c 2 > , < a l > ] = < a l > < a 2 > + / l [ < a 2 > , < a , > ]

where oc^, o^ are loops in F parametrizing the projections of L^, L^ and where [ , ] is
the Goldman-Lie bracket in Z (cf. the proof of Theorem 3.3). In the algebra V^(Z) we
have , /z [<oc2>, <QCi >]=<oc2 > <a^ >-<oci > <a^ > and so ^(L^)^^ > <QCi > as it
must be. Finally, the analogues of Propositions 1 (n)-4 (ri), 6 (n) imply that ̂  does exist.

4.4. Proof of Theorem 4.2. - Put V=V/,(Z). The mapping [L]i-^(L) extends by
linearity to an additive homomorphism A -> V^ (Z) linear over the projection
fth-^0:K[/z, h]->K[h]. Denote this homomorphism by p. Property (iv) of ^ implies
that p is an algebra homomorphism.

Clearly, f tAcKer/?. Therefore, p induces a K [/^-algebra homomorphism
A/ft A -> V. Denote it by p . To complete the proof it suffices to construct a two-sided
inverse r :V -> A/ft A to ^?. We define r as follows. If a is a loop on F then we lift a
to a knot, say, L^ in F x [0, 1]. Because of the defining relations of A the class of L^ in
A/ft A does not depend on the lifting. Denote this class by r((a)). If a, P are two
loops on F then

r«a»r«P»-r«P»r«oc»=/z ^ 8(^; oc, P)r«oc^»
^ e a # p

(c/. the proof of Theorem 3.3). Therefore, r extends to a K [/?]-algebra homomorphism
r: V -> A/fi A. Both equalities r °p = id, /? ° r = id follow from definitions.

4.5. COROLLARY.—The algebra ^ / / ( ( x — 1)^+(/?— l)j^+^jaf) ^ isomorphic to the
universal enveloping algebra of the Goldman-Lie algebra Z.

4.6. Remarks. — 1. It is easy to see that the following diagram

A ^V,(Z)u r
^S(Z)

(where ;' is the natural extension) is commutative. Thus (ja^o? P (P)) ls an extension of
the canonical quantization (V^(Z), v) of S(Z).

2. In view of Theorem 4.2 it makes sense to discuss in more detail the structure of
the algebra V = V^ (9) associated with a Lie algebra g over K. Here are three observations
to this effect.

The algebra V is isomorphic to the universal enveloping algebra of the Lie algebra
over K[h] obtained from the Lie elgebra K[A](g)g via replacing the Lie bracket [ , ] by
its multiple / ? [ , ] . In particular, this implies that if 9 is free as the K-module then V is
free as the K [A]-module.
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The algebra V gives rise to a line of K-algebras {V/(A - k) V }^ g ̂ . This line traverses
S(g) and U(g). If K is a field then each algebra \l(h-k)\ with k^Q is isomorphic to
U (9) via the isomorphism transforming a e g into ^2. Thus V is a kind of cone over
U(g) with the cone point S(g).

There is a neat description of V in terms of U (9) and its canonical filtration

K^L^cU 1 ^ . . . where U^K+gyc U(g).

Namely, as it follows directly from definitions, the formula a\—>h®a where aec^ defines
an algebra homomorphism V-^K[/?]®U(g). Denote this homomorphism by
w. Obviously, w(V)= © (/^OOU"). If 9 is a free K-module then w is an

n^O

injection. Indeed, if [ x ^ ] is a totally ordered basis of g then the monomials x^. . .x^
with ;i ̂  . . . ̂  linearly generate V over K[/z]. The Poincare-Birkhoff theorem implies
that the images of these monomials under w are linearly independent over K[h]. Hence,
these monomials freely generate V and Kerw==0.

4.7. COMPUTATION OF s / / h ̂ . — The relation x — x~1 = h [(9} which holds in ^ implies
that both ^jh^ and ^1[(9}^ are quotients of the algebra ^/(x2—!)^ over
K[x, A, h}l(x2— 1). The latter algebra may be computed via A:

(4.7.1) ^/(^-l^^KM/^2-!))^.

Indeed, if in the definition of the skein module instead of the generators { L } used in
Section 3.1 one considers generators { x 1 L ) L} then the defining relations (3.5.1) (written
with respect to this new set of generators) will involve only degrees of x of the same
parity. This directly implies (4.7.1). The formula (4.7.1) implies that

^ / h ̂  = (K [x]/(x2 - 1)) ® (A/ft A) = (K [x]/(x2 - 1)) ® V, (Z),

^1[(9} ̂  = (K [x]/(x2 - 1)) ® (A/[^] A).

5. Skein algebras of the 2-disc and the annulus.
Quantum states

Denote the ring K[x, x~1, A, h] by A.

5.1. THEOREM.—(i) The inclusion D2 c> S2 induces an algebra isomorphism
^ (D2) -^ ^ (S2). (Here D2 is the 2-disc.)

(ii). The algebra A(D2) is generated over A by the element S=[(P] subject only to the
relation h 5 = x - x~1. Thus ^ (D2) = A [§]/(ft 8 - x + x~1).

The first claim of the Theorem is obvious since both inclusions D2 x [0, 1] -> S3 and
S2 x [0, 1] -> S3 induce isomorphisms of the skein modules. Claim (ii) is proven in
Section 5.4.
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5.2. THEOREM. — Fix a generator ofn^ (S1). Let L^ be an oriented knot in S1 x [0, I]2

homotopic to the n-th degree of the generator and presented by a diagram in S1 x [0, 1]
with the (minimal possible) number of crossings max (| n -1,0), where neZ. Put
/^[LJej^S^O, 1]). Then ^(S^O,!]) is the quotient of the polynomial ring
A [ . . . , / _ i , /o, /^, /2, . . .] by the ideal generated by f t / o—x+x" 1 .

This Theorem is proven in Section 5.5. The proof of both theorems is based on a
construction presented in the next section.

5.3. HOMOMORPHISM co. — In the study of the Jones-Conway polynomial of links in
S3 as well as in the previous papers [II], [19] concerned with the skein modules of 3-
manifolds no distinction is made between the types of Conway triples, and also, the
variable h entering the main relation is assumed to be invertible. Thus the module
associated in [II], [19] with an oriented 3-manifold M is the K[x, x~1, h, h~ ̂ -module

^(M)=K[x, x-1, A, h-1] ®K[,,,-i,^(M)/(/?-fe)^(M)).

It is easier to compute ̂ f (M) then ^ (M). For example, the Jones-Conway polynomial
establishes an isomorphism ja^ (S3) == K [x, x~1, A, h~1].

It turns out that the natural projection s/(M)->^/'(M) has a canonical 1-parameter
deformation. More formally, there is a canonical additive homomorphism

(5.3.1) co: ^(M)-^^,^-1]®^^)

linear over the coefficient ring homomorphism

(5.3.2) /(x, A, h)^f(x, hy, hy-1)'. K[x, x-1, A, ft]-^K[x, x-\y,y-\ h, h-1].

The mapping co is defined on the generators by the formula ©([L])^11'1^]' where [L]'
is the class of the link L in ^ / ' (M). It is easy to see that this mapping extends by
linearity to a well defined homomorphism (5.3.1). In particular, substituting y=\ one
gets the projection ^ (M) -> ^ / ' (M).

For an oriented surface F set ^ ' F) = ^ ' (F x [0, 1]). Clearly

(5.3.3) co: ^(F)^K[y,^- l]®K^ /(F)

is an algebra homomorphism.

5.4. Proof of Theorem 5.1. — The standard argument used to prove the uniqueness
of the Jones-Conway polynomial (and based on the crossing changes and induction on
the number of crossing points of a link diagram) shows that 8 generates
J^==J^(D2)=^(S3) over A. It remains to check that all relations in ^ follow from
the relation f t 8 = x — x ~ 1 . To this end we need the 2-variable Jones-Conway polynomial
P of oriented links in S3 (see [9]). Recall that P associates with each non-empty oriented
link L in S3 an isotopy invariant Laurent polynomial P^eZ[x, x~1, h, h~1] such that
for any Conway triple L+, L_, L() in S3

( 5 . 4 . 1 ) xP^-x-lP^_=hP^
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and for the trivial knot (9 c: S3 we have P^= 1. We need a renormalized version P' of
the polynomial P defined by the formula P^^x-x'^h'1?^. For the empty link 0>
put P^=l. It is well known that the value of P' for the trivial 72-component link is
((X-X-1)/!-1)".

It follows from (5.4.1) that the mapping L\->P^ induces a K[x, x~\ h, h "^-linear
homomorphism s ^ ' (S3) -> K [x, x~1, h, h~1}. Denote this homomorphism by q. Actu-
ally q is an isomorphism but we will not use this. The only thing we need is the fact
that the homomorphism

(5.4.2) ^®q)ow•^=^(s3)^K[x,x-l,y,y-\h,h-l]

is linear over the ring homomorphism (5.3.2) and maps 8" into ((jc-x"1)/?"1^)".
N

Suppose that we have in ^ an algebraic relation ^^^=0 where /o,/i, . . . , /NeA.
1=0

In view of the relation h6=x-x~1 we may assume that/i, . . .,f^eK[x, x~1, A].
We claim that /o =/i = . . . =/N = 0. Indeed

/ N \ N

(5.4.3) O=(D Z/.81 ^/o^^^-^+^/^x,^)^-1^1^-^-1)1.
\i=o / 1 = 1

Note that x, hy and hy~1 are algebraically independent in K [x, x~ \ y, y~1, h, h~1]. The
polynomial/o (x, hy, hy~1) contains only monomials with non-negative powers of hy~1,
whereas the other terms of the R.H.S. of (5.4.3) involve strictly negative and mutually
distinct powers of hy~1. Therefore (5.4.3) implies that /o=/i= . . . =/N=O. This
shows that all relations in ^ follow from the relation h6=x-x~1.

5.5. Proof of Theorem 5.2. - Fix a point ae8(S1 x [0, 1]). Let us call an oriented
knot diagram on S1 x [0, 1] ascending if the point a lies on the diagram and when
traversing the diagram from a in the direction specified by the orientation, every crossing
is first encountered as an under-crossing. It is easy to see that the isotopy type of a
knot presented by an ascending link diagram is completely determined by the homotopy
type of this knot, i. e. by the number of times the diagram winds around S1.

Let X^ be the oriented knot presented by an ascending diagram in S1 x [0, 1] which
winds n times around S1 and has max (| n \ - 1, 0) self-crossing points. It is obvious that
an arbitrary knot diagram in S1 x [0, 1] may be changed to an ascending diagram by an
isotopy and by altering some of its crossings from overpasses to underpasses. As usual
this implies that the classes { [ X J [ w e Z } generate ^(S^jp, 1]). According to [19]
(see also [5]) the algebra ^'(S^O, 1]) is the (commutative) polynomial ring over
K[x, x~1, h, h~1] generated by the algebraically independent classes [XJ'eja^S1 x [0, 1])
where n e Z \ { 0 }. Now the same reasoning as in the proof of Theorem 5.1, based on
the use of the homomorphism (5.3.3) with F=S l x[0 , l ] proves the claim of
Theorem 5.2 in the case where L^=X^ for all n. In the general case Lo=Xo=^ and
for n + 0 one may inductively prove that [LJ equals [XJ plus a certain polynomial of
[XJ, where O^i^n-1 if n>0 and n-\-1 ̂ f ^O if n<0. This implies the result. (The
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minimality of the diagram of L^ enables to perform the latter induction: smoothing the
diagram of L^ in an arbitrary crossing point gives two mutually disjoint minimal knot
diagrams.)

5.6. QUANTUM STATES. - According to the general physical philosophy linear function-
als on the skein algebra J^(F) and algebras ^(F), keK should be treated as quantum
states. A rich set of such functionals is provided by embeddings F -> S3. Each embed-
ding ;:F->S3 extends to an orientation preserving embedding 7':Fx[0, 1] -> S3 which
induces a linear functional s/ (F) -> ̂  (S3). We may combine it with the homomorphism
(5.4.2) and pass to ̂  to get a functional ^ : ̂  (F) -^ K [y, y ~ \ h~1] [[hy]\ linear over
the ring homomorphism

(5.6.1) /(/z, ft) ̂ f(hy, hy- ̂ : K [h] [[h]] -^ K [y, y - \ h-1] [[hy]].
For the class [L]feG^(F) of an oriented link LcF x [0, 1] we have

^ ([LD =y}L{ (exp (khy) - exp (- khy)) h -1 P^) (exp (khy), h).

This construction has an important drawback: ifA:=0 then ^==0. However, when one
has two embeddings i,j: F -> S3 one may define a "relative" state

0,7)*: < (F) -^ K [y, ^- \ h-1] [[̂ ]]

[again linear over (5.6.1)] by the formula

(UUtL^^'/r^P^O, ̂ )-PJ(L)(I, ^))

(When L==0 the R.H.S. is assumed to be 0). Note that P(l, h) is the Alexander-
Conway polynomial. Note also that the homomorphism 0',7')^ annihilates the ideal
generated by [^P]o.

5.7. Remark. - The proof of Theorems 5.1, 5.2 shows that when F is the disk (or the
2-sphere, or the annulus) then the homomorphism (5.3.3) is injective. Is the same true
for all surfaces?

6. Unoriented skein algebras and topological quantization of S(Zn)

6.1. THE RING R. — The theory ofunoriented skein algebras runs parallel to the theory
of oriented skein algebras presented in Sections 3-5. The major difference is that instead
of the relation (3.5.1) we use modified Kauffman relations, introduced below. Instead of
two Planck variables /?, h we need three variables h_^ ho, h^ subject to the equality
/^=/?i/?-i. The role of the ring K[x, x~1, h, h] will be played by the commutative
ring K[x, x~1, h_^ h^ h^]/(h^-h^ h_^). The latter ring will be denoted by R.

6.2. UNORIENTED SKEIN ALGEBRAS. — We proceed directly to the case of links in
F x [0, 1] leaving aside unoriented skein modules of arbitrary 3-manifolds (for the latter
see [19]). One may define unoriented skein modules of links in FX[O, 1] in terms of
regular isotopy types of link diagrams. Two unoriented link diagrams on the (oriented)
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1 - ^ ; ^
,0.1.1 , ̂ 1.2 ffiILi , QS.2

ffiTLS D.IA •a ]II
Fig. 3.

surface F are called regularly isotopic if they may be obtained from each other by
Reidemeister moves of type II and III (see Fig. 3; here orientations of components should
be ignored).

For a link diagram Q) denote by | Q) \ the number of components of (the link presented
by) Q). Denote by J^Q the set of regular isotopy types of unoriented link diagrams on
F including the type 0 of the empty diagram and the type (9 of a small simple loop on
F, presenting the trivial knot. The unoriented skein module Jf(F) is the quotient of
the free R-module Ro^n with basis J^n by the submodle generated by elements of three
kinds: (i) the elements

(6.2.1) 0)^-0)..-h, ^O+^+l

corresponding to arbitrary sets of four non-empty link diagrams ^+, ^_, ̂  ^oo which
are exactly the same except near one point where they look as in Figure 4; (ii) the

a- »/

r^\
5^^

Fig. 4.

elements 2' - x Q) corresponding to arbitrary pairs of non-empty link diagrams ^, Q)'
which are the same except near one point where Q)' is obtained from Q) by inserting a
righthanded positive curl (as in the Reidemeister move QI. 1, see Fig. 3); (iii) the element
h_^ ^—(.x--.x - l+/^o)0. The reason for factorizing out the element (iii) is that for any
non-empty link diagram 2 the element h_^(2JL(9)-(x-x~l-\-hQ)^eR^^ is a linear
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P b b
Fig. 5.

combination of elements of types (i), (ii) (see Fig. 5). Remark that the defining relations
of JT(F) are consistent in the same sense as in Section 3.5.

As in Section 3.2 placing one diagram over another makes Jf (F) an associative algebra
with unit.

As in Section 3.1 substituting x=exp(kh^) with keK one gets a 1-parameter family
Jf\ (F) of algebras over the ring

R=K[A_,,Ao][[M/(^-^i^-i).

Each diagram Q> on F with / components gives rise to the element
i

<^>D=n<^>neS(Zn)

(see sect. 2.3) where 04, . . ., ocj are loops on F parametrizing the components of Q). The
formula ^i—^^)^ determines an algebra homomorphism JT(F)-^S(ZQ) linear over
the coefficient ring homomorphism

A-ii-^0, ho^O, Ai^O, ;ci-^l:R-^K.

This algebra homomorphism Jf(F)-»• S(Z^) induces an algebra homomorphism
jTfc (F) -> S (Z^) linear over the coefficient homomorphism

A-ii-^0, ho\->0, h^\->Q:R->K.

6.3. THEOREM. —For each keK the algebra ^\(F) together with the homomorphism
Jf\(F) -» S(ZQ) constructed above is a reduced quantization over (ft, h^) of the symmetric
Poisson algebra S (Z^).

Proof of this theorem is similar to the proof of Theorem 3.3: one uses the nullity of
elements (6.2.1) in the case |^+|-|^o|=|^+|-| Q)^ \ = 1 and the formula (2.4.1).

In contrast with what we have in the oriented set-up all algebras Jf\ (F) quantize the
same Poisson algebra S(Zo).

6.4. THEOREM. — Put Jf = Jf (F). The algebra Jf/((x- 1) Jf + h. i Jf) over K [AJ is
canonically isomorphic to V/,(ZQ), where h=h^.

Note that ^o^-i ^-x-^-x~1 so that Jf /(x-l)Jf+A_i Jf) is indeed an algebra
over K[A], h=h^. The proof of Theorem 6.4 follows the same lines as the proof of
Theorem 4.1.
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We also have

^l(h., Jf + h, JO = (K [x]/(x2 - I))®K V,, (Z^).

To show this it suffices to rewrite the defining relations of Jf with respect to the
following set of generators: with a link diagram Q) associate the new generator x' ̂ ! +c (3>) Q)
where c(^) is the number of self-crossings of Q).

The results of Section 5.3 may be transferred to the present setting. Let Jf be the
K[;c, x~1, h, h~ ̂ -algebra K[x, x~1, h, h~1}®^^ where R acts in K[x, x~1, h, h~1] via
the projection sending x into x and all three variables h_^ ho, h^ into h. The mapping
^\—>y^^\ where Q)' is the class of the link diagram 2 in Jf', extends to an additive
(and actually multiplicative) homomorphism

(6.4.1) jr^Klj,^-1]®^

linear over the coefficient ring homomorphism

/(x, /z_i , ho, /^/(x, /y;-1, /i, hy): R^K[y, ̂ -1, ̂  /?-1].

