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EXISTENCE OF FLAT TORI IN ANALYTIC
MANIFOLDS OF NONPOSITIVE CURVATURE

BY V. BANGERT AND V. SCHROEDER

Introduction

A k-flat in a complete Riemannian manifold M is a totally geodesic and isometric
immersion F: ff^ -> M of euclidean [R^. A ^-flat is closed, if F is periodic with respect
to some cocompact lattice of [R^. Hence a closed flat induces a totally geodesic and
isometric immersion of a flat A:-torus.

The purpose of the paper is to prove the following result which answers a question
raised by Yau ([Y], Problem 65), see also [Gl], p. 169.

THEOREM. — Let M be a compact real analytic Riemannian manifold with nonpositive
sectional curvature. IfM contains a k-flat, then M contains also a closed k-flat.

We briefly describe the context of the theorem and some of its consequences.
By the flat torus theorem ([GW], [LY]) the existence of a closed A:-flat is equivalent to

the existence of a subgroup isomorphic to f in the fundamental group n i (M).
The existence of ^-flats in M is closely related to the "hyperbolicity" of M in the

sense of Gromov [G2] and to the Tits geometry of the universal covering space M
([BGS], chapt. I). Combining results from [G2], [BGS], [El] one can see that for a
compact manifold of nonpositive curvature the following properties are equivalent:

(1) M contains no 2-flat.
(2) M is hyperbolic in the sense of Gromov.
(3) The Tits geometry of M is degenerate.
(4) M is a visibility manifold (cf. [EO]).

We relate these conditions to the Preissmann property:
(P) Every non-trivial abelian subgroup of n^ (M) is isomorphic to Z.
Preissmann [P] proved this property for a compact manifold with strictly negative
curvature. Under the assumptions of our theorem, condition (1) is equivalent to the
nonexistence of a subgroup J? in TT^ (M). Since 71:1 (M) is torsion free this is equivalent
to (P).
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606 V. BANGERT AND V. SCHROEDER

Thus we have:

COROLLARY. — Under the assumption of the Theorem any of the conditions (1)-(4) is
equivalent to the Preissmann property (P).

Our result fits into the program to detect geometric properties of manifolds M of
nonpositive curvature which are equivalent to algebraic properties of the fundamental
group n^ (M). Examples are the existence of flat tori, the existence of a splitting
([GW], [LY]), the visibility property [E2] and, more generally, the existence of a ^-flat
[AS]. By our theorem the last property is equivalent to the existence of a subgroup
Zfe c: n^ (M) provided the metric is real analytic. Another important result in this context
is the equivalence of the geometric and algebraic rank [BE].

In the case that there exists a flat of codimension ^ 2 in M the above theorem was
proved in [Sl]. For the special case of higher rank manifolds see [BBS], section 4. For
examples of analytic manifolds containing higher dimensional flats see [Sl], [S3] and
[S4]. In the C^-category the theorem has been proved for codimension one flats, cf.
[B], [S5], but for higher codimension this question is open, cf. also the discussion in [G2],
p. 135.

The methods developed in this paper may be useful in investigating the structure of
the set of flats (or more generally of higher rank subspaces) in analytic manifolds of
nonpositive curvature. Such a structure theory exists in dimensions ^4 [S2].

We now indicate the main steps of our proof which combines methods from
(i) synthetic geometry of manifolds with nonpositive sectional curvature;

(ii) the theory of subanalytic sets;
(iii) the theory of dynamical systems.
Assume that k is the maximal dimension of a flat in M. By F^(M) we denote the

subset of all ^-planes <j in the Grassmannian G^ (M) such that exp: a -^ M is a ^-flat.
In the first part of the proof (section 2) we look for flats with an additional structure

of singular subspaces. Note that a vector z?ea, aeF^(M) induces a parallel vectorfield
along the flat exp: a -> M. We call v singular, if v has additional parallel vectors outside
the flat and regular otherwise. This notion generalizes the corresponding notion for
symmetric spaces. We define P-rank(^) to be the dimension of the space of vectors
parallel to v. Thus a vector v tangent to a ^-flat is regular if P-rank (z^) = k. Under a
certain nonclosing condition which we may assume by induction, cf. section 5, we show
in Theorem 2.5 that there is a subset of F^(M) containing flats with an additional
structure of singular subspaces. In particular every a in this subspace contains a flag
<7i c . . . c= (7^=0 of subspaces c^- with dim(a,)==; such that the sequence m^:=min P-

v e CTI

rank(^) is strictly decreasing m^>m^> . . . >m^=k. Thus c^_^ is a singular hyperplane
in a and the a^ for i<k—\ are singular subspaces of higher codimension. We call a
flat containing a flag with this property well structured. Furthermore we show that a
well structured flat can only contain finitely many singular subspaces.

We can consider the set of well structured flats as a subset Vo of the Stiefelbundle
S4(M) of orthonormal ^-frames: A point (x,v^ . . .,i^)eVo is a k- frame of vectors
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FLAT TORI IN MANIFOLDS OF NONPOSITIVE CURVATURE 607

v, E T, M such that the span < ̂ , . . ., v, > = a, defines a flag as above. Note that parallel
translation of the vectors v^ . . ., z^ in the corresponding flat gives a natural H^-operation
onVo.

In section 3 we use the theory of subanalytic sets to prove the existence of a compact
^-invariant analytic submanifold V of Vo. We construct a direction
w==(wi, . . ..H^JeS^"1 such that the map w:V-^SM, w(x,^, . . ..^^w^ is an
analytic diffeomorphism onto a submanifold W=w(V) of the unit tangent bundle
SM. The submanifold W is invariant under the geodesic flow and the sets of parallel
vectors in W define a ^-dimensional foliation of W. Now the following point is crucial:
Choosing V and W such that their dimension is the minimal possible one we can show
that there are no parallel and not even affine Jacobiflelds on W which are normal to the
foliation.

In the final part of the proof (section 4) we use this last property of W to find a
compact subset G of W which is saturated with respect to our foliation and on which
the geodesic flow is normally hyperbolic in the sense of [HPS]. Using the tools from
the theory of dynamical systems developed by Hirsch, Pugh and Shub in [HPS], in
particular the Shadowing Lemma (7 A. 2), we can then prove the existence of a closed
^-flat, see section 5.

1. Preliminaries

A. CONVEXITY PROPERTIES ([BGS], chapt. I, [EO], [BO]). - In this paper M will denote
an ^-dimensional connected compact real analytic Riemannian manifold of nonpositive
sectional curvature (K^O) with universal covering p:M->M. By TM, TM and SM,
SM we denote the tangent and the unit tangent bundles of M and fA. For a tangent
vector v e T^ M let y^ (t) = exp^ (tv) be the geodesic with initial vector v and let
^:SM-^SM, ^v.^j^t), be the geodesic flow. By d( , ) we denote the distance
function on M and M.

A function /: M -> R is convex, if f° j : R -> R is convex for every geodesic y in M
The curvature condition K^O implies the convexity of the following functions:
1. The distance function d\ M x M -> [R.
2. The norm t\—> || Y(^) || of a Jacobifield along a geodesic.
3. The distance function d( , H): M -> R, where H is a convex subset of M.

For a subset A c= M let Tube, (A) == { x £ M \d(x,A)^r] be the r-tube of A. Two
complete totally geodesic submanifolds H and H' of M are called parallel (H || H'), if the
Hausdorff distance HD between H and H7 is finite, i.e. if there exists r such that
H c Tube,(H7) and H' c= Tube,(H). Two parallel totally geodesic submanifolds H, H'
bound a convex subset isometric to H x [0,r], where ^HDflI.H') (Sandwich Lemma).

In general the set PH of all points in M which lie on parallels to H is convex and
splits isometrically as P H = H X Q , where Q is a convex subset of M. The analyticity
implies that PH is without boundary.
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608 V. BANGERT AND V. SCHROEDER

If H is a convex subset of M, then there exists an orthogonal projection
projn: M -> H, which is distance nonincreasing. If H* is a complete totally geodesic
submanifold of M such that d( ,H) is constant on H*, then H': = projn (H*) is also
complete and totally geodesic with H'||H. This follows from the proof of [BGS],
Lemma 2.3.

B. GEOMETRY OF THE TANGENT AND FRAME BUNDLE. - Let TM, TM and SM, SM be
the tangent (unit tangent) bundle of M and M. All bundle projections will be denoted
by n. Let K: T(TM) -> TM be the connection map of the Levi-Civita connection. On
TM and SM we use the metric

<^T1>*:=<7r^ ,7T,T1>+<K©,K(Tl )>

induced by the metric < , ) on M. We make the usual identification:

TSM={(w,A,B) |weSM;A,BeT^M,Blw}

where A = n^ (w, A, B) and B == K (w, A, B).
For weSM we denote by J(w) the space of Jacobifields along the geodesic y^. Let

. J * (w) :={YeJ (w) |<Y / (0 ,y , (0>=0}

where V is the covariant derivative of Y along y^. We have dimJ(w)=2n,
dim J* (w) = 2 ^ — 1 . There is a canonical isomorphism

^Y^

between T^SM and J*(w): for ^=(w,A,B) let Y^ be the Jacobifield along y^ with
Y^ (0) = A and Y^ (0) = B. For the geodesic flow ̂ : SM -> SM we have

^=(^H^(O,Y^))

We call YeJ(w) stable (unstable), if ||Y(Y)|| is bounded for t->co(t-> - oo). Let
P(w), J"(w) c= J(w) be the subspaces of stable and unstable fields. For every vector
weTM there exists a unique stable (unstable) field YeJ^w) (ZeJ"(w)) with
Y (0) = Z (0) = w. In particular dim P (w) = dim J" (w) = n.

Let P (w) be the subspace of J (w) consisting of parallel Jacobifields along y^. The
following properties are equivalent (see [BBE] 1.4):

(i) YeF(nO;
(ii) || Y (0|| is constant on IR;
(iii) || Y (0|| is bounded on R;
(iv) R(Y(0,y,(0)y,(Q=0.

In particular P (w) = J5 (w) U J" (w).
We define the strong stable (strong unstable) fields by

J55^): = {Ye.F(w) | Y(0) 1 Z(0) for all ZeP(w)}

J5"^): = {yer (w) | Y(0) 1 Z (0) for all ZeP(w)}

4^^^ - TOME 24 - 1991 - ?5



FLAT TORI IN MANIFOLDS OF NONPOSITIVE CURVATURE 609

By [BBE], Lemma 3.3, we have: ifYeJ^w) (eJ^w)) and Y(0)1Z(0) for ZeP(w),
then Y (Ql 7(0 for all teR. Note that every Jacobifield YeJ(w) with lim Y(/)=0

t -* 00

[resp. lim Y(Q=0] is in J55^) (J^w)). This is true since <Y(^) ,Z(0> is linear in t
t -> — 00

i fYeJ(w) and ZeP(w), c/ [BBE], Lemma 3.3.
If dim F (w) == w, then dim J55 (w) = dim J5" (w) = ^2 - m. Note that J55 (w), J5" (nQ, J17 (w)

are all contained in J* (w). We call a Jacobifield affine, if
w

Y (0=^(^+^(0
1=1

where Z^eJ^w). Let J^w) be the space of affine fields, and

j^(H;)=r(^)^j*(H;)
Then dim J° (w) = 2 m and dim J*° (w) = 2 m - 1. If Y e J55 (w) or Y e J5" (w) and Z e F (w)
then Y (0 1 Z (Q for all ^ e R. We have the decomposition

J (w) = P (nQ © J55 (w) © J5" (w)
J* (w) = J*° (w) © J55 (w) © J5" (w).

Stiefelbundle. — By ST^ (M) we denote the Stiefelbundle of orthogonal ^-frames:

St , (M)=={(x ,^ , . . . ,^ ) |xeM,z^eT,M, || v,\\=\^Lv,fori^j,\^iJ^k}

Using the connection map K, we describe the space TySt^(M), v=(x,v^ . . .,z^) as
follows: Represent r|eT^Stfc(M) by a path v(t)=(x(t\v^ (Q, . . .,^(0) with
v (0) = v. Let A = x (0) e T^ M and B, = K (v, (0)) e T^ M. The orthogonality relations of
v^ . . ..pimply

(*) <z; ,B,>+<z; , ,B,>=0 for \^iJ^k

We identify

T,St,(M)={(x,z^i, . . .,^,A,Bi, . . .,B,)|^,A,B^T,Mandz^satisfy(*)}

Thus T| e Ty St^ (M) can also be described by Jacobifields Y; along y^ with Y, (0) = A and
YKO)=B,

Jacobifields along flats. — Infinitesimal deformations of a flat F() : IR^ -> M by flats are
described by Jacobifields along flats. Suppose F: [R^ x (—8,s) -> M is a 1-parameter
family of flats F(=F( , Q. Then Y(z)=a/a^=oF(z. 0 is a vector field along FQ such
that Y(^+&) is a Jacobifield for every line s\—>as-\-bm [R^. Every vectorfleld with this
property will be called a Jacobifield along F(). A Jacobifield Y along Fo is uniquely
determined by its value Y (z) = A at an arbitrarily fixed z e ̂  and its covariant derivatives
D, Y (z) = K (Y^ (e,)) = B,., 1 ̂  / ̂  k at z. Note that with this notation the curve of frames

z;(0=(F(z,0,F^(^),...,F^(^))
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610 V. BANGERT AND V. SCHROEDER

has derivative

z;(0)=(^(0),A,B,,. . . ,B,).