Using the homomorphism (6.4.1), the calculation of Jf^D2) due to Kauffman [7] and
the calculation of Jf^S^^, 1]) due to the author [19] it is easy to compute the
unoriented skein algebras of D2, S2 and S1 x [0, 1].

6.5. THEOREM. — (?) The inclusion D2 c^ S2 induces an algebra isomorphism

^(D^-.Jf^S2).

(ii) The algebra JT(D2) is generated over R by the class 8 of the trivial knot diagram (9
subject only to the relation h_^&=x—x~l^-ho. Thus

Jf (D2) = R [8]/(/z _ i 5 - ;c + x-x -/?o).

6.6. THEOREM. — For n^O let /„ be the class of a knot diagram in S1 x [0, 1] which has
max (\n\~ 1, 0) self-crossings and which is homotopic to the n-th degree of a generator of
7ii(S1). Then Jf(S1 x [0, 1]) is the quotient of the polynomial ring R[/o, /i, . . .] by the
ideal generated by h _ i /o — x + x ~1 — ho.

Proofs of both theorems follow the same lines as the proofs of Theorems 5.1, 5.2.
The material of Section 5.6 may be also transferred to the unoriented setting. This is

left to the reader.

CHAPTER II

LIE BIALGEBRAS Z, Zo AND THEIR TOPOLOGICAL QUANTIZATION

7. Lie bialgebras and their quantization

7.1. LIE BIALGEBRAS (cf. [I], [2]). — Recall the notion of Lie coalgebra which is dual
to the notion of Lie algebra.
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A Lie coalgebra over K is a K-module g provided with a linear homomorphism
v: g -> g®9 such that Pernig ° v = — v and

(7.1.1) 0:^+1)0(^^)^=0

where Pemig is the permutation a(x)b\—>b®a in 9® 9 and T is the permutation
a®b®c\—>c®a®b in 9®g®9. The homomorphism v is called a Lie cobracket in
9. The dual homomorphism v* :9*®g* -> 9*, clearly, is a Lie bracket in
g*=HoniK(9, K) (and vice versa if g is free of finite rank over K). Indeed, (7.1.1) is
dual to the Jacobi identity.

A Lie bialgebra over K is a K-module g provided with a Lie bracket [ , ] and a Lie
cobracket v: g -> g®g so that for any a, b e g

(7.1.2) v([a, b])==av(b)-bv(a).

Here, as usual, 9 acts in g®g by the rule a(b®c)=[a, b}®c-\-b®[a, c\. Condition
(7.1.2) means that v is a 1-cocycle of 9.

In the class of free modules of finite rank the notion of Lie bialgebra is self-dual: any
Lie bialgebra structure in such a module 9 induces a Lie bialgebra structure in g* and
vice versa. Each Lie algebra may be considered as a Lie bialgebra with the zero Lie
cobracket. Similarly, each Lie coalgebra may be considered as a Lie bialgebra with the
zero Lie bracket.

The notion of Lie bialgebra is a kind of algebraic counterpart of the so-called classical
r-matrices, see [2].

7.2. POISSON AND CO-POISSON BIALGEBRAS (c/. [2]). — Recall that a coalgebra over K is
a K-module A equipped with a linear homomorphism (comultiplication) A: A -» A® A
which is coassociative, i. e.

(idA®A)°A=(A®idA)°A:A-)-A0 3 .

The coalgebra is called cocommutative if PermA°A=A.
A bialgebra over K is a K-module equipped with a structure of associative algebra

and coalgebra so that the comultiplication is an algebra homomorphism. Note that we
do not require existence of counits and antipodal homomorphisms.

A Poisson bialgebra over K is a K-module A equipped with the structure of bialgebra
and Poisson algebra with the same commutative multiplication so that the bialgebra
comultiplication A: A -> A® A preserves the Lie bracket:

(7.2.1) A([^])==[A(^),A(fc)]

for any a, be A. [Here the bracket in the right hand side is given by (1.1.1).]
Non-trivial examples of Poisson bialgebras will be exhibited in Chapter III. In the

present chapter we will use rather the dual notion of co-Poisson bialgebras. It is
convenient to define first a weaker structure of co-Poisson coalgebra. A co-Poisson
coalgebra over K is a cocommutative coalgebra A over K equipped with a Lie cobracket
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v: A -> A® A which is related to the comultiplication A: A -> A® A by the formula

(7.2.2) (idA®A) ° v = (v®id^ + (Perm^idA) ° (idA®v)) ° A.

The latter formula is dual to (0.3.2).
A co-Poisson bialgebra over K is a K-module A provided with the structure of

bialgebra and co-Poisson coalgebra with one and the same cocommutative comultiplica-
tion A: A -> A® A such that the Lie cobracket v: A -> A® A satisfies the identity

(7.2.3) v(ab)=v(a)A(b)+A(a)v(b)

for all a, be A. This identity is dual to (7.2.1).

7.3. COQUANTIZATION OF CO-POISSON COALGEBRAS AND BIALGEBRAS. — Let Q be a COmmU-

tative associative K-algebra with unit and with augmentation (p: Q -> K. Let
fteKercp. The following definition is dual to the definition of quantization of
Poisson algebras given is Section 1.2. A coquantization over (Q, cp, h) of a co-Poisson
K-coalgebra S is a pair (a Q-coalgebra A, a (p-linear coalgebra epimorphism p : A -> S)
such that for any a e A

A (a) - Perm^ (A (a)) = h (p®p) ~1 ((v °p) (a)) mod h Ker (p®p)

where A is the comultiplication in A and v is the Lie cobracket in S. If, additionally,
A is a bialgebra, S is a co-Poisson bialgebra and p is a bialgebra homomorphism then
we say that (A, p) is a coquantization of the co-Poisson bialgebra S. The termi-
nology which follows the definition of quantization in section 1.2 will be also applied to
coquantizations with the obvious changes. In particular, (A, p ) is called reduced if
Ker/?=(Ker(p)A

7.4. THEOREM. — Let 9 be a Lie bialgebra over K. Let V be the K [h]-algebra V^ (9)
constructed in Section 1.3. The formula a \—^ a® 1 + 1 ®^ where a e 9 induces a K [h}-linear
algebra homomorphism A: V —> V®K[/,]V which makes V a bialgebra. The Lie cobracket
9^9®g extends by (7.2.3) to a K[h]-linear Lie cobracket V->V®K[/,]V which makes
V a co-Poisson bialgebra over K[A].

The co-Poisson bialgebra V constructed in the Theorem will be still denoted by
V^(g). The quotient co-Poisson bialgebra structure in U (9) =¥/(/?— 1)V was pointed
out in [2]. Theorem 7.4 may be deduced from this result of [2]. For completeness I
will give in Sections 7.5, 7.6 a direct proof of Theorem 7.4.

Theorem 7.4 enables us to define quantization of Lie bialgebras. By a quantization
of a Lie K-bialgebra g we shall mean a reduced coquantization of the co-Poisson
bialgebra V^(g) over the projection h\—>0:K[h, h} ->K[h]. In particular, for such a
coquantization p : A —> V/, (g) we must have the equality A/h A = V^ (g) in the category
of bialgebras. Note that the homomorphism p : A -> V^ (g) induces a homomorphism
A/(h— 1)A -> U(g) which is a reduced coquantization of the co-Poisson bialgebra U(g)
over K [ft]. This is essentially what Drinfeld [2] calls a quantization of 9, though he
considers the ring K [[h]] and requires the quantized bialgebra to be topologically free as
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the K[[ft]]-module. If the bialgebra A/(/z-l)A considered above is free as the K[h]-
module we may complete it via the inclusion K [h] q: K [[h]] and get there by a quantization
of g in the Drinfeld sense.

7.5. LEMMA. — Let g be a Lie coalgebra and let T be the tensor algebra of 9 (see
Section 1.3). The formula a\—>a®\ + 1®^ induces an algebra homomorphism
A:T-^T®T which makes T a cocommutative bialgebra. The Lie cobracket 9-^9®9
extends by (7.2.3) to a Lie cobracket T -> T®T which makes T a co-Poisson bialgebra.

Proof. - The first claim is easy and well known. Let us prove the second
claim. Denote the Lie cobracket 9-^9®^ by v. Denote by the same symbol v the
extension T -> T®T of the cobracket which transforms the monomial a^ a^ . . . a^ with
a^ a^ . . . ,^£9 into

n

E ((F[ A (aft v (a,) n A (aft e T®T.
» = 1 J<i j>i

In particular, v(l)=0.
It is evident that (7.2.3) holds for any a, 6eT. Since PermT°(v| )= -v and

Perm^°A=A we have Peimr°v= -v. It remains to verify (7.2.2) with A replaced by
T and the identity (7.1.1) with 9 replaced by T.

Fix a^ . . .,^eg. Put ^=v(^)(=9®g for ;'=!, . . .,n. Apply both sides of (7.2.2)
to <2i00 . . . ®^. The L.H.S. will be

n^ ((n A2 ( .̂)) (I®A) (^ (n A2 (^,)))
i= l j<i j>i

where I = id^ and A2 = (I®A) A = (A®I) A. The R.H.S. will be
n

^ [(Ft A2 ( .̂)) (&,® 1) (]"[ A2 (^)) + (Perm^®!) ((]"[ A2 (^,)) (1 ®^) (]"[ A2 (^,)))].
1=1 j < i j> i j< i j> i

Clearly, Perm^®! is an automorphism of T®3, preserving A2 (a) for each a e g. Therefore
it suffices to show that for each ;

(I®A) (&,) = &,® 1 + (Perm^®!) (1 ®&,).

This equality holds for an arbitrary ^eg®g as directly follows from the definition of A.
To prove (7.1.1) note that

n

(I®v) (v (a, a,... ̂ )) = E ̂  + Z (P.. + Y,.)
i= l l ^ K f e ^ n

where

a, = (]"[ A2 (aft (I®v) (v (̂ )) (]"[ A2 (̂ )),
7<f J>l
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P,fc =(F[ A2 ( ,̂)) (I®v) (A (a,)) ( n A2 (^)) (I®A) (v (^)) (n A2 (a,)),
J<i Kj<fc j>fc

7, * = (Fl A2 (fl,)) (I®A) (v (a.)) ( ]-[ A2 (a,)) (I®v) (A (a,)) (]-[ A2 (a,)).
j< i i<j<k j>k

Since reEndT®3 preserves A2^) for each a eg and v|g is a Lie cobracket,
(r2 + T +1) ((Xf) = 0 for each ;'. Let us show that

(T^T+IKP^+y.^O

for all i<k. Fix ;, k and put

b=v(a,\ 71= ft A2^.), y=v(^).
i<j<fc

Then (I®v)(A(0)= 1®&' and (I®v)(A(^))= 1®&. Thus, it suffices to show that
T2 + T +1 annihilates

(I®A) (b) n (1 ®y) + (1 ®&) TC (I®A) (y).

If & is a finite sum ^^®^ and &7 is a finite sum ^^®^ with d^e^d^e'^^ then
r s

(I®A) (V) K (1 ®Z/) = Oi + 02 and (1 ®Z?) TI (I®A) (Z?7) =03+04 where

^i-E^r®^®!)^-^!®^®^)
r s

"2 = Z (4® 1 ®e,) • n • E (i ®<®cD
r s

"2 = X (1 ®^®^) • TI • ̂  «® 1 ®e:)
r s

CT4=^(l®rf,®^)-7r.^(^®(?;®l).
r s

Using the equalities T (re) = TI, Permg (&) = - b, Pernig (ft') = - b' one easily shows that
T2 + T +1 annihilates both 04 + 03 and o^ + 04.

7.6. Proof of Theorem 7.4. — Let T be the tensor algebra of the Lie bialgebra
K[A]®g. Lemma 7.5 provides us with a comultiplication A and a Lie cobracket v in
T. To prove Theorem 7.4 it suffices to show that both A and v descends to V, L e. that

(7.6.1) A(Ker^)c=Kerte®^),
(7.6.2) v(Kerg)cKer(^®g)

where g is the projection T^V^(g). The inclusion (7.6.1) is straightforward. To
prove (7.6.2) we compute for a, b e g

v(ab-ba)=v(a)^(b)-}-A(a)v(b)-v(b)A(a)-^(b)v(a)
=v(a)(&®l+l®&)-(&®l+l®A)v(^)+(a®l- l®a)v(&)

- v (b) (a® 1 + 1 ®^) = h (a v (b) - b v (a)) mod Ker (g®g).
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Here we use the action of 9 in 9(8)9 described in Section 7.1. Because of (7.1.2) we
have

v (ab - ba - h [a, b]) = 0 mod Ker (g®g).

This formula together with (7.6.1), (7.2.3) imply (7.6.2).

8. Lie bialgebras Z and Zg

8.1. COBRACKET v. — Let F, TT, Z be the same objects as in Section 2.1. For a non-
contractible loop oc:S1 -> F we shall denote by <oc)o its class <oc) in ft c= Z. For a
contractible loop a put < a )o = 0 e Z.

We shall provide Z with a Lie cobracket v as follows. Let a be a generic loop on
F. Denote by#oc its (finite) set of double points {qe^(Sl)\cardai~l (q)> 1}. Each
point ^e#oc is traversed by a twice, the tangent vectors of a in q being linearly
independent. Assume that these vectors are numerated u^ u^ so that the pair ^, u^ is
positively oriented. For ;'= 1,2 denote by oc^ the loop wich starts from q in the direction
u, and goes along oc till the first return to q. Clearly, up to a choice of parametrization

-.1 -.2 O-.Loc=o^. Set

(8.1.1) v«oc»= E (Wo®Wo-<^\®<^\)

8.2. LEMMA. — For any loops a, (3 on F

K^o^P^-Ko^P)^ S eteoc,P)<a^>o
qey. # ?

w/^r^ [ , ] ^ ̂  Goldman-Lie bracket.
The first equality is obvious, since the class of contractible loops lies in the center of

the Lie algebra Z. The second equality follows from Proposition 5.9 of [4].

8.3. THEOREM. — The linear homomorphism v:Z->Z(x)Z given on the generators ofZ
by the formula (S.i A) is a Lie cobracket. The module Z provided with the Goldman-Lie
bracket [ , ] and the Lie cobracket v is a Lie bialgebra.

Proof. — To show that v is well-defined it suffices to show that v(<(a)) does not
change when we apply to oc "elementary homotopies" (see Fig. 6). This is straightforward.

o)i c^i.i 0)1.2 o)n.3 o)in:
Fig. 6.
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The equality Perm^v-v is obvious. It follows from definitions that for a generic
loop a(l®v)(v«a») is a sum of certain expressions X(p, q) associated with non-
ordered pairs of (distinct) self-intersection points p, q of a. Namely, smoothing a in p
and q we obtain three loops, say, P, y, 8 where 8 hits both p and q, P hits p and y hits
q. As described above the orientation of F induces an order in each pair (P, 8),
(y, 8). Put £(/?,^)==1 if 8 is either minimal or maximal in both pairs
simultaneously. Otherwise put e(^, q)= - 1. It is easy to compute that

X(^,^ )=£(^^) [<p>o(x)<Y>o®<8>o+<y>o®<P>o®<8>o

-<P>o®<8>o®<Y>o-<Y>o®<8>o®<P>o ] .

Therefore, (T^T^- 1)(X(/?, q))=Q where T is the permutation a®b®c\-^c®a(S)b in
Z03. Thus T2 + T + 1 annihilates (1 ®v) (v « a ))). This proves that v is a Lie cobracket.

Let us show that for arbitrary loops a, P in F lying in general position we have
(7.1.2) for a = < a >, b = < P >. For any p, q s a # P denote by (ap)p the loop in F which
starts in p goes along a till q and then goes back to p along p. Clearly,

<W>=<Pa)?>.

Note that for any /?ea#P the self-intersection set of the loop o^Pp splits into disjoint
union of three subsets: # a, # P, and (a # ̂ )\{p }. This implies that

v([^])= E 6(^a,P)v«oc^»=o-Permz(o)
pea # P

where

a = CTI + o^ + 03 + 04 + <j5

and

01 = 1= ^ £(^;oc, PKCa^X^a^o,
{ ^ 6 # a | p e a ^ # p }

0-,= 2 = E s (^; a, P) < ̂  >o®< (a,2), P^ >o,
{ < ? e # a | p 6 0 ^ # P }

03- S £(^;a, PKo^P^^^P^o,
{ g 6 # P | p e a # ( ^ }

04- S e(^; a, P)<P,l>o®<^(P^>o,
{ ^ 6 # P | p 6 0 t # P ^ }

^5 = E £ (^; a, P) e ( ;̂ a, P) < W >o®< (Pa)? >o.
p, g e a #P

P^

It follows directly from Lemma 8.2 and definitions that

Oi + 02 - Pemiz (CTI + c^) = - b v (a)', 03 + 04 - Permz (03 + 04) = a v (b)

and also Pemiz (05) == 05. This implies (7.1.2).
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8.4. LIE BIALGEBRA ZQ. - Denote by Zo the submodule ofZ generated by the homotopy
classes of non-contractible loops. Clearly Zo is the free K-module with the basis TC\{ 1}
where { 1 } is the homotopy class of contractible loops in F. It follows from [4],
Prop. 5.9 that Zo is a Lie subalgebra of Z. It follows directly from definitions that the
Lie cobracket v in Z maps Zo into ZoOOZo. Thus Zo is a Lie subbialgebra of
Z. Moreover the Lie bialgebra Z is the direct sum of Zo and the one-dimensional Lie
bialgebra K { 1 } with zero Lie bracket and zero Lie cobracket.

8.5. Remarks. - 1. If a is a simple loop then v « a )) == 0 and, moreover, v « a")) = 0
for any integer n. Conjecture: if v « a )) = 0 then a is homotopic to a power of a simple
loop. A similar assertion for pairs of loops is proved in [4]: if a is a simple loop and (3
is a loop on F then a, P are homotopic to non-intersected loops iff [< a >, < P >] = 0.

2. The previous remark shows that if F is the annulus or the torus S1 x S1 then v=0.

3. In general the Lie bialgebra, dual to Z does not exist: one may show that if the
genus of F is non-zero then the image of the homomorphism Z* -> (Z®Z)*, dual to the
Goldman-Lie bracket, does not lie in Z*®Z*. On the other hand the cobracket
v:Z-^Z(x)Z always induces a Lie bracket in Z*=Hom^(Z, K). The Lie algebra Z*
may be shown to be a projective limit of nilpotent Lie algebras, whose underlying
K-modules are free of finite rank.

4. The Goldman bracket and the cobracket v may be computed purely algebraically
from the operations K, [i introduced in [16], supplement 2. Put 7r=7ii(F,/) with/eF
and denote by Y the group ring KTC. With each pair a, ben the "intersection"
^ associates ^(a, b)eY/((a- 1)Y+Y(&~1- 1)). With each a en the "self-intersection"
[i associates an element [i(a) of the quotient module of Y by the sumbodule generated
over K by { 1 } and the set [c+c~1 a~l\cen}. Let q:n\[ 1} -^n be the natural
projection. Put q{{ 1 })=OeZ. It is easy to compute that if K(a, b) is represented by
^ ki Ci e Y with k^ e K and c^ e n then

i

[q(a),q(b)]=^k,q(ac,bcr1).
i

If p, (a) is represented by ̂  k^ c^ e Y then
i

v (q (a)) = ̂  k, (q (c,~1)®^ (c, a) - q (c, a)®q (c^ 1)).

The study of intersections K, \i in [16] was motivated by an important role played by ^
in the theory of multivariable Seifert forms of knots (see [17]). Note also that if 8F^0
and /e 8¥ then there exist more precise versions of X- and ^ which are respectively a
bilinear pairing Y x Y -^ Y and a mapping n -> Y (see [16]).
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9. Skein bialgebra A

The aim of the present Section 9 is to construct a canonical comultiplication in the
K [h, ft]-algebra A = j^/(x - 1) ̂  (see Section 4.1). The construction of the comultiplica-
tion is partially inspired by the composition product of polynomial invariants of links
in S3 due to F. Jaeger [6]. The construction goes in terms of link diagrams.

9.1. LINK DIAGRAMS AND THEIR LABELLINGS. — For an oriented link diagram Q) on F
we denote by L(^) the oriented link i n F x [ 0 , l ] presented by Q). Recall that

Q) | = | L (^) | is the number of components of L (^). Denote by [^] the element of A
represented by L (^).

The union of loops underlying the diagram Q) is a four-valent graph on F. Its edges
and vertices are called edges and vertices (or self-crossing points) of Q). The set of edges
is denoted by Edg Q). Each vertex has a sign 1 or -1: see Fig. 1 where the depicted
vertex of L+ (resp. L_) has sing 1 (resp. -1).

Let n be a positive integer. By a ^-labelling of the oriented link diagram 2 we mean
a function /: Edg Q) -> {1, 2, . . ., n] such that the following condition holds: For each
vertex v of Q) if a, b are resp. upper and lower edges which look into v and c, d are resp.
upper and lower edges which look out of v then either f(d) =f (c) and / (b) =f (d) or
f(d)=f(d)>f(b)=f(c). The vertices in which the last possibility occurs are called
/-cutting vertices of Q). Denote the number of/-cutting vertices of sign 1 (resp. - 1) by
| /1 + (resp. | /1 _). Set | /1 = | /1 + +1 /1 _. Note the Kirchoff rule for labellings: in all
vertices v of 2 we have / (a) +/ (V) =/(c) +/ (d) where a, b, c, d are edges incident to v
as above.

The set of ^-labellings of 2 is denoted by Lbl^(^). If/eLbl^) then for each
/ = ! , . . . , n the edges of^ lying in f~^{i) make an oriented link diagram, denoted
by ̂  i. (It is understood that in the self-crossing points of ̂  , the choice of the
lower/upper branches is the same as in 2.) Put

||/||=|^|- E|^,.|.
1=1

Clearly, | /1 ̂  || /1| ̂  -1 /1 and | /1 = || /1| mod 2. Therefore we may safely define

/ ^ l y \ = ( _ 1)1/1- ^\f\ +11/11/2 ̂ \f\ -11/11/2^

Put

A(^,/)=<^|/>[^J®[^2]®...®[^,JeA®",

where A0" is the tensor product over K[/?, h] of n copies of A. Note that we do
not exclude the possibility that certain link diagram {^f i] are empty so that
[^J==[0]=leA.
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The set Lbl^) will be also denoted by Lbl(^). For a non-empty oriented link
diagram Q) put

A(^)= ^ A(^,/)eA02.
/ 6 Lbl (2)

For the empty link diagram 0 we define A(0)== 1 eA®2.

9.2. THEOREM.—There exists a unique K[h, h}-linear homomorphism A:A-^A®A
such that for any oriented link diagram Q) we have A ([^]) = A (2). The pair (A, A) is a
bialgebra.

Proof. - Uniqueness of A (modulo existence) is obvious. To prove existence we have
to verify the following two claims: (i) Reidemeister moves on Q) (see Fig. 3) do not
change A(^); (ii) if three diagrams ^+, ̂ -, Q)° are identical outside a disk and look as
in Figure 1 inside the disk then

(9.2.1) A^+)-A^-)=h^^o)

where e^^l-l^0] and h^=h, h_^=h.
The proof of the claims, given below, is rather similar to the proof of Theorem 5.4

in [18] and Proposition 1 in [6].
We will use the following notation: for any subset B of Lbl (2) put

A(^,B)= ^ A(^,/)eA02.
/ eB

In particular, A(^, Lbl(^))=A(^).
We first verify Claim (ii). Let a, P, y, 6 be the edges of ^+, incident to the vertex of

^+ which lies in the disk in question, as depicted in Figure 7. Denote by the samevy\
Fig. 7.

symbols a, p, 7, 8 the corresponding edges of 3>~. For each of the three diagrams
Qe{3>+,3l~,3lo} the set Lbl(^) splits into disjoint union of six subsets B,(^»),
r= 1, . . ., 6 singled out by the values of labellings on the edges:

/e
/(a)=
/(P)=
/(Y)=
/(5)=

4'SERIE - TOME 24 - 1991 - ?6

BI B^ 83 84 B, Bg
1 2 2 1 1 2
1 2 1 2 2 1
1 2 2 1 2 1
1 2 1 2 1 2



SKEIN QUANTIZATION OF POISSON ALGEBRAS 663

Here for/e Lbl (^°) the expressions / (a), /(P),/(y),/ (8) denote the values of/on the
edges of ^° containing respectively a, P, y, 5. Note that

B3(^-)=BJ^+)=B5(^0)=B6(^0)=0.

We shall prove that for each r= 1, . . ., 6

(9.2.2) A(^, B.O^-A^-, B,(^-))=^A(^°, B,(^°)).

This would imply (9.2.1). Let r= 1. Each labelling fe B^ (^+) in the evident fashion
gives rise to labellings of Q)~, Q)° belonging to Bi(^~), Bi(^°). Denote these latter
labellings resp. by /", f° and put /+ ==/. For x e { +, - ,0}we have

A (^x, /x) = < ̂ x | /x > E^]®^]

where ^f=^}^ for i= 1, 2.
Obviously, ^^=^^=^ and ^^, ^i~, ^? make a Conway triple. Put

^l^i1 '!— |^ |=d=l . One easily derives from definitions that

{Q+\f+}=^-\f-} and ^<^ 0 | / 0 > = ^<^ + | / + >.

Therefore,

A(^+,/+)-A(^-,/-)-/^,A(^(),/0)=<^+|/+>([^+]-[^-]-^[^])®[^]=0.

This implies (9.2.2) with r == 1. The case r = 2 is quite similar. If r = 3 then (9.2.2) is
equivalent to A(^, B3(^+))==A,A(^0, B^^°)). This equality follows from the fact
that each labelling/eB 3 (^+) gives rise to a labelling/0 of^° so that

Q!^i=^f0^ for f = l , 2 ;
<^+|/>=/^ (e+ l )/2ft ( l-£) /2<^o|/o>=^<^o|/o>.

The cases r=4, 5, 6 are treated similarly. This finishes the proof of Claim (ii).
Let us verify Claim (i). Let a diagram Q)' be obtained from a diagram Q) by an

application of Q 1.1 (see Fig. 3). Each set Lbl (^), Lbl ( ^ ' ) splits into disjoint union of

2 2

B, Bo
Fig. 8.

two subsets BI, B^ (cf. F .̂ 8). The sets B^(^), Bi(^) bijectively correspond to each
other and, obviously, A(^, Bi(^))=A(^, B^ (^/)). Each/eB^) gives rise to two
labellings/i and/^ of^' taking values resp. 1 and 2 on the small curl of 0 ) ' . Obviously,
| /J ̂  1 and || /J| ̂  1. Thus < Qs' \ /i > is divisible by h. On the other hand the diagram
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^}^,i splits off a small simple circled. In A we have h[(P]=0 and therefore
A (^', /i) = 0. Clearly A (^/, /^) = A (^, /). Thus A (^, B^ (^)) = A (^', B^ (^7)). This
shows that A (^) = A (^/). The move 0 1.2 is considered similarly.

Let a diagram Q)' be obtained from a diagram ̂  by an application of Q II. 1. As
above the sets Lbl(^), Lbl(^) split into disjoint union of six subsets B^-B^ in

^^ ^^ 2 *^ 1^2

Fig. 9.

accordance with the values of labellings on the four "border" edges [see Fig. 9 for
B^(^), r= 1, . . ., 6]. As above it is easy to show that A(^, B,. (^)) = A (^/, B,(^)) for
all r. The cases r= 1, . . ., 4 are straightforward. In the case r= 5 one should note that
Bs(^)=Bs(^)=0. In the case r=6 we have Be(^)=0 and the labellings from
B(,(^Q are naturally divided into pairs (/, g) such that A(^\/)= -A(^\ ^) (see Fig. 9).

V f t u v- () -^ U - o^n-^
n A n II

Fig. 10.

Invariance of A under the move Q II. 2 follows: see Figure 10 where s= ± 1 and where
we have used Claim (ii) (cf. [6]). The moves Q II. 3, Q II. 4 are treated similarly.

Invariance of A under Q III is proven in much the same way. The corresponding
sets of labellings split into disjoint union of 20 subsets which should be considered
separately. Two of these subsets are singled out by the condition that the values of
labellings on the six "border" edges are equal to each other and equal to ie [ 1, 2 }. The
other 18 subsets are numerated by triples (r, s, i) e [ 1, 2, 3 }2 x { 1, 2}, the subset corre-
sponding to a triple (r, s, i) being specified by the condition that the r-th inlooking and
the s-th outlooking border edges are labelled by ; and the remaining four border edges
are labelled by 3 - i. As above, the labellings of the border edges may be extended
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to the three "inner" edges in several ways, the corresponding invariants are to be
summed up. Anyway, for each of these 20 subsets we do have the equality
A(^, B(^))=A(^, B(^)); cf. [6], where, in particular, a complete list of labellings of
inner edges is given. This finishes the proof of Claim (i).

To show that (A, A) is a bialgebra we should check that (l(x)A)A==(A(x)l)A and that A
is an algebra homomorphism. Note first for an arbitrary non-empty oriented link
diagram 3)

(9.2.3) (l(g)A)A([^])= ^ A(^,/).
/ 6 Lbis (2)

Indeed, each 3-labelling fe Lb^ (Q) gives rise to two 2-labellings ;==;(/)eLbl(^) and
7 =7 (/)e Lbl (^2). They are defined as follows: the value of; on an edge a ofQi
equals 1 iff(a)=\ and equals 2 iff(d)e[2, 3}; the value of j on an edge a of ^2 ls

f(b)- 1 e { 1 , 2 }. It is easy to show that

<^|/>=<^|0<^|y>.
Moreover, for each zeLbl(^) the formula /i—^./CO establishes a bijective correspondence
between the sets { fe Lb^ (3)) | / (/) = /} and Lbl (3)^ 2)- Therefore, the R.H.S. of (9.2.3)
is equal to

S <^|Q[^,J®A(^2)=(1®A)A([^]).
i 6 Lbl (Q>)

A similar argument shows that the R.H.S. of (9.2.3) is equal to (A®1)A([^]). Thus
(1®A)A=(A®1)A.

To prove that A is an algebra homomorphism it suffices to show for any two link
diagrams 3), 2' that A (^) A (2') = A (0)0)') where 20)' is the link diagram obtained by
putting^ over 3 ) ' . Each pair of labellings /eLbl(^), /'eLbl(^) gives rise to a
labelling ff'e Lbl (3)3)'y. the value offf on an edge of 0)0)' contained in an edge a of 3)
(resp. in an edge a! of Qi') is equal iof(a) [resp. to/'(</)]. It is easy to see that

A (^/, ff) = A (^, /) A (Q)\ /).

It remains to show that the mapping

(9.2.4) (/, /') i-^T; Lbl (Q) x Lbl (^) -> Lbl (0)0)'^

is bijective. Injectivity of this mapping is obvious, let us prove surjectivity. Let
?;!,..., v^ be the self-crossing points of 0)0)' in which Q) interests Q ) ' . Let a^ and b^ be
the edges of Q)W looking into z^. Let c^ and ^ be the edges of 0)2' looking out of
Vi. Assume that a^ c^Q) and b^ d^Q)' for all ;=1, . . ., m. Then a^ and c^ are
contained in a common edge of Q) which lies over the edge of Q)' containing b^ and
di. Let ye Lbl (Q)Q)'). To prove thaty belongs to the image of (9.2.4) it suffices to
show that 7(^)=7'(Cf) and j(bi)=j(d^ for all;. Consider the punctured
diagram Q>\{ v^ . . ., v^}. The labelling j of 3)3)' induces a labelling of this punctured
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diagram. Its values on the inputs c^ . . ., c^ are equal toj(c^), . . . J(c^\ its values on
the outputs a^ . . ., a^ are equal toy(^), . . ., j(a^). Since labellings satisfy the Kirchoff
rule in all self-crossing points, we have 7'(^i)+ . . . +7'(^n)==7<A)-h . . . +7'(c^). By the
very definition of labelling j(a,)^j(Ci) and 7(a,)-y(c,)=7(^)-7(^) for all/. Thus
7(^)=7'(^) and7(&,)=7(^) for all /.

9.3. Remarks. — 1. For each r^ 1 the homomorphism

A^id^-^A)^ . ."(id^A^A^-^A®^^

induced by A is given by the formulas: A" ([<!>]) =1 and for a non-empty oriented link
diagram Q)

^W= ^ A(^,/).
/ eLbln+i^)

2. The projection A -> K [h, h] [0] along the classes of all non-empty links is the counit
of the bialgebra A. I believe that the K [A, ft]-linear additive homomorphism A -> A
which transforms [L] into (-l)11-1^], where £={(a , O(=FX[O, 1]|(^, l-^)eL}, is an
antipode (a conjugation) of A.

3. It seems that there is no canonical lift of the comultiplication in A to a comultipli-
cation in ^ ' . However, if 3F^0, or F is non-compact, or F=S1 x S1 then there is a
comultiplication in ^ depending on the choice of parallelization in F. (All such F are
parallelizable.) Namely, for an oriented link diagram Q) on F denote by r(^) the total
rotation angle of (the tangent vector of) Q) with respect to the given parallelization
of F. We normalize r (2) so that for a small simple circle 0 on F with the conterclock-
wise orientation we have r((P)= 1. The writhe of the diagram 2, denoted by w(^), is
the sum of the signs of the vertices of 2. It turns out that there exists a K [h, ^-linear
additive homomorphism V:j^ -^OK^]^ specified by three properties: V( l )=l (x) l ;
V(^=(x®x)V(^) for all ae^\ for any oriented link diagram Q)

V ([L (^)]) = ^ < 2 | / > (x-i ^ ̂  [L (^ ,)])®(^2 (/) [L (^, 2)])
/ e Lbl (31}

where ^ (/) = w (Q) ̂  ̂  — w (Q) + r (2 ̂  3 _ ^), ;= 1, 2. This mapping V is coassociative and
covers A:A->A 0 2 . However V is not an algebra homomorphism. One may show
that V is a multiplicative homomorphism with respect to multiplication ^ m ̂  defined
by the formula [^^[L^^^'tLL7] where L.I/ is the homological intersection index of
the projections of L, L1 into F. Note that to check the properties of V stated above it
is convenient to use the Kauffman's language of regular isotopy types of link diagrams
(see [7]). In this language one associates with a diagram Q) not the class [L(^)]ej^ but
rather x^^^L^^e^. It should be mentioned that contrary to what was said in [20],
the image of (Perm^ ° V) — V is contained in h j^®^ [h, h] ^ '

Dualizing the comultiplications A, V we obtain pairings which enable us to pair
quantum states and produce thus some other quantum states. This procedure is
especially useful in the case of V since here one may pair linear functionals on ^ with
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different linear coefficients corresponding to multiplication by x in ^. In the case
F=D2 , h=h the pairing dual to V was introduced by F. Jaeger [6], who used it to derive
the V. Jones state models for an infinite sequence of specializations of the Jones-Conway
polynomial.

10. Quantization of Z and Zg

10.1. THEOREM. — The pair (bialgebra A, constructed in Sections 4, 9; homomorphism
p ; A -> V^ (Z), constructed in Section 4) is a reduced coquantization of the co-Poisson
bialgebra V^ (Z). In other words, (A, p) is a quantization of the Lie bialgebra Z.

Proof. - In view of Theorem 4.2 we have to check only that/? is a coalgrebra
homomorphism and a coquantization of the co-Poisson structure in V^(Z). Let Q) be
an oriented knot diagram on F. For any 2-labelling fe Lbl (^) either ||/||<|/| and
A(^, f)ehA®2 or ||/||=|/|=0 which means that/is a constant labelling taking the
same value 1 or 2 on all edges. Thus, A (^) = [^]® 1 + 1 ®[2} mod h A®2. Therefore

(7^)(A(^))=Av(7^]))

where A and Ay are the comultiplications resp. in A and V^(Z). Since classes of knots
generate A, and p is an algebra homomorphism we see that p is also a coalgebra
homomorphism.