The Jacobifields Y ^ Q F / O t coming from a variation F^ as above are special in that the
Fy are isometric whereas they need only be affine to define a Jacobifleld. This corre-
sponds to the fact that for every ze[R^ the vectors v^^o^^i) an<^ B^=D^Y(z), 1 ̂ i^k,
satisfy the relations (^ Since Fo is totally geodesic the components Y1 and Y^ of Y
tangent and normal to Fo are Jacobifields as well, cf. [BBE], Lemma 2.4. Since Fo is
fiat YT is affine, i.e. Y^^+A) is affine for every line s\->as+b in R^. Geometrically
the presence of the tangential component yT corresponds to the freedom to reparametrize
FQ. More precisely we can find an infinitesimal isometry R z = S z + a of 1R\ i.e. S e so (k)
and a e [R^, such that Y7 (z) = Fo^ (R z). One has to take S and a so that Y1 (0) = Fo^o (^)
andD^^Fo^^).

The generic nonexistence of flats of dimension k > 1 in Riemannian manifolds has the
following infinitesimal counterpart: if k>\ there may not be a Jacobifleld Y along Fo
for every (non-tangential) choice of initial values and if Y exists it need not come from
a variation F( of Fo by flats.

C. SUBANALYTIC SETS. — In sections 2 and 3 our assumption that the manifold M and
the Riemannian metric <( , ) be analytic will be crucial. We shall frequently appeal to
the theory of subanalytic sets as described in [T] or [BM]. Since the precise definition
of a subanalytic set is a little lengthy we only present a class of examples which is
important for us: If/.-M-^N is a proper (real) analytic map between (real) analytic
manifolds and if A c: M is analytic, then /(A) is subanalytic in N, cf. [T], Theorem
1.2.2(vi) .

A particularly nice property of the set SUB (M) of subanalytic subsets of M is that
SUB (M) is closed under finite union and intersection and under set theoretic difference,
cf. [T], Theorem 1.2.2 (i). Moreover every AeSUB(M) can be stratified into analytic
submanifolds A^eSUB(M), see [T], Theorem 1.2.2 (iv). In particular subanalytic
subsets are locally pathwise connected, cf. also [BM], Theorem 6.10.

The following theorem due to Tamm is of fundamental importance for us, cf. [T],
Theorem 2.4.2, or [BM], Theorem 7.2:

For A c= M and 0 ̂  q ̂  dim M let rq (A) denote the set of analytic ^-regular points of
A, i. e. the set of x e A which have a neighborhood U in M such that U 0 A is a q-
dimensional analytic submanifold of M. If A is subanalytic in M then so is r^(A) for
every O^^^dimM. I fA^0 there exists a maximal q such that rq(A)^0. For this
q the set B:=A\^(A) is subanalytic in M and dim B<dimA.

2. Flats with additional structure

In this section we prove the existence of flats which have an additional structure of
singular subspaces similar to the situation of symmetric spaces. Before we explain this
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FLAT TORI IN MANIFOLDS OF NONPOSITIVE CURVATURE 611

more explicitly (cf. the remark before Theorem 2.5) we have to present some basic
properties of flats and of their singular subspaces.

We assume that k^2 is the maximal dimension of a flat in M. For l^m^n
let G^ (M) and G^ (id) be the Grassmannbundle of m-planes with bundle projections
TC:G^(M)->M and n:G^(^/l) ->M. By dm( , ) we denote the induced distance
functions on G^(M) and G^(S/l).

For l^m^k let F^(M) [resp. F^(M)] be the subset of all <jeG^(M) (aeG^(M))
such that exp: a -» M (exp: cr •-> Kl) is an w-flat in M (resp. 1VI).

We call T, T'eF^dCl) parallel (r^'), if the Hats exp(r) and exp CO are parallel as
subsets of id (section 1 .A). Let

^-{T-eFJM^IlT}

By 1. A the projection P^ == n (P^) c: M is a complete totally geodesic submanifold which
splits isometrically as (FT x Q. For xeP, let r(x) be the (unique) w-plane in T^M with
T (x) || T. Then T (x) is tangent to the (ir-factor of P,. We define

P-rank (r): == dim P, = dim P,

F^(I%):={TeF,(ld)|P-rank(T)=^}

We define parallelism in the quotient as follows: let c?o, a^ eF^(M) and c: [0,1] -> M
a path from n(ao) to 7r(ai). We call o-o parallel to a^ along c, if there is a lift
?:[0,1]-^ andTo,TieG^(M)l i f t so fao , Oi with TT (To)= ?(0), 7c(Ti)=?(l) and To| |Tr

For aeF^(M) let P^:=^(P,), where T is a lift of a. Then P^ is an immersed
submanifold. We set P-rank (a): == P-rank (r) and

F^ (M) = { a e F, (M) | P-rank (a) = q }

Clearly the P-rank is semicontinuous, i. e. if o .̂ e F^ (M) and c .̂ -> a, then

P-rank (a) ̂  lim sup P-rank (c^)

For a vector veSM (resp. SM), we define Py:=P<^ and P-rank (z^) := P-rank «-y »
where ( v ) denotes the linear subspace generated by v. We will use the following fact
frequently:

Let TeF^(IYl) and T' be a linear subspace of T, then P^ c: P^,.
Let aeF^(M). We call P^ c/oW, if the set P^ is compact. Note that P^ is closed if

and only if for a lift T e F^ (M) of a we have PJF^ is compact, where F^ is the group of
those decktransformations which leave P^ invariant.

Let F c: ]\4 be a flat of maximal dimension, i.e. dimF=A:, letj^eF and a=T FeFfe(M).
If T c: a is a linear subspace, then reF^(M) where w=dimr and P^ =3 F. We call a
vector veTpP regular if Py==F and singular if Py^F. In symmetric spaces the singular
vectors are contained in finitely many hyperplanes. We shall show that in our case the
situation is similar.
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612 V. BANGERT AND V. SCHROEDER

We call a subset P of M a parallel space of F, if there is a linear subspace T of a such
that P=P,.

2.1. LEMMA. — If P^ and P^ are parallel spaces of F, then P^ is orthogonal to P^ in
the sense that

Projp, ?2 = Pi 0 Pi = Projp^ Pi

Proof. — Let Pf=P^ with T^ c a and let xeP^. Then P^ contains the flat exp (1:2 (x)).
Since exp(T2(x))||exp(T2) and the latter space is contained in P^ we see that d( ,P^) is
bounded on exp (r^ (x)). By 1. A we see that projp^ (exp (r^ (x))) is parallel to exp (r^ (x))
and hence is contained in P2. In particular projp^ (x) eP^ 0 P2- n

As an easy consequence we obtain:

2.2. LEMMA. — (i) There exist only finitely many parallel spaces of¥.
(ii) If T is an m-dimensional subspace of a, then there is a neighborhood U of T in

G^(a) ^MC/? that i ^eU implies P^ c= P^.
For a parallel space P of F with a = Tp F we define

kern,(P):=={z;ea P c = P , }

If v^,v^ekevn^(P), then P is foliated by parallels to exp«-yi)) and to exp«i^)). It
follows that P is foliated by parallels to exp^i^,^)). Thus kern^(P) is a linear
subspace of a and characterized by the property that P=Pkern^p)- I11 particular we have
T <= kern^ P^. From the definition we have

p c= P ' => ken^ (P') c: kern^ (P)

2.3. LEMMA:
c: <=

(i) IfP is a parallel space with F^P, then kern^ (P) =^ o.