To show that p is a co-quantization we will prove that for any a e A

A (a) - Perm,, (A (a)) = h (p®p) ~ ' (v (p (a))) mod h2 A02

where v is the Lie cobracket in V^(Z). As above it suffices to consider the case a=[^]
where ̂  is an oriented knot diagram. To this end we compute A^mod^A®2 .
Associate with each self-crossing point v of ̂  the loop which starts off in v in the direction
of the upper outlooking edge and goes along Q) until the first return to v. Assign to
all edges of Q) lying on this loop the label 1 and assign 2 to all remaining edges
of Q). Denote this labelling by v. Clearly, v -1| v\\ = 1 - (- 1) = 2. This property char-
acterizes such labellings. Indeed if/eLbl(^) and |/|-||/||=2 then/is not a constant
labelling and so 1^|/|=||/||+2^1. Thus |/|=1 which means that f=v for some
crossing point v of D. Denote the set of self-crossing points of Q) by #2. Then modulo
ft2 A02

A(^)=^g)l+l(x^+^ ^ cJ^i](8)[^2L
v e #^

where 8 y = ± l is the sign of the crossing of Q) in v. Therefore, modulo h2 A®2

(10.1.1) A^)-PermA(A(^))=ft ^ s,([^ i]®[^J-[^]®[^ J).
ve #3>
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Note that if a knot diagram 2' 'is homotopic to the trivial knot diagram (9 then the
relation (3.5.1) implies that [^]-[^]eftA and since h[(9]=Q in A we have
h [2'} eh2 A. Therefore we may ignore those terms in the R.H.S. of (10.1.1) which
involve contractible knot diagrams. Thus the R.H.S. is mapped by p®p into
v(p(d)). This finishes the proof.

10.2. BIALGEBRA AQ AND HOMOMORPHISM p^: AQ -> V^ (Zo). Denote by AQ = AQ (F) the
quotient of the algebra A = A (F) by the ideal generated by the class 8 of the trivial
knot. (Note that 8 lies in the centre of A.) The comultiplication A in A introduced in
Section 9 maps 8 into 5®1 + 1®8. Therefore A induces a comultiplication in A() which
makes Ao a bialgebra over K[A, h].

The bialbegra homomorphism p : A -> V^ (Z) maps 8 into { 1} e Z and therefore induces
a bialgebra homomorphism AQ -^V^(Zo)=V^(Z)/{ 1 }V^(Z). Denote the latter homo-
morphism by p^. Theorem 10.1 implies that (A(), p^ is a reduced coquantization of the
co-Poisson bialgebra V/,(Zo). In other words, (A(), p^) is a quantization of the Lie
bialgebra ZQ.

10.3. Remarks. — 1. The algebra A has a non-trivial ft-torsion: ^8A==0 whereas
8A^O. This is an important drawback of the construction, as it is clear from the
discussion in Section 7.4. On the other hand it seems reasonable to conjecture that Ao
is free as the K [h, ft]-module. When F is the 2-disc, or the 2-sphere, or the annulus
this conjecture follows from the results of Section 5. For related conjectures see [11].

2. The quantization (AQ, j^) of the Lie bialgebra ZQ induces a quantization of the Lie
bialgebra Z as follows.

Provide the polynomial ring K[y| with a comultiplication by the formula
y^->y(x)\ + 1®^. It is easy to show that the bialgebra K[j^]®Ao and its homomorphism
into V^(Z) sending y " a , with w^O, aeAo, into [l}npf^(a) make a quantization
ofZ. Clearly ifAo is freee as the K[/z, ft]-module then K[y]®Ao is also free as the
K[h, ^-module.

CHAPTER III.

POISSON BIALGEBRA s^(Zo) AND ITS QUANTIZATION

11. Spiral Lie bialgebras and associated Poisson-Lie groups

11.1. SPIRAL LIE COALGEBRAS AND BIALGEBRAS. — Let g be a Lie coalgebra over K with
the Lie bracket v: 9 -> g®9. Put v1 = v and put for n ̂  2

v"=(idg0("-2)®v)o...o(id3®v)ov:9^9 (g) (n+l ).

We call g spiral if 9 is free as the K-module and the filtration Kerv^Kerv2^ . . .
exhausts 9, i.e. 9= U Kerv". For instance, if the underlying K-module of 9 is free of

n ^ l

finite rank then spiralness of 9 is equivalent to the nilpotency of the dual Lie algebra 9*.
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The dual Lie algebra g* of a spiral Lie coalgebra 9 has the following completeness
property. Let g*^1^2^ . . . be the lower central series of 9*; here Qn+l=[Q*, g"]
for n ̂ 1. Let z^, z^, . . . eg* be a sequence such that for any n^\ all terms of
the sequence starting from a certain place belong to g". Clearly, if aeKerv", then
cfl+l(a)=0. Since g^UKerv" the formula a\—>z^ (^)+z^(^)+ • • • determines a linear

n

homomorphism g -> K, i. e. an element of g* which is the (infinite) sum z^ + z^ + . . . (A
similar argument shows that C\ g" = 0.)

n

A Lie bialgebra is called spiral if it is spiral as the Lie coalgebra. For spiral Lie
bialgebras we shall develop in Section 11.5 a construction dual to the construction of
V.(g).

11.2. EXPONENTIATING SPIRAL LIE BIALGEBRAS. BIALGEBRA s (g). — Let g be a spiral Lie
coalgebra over K. In view of the results of Section 11.1 for any elements x, y of the
dual Lie algebra g* we may take the infinite sum

H(x, ^)=x+^+ . [x, ^]+ - . ([x, [x, y\}+\y, [y, x]])+ . . .

where the R.H.S. is the classical Campbell-Hausdorff series for log(^^) (see [15]). As
usual, the mapping (x, y)\->[x(x, y): g* x g* -> g* is a group multiplication in g*. Here
x~1 = —x and 0 is the group unit. The resulting group is denoted by Exp g*.

The group multiplication 1.1 induces in the symmetric algebra S = S (g) a bialgebra
structure as follows. Since g is free as the K-module the natural imbedding g -> (g*)*
extends to an imbedding of S into the algebra of K-valued functions on g*. Identify S
with the corresponding algebra of functions. Similarly identify S(x)S with the corre-
sponding algebra of K-valued functions on g* x g*. It is easy to show that for any ae S
we have a°|ieS®S. (Indeed, it suffices to consider the case ^eg; in this case out claim
follows directly from the duality between the Lie bracket in g* and the Lie cobracket
v:g-^g®g. For example, if(3eKer v3 and ifv^a^^a^P^y^eg03 then

i

^°^=^®l+l®^+v^ )+ l(S(oc.P.®y,+y.®^p,)).
2 12 i

The algebra S(g) equipped with the comultiplication a\—>a°[i is clearly a bialgebra
over K. It will be denoted by s(g). Heuristically, c(g) is the bialgebra dual to the
universal enveloping bialgebra U(g*).

11.3. THEOREM.—Let g be a spiral Lie bialgebra over K with the Lie bracket
( , ). There exists a unique Lie bracket [ , } in the bialgebra £=s(g) such that (1) the
pair (s, { , }) is a Poisson bialgebra and (2) for any a, b e g c= s

(11.3.1) [a, b]=(a,b)mod C S"(g).
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Theorem 11.3 should be considered from the viewpoint of the theory of Poisson-Lie
groups (see [I], [2], [14]). Though we will not appeal to this point of view in the paper,
I present it here in a concise form. A Poisson-Lie group is a finite dimensional real Lie
group G provided with a Poisson bracket in C°° (G) compatible with the group multipli-
cation G x G -^ G which means that the mapping C°° (G) -> C^ (G x G) induced by the
group multiplication is a Lie algebra homomorphism. The notion of Poisson-Lie group
was introduced by Drinfeld as a global version of the notion of Lie bialgebra. He
proved that the category of connected simply-connected real Poisson-Lie groups is
equivalent to the category of finite dimensional Lie bialgebras over IR. This equivalence
associates with a Poisson-Lie group G its Lie algebra p equipped with a Lie cobracket
dual to the Lie bracket [ , ] in p* such that for any a, beC^ (G)

(11.3.2) d{a,b]=[da,db]

where d is the differential in the unit of G and { , } is the Poisson bracket on G.
Theorem 11.3 establishes a similar correspondence for duals of spiral Lie bialgebras

(not necessarily finite dimensional). Here Exp g* plays the role of the simply-connected
Lie group associated with the Lie algebra g*. The algebra S(g) plays the role of the
algebra of smooth functions on the Lie group. Condition (1) of Theorem 11.3 means
that the Poisson bracket { , } is compatible with the group multiplication in
Exp g*. Condition (2) is a version of (11.3.2). Of course, if g is a finite-dimensional
spiral Lie bialgebra over R then the bracket { , } in c (g) is the restriction of the Poisson
bracket in C°° (Exp 9*) given by the Drinfeld theory.

We will need the following slight generalization of Theorem 11.3. Let Q be a commu-
tative associative K-algebra with unit and with a preferred element h. Let a be a Lie
bialgebra over Q with the Lie cobracket v and Lie bracket < , ). Let a^ be the same
module a provided with the same Lie bracket <( , ) and the Lie cobracket hv. The
group Exp a^ coincides as a set with Exp a* but has a different multiplication

(11.3.3) xy-x+y^ h [x, ^]+ h ([x, [x, ^]]+[y,[y, x]])+ . . .

where [ , ] is the Lie bracket in a dual to v and x, ^ea*. The bialgebra s(a^) coincides
as an algebra with c (a) [and with S (a)] but has a different comultiplication V^. Note
that for each a e a we have

(11.3.4) V^)=a(x)l+l(x)a+(ft/2)v(^)mod © h2 (S1 (0)^(0)).
i \ j ^ i
i+j'^3

11.4. THEOREM. — If a is spiral Lie bialgebra over Q then there exists a unique Lie
bracket [ , } in £=s(a^) such that (1) the pair (s, { , }) is a Poisson bialgebra and (2) for
any a, b e a c s

(11.4.1) {a,b}=(a,b)modh@ S"(a).
n^2
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One may directly construct the bracket { , } in s(c^) from the bracket { , } in e(a)
given by Theorem 11.3; however we will not pursue this line here (cf. [20]).

Theorem 11.4 implies Theorem 11.3: one should take Q=K, 0=9 and h=l. The
existence part of Theorem 11.4 wille be proven in the next Section 12; uniqueness is
easier and will be proven in Section 11.6.

11.5. POISSON BIALGEBRA £^(9). — Let 9 be a spiral Lie bialgebra over K. Consider
the Lie bialgebra a=K[ft](x)g over K[h]. Clearly a is spiral. Denote by £^(9) the
Poisson bialgebra given by Theorem 11.4. Note that as the algebra £^ (9) is just
K[ft]®S(9).

The augmentation aug: K [h] -> K induces an algebra homomorphism s^ (9) -> S (9)
linear over aug. Denote this algebra homomorphism by e. Formulas (11.3.4),
(11.4.1) imply that e is a Poisson bialgebra homomorphism, where the Poisson bracket
in S(9) is induced by the Lie bracket in 9. Moreover, the formula (11.3.4) implies
that (E/, (9), e) is a coquantization of the co-Poisson bracket in S (9) induced by the Lie
cobracket in 9. Clearly Ker^=fts^(9), so the coquantization is reduced.

Note that the Poisson bialgebra £^(9)/(ft— l)e^(9) coincides with the Poisson
bialgebra c (9) described in Theorem 11.3.

11.6. Proof of Theorem 11.4: uniqueness of the bracket, — Assume that the symmetric
algebra S= © S"(a) is provided with a comultiplication A and with two Lie brackets

n^O

{ » }i» { -> }i so tnat tne following conditions hold: (i) the triple S, A, { , }, is a Poisson
bialgebra for i= 1, 2; (ii) for each aea

(11.6.1) A(a)=a®l+l®^mod © (S^S^)
J, k ̂  1

where

S^S^a) for 7^0;

(iii) for each a, be a

{ a , b ] , - { a , b ] ^ e ® S7'
J'^2

We shall show that { , } i = { , }^. This will imply the uniqueness part of Theorem 11.4.
For n ̂  1 put P = © S7. For a, b e S put d(a, b) = { a, b} i - {a, b }^. We shall prove

j^n

inductively the following claim: (^. For any a, be a we have d(a, b)eY1.
Claim (^)^ follows from our assumptions. Assume that Claim (^)^-i holds true and

check Claim (^. Let a, be a. We have

A (a) = ̂ ® 1 + 1 ®a + ̂ (g)^;
q

A (Z?) = A® 1 4-1 (x)& + ̂ ®y
r
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where { d y aq, b^ V ]^ y is a finite collection of certain elements of a. Then

(11.6.2) A(^ ,^ )={A(^) ,A(ZO}i -{A(^A(&)}2

=d(a, b)®\^\®d(a, b)^(d(a^ b)®acl+a^®d{a\ b})
q

+^(d(a,b,)0b'•+b,(8>d(a,bl•))
r

+EW^ b^a^b^a^d^ Z/-)).

Claim (^)^-i implies that

(11.6.3) A(d(a, b))=d(a, &)(x)l + 1®^(<3, Z?) mod © (S^S^).
j+k^n

On the other hand, since d(a, ̂ el""1 we may compute \(d(a, &)) mod © (S^S^)
j+k^n

knowing only the (^-l)-th homogeneous part of d(a,b) and using (11.6.1). This
homogeneous part is a degree n — 1 polynomial over a set of free generators of the
module a. Applying to these generators the formula (11.6.1) we easily see that (11.6.3)
may hold only if this polynomial is equal to zero. Thus d{a, b)eV, which proves Claim
(^),. This implies that { , },={ , ^.

11.7. Remarks. — 1. For a non-spiral Lie bialgebra g the group Expg* generally
speaking does not exist. However, one may define an analogue of the bialgebra £ (g) if
one passes to the category of topological bialgebras and considers instead of S(g) its
completion x S"(g). Theorems 11.3, 11.4 and their proof may be easily generalized

n^O

to the case of arbitrary Lie bialgebras.

2. I briefly describe an approach to the construction of the bracket { , } in
Theorem 11.3 distinct from the one used in Section 12 and closer to the original approach
of Drinfeld[l] to globalization of finite dimensional Lie bialgebras. Let 9 be a spiral
Lie bialgebra over K with the Lie cobracketv. Note that the adjoint action of the Lie
algebra 9* induces a left g*-module structure in (g(x)g)*. The Lie bracket in 9 dualizes
to a 1-cocycle, say, \|/: g* -> (g®g)*. The formula

px _ 1 / px—\ r7 \
^)=———vl^) where e-——= ̂  ————.)

x \ x ^o(7+l)7

defines a mapping ^F: g* -> (g®9)* which is a 1-cocycle of the group Exp 9*, correspond-
ing to \|/. (Note that Expg* and g* coincide as sets.) In particular,
^F (xy) =l? (x) + x ^F (y) for all x, y e g*. For x e g* denote by R^ the right multiplication
y \—>yx: g* -> g*. Then for any a, b e g the value of {a, b ] e S (g) on any x e g* is given
by the formula

(11.7.3) {a, b ] (x) = ̂  (x) (d, (a ° RJ®^ (b ° R,)),
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where d^ is the formal differential in Oeg* so that d^ (^°R^), d^ (f t°R^eQ. The R.H.S.
of (11.7.3) may be computed as follows. Let ^ ^ (adjQ1 (x) be the sum of those terms

i^o
of the Campbell-Hausdorff series which include x in degree 1. In particular ro=l ,
fi = - 1/2, ^ = 1/12. Then the R.H.S. of (11.7.3) equals

/ {d, {a - R,) ° (ad xY)®{d, (b ° R,) ° (ad xY)\
w (x)[ > ————————————————————————

\^o ^!0-+7+1)! 7
/ (^(adxr^^adxr^

=^00 L Vi————. . , , . . . , ^ , — — — —\i,j,k,i^o ^O+7+l)! /

These calculations lead to an explicit though rather complicated formula for {a, b }. For
each w, n ̂  0 present vw (a) and v" (b) as finite sums

^(g)...®^1 and ^^ l®.. .®^+ l

s t

where ^, ^p e 9. (Here v° = idg.) Put

^,n(^ ^)=S^^2 . • '<^bf . . . ̂ [^+1, ̂ ^leSCg)
s, t

where [ , ] is the Lie bracket in 9. (In particular, Uo^o(a, b)=[a, b].) Then

{^b}= Z (l i .^\^(a^.
m,n^0 \i=0 j=0 ^ ' ^ - V ^ ' l^!/

Here are the terms of this expansion with m, n ̂  2:

(11.7.4) k &]+(l/12)^,i(^, &)+(1/720)^,2(^ ^)

If v3 (a) = v3 (ft) = 0 then { a, b} equals (11.7.4).

12. Poisson bialgebras y and E.
Proof of Theorem 1 1 . 4

In this section the symbol Q denotes a commutative associative K-algebra with unit
and with a preferred element h.

12.1. POISSON BIALGEBRA ̂ . - Let a be a module over Q. Set ^= © a®"". The
m^O

aim of this subsection is to provide ^~ with a canonical bialgebra structure. This
structure is dual to the bialgebra structure in the tensor algebra T(a*) described in
Sections 1.3, 7.5. If a is a Lie algebra then there is a natural Lie bracket in ^T making
ST a Poisson bialgebra. This bracket is dual to the Lie cobracket in T (a*) constructed
in Lemma 7.5.
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Provide y with a multiplication as follows. The product of ^(x). . . (x^ea^ and
^i®. . . ®^ea®" is defined to be ^(x)^(x). . . ®c^ where a runs over permutations

<7

of the set { 1 , 2, . . ., m + n ] such that

a(l)<a(2)< . . . <a(m);CT(w+l)<a(m+2)< . . . <a(w+^),

and where c,=a^-i^ if a~l(i)<m, otherwise ^.=^-i^_^. (The sequence
c^ • ' ' . c^+n is called a mixture of ^i, . . ., a^ and Z?i, . . ., &„.) Denote this multiplica-
tion by °. Clearly, (^~, °) is a commutative algebra. Note that the rule

m

^i®. . •0^^(m!)-1 n^^^S^a)
i= i

defines an algebra homomorphism ^ -> S (a). It is denoted by symm.
Provide y with a comultiplication diag: ̂  -> y®^y by the formula

m

diag(^(x). . .®a^)= ^ (^i®. . .®^)®(^+i®. . . (x)aj.
1=0

Here it is understood that for ;=0, a^®. . . 00^= 1, and, similarly for ;'=m,
^•+i® . • . (^^ 1- I1: ls straightforward to verify that ^~ is a bialgebra.

We need the following notation. For a sequence a^ . . ., a^ea and for integers i,j
with 1 ̂ i^j^m put ^•=<^00^+i00 . . . OO^-.In particular, a^=a,.

Assume now that a is a Lie algebra. We provide ^~ with a bracket { , }:^~®Q^~ -> ^~
by the formula

(12.1.1) [a,®.. .®^,^i®.. . (g)^}

= E (^l,^-loz?l,J•-l)®k•.^]®te+l,mo^•+l,n)
l^i^w
1^J="

where [ , ] is the Lie bracket in a. In particular, {a® 0 , ^}={Q, ^}==0 and for
^, & e a c= ^~ we have {a, b} = [a, b}.

12.2. LEMMA. — ^T with the braket [ , } is a Lie algebra. The bialgebra ^ with this
bracket is a Poisson bialgebra.

Proof. - The skew-commutativity of { , } follows from the skew-commutativity of
[ , ] and commutativity of °. Let us check the Jacobi identity

(12.2.1) [[a, b], c\ + P, c], a} + [[c, ^], b} = 0

for a=a^. . .®a^ b^b^®. . .00^, c=Ci®. . . ®^. Note that

(12.2.2) [[ ,̂ ^], c]=2:o+Ete ^ ^)+Ete ^)-E(6; ̂  c)-E(^; ^ ̂
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where

m n q

^0= E I E (^f-l0^,,-!0^-!)®^^], ^]®(^+i,^°^+i ^°C^i ,),
i = l j = l k=l

^(a;b, c)= ^ (^-i0^!,,-!0^)
1 ^Kf '^m
1^7<J"^"
l^fe^'^

®[^^•]®(^+l,^-lo^•-n., 'o^+l.fe'-l)

®[^ cJ®(^+^°^^°c^J.

The formula (12.2.2) implies (12.2.1). The identities (0.3.2), (7.2.1) follow directly
from definitions.

12.3. SUBMODULE E OF ^. - Let a be a Lie bialgebra over Q with the Lie cobracket
v :a ->a®Qa . For integers n>i^\ denote by a? the automorphism of a®" permuting
the f-th and the (;+ l)-th tensor multiples so that

cr?(^i®. . .®^)=^i,f-i®^.+i(x)^(g)a,+2^.

Denote by v, the homomorphism a®^"^ -> a®" defined by the formula

v,(^i®. . •®^-i)=ai, ,-i®v(a,)®^+^_i.

For an element a of ^ we shall denote by "^ its n-th homogeneous part so that
a=oa^la-}- . . . and "ae a®" for ̂ 0. Put

E = { ^ e ^ M<3-a^(^)=^v,("- l^)forall^>^l}.

Clearly E is a submodule of ST and Q = a00 c E.

12.4. LEMMA. — Lei a be a spiral Lie bialgebra over Q. Then E=E(a) is a Poisson
subbialgebra of ^~. The homomorphism symm g; E -> S (a) is an algebra isomorphism
which transforms the comultiplication in E in the comultiplication V^ in S(a) (see
Section 11). Ifaea then (symmie)"1 (a)=a^ha' with a ' e © a®".

n^2

Lemma 12.4 shows that symm g is a bialgebra isomorphism E -> s^(a). Lemma 12.4
implies Theorem 11.4. Indeed, the reduction of the Lie bracket in ^ to E may be
transferred to s^(a) by means of symm. This makes c(a) a Poisson bialgebra. The
condition (2) of Theorem 11.4 follows from the last claim of Lemma 12.4.

Lemma 12.4 will be proven in Section 12.17 using preliminary constructions and
results of Sections 12.5-12.16. In these sections a denotes a spiral Lie bialgebra over
Q with the Lie cobracket v. Symbols ^ and E denote the objects associated with a as
above. The symbol ® denotes tensor product over Q. We denote by S the symmetric
algebra S (a) and by V the comultiplication V^ in S constructed in Section 11.3. Denote
by T the tensor algebra T(a*) over Q (cf. Section 1.3).
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For any Q-module W and any aeW, x e W* = Horn? (W, Q) we put
< a | x ) = x (a) e Q. We have the pairing a, x\—>(a, x ) : <^~ x T -» Q such that if
a^ . . ., a^ea, x^, . . ., x^ea* then the expression <^ i®. . . (8)^,|xi®. . .®x^) is

m

equal to 0 if m +n and to ]~[ < ̂  | X f ) if w = n.
1=1

12.5. ALGEBRAS Sv AND (8(8)8^. - Put S^S^a) so that S=S°©S1®... Put
5^ = © (S")*. The Q-module Sv is the submodule of S* consisting of homomorphisms

n^O

S -> Q which are non-zero only on a finite number of S".
The comultiplication V=V^ in S satisfies the following condition: for each n^Q

(12 .5 .1 ) VCS^c © (SW).
i+j^n

Indeed, for n = 1 this is equivalent to the absence of free term in the Campbell-Hausdorf
series; the case n>\ follows by multiplicativity of V. The inclusion (12.5.1) implies
that for any x, y e S v the homomorphism (x®y) V: S -> Q also belongs to S v . Therefore,
the formula (x, y)^->(xQ)y) V provides Sv with a structure of associative algebra. The
projection S -> S° = Q is the unit of this algebra.

The comultiplication V in S induces a comultiplication V®V in SOOS by the usual
formula (Vg)V)(^®ft)=P2,3(V(^)®V(&)) where^.^eS and P ^ ^ is the permutation
homomorphism a^a^a^a^a^a^a^a^ As usual V®V makes the algebra
S®S a bialgebra. The inclusion (12.5.1) implies that for any m, n

(12 .5 .2 ) (V^VKS^S^c ® (S^S^S^S1).
i, j , fc, i

i+j+k+l^m+n

Set (S^S)^ ® (S^S")*. The inclusion (12.5.2) implies that the comultiplic-
m, n^O

ation VOOV induces a multiplication in (SOOS^ which makes (S®S)V an associative
algebra with unit.

12.6. LEMMA.—The natural homomorphism ^ : S V ® S V ^(S®S)V is an algebra
homomorphism. The algebra multiplication m: S®S -> S induces an algebra homomorph-
ism m" :S" ^(808)^

Proof. - Let a, beS. Then V(a?) and V(fe) are certain finite sums, say, ̂ a,®a1 and

^ &,®fr7 with ^,, a\ bj, b3 e S. If x, ^, z, ^ e S v then
j

< a®b | f(x®^) ;(z®0 > = S < a^a^b^V \ i{x®y)®i(z®t) >
i » j

=S^(a().^'(ai)^(^•)f(^)=<a|^><^)|zQ=<fl®^»|^•(^®^0>.
l.J

This implies the first claim.
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It is clear that for any xeSV we have xow6(S®S)v . According to definitions

<^®&|mv(^)>=(^)(^)=<V(^)|x®^>

={^a,b,®aibj\x®y}=^{a,®b^(x)}{aiW\m'/{y)}
i, J i, J

= < ?2, 3 (V (^)®V (ZQ) | m v (x)®m v (^) >

= < (V®V) (a®b) \m" (x)®^ (y) >

^^x^lm^.x^Cy)).

Thus, m v (xy) = m v (x) w v 0).

12.7. HOMOMORPHISM ^: T -> Sv . - For xea* denote by g(x) the Q-linear additive
homomorphism S -> Q which sends all S" with n 1=-1 into 0 and sends a e a into
(^|x)eQ. Clearly g^eS^ This mapping xi-^g(x): a* -> Sv uniquely extends to
an algebra homomorphism T -> Sv denoted by g.

12.8. LEMMA. — The following diagram (in which A is the canonical comultiplication in
T sending xea* into x®l + l®x) is commutative

9 ^
T -> S" \A! (S®s)\

0®flr
T®T-^SV®SV ^

i

Proof. — In view of Lemma 12.6 it suffices to check commutativity for generators
xeg* ofT. Let a, beS. According to definitions

{a®b\m-/(g(x))}={ab\g(x)}={a\x}Qb^{b\yya

=<a®^|^(x)®l+l®^(x)>=<^®fc| ; (g®g)A(x)>.

(Recall that °a, °b is the 0-th homogeneous part of<a, b.) Thus ̂  ̂ =;(^®^)A.

12.9. THE HOMOMORPHISM ^v : S ̂  ̂ . - Put y=^^n. The elements of 3~ are

series °a+ la+ . . . where ^ea®". Clearly, ̂  contains ST as the subset of finite series.
Note that the multiplication in y introduced in Section 12.1 extends to ^ in the

obvious fashion and make ^ an algebra over Q. The pairing ( | ): y x T -> Q also
extends to the pairing ( | ) : ST x T -> Q defined by the formula

< o a + l < 3 + . . . | x>= ^ <"^ |x>.
n^O

(The latter sum is always finite.)

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



678 V. G. TURAEV

The comultiplication V in S gives rise to algebra homomorphisms V": S -> S® (n+1) , n^ 1
where V1 = V (c/. Section 9.3.1). Denote by q the projection S -> a along © S".

n^l

For a e S put

(12.9.1) g'/(a)=oa+q(a)+ ^ ^"(V"-1 (a))e^.
n^2

Here °aeQ and ^"(V""1 (a^ea®" for ̂ 2.

12.10. LEMMA.—For any aeS, xeT

(^(^^(^(x)).

Proof. — Let x=Xi®. . . ®x^ where x^, . . ., x^ea*. Then

<^|^(x)>=<^|g(^)g(x,)...^(^)>

=<Vn- l(^)|^(xO®...®g(x„)>

=(q®n(yn-l(a))\g(x,)(S).^®gW)
^^®n(Vn-l^|^(g^^^^^v^^y

12.11. LEMMA. — g " is an algebra homomorphism.

Proof. — Let a, beS. The equality g " (ab)=g^ (a)g^ (b) is equivalent to the assertion
that for any x^, . . ., x^ea*

(12.11.1) <g- (^)|x, . . . ̂ >=<^ (^^v (b)\x, . . . ̂ >.

In view of Lemmas 12.10, 12.8 and the definition of m v the L.H.S. of (12.11.1) equals

{ab\g(x, . . . ̂ ^(x^m- (g(x, . . . ̂ ))>

=<^|fe®g)A(^...x,)>

^ <^|^^...x^)>.<&|g^...^J>
l=(ll, ..., lr)

r=0-l, ..., Jn-r)

where i runs over all subsequences of the sequence 1, 2, . . ., n and i denotes the
complementary subsequence. The latter expression equals the R.H.S. of (12.11.1)
because of the definition of multiplication in S~ and Lemma 12.10.

12.12. LEMMA.— ̂ (S)c y.

Proof. — Let ^, ^? • • • • > ^n be n independent variables. Applying (11.3.3) in the
iterative manner we get a formal Lie series (. . . ((^ ^2)^3) • • - )^«- Consider the degree
n monomials of this series which contain each of variables ^, . . ., ̂  exactly ones. Let
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the sum of these monomials be

2^^1-^0(1)9 lS<T(2)? • • • ? [^(n-l)? S(T(M)J • • • JJ
CT

where a runs through all permutations of the set { 1 , 2, . . ., n] and o^eQ[ft]. The
definition of V: S -> S®S implies that for any a e a and any n ̂  2

(12.12.1) ^(^(^Ea.ajv"-1^))
<y

where a^ is the permutation <7^® . . . ®^I-^^(D® • • • ®^o(n) m S0". Since a is spiral
the formula (12.12.1) implies that the sum in (12.9.1) is actually finite for any
aea. Thus ^v (a)c=^~. Since ^v is an algebra homomorphism and a generates S, we
have^ (S)c^.

12.13. LEMMA. — The homomorphism g^ is a bialgebra homomorphism.

Proof. — Since g " is an algebra homomorphism we have to check only that
(^(^^^(fl^diag^ (a)) for any aea. This is equivalent to the equality

(12.13.1) <te v®g v )V(^) |x®^>=<diag(g v (^)) |x®^>

which should hold for arbitrary x,^eT. Lemma 12.10 implies that the L.H.S. of
(12.13.1) equals

^(a)\g(x)®g(y^=<a\gWg(y))=(a\g(xy))=(gy(a)\xy)

Since the multiplication in T is dual to the comultiplication diag in y', the latter
expression is equal to the R.H.S. of (12.13.1).

12.14. LEMMA.— ̂ (S^E.

Proof. — Let us show first that for any x, y e a *

(12.14.1) g(xy-yx-h[x,y])=Q.

For this it suffices to show that for each a e S

(12.14.2) <a\g(x)g(y)-g(y)g(x)y=h(a\g([x,y])).

For aeS" with n+1 the R.H.S. of (12.14.2) is zero by the definition of g. The L.H.S.
is also zero: for ^==0 this follows from the equality V(^)=^(x)l; for n'^3 this follows
from the inclusion ^^(^^©(S^S7) where ;+y^3, and for n==2 this follows from the
equality V (a^ a^) = a^ 0a^ + a^®a^ + b where a^ a^ea and b e ©(S^S7) with i+j^ 3. If
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a e S1 = a then (11.3.4) implies that

<a\g(x)g(y)-g(y)g(x))=^(a)\g(x)®g(y)-g(y)®g(x))

= (fi/2) < v (a) | g (x)®g (y) - g W®g (x) >

== (h/2) < v (a) - Perms (v (a)) \ g (x)®g (j0 >

=h(v(a)\g(x)(S)g(y))=h(v(a)\x®y)

=h(a\[x,y})=h(a\g([x,y])).

Since g is an algebra homomorphism, (12.14.1) implies that g annihilates the two-
sided ideal of T generated by [ x y - y x - h [ x , y] |x, y e a * ] . In view of Lemma 12.10
for any aeS, any x^x^, . . . ,x^ea* and any i^n- 1 we have

<^ v(^) |^ l ,n- x l , f - l®• x l •+l®^®^+2,n- f t x l , f - l®[^,^+l]®^+2,n>= o•

This is equivalent to the inclusion ^v (S)c:E.

12.15. LEMMA.— Ifaea then g " (a)=a^haf with a' e © a®" and symm (a') =0.
n^2

Proof. - It follows from the definition of the polynomials o^ which enter into
(12.12.1) that they are divisible by ft in Q [K\. A comparison of (12.9.1) and (12.12.1)
shows that to prove the Lemma it suffices to prove that symm^v"'1 (a))=0 for all
n ̂  2. This is, however, obvious, since v is skew-symmetric.

12.16. LEMMA. — The homomorphims g " :S->E and symm \^ are mutually inverse.

Proof. - Lemmas 12.14 and 12.15 show that symmogy=id. Thus it suffices to
prove that symmlg is injective. Let ^eEOKer(symm). Clearly, °a=Q. Assume that
^=0 {orj<n and prove that "0=0. Since for all i<n

na-ani(na)=hVi(n~la)=0,

"a is a symmetric element of a0". Since symm ("a) = 0, "a = 0. Thus, a = 0.

12.17. Proof of Lemma 12.4. - Lemmas 12.13 and 12.16 imply that E is a subbi-
algebra of ^F. Lemmas 12.15 and 12.16 imply all remaining claims of Lemma 12.4
except that E is a Poisson subbialgebra, i. e. that [E, E]c=E. Let us prove this. Let a,
b e E. The bracket [a, b] is calculated as follows. Both a and b should be presented as
sums of certain elements of type a^®. . . (x)a^ with a^ . . .,a^ea (resp. b^®. . . ®b^
with &i, . . .,^ea) and then one should apply (12.1.1). Thus for each r^O the r-th
homogeneous term r^, b} of [a, b] is a sum of several expressions of type (12.1.1) where
w + ^ = r + l . For integer s=\ denote by n(r, s) the sum of those expressions which
entry this decomposition of r^, b] and which have i+j=s-\-\ so that the term [a^bj\

r

stays on the s-ih place. Thus, r^, b\== ^ \i(r, s). Fix integers r>k^\. We shall
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prove that

(12.17.1) (1 - aQ (r^, b]) = h v, (r- 1^, &]).

It follows from the inclusion a, b e E and from the definition of the multiplication ° in
^F that for any s with r^s^k-\-l

(12.17.2) (l-a;;)0i(^))=ftv,0i(r- U-l)).

Similarly, for any s with k-\^s^\

(12.17.3) (l-oD(H(^))=ftv,Oi(r-U)).

Finally,

(12.17.4) (l-oD(H(r,fe)+H(r,fe+l))=ftv,(^(r-l ,fe)).

This follows from (7.1.2) and the obvious fact that if v(ft)=c-Perm^(c) then
av(b)=ac-Perm^(ac), where a, bea and cea®a. Summing up (12.17.2-12.17.4) for
^= l , . . . , rwege t (12 .17 .1 ) .

13. Topological quantization of e^ (Zo)

13.1. THEOREM. — The Lie bialgebras Z and Zg are spiral.

Proof. - We apply the following obvious criteria: if a Lie coalgebra 9 with the
Lie cobracket v has an increasing filtration /o <=/i c . . . such that 9 = U /n and

n
n-1

^/n)^ Z/»8)/n-i-i for all ̂ 0 then g=UKer(v"). This implies that Z and Zo are
i=0 n

spiral: take/,, to be the submodule of Z (resp. of Zo) generated by the homotopy classes
of loops with ^n self-intersections.

13.2. THEOREM. — Put Ao=Ao(F) (see Section 10.2) and e=e^(Zo). There exists a
canonical bialgebra homomorphism p^: AQ -> e w/»cA is linear over the projection
K [A, ft] -> K [ft] w;7ft kernel generated by h and which is a reduced quantization of the
Poisson bialgebra e. •

In particular, this Theorem gives a geometric interpretation of the bialgebras e^ (Zo)
and £ (Zo) in terms of links: in the category of K [ft]-bialgebras s^ (Zo) = Ao/h AQ and in
the category of K-bialgebras s (Zo) = Ao/(ft AQ + (ft - 1) Ao).

In the remaining part of Section 13 we construct p^ and show that p^ is a quantization
homomorphism in the category of bialgebras. In the next Section 14 we introduce an
invariant of oriented trees which is used in Section 15 to show that Ker^=AAo. This
will finish the proof of Theorem 13.2.

The class in Ao of an oriented link Lc:Fx[0,l] will be denoted by [L]o. The
comultiplication in Ao constructed in Section 10.2 will be denoted by A.
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13.3. HOMOMORPHISM / : AQ -> ̂ . — Let ^ be the K [ft]-module

© (K^Zo^Ktft]® © Z^
n^O n^O

provided with the bialgebra structure as in Section 12.1. We first construct a homo-
morphism / '. Ag —> ^F linear over the ring homomorphism h i—> 0: K [/z, h] —> K [h]. This
will enable us to define p^ to be symm ° / : A() -> 8.

To construct / we need an auxiliary additive homomorphism q: AQ —> K |7i](x)Zo linear
over the projection h\—^0:K[h, h]->K[h]. For an oriented link L(=FX[O, 1] with ^2
components or for L=0 we put ^([L]o)=0. For an oriented knot Lc=Fx[0, 1] we
define ^([L]o) to be the class (oc)o of the loop a parametrizing the projection of L into
F. It is easy to verify that the formula [L]o ^—> q ([L]o) does define a linear homomorphism
q: Ao -> K [ftJOOZo. This homomorphism induces for each n ̂  0 an additive homomorph-
ism ^rA^-^K^Zo)0" linear over the projection K[h, h]-^K[h]. In particular
q®° is just this projection.