(ii) P^P^^kern.P^kern.Pi.
(iii) L^ T=kern^(P) m^A m=dimT. T/z^^ there is a neighborhood U of ^ in G^(a)

^MC/Z ^^ TieU\{T} implies P^^P^.
Proo/. - (i) If kern^(P)=a, then P=P<,. Note that P^ splits isometrically as [R^xQ
and by the maximality of k, Q is a point. Thus P=F.

(ii) If T=kern^Pi=kern^P2 then Pi=P,=P2.
(iii) Because of Lemma 2.2(ii) we have P^ c= P^ for suitable U. If P^=P,, then

kern^ (P^) = kern^ (P^) = T. Thus T^ c= T and hence T^ = T. D
Now we construct flats with a flag c^ c: . . . c: a^a, (j;eF^(M), such that the c^ are

singular subspaces with parallel spaces of maximal dimensions. For 1 ̂ s^, k let G^ ^(M)
be the bundle of flags

(a,a^, . . .,a,)GG,(M)®G^(M)e. . .©G,(M)

4eSERIE - TOME 24 - 1991 - N° 5



FLAT TORI IN MANIFOLDS OF NONPOSITIVE CURVATURE 613

with a, c= . . . c= Ofc and G^(M) the corresponding bundle over M. The bundle projec-
tions are denoted by n.

Define inductively subsets E^(M) c G^(M) and integers m,, 1 ̂ s^k, by
1. E^(M):=F,(M),m,:=fe.
2. If E^+i ,fe(M) is defined let m^ be the maximum of all dimensions dimP^ where

aeG,(M) is such that there exists (a,+i, . . . ,C^)GE,+^(M) with a c= a,+i. Then we
set

Es^M)-^, ...,a,)eG,^(M)|a,eFfc(M),dimP^=m,for^^^}

Correspondingly we define E, ^ (M) c= G, ^ (M). Thus

E..fe(M)={((7,,... ,a,)eG^,(M)|a,eF,(M),dimP^=^for^^^}

2.4. DEFINITION. —We call E, ̂ (M) well structured, if m,>m^+^> . . .>m^=k.

Remark. - The arguments in section 5 and inductive use of Theorem 2.5 below will
allow us to assume that E^(M) is well structured. If this is the case a flat F=exp(c^)
is called well structured if a^ can be completed to (c^, . . ., c^) e E^ ^ (M). The important
property of well structured flats F = exp (c^) is that (by Lemma 2.8 below) a^ can be
completed to an element of E^(M) in only finitely many ways. This implies that a
well structured flat carries-up to finite ambiguity-a natural basis. This will be crucial
in the proof of Theorem 3.1, cf. Lemma 3.5 (ii).

2.5. THEOREM. — Let us assume that E^ ^(M) is well structured and s^2. If there
exists a flag (a,, . . .,a^)eE, ^(M) such that P^ is not closed, then E,_i ^(M) is well
structured.

Remark. - For s=k, the theorem says that the existence of a nonclosed /r-flat implies
the existence of a fc-flat with a "singular" hyperplane. This was proved in [Sl], section 4.

We start with some lemmas.

2.6. LEMMA
(i) F^(M) is a compact analytic subset ofG^(M).

(ii) F^(M) and F^(M)= U F^(M) are subanalytic subsets ofG^(M).
r^q

(iii) E^ ^(M) is a compact subanalytic subset ofG^^(M).

Proof. - (i) For aeG^(M) let S(a) c= a be the unit sphere. If a is tangent to an
w-flat, then the volume of the immersed sphere exp(S(a)) equals o^-i, where (D^_i is
the volume of the standard (m - l)-sphere. In general vol (exp (S (a))) ̂  co^_ i and equal-
ity implies that the unit ball in a is mapped totally geodesically onto an immersed flat
ball in M ([BGS], 1. E). By analyticity a is tangent to a flat.

Thus F,(M)=/, ̂ O) where

/„ (a): = vol (exp (S (a))) - co, _ ,

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



614 V. BANGERT AND V. SCHROEDER

Clearly f^ is an analytic function on G^(M).
(ii) For (^,w)eSM©SM let v^(t) denote the parallel vectorfield along exp(^w) with

v^ (0) = v. The map (SM © SM) x (R -, SM defined by (v, w, Q i-̂  v^ (t) is real analytic.
Choose a constant e>0 smaller that one third of the injectivity radius of M and define

g+: SM©SM->[R

g+_ (^, w)= [d(exp (± s^ (c)), exp (± szQ)]2 - s2

Then the geodesies exp (tv) and exp (tv^ (s)) are parallel, if and only if g+ (v, w) == g_ (v, w) = 0.
Define g : SM © SM -^ (R by

g (v, w) = ̂ r2. (v, w) + ̂ 2 (z?, w)

Since the distances involved in the definitions of g+ are smaller that the injectivity
radius, the function g is real analytic. We have g (v, \v) ̂  0 and g (v, w) == 0 implies that
w is tangent to Py. Now we define

g : G,(M)©G,(M)->^

f t^(a,T):=/^(a)+ ^,w)aWw
JyeS(o) JweS( t )

where/^ is the function of (i) and S(a), S(r) are the unit spheres in a and T. The
function g is analytic and ^(a,T)^0. Now g(a,r)=0 first implies /^(a)==0, L^.
aeF^(M). Secondly ^(^,w)=0 for every z^eS(a) and w€S(r). This implies that T is
tangent to Py for all z?ea, thus T is tangent to P^ and in particular dimPy^q. This
computation shows that F^(M)==^i ({^==0}) where

^: G,(M)©G,(M)-^G,(M)

is the canonical projection. Thus F^ (M) and F^ (M) == F^ (M^F^^x (M) are suban-
alytic by 1. C.

(iii) E,,,(M)={(a,,...,a,)eG^(M)|a,eF,(M), dimP^mJ. Since the m, are
choosen to be maximal possible, we see that E^ ^(M) is compact by the semicontinuity
of the P-rank.

Consider on

G^(M) © G^(M) © . . . © G,,(M)

the function
k . .

/Z(((7,, . . .,0,),T,, . . .,Tfe):==A(CT,)+^ g(v,w)dvdw
i = s J v e S (of) J w e S (T()

then we see as in (ii) that E^ ^(M)=/?i ({ / z=0}) is subanalytic where p^ is now the
projection onto G^ ^(M). D

4s SERIE - TOME 24 - 1991 - N° 5



FLAT TORI IN MANIFOLDS OF NONPOSITIVE CURVATURE 615

2.7. LEMMA. — Let reF^(M) and assume that p(P,) is not closed. Then there exists
a continuous path T(Y)eF^(M), te[0,1], such that T(O)=T andP,^^P,for t>0.

Proof. — We represent M = M/F with p : M -> M. Let

P,=^(P.) and r , :={yer |yP,=P,}.

CLAIM. — IfP^ is not closed, then for every c>0 there exists yeF and T^ eP^ such that
^m (V* T!? I\) ̂  s but y^ Ti ^ not contained in P^.

To prove the claim assume that for some s>0 the following holds: T^eP^ and
^"(y^i^r)^8 implies y^eP,. Let D be the 8/2 distance tube of P, in G^(M).
Then y^ D 0 D ̂  0 implies yeF,. Thus D/T\ is injectively embedded in G^(M) and
thus PJF, and hence Pjr\ is compact. This proves the claim.

Consider now the set F^(M) which is compact by the semicontinuity of the P-rank
and subanalytic by Lemma 2.6. Since subanalytic sets can be stratified, F^(M) is
locally pathwise connected, cf. 1. C. Thus for every E > 0 there exists 8 > 0 with the
property:

If <7o, aieF^(M) with ^(cjo.a^^S, then there is a path a.eFjI^M) of length <e
joining (JQ and a^.

Choose 5>0 for £== injectivity radius of M. By the claim there is T'eP^ and yeF
with (T (y^ T', P,) ̂  8 and y^ T' i P,. Let T^ : = y^ r7 and TQ e P, with ^m (TQ, T^) ̂  5. Let
<Jo,<7ieF^(M) be the projections of To, T^ . By construction there is a path
c^eFj^M) joining OQ, Oi with length <s. In particular the length of the curve
c(0=7i(c^) is smaller than the injectivity radius. Lift c{t) to a path in M with initial
point 7i (To) and lift c^ to a path T, in F^(M) starting in TQ. By construction the lift
ends in T^. Let ^ o : = m a x { re[0,1] |Tj|r}, then IQ<I since T^ is not parallel to T. By
the semicontinuity of the P-rank there exists ri>0 such that T(GF^(M) for t^lto^o^^]-

We reparametrize the path T^ for ^e[^o,^+ri] on the interval [0,1] and call the new
path r(0, ^e[0,1]. Since ^h-^P^ is continuous in the compact open topology we can
find a continuous path T(O£F^(M), te [0,1] such that P,^==P^ for all t and
T (0) = T. The path T (Q satisfies the required properties. D

2.8. LEMMA. — Assume that E^ ^(M) is well structured. Then
(i) If (a,, . . .,Ofc)eE^(M), ̂  kern^ (P^) == a,.

(ii) For given c^eF^M) there are only finitely many possibilities to complete a^ to a
flag (a,, . . .,orfc)eE^(M).

(iii) There exists e>0 such that the following holds: If (c^, . . . ,a^)eE^ ^(M) ^^ T z.s'
an r-dimensional subspace of 0^ for s^r^k, with ^(^a,.)^, ^77 P^ c: P^ ^^^ equality
implies T = <7y.

Proo/. - (i) Inductively we may assume that kern^ (P^.) = c .̂ for z'+l^y^^. Let

T = kern^ (P .̂), then T =) a,. Since E, ^(M) is well structured we have P^ ^P^ and
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hence

T = kern,, (P^) ̂  kern^ (P,^) = a^,

where the first inequality follows from Lemma 2.3 (ii) and the last equality by
induction. Thus T = c^.

(ii) By Lemma 2.2 the flat F=exp(c^) is only contained in finitely many parallel
spaces and hence c^ contains only finitely many kernel spaces.

(ii) Let us consider a sequence a^=(c^, . . .,a[)eE^ ̂ (M) and r-dimensional subspaces
T^ <= o-fc such that d" (r^, cr^) -> 0. We can assume that .̂ -^ ^ = (a^, . . ., o^) e E^ (M). If
P^ is not contained in P^ for large ; then the orthogonality P^ 1 P^ of Lemma 2.1
and the semicontinuity of the P-rank imply P-rank (a^>m^ a contradiction. Thus
P^. c P,i. Equality implies

T, c= kern^ (P,) = kern^ (P^) = c^

and hence T; = a1

2.9. LEMMA. — Suppose F=exp(a) is a k-flat and F c= P^/or ^m^ TeF^(M). Then
P^ ^ (3 parallel space of¥ and there exists T' [ [ T with T7 c a.

Proof. - Let P^lR'xQ be the isometric splitting of P, so that [R'x^}, qeQ,
are the flats parallel to exp(r). Let ^ i iP^^IR 5 , p^:P^->(^ denote the orthogonal
projections. It is not difficult to show that p^ (F)=F^ and p^ (F) = F^ are flats. Since
W x F^ is a flat we have dim P ^ ^ k — s . Since F c F^ x F^, dim ¥=k and dim F^ ̂ s
we conclude F = F^ x F^ and dim F^ = s, i. e. F^ = [R5. Hence F contains the flat 1R5 x {q },
^eF^, parallel to exp(r). D

The following lemma is a crucial ingredient of the proof of Theorem 2.5. It is a
purely topological consequence of the discreteness result (2.8) (hi) and of Lemma 2.9.

2.10. LEMMA. — Assume that E^ ^(M) is well structured. Then there exists £o>0 such
that for every 8>0 there exists T|>O with the following property:

Let

(a, . . ., a,) e E^ (M) and T e F^ (M)

satisfy ds(x,a^<^Q. Suppose ^(7i;(T),7i(afc))^r| ^^ there exists a ball B c= exp(a^) of
radius one containing n (a^) such that d(x, P^) ̂  T| /or all x e B. Then d8 (r, a^) < s.

Remark. — In less precise terms (2.10) says the following: if T e F^5 (M) lies sufficiently
close to <7s for some (c^, . . ., a^) e E^ ^ (M) then T is very close to c^ provided a^ is very
close to a subspace of TP^.