The comultiplication A l A g - ^ A ^ 2 gives rise to an iterated homomorphism
A": Ao -> A^ ( n + 1 ) for each n ̂  1 (see Section 9.3.1). Denote by A° the identity mapping
AQ —> AQ and by A~ 1 the K [h, ̂ -linear homomorphism Ao —> K [h, h] sending [L]o into 0
if L ̂ 0 and sending [0]o into 1. (It is easy to see that A"1 is a counit of the
bialgebra Ao.)

Put

/^ © ((^A^^Ao^^.
n^O

In particular, / ([0]o) = 1 • Since q (h Ao) == 0 we have / {h Ao) = 0.
We will use the following explicit formula for / . Introduce for each non-empty

oriented link diagram Q) and for each n^\ a subset Lbl^(^) of Lbl^(^) consisting of
/z-labellings / such that | /1 = — 1 | / || and all the link diagrams Q) ̂  i, . . • , ̂ / , n are non"
empty knot diagrams, i. e. each of them has exactly 1 component. Put
IXIo = [L (^)]o e Ao where L (Q) is the link presented by Q). Then

</([^]o)= S ^»(A(^,/)).

More explicitly,

(13.3.1) ^([^U-S S (-l^l-^l^^o®...®^^
n^1 f eLbl?(^)

where for a knot diagram d we denote by ^)o ^e class in ZQ of the underlying loop
inF.

Note that the minimal n with Lbl^(^)^0 is just the number / = = | ^ [ of components
of ^. The set Lbl^° (Q) consists of /! labellings which are constant along the components
of Q) and take different values on different components.
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13.4. LEMMA. — / is an algebra homomorphism.

Proof. — Clearly A" is an algebra homomorphism for all n. The homomorphism q is
not multiplicative. Indeed, for any oriented links L^, L^ciFx^, ! ] the value
^([LJol^D ls non-zero if and only if one of these two links, say, L, is empty and the
second one, i. e. ^3-1 is a non-contractible knot in which case
^([LiJoP-^U^^Ls-jo)' Note also that each ^-labelling/of a link diagram Q) which
does not attain certain values ;\, . . . , ^ e { 1,2, . . .,n] naturally gives rise to a (n—r)-
labelling/of Q) with (^|/)=(^|/ ') (and vice versa). Combining these observations
together one easily computes that for any non-empty oriented links L, L' and any n ̂  1

n- l

^n^-i([y,[L%))= ̂  ^(A'-^tL^-^^-^A"-'-1^^))
r= 1

where ° denotes the multiplication in ^. Therefore, / ([Uo^o^ f Wo)0 / ([^o)'
In case where L or I/ is empty the latter equality is obvious. Thus, / is an algebra

homomorphism.

13.5. LEMMA. — / is a bialgebra homomorphism.

Proof. - We must show that for any oriented link diagram Q)

(13.5.1) diag (/ ([^]o)) = ( / ® / ) (A ([^D)

where diag is the comultiplication in ^. If Q) = 0 then both sides of (13.5.1) are equal
to 1. Let Q) + 0. Since / ([0]o) == 1, / (h Ao) = 0, we have

(13.5.2) (^®^)(A([^]o))

= I < ̂  I / > / ([^f, iW/ ([̂ , 2lo)
/ e Lbl (3i)

Z < ̂  I / > </ ([^, i]o)®^ ([ ,̂ Jo) + / ([^]o)® 1 + 1 ®^ ([^U
/ e Lbl (2)

I J 1 = - 1 1 / 1 1 ^ 0

Each pair of labellings gieLbl^(^i), g^ e Lbl^ (^ 2) g^68 rise to a labelling
^ e Lbl^ + „ (^) whose value on an edge a of Q) equals ̂  (<2) if/ (a) = 1 and equals m + ̂ 2 (^)
if/(^)=2. Clearly|g|,=|g^+ ^ |e+|/|s ^or s=+ , -and

1 ^ 1 1 = 1 1 ^ IHM+
Therefore

<^ |^>=<^ |^><^ |^><^1 /> .
It is easy to see that for any m, n^l the rule (^1,^2)'-^ establishes a bijective
correspondence between the disjoint union of sets Lbl^ (^ i) x Lbl^ (Q) ̂  2) where/varies
through all elements of Lb^^), and the set Lbl^+J^). The subset Lbl^^(^) corre-
sponds to the disjoint union of the subsets Lbl^(^ i) x Lbl^(^ 2) where/varies
through elements of Lbl(^) with |/|= -|| /1|^0. This implies that computing the
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R.H.S. of (13.5.2) via the formula (13.3.1) we get

S E <^>K^,i>o®...®<^>o}
^"^l ffeLblS.+^(^)

®{<^,.+i>o®...®<^,^>o}

+^([^]o)®l+l®^([^]o).

The latter expression is obviously equal to diag(^([^]o)).

13.6. DEFINITION. — Put e = s^ (Zo) and define p^ to be symm ° / : Ao -> s.

13.7. LEMMA. — /?,, (Ao) = s.

Proof. — Let a be a generic non-contractible loop on F with n self-
intersections. Choosing in an arbitrary way an upper branch in each self-intersection
we obtain a diagram of a knot L^ with n self-crossings. It is easy to see that
/^([LJo)=<a>o+M where ueS(K[h]®^o) is a polynomial over certain < a i > o ,
< 0(2)0, . . . where o^, o^, . . . are loops on F with ^(n-1) self-intersections. In particu-
lar, if n==0 then /^([LJo)==<a)o. Inducting on n and using the multiplicativity of p^
we get < a >o e Im^. Thus, ̂  (Ao) = s.

13.8. LEMMA. —Let E=E(K[ft](g)Zo)c=^ (see Section 12.3). 77 ;̂ (i) ^/(Ao)=E;
(ii) ̂ : Ao -> E ^ ^ quantization of the Poisson bialgebra E.

Since symm: E -> s is an isomorphism of Poisson bialgebras, Lemma 13.8 implies that
p^ is a quantization of 8.

We will prove Claim (i) of the Lemma immediately and Claim (ii) in Section 13.11
using preliminary results of Section 13.9, 13.10.

Proof of Lemma 13.8, Claim (i). - Let L be an oriented link in Fx[0, 1] presented
by a diagram 2. Put a=/([L]o). It L=0 then a=\eK Let L^0. We must
show that na-^(na)=h\i(n~ld) for all n>i^\ where v is the K[fi]-linear extension of
the Lie cobracket in Zo. Fix the numbers n>i^ 1.

Note that each cutting point of a labelling / e Lbl^ (2) is incident to four edges of 2
on which / takes two distinct values. Let G be the subset of Lb^ (^) consisting of
/2-labellings / such that there is no/-cutting point for which the pair of values of/on
the four incident edges would be {; , f+ 1}. Put G° = GC\ Lbl^ (^).

For each/ eLbl^ (2) we define a mapping/': Edg (2) -> { 1 , . . ., n} to be the composi-
tion of/: Edg(^) -> {1, . . . ,72} and the transposition permuting ; with i-\-1. If/eG
then // e G and A (^, /') = a? (A (^, /)). Also, if/ e G° then // e G°. Therefore

(13.8.1) ^ A(^,/)-a?( ^ A(^,/))-0.
/ 6G° / 6G°

Put H = Lbl? (^)\G°. Thus, / e H iff/ e Lbl̂ ° (^) and there exists at least one cutting
vertex v(f) of Q) such that/takes the values { ; , ;+ !} on the incident edges. Because
of the condition | /1 = -1| /1| such a vertex v{f) is unique. Denote its sign± 1 by e^.
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With each geLbl^_i(^) we associate a subset H(^) of H. It consists of/eH such
that for any edge d of Q) either f(d)=g(d)<i, or g(d)^i and f(d)e[i, ;'+!}, or
/(J)=^(fif)+l^/+2. Since ̂  , is a knot diagram the formula / \-> v (/) establishes a
bijective correspondence between H(^) and the set of self-crossing points of
3) i. Moreover, according to the definition of the Lie cobracket v

v«^->o)= E £/«^,.>o®<^/,^i>o-<^,^i>o®<^,i>o).
f 6H(<7)

For any/eH(g) we have | / |=|^|+1 and(-l) ' / I -=£^(- l ) '^ - . Therefore

(13.8.2) q^( E (A^^-a^A^/^-ftv.to^-^CA^,^))).
/ e H ( f f )

Note finally that the sets H(^) corresponding to various geLbl^_i(^) do not overlap
and cover the whole set H. Therefore, summing up (13.8.1) and (13.8.2) where g
runs over Lbl^_i(^) we get na-an,(na)=hv,(n~la). Thus ^(Ao)c=E. Since
symm \^: E -> s is a bijection, Lemma 13.7 implies that / (Ao) = E.

13.9. AUXILIARY DEFINITIONS. - Let r be a finite oriented graph. The set of vertices
of r will be denoted by v(T). Each oriented edge of F leading from a vertex a to a
vertex b will be somewhat abusively denoted by ab. By an order in r we mean a partial
order in v(T). An order > in F is said to be compatible with the orientation of the
edge ab if a>b. Denote by Ord(F) the set of total orders in r compatible with the
orientations of all edges. [Note that a total order in F is essentially a bijective mapping
z;(F)-^{l ,2, . . .,n] where n= card z;(F).]

By a tree we shall mean a connected finite graph without cycles.

13.10. LEMMA. — Let r be a finite oriented graph. Let n ̂  2 and a^ . . ., a^ be certain
(distinct) vertices of Y cyclically connected by oriented edges a^a^a^a^, . . .,a^a^. Let
r^, . . . ,r^ be the same edges numerated in an arbitrary way. Let for i=\, . . .,n, Y\ be
the oriented graph obtained from Y by eliminating the (open) edge r, and inversing orient-
ations in FI, . . .,^-1. IfY\ is a tree then

n

(13.10.1) ^ (-iycard(0rd(r0)=0.

Proof. - Since Y\ is a tree the initial graph F is the cycle a^a^a^a^, . . .,0^1 with
some disjoint trees attached to the vertices a^ . . .,^. Denote the tree attached to a,
by T^. More precisely, T^ is the connected component of a^ in the graph obtained from
r by eliminating the edges ^._i a, and a,a^^. Note that if Y\ is a tree then Y\ is a tree
for all i.

For i= 1, . . .,n consider a total order co, in T^ compatible with the orientations of all
edges of T,. Then (o=(c0i, . . . ,o)^) is a partial order in Y\ for each i. Let Ord^(r[) be
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the set of total orders in F^ compatible with co and with the orientations of edges. Put
n

^(r,co,r)= ^ (-iycard(Ordjn)).
1=1

It is evident that the L.H.S. of (13.10.1) is equal to the sum of e(F, co, r) over all
possible sequences co=(c0i, . . .,o^). We shall prove that e(T, co, /-)==() for all co. This
will imply (13.10.1).

Show first that e (F, G), r) does not depend on the choice of r, i. e. does not depend
on the numeration of edges a^a^, . . .,<^^. It suffices to show that for the sequence t
obtained from r ^ , . . . , ^ by the exchange of fy and r^.+i we have
e (F, co, r) = e (F, co, t). Clearly, for i^j, 74-1 r, = F\. Hence we have to show that

card Ord, (P;.) + card Ord, (F^,) == card Ord, (F? + card Ord, (T^,).

Both sides are easily seen to be equal to the number of total orders in v (F) compatible
with ©i, . . ., co^, with orientations of the edges ^.+2, . . . , / - „ and with reversed orientations
in r^ . . ., F J . Thus e (F, co, r) = e (F, co, Q.

We show that e (F, co, r) = 0 by the induction on card v (F) - n. If card v(T)=n then F
is the cycle a^a^ . . .,<^i without any additional edges or vertices. (Of course, co is
irrelevant here.) To compute e (F, co, r) we take

r^=a^a^r^a^^ • • -^n^^r

Orientations of edges induce the following partial order in v (FQ = {a^ . . ., a^}:

(13.10.2) ^.>^_i> . . . >a^ ^+i>^ .+2> • . • >a^>a^

The number of total orders compatible with this partial order is clearly \ } Thus
\ / -1 /

^(^ ,co , r )=^(- l ) l f ' 7 ~ l )=-( l - l )" - l =0.
.=1 \^ ' -1/

Now we proceed to the induction step. Note that for given co==(c0i, . . .,co^) the set
Ord^(n) does not depend on the way in which edges of T .̂ connect the vertices of
T^. Therefore, e(T, co, r) will not be changed if we rearrange the edges ofT,, i= 1, . . . ,n
so that each T; is a segment, i. e. edges of T .̂ connect vertices successively in accordance
with the total order co^. The initial and final vertices of this segment-type tree are
respectively the maximal and minimal elements of ?;(T^) with respect to co^. Denote
these vertices ofT^ by B, and b,. Clearly, B^^.^.^.

If Bi=0i=bi for all ;' then cardz;(r)==^ and we are done. Assume that b^a- for
some j. Denote the set [j = 1, . . ., n | bj + a^} by G. For j e G denote by R .̂ the oriented
graph obtained from F by eliminating the vertex bj and the only edge incident to bj.
This graph R .̂ still contains the cycle a^ a^ . . .,a^a^ and the partial order co induces an
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order in Rj denoted by CT. We shall prove that

(13.10.3) ^(r,co,r)= ^ 6-(R,,iu,r).
J-eG

Inductive assumptions would imply that e(V, 00, r)=0.
To prove (13.10.3) we first cyclically renumber a^ . . .,^ so that leG. As above

take r^=a^a^, . . ., r^ = a^ a^. Each total order in (R^ uniquely extends to a total order
in Y\ such that bj is the minimal element of the latter order. Thus for each i= 1, . . . ,n
we have an inclusion of the disjoint union U Ord^, ((R;)Q into Ord^ (F^). This inclusion

j e G

is actually a bijection. Indeed the inclusion leG and the inequalities (13.10.2) imply
that for any order / e Ord^ (F^) the /-minimal element of v (F^) must be a vertex bj with
7'eG. Therefore for all i= 1, . . . ,n

card0rdjr0= ^ cardOrd,((R,)Q.
J'eG

This implies (13.10.3).
If bi=di for all ; then B^^. for some 7, and the argument goes similarly with the

following modifications: instead of "minimal" one should say "maximal"; in the role of
r one should take the sequence r^=a^a^, r^ = a^_ i a^ . . ., r^ == a^ a^.

13.11. Proof of Lemma 13.8, Claim (ii). - Let L, M be two oriented knots in
F x [0, 1] presented respectively by diagrams C, Q) on F lying in general position. Let
v^ . . .,z^ be the points of CH^ numerated in an arbitrary way. Let 8^= ± 1 be the
sign of the local intersection of (the underlying loops of) C, Q> in v^ 1 ̂ z^oc. Denote
by C^ the link diagram obtained by placing C over 2. Denote by N1 the oriented
knot diagram on F obtained from CQ> by changing overcrossings to undercrossings in

v^ . . ., ̂ _ i and smoothing in v, (as in Figure 11). It follows from the Conway relations
of type 1 that

a

(13.11.1) [L]o [M]o - [M]o [L]o = h ̂  e. [N']o
1 = 1

(cf. the proof of Theorem 3.3). We shall prove that

(13.11.2) / ( ^ ^^^^{^([LU^aMlo)}
\i=l /
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where { , } is the Lie bracket in ^ ' . Since classes of knots generate the algebra A(),
equalities (13.11.1), (13.11.2) imply that / : AQ -> E is a quantization homomorphism.

We first compute {^([L]o), ^([M]o)} following the definitions. Choose integers
c^w^l , d^n^\ and labellings /eLbl,°(C), ^eLbl^(^). Choose a mixture
x^ ' ' '^m+n-i of the sequences C^i, . . .,C^_i and ̂  ̂ , . . .,^g^-r Choose a
mixture y^ . . .,y^d-m-n ofthe sequences C^+i, . . .,C^, and

CD\ 6/\
^,n+l5 • • • ^ g , d -

Choose a crossing point ^ e C y ^ O ^ ^ . Consider the following element of
K^]®^^-^:

(13.11.3) (-^^-^^-^^^^(^^^..^(^^.^o

®<(Cf^\^^^\(S)(y,\®. . .®0c^-m-n>0

where (C^)y(^^ is the product of loops underlying Cy.^, ^^ and based
in v. Summing up such elements over all possible choices we get {/([L]o), ^([M]o)}.

The L.H.S. of (13.11.2) is equal to

a

(13.11.4) ^ ^ ^ (-^'-^^'(^.^^..^(N^^.
i= l n ^ l ^eLblg(N 1 )

Let us call a labelling j of N1 primitive if all ^-cutting vertices of N1 are either self-
crossings of C or self-crossings of Q). Each element (13.11.3) is equal to the summand
of (13.11.4) with the same ;', specified as follows: [i=c-\-d— 1; the value of j on an edge
a of N1 equals (3 if a c= Xp, equals m-\-n— 1 i fac= Cy ^ U Qg, n, and equals m-\-n— 1 + P if
ac^p. Note that 7 is a primitive labelling of N1. Conversely, each element (13.11.3)
may be uniquely reconstructed from the corresponding ;, [i and the primitive labelling
7'eLbl^(N1). Therefore, the subsum of (13.11.4) over all primitive labellings is equal
to {^([L]o)? ^([M]o)}« To finish the proof of the Lemma we have to show that
the remaining subsum of (13.11.4) equals 0. Denote this latter subsum by S. Since
/ (Ao) c= E and {E, E} c E we have S e E. Therefore it suffices to show that
symm(Z)==0.

For a non-primitive labelling je Lbl^(N1) we denote by I(/) the set consisting of
7-cutting vertices of N1 and the point ^. Thus, I (y) is a subset of the set of crossing
points of the diagram C 2. Clearly, card I (j) = \j \ + 1 = |LI. Since j is non-primitive I (7)
contains at least two points from the set C0^={^ , . . ., ^}. We shall prove that
for any set I of crossing points of CQ> containing at least two points of C 0 Q).