Proof. — Choose SQ according to (2.8) (iii). If our claim does not hold we can find
e>0 and sequences (a;, . . ., aQ G E,^ (M), T^FJ^M) with d8 (r1, c^» < 80 and balls
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B1 c exp (ay of radius one containing 71 (c^) such that the following is true:

lim d(n(xi\K(c5i,))=Q
i -> oo

lim (sup^(x,P,0)=0
1 ^ Go x e B1

and ^(T^a^e. If necessary choose a sequence of deck transformations y^eF such
that the sequence y, (TC (r1)) remains bounded and replace T1 by Yi* (A o^ by y^ (cr;.) and
B1 by y, (B1). Then we may assume that T1, (c^, . . ., <j[) and B1 converge to
TGFJ^(M), (a,, . . .,(7fe)eE^(M) and Be exp (c^) respectively. Our assumptions
imply that T and a, have the same footpoint, that 8 ̂  d8 (r, a,) ̂  SQ and that B c= P^. Since
P, is totally geodesic we even obtain exp (c^) <= P,. Now Lemma 2.9 implies
T c c j f e . Since 6/(T,a,)^So we get P, c P^ from (2.8) (iii). On the other hand
dimP^w,=dimP^ so that P,==P^. Hence T=(J, by (2.8) (iii). This contradicts
(1s (r, a^) ̂  s > 0 and proves our claim. D

Proof of Theorem 2.5. - We argue in the universal cover M. Choose
(0-5, . . ., Ofe) e E^ (M) such that p (P^) is not closed. By Lemma 2.7 we can find a
sequence T,eF^(M) converging to a, such that P^P^ for all ;. We abbreviate
P,: = P ,̂ P: = P^ and F: = exp (a,).

Now we can give a sketch of the proof. Using the distance function from P, restricted
to F=exp(cT^) and the accumulation construction first described in [Sl], section 5, we
find limit spaces p°^p* of P, and P, a limit flat F* c= P* of F and a codimension one
subflat D* of F* which has a parallel D° c= P°. The crucial point is to show that D° is
not contained in P* since this implies m,_^ >m^. We prove that D° is not contained in
P* if a parameter in the accumulation construction is chosen sufficiently small. Here
an application of Lemma 2.10 is the key step.

Before we describe the accumulation construction we choose 8i>0 with the following
property:
(^) Suppose (a,*, . . .,a?)eE, fe(M) and T*eF^(M) have footpoints x and y and
^(^(P^T^))^^. Then d^x^a^^.
The existence of such an 8i>0 follows from the compactness of E, ^(M) and the
semicontinuity of the P-rank.

For the accumulation construction we consider the convex distance functions
fi=d( ,P^.) |F:F-»[O,OO). We need that almost all of the/^ are unbounded. First we
prove that/;, is not identically zero for / large enough. I f /^=0 then P^ is a parallel
space of F by Lemma 2.9. Since P,^P, since P^ converge to P by construction and
since F has only finitely many parallel spaces by Lemma 2.2 we see that f, is not
identically zero for large enough ie N. Finally/, cannot be bounded and different from
zero: Otherwise /•= a > 0 is constant by convexity and by 1 .A there exists a parallel F'
to F in P,. By the Sandwich Lemma F and F' bound a convex subset isometric to
Fx[0,a]. By analyticity we even obtain a (^+l)-flat F x R in M which is
impossible. Thus/, is unbounded for almost all ie M.
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Now set e = (1/2) min{ 80,81} where 60 is defined in (2.10) and s^ in (^) above.
Choose T|>O so that (2.10) holds for this E. Let z=n(a^\ Since P; converges to P
uniformly on compact subsets we have lim/(z)=0 and we can assume/(z)^ri. Let
R; be the radius of the largest distance ball B; == B^ (z) c: F such that B; c: {/. ̂  n }. Since
?i -> P we see R; -> oo. On the other hand R^ oo since /• is unbounded. Let x^ be a
point in 3B; with /iC^)^ an^ ^et ^^P^Jp,^)6^- I11 xi we have the flag
(c^Oc;), . . .,afe(^))6Es^(M). Let H^ be the affine hyperplane in F tangent to <9B, with
^eH,.

By construction H^ is also tangent to [f, = TI } and thus /; ̂  T( on H, by convexity of
fi. Let D, be the ball in H^ centered at x^ with radius ^^ / (Rf+^-Rj ' . By
Pythagoras' theorem ^(x,^B^l for all xeD^ and hence /; (x) ̂  1 + T| by the triangle
inequality. Since the decktransformation group F operates with compact quotient on
]Vl, there are isometries y^er such that the points Yi(x^) are contained in a fixed compact
fundamental domain. By considering subsequences we can assume

J i ( X i ) - ^ X

7i(yi)-^y
Y.(P)-^P*

Y .̂ (F) -^ F* with x e F* c= P*
^.(P^po with yeP°

y,(D,)^D*,

where D* is a hyperplane in F*

(Tf* ̂ s (^f). • • • . Yi* ̂  C^)) ̂  (^*. • • • . Gr?)£ E., fc (M)

with exp (a?) = F*, n (a?) = x. Since n ̂ /^ 1 + T| on D, and/; (x;) = T|, we see by convex-
ity that every x*eD* has distance T| from P°. By 1 .A projpo(D*) is a parallel D° of
D*.

Now we complete the proof of Theorem 2.5 under the assumption that D° is not
contained in P*—an assumption that we will prove later. Note that yeD°. Let
T* c <j^ be the hyperplane tangent to D* and set a^*_i :=(o^ PIT*). Note that P^-i
contains P* and D°. Since D° is not contained in P* we have dimP^_^>m^=dimP*.
In particular we have a^_ 17^ a^ and hence dim a^_ ^ == s — 1. This implies m^-1 > m^ and
thus E^_i fe(M) is well structured.

It remains to show that D° is not contained in P*. We argue by contradiction and
assume D° c= P*. Recall that T;(^.) and c^(^) denote the parallels of T, and c^ with
footpoints y^ and ^. We have the following simple

SUBLEMMA. - IfD° c= P* then ^(^.Cy,), a^x^^^for almost all ieM.

Proof. — Since x and yeD° are in P* the unit speed geodesic a from x to y is
contained in P*, hence 6c(0)eT^P*. On the other hand a(r()-LTyP° since
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d(x,P°)=d(x,y)=-r\. This implies rf'"'(T^P*,TyP°)^7i/2. Since

619

T,P*= lim Y..(T,,P)
I -> 00

T,P°=lim^(T^P,)

we conclude

^(T^.P,T^P,)^

for almost all i. Now our claim follows from (^) since

P = P^ ̂ , (a, (x,), . . ., a, (x,)) e E,,, (M), P, = P .̂ ̂ ,

andT,(j,)eF^(M). D
The idea for the rest of the proof is as follows: While T, and a^ are very close T; ( y ^ )

and Os(^) are at distance ^s^. The discreteness expressed in Lemma 2.10 shows that
T^ and (7s cannot be continuously deformed into T^(^.) and (Js(xi) without violating the
hypothesis of (2.10). On the other hand we can easily find such a deformation. This
contradiction will complete the proof. The details are as follows:

We consider the geodesies o^.:[0,1] -> B, c= F connecting the base point z=7c((7fe) to
x, G F and its projection |̂ . = projp^. ° oc^: [0,1] -^ P,. Since /^ T| on B, we have
^(^•(0, P,(0)^r| for ^e[0,l]. We consider a1, (t): == a, (a, (/)), s^r^k and
T,.(0=T,(|3,(0). In particular we have a;(0)=a,, T,(O)=T,, a^(l)==a,(x,) and
T, (1) = T, (y^). The sublemma implies ^/s (r; (1), a^ (1)) ̂  8^ for almost all i. On the other
hand lim (Is (r, (0), c^ (0)) = 0. Since 8=(l /2)min{co,8i } we can find te [0,1] and ieN
such that G^^T^O^O^SO. Note that the footpoints |̂ .(0 of T;(O and o^.(0 of
a; (0 have distance ^ T| and that a, (Q e B, and /^ g, ̂  r|. Since the radii R, of B, diverge
to oo we may assume R^l. Hence Lemma 2.10 implies ^(r^), c^(0)<£. This
contradicts the way we chose ^ and thus completes the proof of Theorem 2,5. D

3. Dynamics of well structured flats

In this section we assume that the set E^ ^(M) is well structured [compare
(2.4)]. Under this assumption we prove:

3.1. THEOREM. — There exists a compact analytic submanifold W of SM which is
invariant under the geodesic flow and an analytic operation \)/: ̂  x W -> W of ̂  on W
with the properties:

(i) For given w e W the map F^: (R^ -> M, F^ (z): = TT ° v|/ (z, w) ^ <^ well structured k-flat
and w is a regular vector in F^.

(ii) \(/(z,w) is the result of the parallel translation ofw along the geodesic t\—fp^(t.z),
te[0,1]. In particular ^^^(z, ) commutes with the geodesic flow, ̂ z ° g1 = g1 ° ̂ z.
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(iii) Let ^eT^W and let Y^(/) be the corresponding Jacobifield along exp(^.w). Then
Y^ is an affine field if and only if Yp is parallel and tangent to the flat F^,. In this case
^=\|/^, where ^f^=^( , w) and ^eTo^.

The proof of Theorem 3.1 needs some preparation. It turns out to be more convenient
to describe the set E^(M) of well structured flats as a subset of the Stiefelbundle St^(M)
in the following way:

Vo:-{(x,^, . . .,z^)eST,(M)|<z^ . . ., ̂  > e F, (M), P-rank «z;,, . . .^»=m,}

A point v e Vg describes a flag

((-yiX^i^X ' • '^^i. " •.vk))eEl,k(M)
On the other hand a given flag in E^ ^(M) is represented by exactly 2fe points in
Vo. Obviously Vo is also compact and subanalytic. For a fixed point
z= (z^, . . ., z,,) e [R^ we have a diffeomorphism

(p2: Stfe(M)-^St,(M)
/ / k \ \

cp^x^i, . . .,^)= exp^ ^ z,^ ,Par^i, . . .,Par,i;J
\ \ i=i / /

where Par^ is the result of the parallel transport along the geodesic t \—> exp^ (t. (^ z^i)),
^E[0,l].

A point v=(x,v^ . . .,z^)eVo is a frame tangent to the flat F^R^-^M,
Fy(z)=exp^(^z,^). Note that Vo is invariant under (p2 for all zeIR^ so that we have a
map

(p: R^Vo^Vo

cp(z,z;)=q)z(^)

For ^eVo, Par^z^^ is the parallel transport in the flat F^, thus Par^ and ParyZ;, commute
for y , ze^. Therefore (p defines an operation of [R^ on Vo.

We will show that the tangent vectors to Vo (at the points where Vo is a C1-smooth
submanifold) can be described by Jacobifields along flats, cf. 1 .B. Let

r|=(x,z;i, . . .,^,A,Bi, . . . ,B^)eT^Vo

and represent T| by a differentiable path v(t)=(x(t), v^ (Q, . . .,z^(Q) in Vo, i.e.
z5(0)=r|. Then Y^z)=8/9t\^o Fy^(z) is a Jacobifield along the flat zh^Fy(z). Let
^=<P^eT^Vo. Then

Y,(J ; )=^F^„„(^)= a F„,(^+z)=Y,(^+z)
S^\t=o dt\t=o

Thus

^=(F.(^Par,z^ . . .,Par,^Y,(z),DiY,(z), . .,D,Y,(z))
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3.2. LEMMA. — Let \' c= VQ be a nonempty compact subanalytic ^-invariant subset. If
V is not an analytic submanifold of Stj, (M) then there exists a nonempty, compact, ff^-
invariant, subanalytic subset V* c V mth dimV^dimV7.

Proof. - Let A c= V be the subset of points p E \ ' such that \' is an analytic
submanifold of maximal dimension in a neighborhood of p . Then A is an open subset
ofV which is subanalytic by Tamm's Theorem, cf. 1. C, and A ̂ V by assumption. Since
V is ^-invariant, zeff^, and cp2 is an analytic diffeomorphism of St^(M), also A is (p2-
invariant. Thus V* = V'\A is nonempty, compact and [^-invariant. V* is subanalytic
since both V and A are subanalytic, see 1. C. By construction dim V* < dim V. D

Inductively we obtain that each compact [R^-invariant subanalytic subset V c= V con-
tains a compact [R^-invariant analytic submanifold.

Let now V <= Vo be a nonempty connected compact ^-invariant analytic submanifold
of minimal dimension.

For a given point weS^"1 (the standard sphere in IR^) we define a map

w: V ̂  SM
k

w(x,v^ . . . ,z^):= ^ n^.eT^M
1=1

We will prove that for a properly choosen w the set W: = w (V) satisfies the properties
of Theorem 3.1.

We first study the differential of the map w. For r|eT^V let ^:=n^r|eT^SM.
Then Y^ is the Jacobifield along the geodesic t \-> exp (t. w (v)) with Y. (t) = Y (t. w).

We define a distribution PJF^ ("Parallel Jacobifields in direction w") on V by

PJF^, (v): = { T| e T, V t ̂  Y^ (t. w) is parallel}

3.3. LEMMA.—For given weS^"1 the dimension of PJF^ is constant on V. The
distribution PJF^, ^ analytic and integrable.

Proof. - Let r^: = max dim PJF^ (zQ and consider the bundle G^ (V) of r^-dimensional
r e V w

tangent planes to V. Let T : G^ (V) -> V be the bundle projection. For a tangent vector
r|eTVlet

^(^^):=(||Y,(w)||2-||Y,(0)||2)2+(||Y,(0)||2-[|Y,(-H.)||2)2

Then g^ (r|) ̂  0 and the convexity of || Y^ || and the analyticity of Y^ imply that g^ (r|) = 0
if and only if t \-> Y^ (t. w) is parallel, i. e. if and only if T| G PJF^.