(13.11.5) symm( ^ ^ (- l)'^'- s '̂l <N},, >o® . . . ®<N^>o)=0
l ^ i ^ a j6Lbl^(N 1 )

yl61 I ( J ) = I

where ^i=cardl. This will imply the desired equality symm (Z)=0.
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Note that the unordered set of knot diagrams N}^ i, . . ., N}^ ^ depends only on I and
does not depend on the choice of; with z^el or on the choice of 7'eLbl^(N1) with
I (7)= I. The number \j \ is also determined solely by I since |7'|=cardl-l. Let
^i. "^rn be the P01111 of l<^{v^ ' ' • ' ̂ } where 1^1<^2< • • • <^^a• Then the

L.H.S. of (13.11.5) equals the product of a certain monomial and the integer

(13.11.6) E I (-l)171-^
» = 1 jeLbl^N^

To compute the summands of (13.11.6) we associate with each crossing point v of the
diagram CQi its sign e(v)= ± 1. In particular, c(^,)=s,. Crossings of the diagram 1ST
differ in their sign from the crossings of C^ exactly in r- 1 points v^ . . ., ^-i. If
r=r, and^'eLbl^NQ with I(j)=I, then exactly i-\ points z^, . . ., z^_, from the set
{z;i , . . ., zy-i } belong to the set ofy-cutting points. Therefore

(-i^-s^n^)^-1)1'1-
V 6 I

This shows that up to sign the sum (13.11.6) equals
n

(13.11.7) S (-ir'card^eLbl^N^lia)^!}.
1=1

We shall prove that the sum (13.11.7) equals 0. Assume that for some k= 1, . . ., n
there exists je Lbl^ (N^) with I (7)== I. [Otherwise (13.11.7) is identically 0]. Existence
of such j ensures that smoothing of N^ in the points of I\{ v^} produces a link diagram
with ^i=card I components. Hence, when we successively smooth N^ in the points of
r\{z^} we each time increase the number of components by 1. Let z^, . . ., z^ be the
points of I 0 { ^ i , . . ., z^} numerated so that traversing along C we meet z^, . . ., z^ in
this particular order (up to a cyclic permutation). By the remarks above when we
smooth C^ in the n vertices z^, . . ., z^ we receive an n component link. Thus the arcs
ZiZ;,, . . ., z^Zi in which C is divided by z^, . . ., z^ lie in different components of this
link. This is possible if and only if^ traverses z^, . . ., z^ in the opposite cyclic order
z^, z^-i, . . ., Zi. In this case smoothing C^ in z^, . . ., z^ we obtain n knot diagrams
each consisting of an arc z^+i ofC and the arc z^z^ of^. The points of
I\{zi, . . ., z^} are certain self-crossings of these In arcs.

We associate with I an oriented graph F. The vertices of F bijectively correspond to
the components of the link diagram obtained from C Q) by smoothing in all points
of I. The edges of F bijectively correspond to elements of I: two vertices u, w of F
corresponding to components U, W are connected by the oriented edge uw associated
with v el iff the incident to v in-looking upper and low edges of C^ after smoothing lie
respectively on U and W. In particular, the points z^, . . ., z^ give rise to edges, say,
a^a^ a^a^ . . ., a^a^ which make a cycle in F. Consider the same oriented edges
counted in the order r corresponding to the order v^<v^<. . . <v^ m ^e set
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I P| {v^ . . ., z^} == { Z i , . . ., z^}. It is easy to see that (in the notation of Lemma 13.10)
each labelling yeLbl^CNT1) with I (7)= I gives rise to a bijective function
^(r[) -> [ 1, 2, . . ., n} which establishes a total order in r^ compatible with the orient-
ation of all eges. This produces for each i = l , . . . , n a bijective mapping
{7-eLbl^ (N'011 (7) = I} -^ Ord H. Therefore, the sum (13.11.7) is equal to the L.H.S.
of (13.10.1). Hence, this sum is equal to 0.

14. An invariant of oriented trees

14.1. THEOREM. — There exists a unique function T| on the set of isomorphism types of
(finite) oriented trees with values in Q such that the following three conditions hold:

(i) ifT is the tree having one vertex (and no edges) then T| (T)= 1;
(ii) ;/ the oriented tree T (resp. U) is obtained from an oriented tree T by reversing

orientation in an edge e (resp. by contracting e to a point) then

(14.1.1) TI(T)+TI(T)+T|(U)=O;

(iii) ;/ the oriented tree T' (resp. I " ) is obtained from an oriented tree T via replacing
two dinstinct edges with a common origin ab, ac by ab, be (resp. by ac, cb) and if\3 is
obtained from T by identifying vertices b, c and edges ab, ac then

(14.1.2) Ti(T)=r|(T)+r|Cn+ii(U).

This Theorem is proven in Sections 14.3-14.7. We remark that the proof does not
provide an explicit formula for T|; it would be nice to have such a formula.

In Section 15 we will use the following property of T|.

14.2. COROLLARY. — Let ab, ac be two edges of an oriented tree T with the common
origin a. Let T^, T^, T3 be oriented trees obtained from T via replacing ab, ac by ab, cb,
resp. by ac, cb, resp. by ca, ab. Let W be obtained from T by contracting ac to a
point. Then

(14.2.1) -Ti(T,)+Ti(T,)+Ti(T3)+r|(W)=0.

Proof. — Let T, T " , U be the same trees as in item (iii) of Theorem 14.1. It follows
from (14.1.1) that -T| (Ti)=r| (T)+T| (U), T| C^+ri (W)= -T| (T). Since T^T',
(14.2.1) follows from (14.1.2).

14.3. A REFORMULATION OF THEOREM 14.1. — We reformulate Theorem 14.1 using
the following "Fourier transform" on invariants of trees. Let T be an oriented
tree. Denote by EdgT the set of edges of T deprived of their orientation. For a subset
H c= Edg T we put | H | = card H and denote by T/H the oriented tree obtained from T by
contracting each edge of T belonging to H into a point. Let T| be an arbitrary Q-valued
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function defined on the set of isomorphism types of oriented trees. For reQ put

TI,(T)= ^ r'H '7^(T/H)=rl(T)+ ^ r^TiCr/H).
HcEdgT 0 ^ H < = E d g T

Clearly, T|̂  is a Q-valued function on the set of isomorphism types of oriented trees. It
is easy to check that (T|^)_^=T|. Put

^(T)=2^^(T).

14.3.1. LEMMA. — A Q-valued function T| on the set of isomorphism types of oriented
trees satisfies conditions (i)-(iii) of Theorem 14.1 if and only if ̂ =r\ satisfies the following
conditons:

(i)7 ifT is the 1-vertex tree then p(T)= 1;
(iiy if T, T' are the same trees as in Condition (ii) then

p(T)+p(T)=0;

(iiiy ;/T, T7, T" are the same trees as in Condition (iii) and if\ is the oriented tree
obtained from T by contracting both edges ab, ac to a point then

(14.3.2) P (T) = p (TO + p OH - p (V).

Proof. — Conditions (i) and (i)' are clearly equivalent. Let us show that (ii) implies
(ii)'. Let H run over all subsets of Edg T = Edg T. Then

pCO+pCT)^'1^ ^ (1/2)1"'(T|(T/H)+TI(TVH))
H

e e H

+ ^ (^(TUT/^+TicrvH))}
H

e ^ H

^IE^TI^ (l^W^riCr/H)
H

eeH

+ ̂  (i/^-Ticr/aiuM))}^.
H

e ^ H

Similar computations show that (ii)' implies (ii) and that (iii) is equivalent to (iii)'.

14.3.3. LEMMA. — There exists a unique Q-valued function p on the set of isomorphism
types of oriented trees which satisfies Conditions (i)'-(iii)' of Lemma 14.3.1.

Lemmas 14.3.1 and 14.3.3 imply Theorem 14.1. Lemma 14.3.3 will be proven in
Section 14.7 basing on the results of Section 14.4-14.6.

14.4. MODULE OF ROOTED TREES. — By a rooted tree we mean a non-oriented tree
provided with a preferred vertex (the root). Let X^ be the set of isomorphism types of
rooted trees with ^n vertices. Denote by Y^ the Q-module generated by elements of
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X^ subject to the following relations: if rooted trees T, T' are obtained from a rooted
tree T by replacing two distinct edges ab, ac (incident to a vertex a) by ab, be resp. by
ac, cb, if a rooted tree V is obtained from T by collapsing ab, ac to a point, and if the
root of T and the vertex a lie in the same component of T\{ b, c ] then
T-T-T'+V=0. Here it is understood that the roots of T, T, T' are the same and
project to the root ofV. The class in ¥„ of a rooted tree T with ^n vertices will be
denoted by [T]".

Denote by R^ the rooted tree havings vertices and n—\ (unoriented) edges a^a^
a^a^ . . .,^_i^, the root being a^. It is obvious that Y^ is the 1-dimensional vector
space over Q with basis [RJ1.

14.5. LEMMA. — For each n^O, ¥„ is an n-dimensional vector space over Q with basis
[RJ", [RJ", . . ., [RJ". The natural mapping Y^ -> V^+i is an imbedding.

Proof. — Let T be a rooted tree with n vertices. By a trunk of T we mean a sequence
of vertices a^, . . ., a^ ofT such that: a^ is the root of T; T includes the edges a^a^,
a^a^ . . ., (^-i^p the vertices a^ . . ., a^_^ are not incident to other edges ofT; either
i=n or a^ is incident to at least two edges ofT besides ^-i^-. Obviously, T has a
unique trunk a^ . . ., a^. (It may well happen that i= 1.) Let j be the number of edges
ofT incident to a,. Clearly j ̂ 3. Let us call the pair (-i,j) the complexity ofT and
denote it by comp (T). The set of complexities of rooted trees with n vertices is
finite. Provide this set with the order induced by the lexicographic order in Z x Z. The
set has a unique minimal element (—n, 1) which is the complexity of R^. Note also
that if T, T', T" are rooted trees described in Section 14.4 then the complexities of T',
T" are strictly smaller than the complexity of T.

We shall construct a mapping ^: X^ -> Y^_ i©Q as follows. If T is a rooted tree with
^(n— 1) verices we put ^(T)^^""1. For rooted trees with n vertices we define ^i(T)
by the induction on the complexity. For the minimal complexity tree R^ we put
H(R^)= 1 eQ. Assume that for each rooted tree T with n vertices and the complexity
strictly smaller than (—;,y) we have already defined |i(T) so that whenever T, T7, T", V
are rooted trees described in Section 14.4, T has n vertices and comp (T) <(—;', j) we
have

(14.5.1) H (T) = H (T7) + ̂  (T7) - ̂  (V).

Take a rooted tree T with n vertices and comp(T)=(—;,7')>(—^, 1). Since T^R^ we
have 7^ 3. Let a^ . . ., a^ be the trunk of T. Let b^ . . ., bj, be all vertices of T distinct
from ^_i and such that T has edges a^b^ . . ., a^b^ Here k^j— 1 if ;'^2, and k=j if
;'=!. For \^q, r^k with q^r denote by T^ y the rooted tree obtained from T via
replacing the edge a^ by by the new edge bq by. Note that comp (T^ y ) < comp (T). Denote
by T/bq a^ by the rooted tree with n — 2 vertices obtained from T by collapsing both edges
a^ by a^ by to a point. Put

(14.5.2) ^ = ̂  (T,,,) + ̂  (T,,,) - ̂  (T/^ a, by).

Let us show that ^ y does not depend on the choice of q, r. Since [iq y=[iy q it suffices
to check that \jiq y=^ y for any /= 1, . . ., k\ l+q, r. A schematic calculation of [i^y
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Fig. 12.

based on the definition (14.5.2) and the inductive assumption (14.5.1) is presented on
Figure 12 where to save space we denote the vertices a,, by Z?,, bi simply by ;, q, r, / and
where the symbol ^ denotes identification of the vertices and contraction of edges
between them. The final expression is symmetric in q, I and so [i r^^i r- Now we
define ^(T)=^, for arbitrary q^r. It remains to verify (14.^5.1) 'in the case
comp (T) = (-;, 7). If the vertex a of T (involved in the construction of T, T") coincides
with the vertex a, then (14.5.1) is just the definition of a(T). If a+a, then (14.5.1)
easily follows from the definition of a(T) and the inductive assumption1 This finishes
the construction of the mapping ^: X, -. ¥„_ , ©Q. Because of (14.5.1) this mapping
induces a linear homomorphism Y, -. Y^_i©Q. It is easy to see that this homomorph-
ism and the sum Y^_i®Q-^Y^ of the natural homomorphism Y^^->Y^ and the
homomorphism 1 ̂  [RJ: Q -> Y^ are mutual inverses. Thus Y^ = Y^ _ ^ © Q [RJ which
implies both claims of the Lemma.

14.6. COROLLARY. — Let t=(to, t^ . . .) be a sequence of rational numbers. There
exists a unique function 9, on the set of isomorphism classes of rooted trees such that:
6t(^n)=tn for each n^O; for any rooted trees T, T, T", V satisfying conditions of
Section 14.4

O4 •6 • !) 6t (T) = 6, (T') + 9, (T") - 9, (V).

14.7. Proof of Lemma 14.3.3. - Let €„ be the oriented tree havings vertices
a^ . . ., ̂  and n-\ edges a^a^ 0^3, . . ., ^_ i^ (here we use the same convention
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regarding orientation of edges as in Section 13.9). We first compute p (G^) basing solely
on Conditions (iy—(iiiy. If one changes orientations of all edges of G^ one gets a tree
isomorphic to G^. Condition (ii)' implies that p (G^) = (— 1)"~1 p (G^). Thus, for even n
we have p(G^)=0. Let n be odd. For i= 1, . . ., n— 1 denote by G\ the oriented tree
with vertices ^ , . . . ,^ and edges a^ a^ a-^a^ . . . , ^_2^n- i , ^n. In particular,
G^~1 = G^. Condition (hi)' implies that for each ;= 1, . . ., n — 2

p(G;.)=p(G;,+l)+p(G„)-p(G,_,).

Therefore

p(G^)=p(G^)+^-2)(p(G,)-p(G^)).

On the other hand, G^ with the reversed orientation in a^a^ is just G^ and so
pCG^^G,). Thus, p(G„)==(^^-2)^- lp(G,_2). Since p(Gi)=l we have
p(G^)=72~1 for any odd n. Now the same argument as in the proof of Lemma 14.5
shows that the value of p on any oriented tree may be computed from p (G^),
/2==0, 1, . . . This shows uniqueness of p. (This shows also that p must be identically
zero on the trees with even number of vertices.)

Denote by p' the Q-valued function on the set of isomorphism types of rooted trees
which corresponds by Corollary 14.6 to the sequence t=(tQ, t^ . . .) where ^=0 for
even n and t^=n~1 for odd n.

Let T be an oriented rooted tree. Denote the underlying rooted tree by To. An
(oriented) edge ab of T is called negative if the root of T and the vertex a lie in
different components of T\{ b}. Let < T > be the number of negative edges of T. Put
p(rY)=(-\)<T> p ' ^ o ) . We shall show that p(T) does not depend on the choice of
root of T and satisfies Conditions (iy-(iiiy of the Lemma. Conditions (iy, (ii)' are
straightforward. Let us check (iii)'. There are three cases to consider depending on
whether the root ofT and the vertex a lie in the same component of T\{Z?, c}, or the
root ofT and b lie in the same component of T\{a, c}, or the root ofT and c lie in
the same component of T\{ a, b }. In the first case < T > = < T > = < T" > = < V > and
(14.3.2) follows from (14.6.1). In the second case < T > = < T > = < T / > - 1 = = < V > + 1
and because of (14.6.1)

p (T) - p (T') - p (T7) + p (V) = ± [p- (To) - p7 (To) - p7 (To7) + p' (Vo)] = 0.

The third case is similar. It remains to show that p (T) does not depend on the choice
of the root of T. Let T^ denote the oriented tree T rooted in a vertex a. It suffices to
show that for any edge ab of T we have p CD = p (T^,). Since p satisfies Conditions (ii)',
(iiiy we may reduce the general case to the case T=G^, a=a^ and b==a^ Clearly,
<T^>=0 , < T ^ > = 1 . By the very definitions (T^)o=R^. Thus pCL)=0 if n is even,
and p(T^)=^~1 ifn is odd. A computation similar to the one in the beginning of the
proof (but proceeding in the category of unoriented rooted trees) shows that

P' ((T,)o) = P7 (Rn) + {n - 2) (p7 (RJ - p- (R^ _ ,)).
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If n is even then p (T^,) =0. If n is odd then

P(T,)=-p /((T,)o)=-[^- l+(/2-2)^- l-(^-2)- l)]=^- l.

Thus in both cases p (TJ = p (T^,).

15. The equality Kep/?/,=/? Ao

15.1. AUXILIARY DEFINITION: HOMOMORPHISM i;: e->AO//?AO. — Let a be a non-contrac-
tible generic loop on F. Let ^=^(oc) be the oriented knot diagram obtained by
replacing each self-intersection point of a by the positive self-crossing (see

X -X
Fig. 13.

Fig. 13). Denote the set of self-crossing points of Q) by #^. With each subset H of
#2 we associate an oriented link diagram^ and an oriented graph !„. The
diagram ̂  is obtained from Q) by smoothing in all self-crossing points belonging to H
(cf. Fig. 11). The vertices of l y bijectively correspond to components of Q)^. Two
vertices a, b of F^ are connected by an oriented edge ab (leading from a to b) if there
exists a self-crossing point of Q) belonging to H such that the adjacent inlooking upper
and lower edges of Q) lie on the components of Q)^ corresponding respectively to a
and b. (A similar construction was used in Section 13.11.) Notice that the number of
components of ̂  does not exceed card(H)+ 1. We call H special (or ^-special) if Q)^
has card (H) + 1 components. A set H c: # Q) is special iff when we successively smooth 2
in the points of H we each time smooth a self-crossing of a certain component obtained
at the previous step. This observation shows that if H is special then F^ is an oriented
tree. Recall the invariant T| of oriented trees introduced in Section 14. For a special
Hc=#^ put

< Q) | H > = h^(H) T| (Fn) [̂ Jo mod h Ao e A^/h Ao.

For a non-special H c: # Q) put <^ | H > = 0. Finally, put

^(a)= ^ <^|H>eAo//?Ao.
He #Ql

Note in particular the entry ( Q) \ 0 ) = [2 (a)]o mod h Ao of ^ (a).

15.1.1. LEMMA. — ^(oQ depends only on the free homotopy class of a.
This Lemma will be proven in Section 15.3.
In view of the Lemma the formula <( a )o \—> i; (a) defines a K-linear homomorphism

ZO-^AO//?A(). The Conway relations of type 1 guarantee that the algebra Ao/AAo is
commutative. Therefore this homomorphism extends to a K[ft]-linear algebra homo-
morphis e=S(K[ft]®Zo) -> A()//?A(). Denote the latter homomorphism also by ^.
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15.2. Proof of the equality Ker p^=hAo. The inclusion /? A() c= Ker/?,, is obvious
since ̂  is linear over the projection K[h, h]->K[h]. Denote by q the algebra homo-
morphism Ao/h A() -> s induced by p^ For ̂  0 denote by B^ the K [^]-submodule of
Ao/hAo additively generated by classes of oriented links which may be represented by
diagrams with ^self-crossings. Clearly B^cBicr . . . and UB^=Ao/AAo. It is easy

n

to deduce from definitions that (i,q — 1) (Bo) = 0 and (^q — 1) (B^) c= B^ _ i for each
^ 1. Therefore (^ - 1)"+1 (BJ = 0 for all ̂  0. This implies that for any a e Ao/h AQ
there exists n such that {^q - 1)" (a) = 0. Therefore Ker q = 0 and Ker/?,, == A Ao.

15.3. Proof of Lemma 15.1.1. — We must check that ^(a) is preserved under
homotopy of a. It suffices to consider the local moves presented on Figure 6. The
case of col is straightforward since the link diagrams having a separate small simple
circle represent 0 in A() = A/[^] A. Let a loop a' be obtained from a by an application
of coll.l. Let ^, Q)' be the corresponding positive knot diagrams. Let a, b be the
additional crossing points of ̂ f so that #2'= #Q)\J [a, b}. Let H be a subset of
#^. We claim that the sum of expressions ( ^ |HUJ) over ] < ^ [ a , b ] equals
( Q) | H ). This claim, proven below, implies the equality £. (a') = ̂  (a).

If H is not ^-special then neither of four sets H U J with J c {a, b} is ^'-special. Thus
all these sets contribute 0 to ^(a), ^(a7). I fH is ^-special then we consider two cases:
(i) the components of ̂  traversing a, b are distinct; (ii) a and b are self-crossings of a
certain component of ^n. In case (i) only the set H from the four sets mentioned above
is ^'-special and < ^ | H > = < ^ | H > e Ao/h AQ (cf. the first equality presented on
Figure 10). This implies our claim. In case (ii) we have three ^'-special sets
H, H (J [a] and H U [b}. Clearly

^Hu{a} = ̂ HuW and [̂ ]o = [^HJO + h [^Hu(a}]o.

Therefore the special sets H, H U { ^ } , H U { ^ } contribute to ^ (a") the following:

(15.3.1) ^'^^(r^t^o+^^H^^L)

where

r|=r|(FH)+r|(rH,^)+Ti(rH,^).

The trees F^ ^ ̂  ̂  T^ ^ ̂  ^ are obtained from each other by inversion of the orientation
of an edge. The tree F^ is obtained from F^ ^ ̂  by collapsing this edge to a point. In
view of Condition (ii) of Theorem 14.1, ri=0. Thus (15.3.1) equals < ^ | H > . This
proves our claim in case (ii). The move 0)11.2 is considered similarly.

Let a loop a' be obtained from a by an application of co III. The corresponding positive
diagrams Q), Q)' are obtained from each other by an application of the Reidemeister move
QIII. Let a, b, c (resp. a ' , b ' , c ' ) be the crossing points of ^(resp. of 2 ' ) presented on
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Fig. 14.

Figure 14. Let H be a subset of#^\{a, b, c}= #^\{a\ b ' , c'\ We shall show
that the sum of expressions < 2 \ H U J > over J c {a, b, c} equals the sum of expressions
< 0)' \ H U J' > over J' c { a ' , V, c '} . This will imply the equality ^ (a) = ̂  (a').

If H is not ^-special then neither of sets H U J, H U J' is special and our claim
is obvious. Assume that H is ^-special. Of course, H is automatically ^-special.
Obviously,

< ^ | H > = < ^ | H > ; (^\HU{a})={^\HU{af}y,

< ^ | H U { & } > = < ^ | H U { ^ } > ;
(^\HU{a,b,c})=(^\HU{a\b\cf]y

To finish the proof of our claim it suffices to verify the following equality:

(15.3.2) ^ | H U { c } > + < ^ | H U { ^ , c } >

+<^|HU{^c}>-<^|HU{^}>

=<^\HU{ct}^(^\HU{af,cf})

+ < ^ / | H U { y , c / } > - < ^ | H U { ^ } > .

Note that the diagrams ^ H u { c } and ^ H u { c ' } have the same number of components.
Thus the sets H (J {c} and H U { c ' } are special or nonspecial simultaneously. If they
are not special then neither of sets H U { . . . } entering (15.3.2) is special and so both
parts of (15.3.2) are equal to 0. Assume that H U { c ] and H U { c ' } are special. We
shall show that the L.H.S. of (15.3.2) equals

(15.3.3) ^^'^(rH.^^^Hu^^.oLmodAAo.

There are two cases to regard: (i) two branches of ̂  u { c } traversing a, b lie on different
components o f ^ H u { c } ; (n) these two branches lie on the same component of ^ H u { c } «

In case (i) the sets H U J with J = [ a , c ] , {b, c}, [ a ' . b ' } are not special and0 the
L.H.S. of (15.3.2) equals < Q) \ H U { c } >. This is equal to (15.3.3). In case (ii) four
sets H U { . . . } entering the L.H.S. of (15.3.2) are special. It is obvious that

^H u { a, c } == ̂ H u { b, c } = ̂ 'H u { a ' , b' } '

It follows from the first equality presented on Figure 10 that < ^ | H U { c } > equals the
sum of (15.3.3) and

^card(H)+2^/F \ r^ -,
n ^V 'Hu^ l . ^Hu^c^O '
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This shows that the L.H.S. of (15.3.2) equals the sum of (15.3 . 3) and

^ard(H)+2^(p^^^^^H^,^)+Tl(rH^,,^)-Tl(rH^^,,^))[^H.(.,c)]o.

The four trees entering the latter expression are related exactly as the trees W, T^, T3,
TI from Corollary 14.2. Therefore this expression equals 0 and the L.H.S. of (15.3.2)
equals (15.3.3). A similar computation shows that the R.H.S. of (15.3.2) also equals
(15.3.3). (One should note that FH^^^FH^^^.) This completes the proof of the
equality ^ (a) = £, (a7).

CHAPTER IV.

TOPOLOGICAL BIQUANTIZATION OF ZQ

16. Bi-Poisson bialgebras and their biquantization over K [/?, h]

16.1. BI-POISSON BIALGEBRAS. — A bi-Poisson bialgebra over K is a K-module S equipped
with the structure of Poisson bialgebra and of co-Poisson bialgebra with the same
underlying commutative and cocommutative bialgebra, so that the Lie cobracket
v: S -> S02, the comultiplication A: S -> S02, the Lie bracket [ , ] in S (and the induced
Lie bracket in S02) are related by the formula

(16.1.1) v ([a, b\) = [A (a\ v (b)} + [v (a\ A (b)}

for all a, beS. This formula and the notion ofbi-Poisson bialgebra are self-dual.

16.2. BIQUANTIZATION OF BI-POISSON BIALGEBRAS. — It is convenient to describe first a
construction which suggests the notion of biquantization. Let A be a bialgebra over
the polynomial ring K[/z, ft], free as the K[/z, fi]-module. Assume that for any a, be A

(16.2.1) ab-baehA and A(a)-Perm^(A(a))ehA®2

where A denotes the comultiplication in A. Put S=A/(/zA+^A). The bialgebra struc-
ture of A factorizes to a bialgebra structure in S. Denote the projection A -> S by
p. Introduce a Lie bracket in A by the formula '

(16.2.2) [p (a), p (b)} =p(h-1 (ab - bd))

where a, be A. Introduce a Lie cobracket v in S by the formula

(16.2.3) v (p (a)) = (p®p) (h-1 (A (a) - Perm^ (A (a)))).

16.2.4. THEOREM. — S is a bi-Poisson bialgebra over K.
The proof of the Theorem is deferred to Section 16.3.
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Similarly, A^=A/hA is provided with a Poisson bialgebra structure over K[h] and
A^=A/hA is provided with a co-Poisson bialgebra structure over K[h]. The homo-
morphism p is included in the commutative diagram of projections

(16.2.5)
A '4 A,

ph i \ P l ^

A. ^ S

The homomorphisms of the diagram have the following properties: (i) they are surjective
bialgebra homomorphisms linear over the corresponding homomorphisms of the diagram
of ring projections

K[h, h] ^° K[h]
h^O \ \ j h^->0 .

h^O
K[h] ^ K

(ii) p^ and q^ are quantization homomorphisms for Poisson algebras resp. A^ and S; (iii)
p^ and q^ are coquantization homomorphisms for co-Poisson coalgebras resp. A/, and
S; (iv) q^ is a co-Poisson bialgebra homomorphism and q is a Poisson bialgebra
homomorphism (i.e. q^ and q^ preserve respectively the Lie cobracket and the Lie
bracket).

Let now S be an arbitrary bi-Poisson bialgebra over K. A biquantization over K [/?, ft]
of S is a commutative diagram (16.2.5) in the category of bialgebras where: A is a
bialgebra over K[/?, h] satisfying (16.2.1) for all a, be A; A^ is a co-Poisson bialgebra
over K[/?]; A^ is a Poisson bialgebra over K[ft]; the homomorphisms of the diagram
satisfy the conditions (i)-(iv) formulated above.

Note that the conditions (i)-(iv) imply that the homomorphism p : A -> S is simultane-
ously a quantization of the Poisson bracket in S and a coquantization of the co-Poisson
cobracket in S.

A biquantization (16.2.5) is called reduced if Ker^=/?A, Kerp^=hA,
Kevp=hA^-hA. All ingredients of a reduced biquantization are determined by
p ' . A - ^ S except the Lie bracket in A^ and the Lie cobracket in A^. If A is a free
K [h, ft]-module (or at least no element of A is annihilated by h or h) then these two
brackets can be also reconstructed from p as explained in the beginning of this section.

Remarks. — 1. Every biquantization (16.2.5) gives rise to a 2-parameter family of
K-bialgebras

A (k, k ' ) = A/((/z - k) A + (h - k'} A)

where k, k' eK. This shows in a sense that to construct a biquantization of S one
should construct bialgebras A^, A^ and connect them by such a 2-parameter family. Note
that if A^=A/hA then the bialgebras A(k, 0), keK are completely determined by A^;
indeed A(k, 0)=A^/(h—k)A^ In this case A(k, 0) inherits a co-Poisson bialgebra
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structure from A^ and the homomorphism p^ induces a coquantization homomorphism
A/(h — k) A -> A (fe, 0). Similar remarks apply to A (0, k) and p^ in case A/, = A//? A.

2. A somewhat more general notion of biquantization is given in [20].

16.3. Proof of Theorem 16.2.4. — It is easy to check up that the homomorphisms
[ , ]: S x S -^ S and v: S -> S®2 given by (16.2.2), (16.2.3) are well-defined. It is also
easy to see that the algebra S with the Lie bracket [ , ] is a Poisson algebra and bialgebra
with the same multiplication. To show that S is a Poisson bialgebra it remains to prove
that the comultiplication A^S-^S®2 induced by A :A^A 0 2 is a Poisson algebra
homomorphism. For aeA put a^p (a) where p is the projection A -> S. For ueA®2

put Uo=(p(Sp)(u)eS®2. It is easy to deduce from definitions that for any u, veA®2

[UQ, VQ^^'^UV-VU)}^

This implies that for any a, be A

Ao([^M={A(A- l(^-^))}o={A- l(A(^)A(^)-A(&)A(^))}o

=[A(^)o,A(&)o]=[Ao(^),Ao(M.

Thus, AQ is a Poisson algebra homomorphism.
Let us show that (S, v) is a co-Poisson bialgebra. The equality Perms°v=—v is

immediate. Put A2 = (1 ®A) A = (A® 1) A. A direct computation shows that for aeA

(l®v)v(^)={^-2(l-a)(l-T)(A2(^))}oeS0 3

where o and T are automorphisms of A®3 sending a®P®y resp. in a®y®P and
y®a® P. The operator T2 + T + 1 annihilates (1 - a) (1 - r) which implies (7.1.1). An
easy calculation shows that both sides of (7.2.2) applied to OQ e S give

{/^(l-TKA2^))^.

To finish the proof we should check (16.1.1) and (7.2.3). For a e A put

a= h~1 (A (a) - Perm^ (A (^))) e A®2.

A direct computation shows for all a, b e A

v ([^o. ^o]) - [Ao (^o). v (M - [v (a^ Ao (M = {h h -1 (ba- ab) }o = 0.

Similarly, (7.2.3) follows from the obvious equality (h a 5)o = 0.

17. Biquantization of ZQ

17.1. BIQUANTIZATION OF LIE BIALGEBRAS. - With each Lie bialgebra g over K we
associate a bi-Poisson bialgebra S (9) over K. As bialgebra S (9) is just the symmetric
algebra of the K-module 9 equipped with the comultiplication which sends aec^ into
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a®\ + lOOa?. According to results of Section 1.1 the Lie bracket of 9 extends to Poisson
bracket in S(g). Thus S(g) becomes a Poisson bialgebra. [It suffices to check (7.2.1)
for a, ft e 9 which is straighforward). On the other hand S (9) = V^ (^)/h V^ (9) and
therefore the co-Poisson bialgebra structure in ¥,,(9) produced by Theorem 7.4 induces
a co-Poisson bialgebra structure in S(g). This makes S(g) a bi-Poisson
bialgebra. Indeed, it suffices to check (16.1.1) for a, be^ when it is equivalent to
(7.1.2).

Note that the projection v: V/, (9) -> S (9) is a co-Poisson bialgebra homomorphism and
simultaneously a quantization of the Poisson bracket in S (9).

By a biquantization of a Lie bialgebra 9 over K we shall mean a reduced biquantization
(16.2.5) of the bi-Poisson bialgebra S = S (9) such that A^ = V^ (9) and q^ == v. Note that
each biquantization of 9 includes a quantization p^: A -> V^ (9) of 9, cf. Section 7.4.

By a normal biquantization of a spiral Lie bialgebra 9 over K we mean a reduced
biquantization (16.2.5) of the bi-Poisson bialgebra S=S(9) such that A^=V^(9), q^v
and A^=s^(9), q^=e (see Section 11.5).

A purely algebraic example of a (non-normal) biquantization of a Lie bialgebra is
given in the Appendix to [20].

17.2. THEOREM. — Let PQ : AQ (F) —> S (Z) be the homomorphism which is linear over the
augmentation K [h, h] -> K and which transforms the class of an oriented l-component link

i
Lc=Fx[0, 1] into Y[ (0^)0, where oc^, . . .,o^ are loops parametrizing the projections of

1=1
components of L into F. The following diagram is commutative and presents a normal
biquan tization of ZQ :

Ao(F) ^ V,(Zo)
(1 7-2-1) ^ \o (-

e,(Zo) ^ S(Zo)

(for definitions of the homomorphisms v, p^ e, p^ see resp. Sections 1, 10, 11, 13).

Proof. - The homomorphism PQ, v°p^ and e°p^ are linear over the augmentation
K [A, h] -> K. It is easy to see that they coincide on the classes of knots in A() (F). This
implies commutativity of the diagram. Other claims of the Theorem follow from the
results of Chapters I-III and Section 17.1.

17.3. Remark. — The same trick as in Remark 10.3.2 shows that the biquantization
(17.2.1) of ZQ induces a normal biquantization of Z.

18. An extension of ZQ and its biquantization

18.1. LIE BIALGEBRAS Z AND ZQ. — The Lie bialgebra Z is defined along the same lines
as Z though instead of free homotopy types of loops in F one uses regular homotopy
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types of immersed loops in F. By an immersed loop in F we mean an immersion of
the oriented circle in F. Two immersed loops are regularly homotopic if they may be
smoothly deformed into each other in the class of immersed loops. Let Z be the free
K-module freely generated by the regular homotopy classes of immersed loops in F. The
infinite cyclic group [f neZ] acts in Z as follows: the action of t (resp. r1) adds one
small curl to the right (resp. to the left) of immersed loops. Thus, Z acquires a structure
of K[t, t]~ ̂ module. The same constructions as in Section 8 make Z a Lie bialgebra
over K[t, t~1]. Clearly, Z=Z/0-1)Z. In the case of parallelizable F a study of Z
may be comletely reduced to a study of Z. Indeed, each parallelization of F induces a
Lie bialgebra isomorphism K[t, r^^Z-^Z which transforms ^®<a>, where a is a
loop on F, into the class of an immersed loop on F which is freely homotopic to a and
which has the total rotation angle 2nn. The equality Z=K[t, r^OOZ implies that Z is
a free K [t, t~ ̂ -module. The latter holds also for closed F, distinct from S2. This may
be deduced purely algebraically from the following easy assertion which holds true for
an arbitrary oriented F. Let M -> F be the bundle of unitary tangent vectors of
F. Clearly, each immersed loop oc:S1 -^F lifts to a loop a (x) = (a (x), ^(xVlla^x)!!)
in M, where xeS1. Then the formula ai-^S defines a bijection of the set of regular
homotopy classes of immersed loop in F onto the set of conjugacy classes in n^ (M).

The same argument as in Section 13 shows that the Lie bialgebra Z is spiral for
F^S2. The Lie subbialgebra ZQ of Z generated by regular homotopy types of non-
contractible immersed loops is spiral for all F. If F ̂  S2 then Z = Zo©K [t, t~1].

18.2. BIALGEBRA A. - The bialgebra A(F) introduced in Sections 4, 9 has a canonical
bialgebra extension A which, however, is not a quotient of ^ (F). As the module A is
the quotient of the K[A, ft, t, t~ ̂ -module freely generated by the regular isotopy classes
of oriented link diagrams on F, by the submodule generated by elements of two types:
(i) the elements

^+-^_-/!l^|-|^|^0

where h^=h, h_^==h and ^+, Q)_, ^o run over all triples of non-empty oriented link
diagrams on F which coincide outside a disk in F and look as in Figure 1 inside the
disk; (ii) the elements Q ) ' - t Q ) (resp. ̂ -r1^), where Q)' is obtained from the non-
empty diagram Q) by inserting a small either positive or negative curl to the right (resp. to
the left) of Q.

Clearly A/(^-1)A=A. Placing one diagram over the other defines an associative
multiplication in A. The class of the empty diagram is the unit of A. The same
construction as in Section 9 gives a comultiplication in A, which makes A a bialgebra
over K [A, ft, t, r1].

If 8 is the class in A of a trivial knot diagram then the quotient bialgebra A() = A/8A
biquantizes the Lie bialgebra ZQ. All the relevant constructions and proofs follow the
lines of Sections 1-17. Note that if F is parallelizable then Ao=K[/, r^^Ao, so the
only interesting case here is the case of closed F.
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