Define ̂ :G,JV)^R by

f
^w(E)^= <?w0l)^l

JSE
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where E€G^(V) and SE is the unit sphere in E. Let E^eG^(V), E^ c T^ V. Then
f^ (E,) ̂  0 and ̂  (E,) = 0 if and only if E, - PJF^ (z;). Thus

B,:-{^eV|dimPJF^)=r,}=T({i,=0})

Note that T: {g^^O} -> B^ is injective. Since {^,=0} is a compact analytic subset of
G^ (V), B^, is a subanalytic subset of V. We claim that B^ is IRMn variant, i. e. for
zeiR^ we have ^B^B^. In order to prove this we show that { ^==0} is invariant
under the differential (p^. Therefore let veB^, r|eT^V with r|ePJF^(zQ. Thus
t h"> Y^ (t. w) is parallel. Then (p^ T| = ̂  with Y^ (^) == Y^ Gy + z). Since /1-^ [| Y^ (^. w) || is
bounded and ||YJ[ is convex, also ^h^| |Y^(r.w4-z) | | is bounded for fixed z and hence
^PJF,((p^).

This proves that {^==0} is (p^-invariant. Thus B ,̂ is a compact subanalytic
(R^-invariant subset of V and hence B^ === V by the choice of V.

We now prove that [g^^O] is an analytic submanifold of G^(V). If { i ^ ^ O } is
not an analytic submanifold, then exactly as in Lemma 3.2 we could obtain a proper
compact IRMn variant subanalytic subset A^^^O}. Then 7i(A) is a proper compact
subanalytic subset of B^, which is iR^-invariant. This is impossible by the choice of V.

Now let C c: {|^==0} be the set of all points E^=E such that T^ : T E { ^ = = O } -^T^V
has minimal rank. It is not difficult to show that C is compact, subanalytic and R^
invariant. As above this implies that C === {g^ == 0} and rank (r^) is constant. Since
^ ^ {gw^^} ̂  V is bijective, this implies that T is a diffeomorphism and thus the distribu-
tion v H-» PJF^, (v) is analytic.

To prove the integrability, let ^ : (~s ,£) ->V be a smooth curve tangent to PJF^,.
Consider the curve ^(v(t)) in SM and the geodesic variation
o^ (s) = exp (s. w (v (0)). Then

^a^-Y^.^O))
ct

Since v(t) is tangent to PJF^,, s\->(8/8t)ait(s) is a parallel field. By integration we see
as in [BBE], Lemma 2.2, that o^ and o^ bound a flat strip, i.e. w(v(t)) consists of
parallel vectors. As in [BBE] we conclude that the distribution is integrable. D

3.4. LEMMA. —Assume there is a point veV such that w(v) is a regular vector of
the flat Fy. Then dimPJF^sA: and the integral manifold Z with veZ is equal to
{(p2 v ] z € IR^}. In particular if r\ e PJF^, (v) then Y^ is parallel and tangent to Fy.

Proof. — Since (R^ operates on V by parallel translation in the flat Fy we see
{ ( p ^ j z e i R ^ c Z and dim PJF^k. Since w^v) is obtained from w(v) by parallel
translation in Fy also w (<p2 v) is a regular vector of Fy. Let u (t) be a smooth curve in Z
with M(0)==(p2^ By the last part of the proof of Lemma 3.3 \v(u(t)) is a path of
parallel vectors. Since w(u(ft)) is a regular vector tangent to Fy also w(u(t)) is a regular
tangent vector to Fy for all t. Since w (u (Q) is regular, it is only contained in the fc-flat
Fy and hence u(t)^(x(t), u^(t), . . .,^(0) is a path of frames tangent to Fy. Now
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Lemma 2.8 (iii) implies that {u^{t\. . . , M , ( Q > is parallel to Oi(0), . . .,^(0)> for
i = 1, . . ., k and hence u, (t) \\ u; (0).

Thus u (f) = (p2 (t) v for a path z (Q 6 (R^ with z (0) == z. This implies Z c { ^ v z € R k } . 0
We now look for a vector weS^"1 such that the regularity condition for w(v) is

satisfied for all v e V. Let therefore SQ be the constant which exists for the well structured
fl^ Ei,fc(M) according to Lemma 2.8 (iii), i.e. if (cji, . . .,C^)€E^(M), if T c= c^,
dim T == r, and if <f (i, a,) ̂  £o then P, c: P^ and equality implies T ̂  a,. Now we choose
weS^"1 with the properties:

(a) w is not contained in < <?i, . . ., ̂ _ ^ )
(A) for 1 ̂ i^k— 1 we have

/So ^\
\ 2 - 2 )

^O^, . . . , ^ - i ,w> ,<^ i , . . . ,^»<min( 8 0 ,

It is elementary to construct w with these properties.
From now on we will work with this fixed vector w. By abuse of notation the symbol

w will denote (i) the vector weS^"1 c: 1R\ (ii) the corresponding map w:V-^W, (iii)
arbitrary elements w = w (v) e W.

3.5. LEMMA:
(i) For all veV the vector w(v) is regular in Fy.

(ii) If v, v e V and w (v) = w (v), then v == v'\
(iii) IfW : == w(V) c= SM, r/^ w: V "> W is an analytic diffeomorphism.

Proof. - (i) Let v=(x,v^ . . .,^)eV and let L:-kern(P^) c: <^, . . . , z ; fe> .
We show that L = ( z ; i , . . . , z ; ^ ) which implies that w(v) is regular. Since
dl« ̂  >. < ^x » < So/2 < SQ by (b) we have by Lemma 2.8 (iii) that P^ ̂  c; P^ and hence
< ^ > c = L .

Assume inductively that

<^, .. . , z?^ i>c :L

Clearly w(^)eL, hence < z^, . . ., ̂ ._^ w(z?) > c: L. Since

(f({v^ . . . ,^^ i ,w(^)>,<r^ . . . ,^»<go

we have [by (2.8) (iii)]

P <— P1 < y i . , . . , i ? f - i . w ( r ) > <- ^(yi,. . . ,^)

and thus (v^ . . ., ̂  ) c: L. Hence < ri, . . ., ̂  ) c: L and this proves (i),
(ii) Let r==(x,^, . . .,z^), ^==(^,^, . . .,^) with w(^)^w(^), Thenx^x' find

r f l «^X<^»^^«^>,<^(^»+rf l «^(^)> ,<^»<€o
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Then Lemma 2.8 (hi) implies P^ c= P^ and P^ c: P^ and hence < ^ i > = < ^ i > by
2.8 (i). By (b) we obtain ^1=^1. Assume induct! vely Vj = v'j for \<^j<^i-\. Then

^(<z^...^>,<z^...,z0)

^ ^ « ^ i , . . . , ^ > , < z ; i , . . . , ^ - i , w ( z ; ) »

+^«^, . . . ,^- i ,w(z;)>,<Z/i , . . . ,^ ,w(z0»<£o

and hence P<^,. . .^>=P<^,. . . ,r ;>- Thus ^=^by 2.8 (i) and we obtain v=v'.
(in) The map w: V ̂  SM is analytic and injective by (ii). Thus it suffices to prove

that w has maximal rank everywhere. Let r|eT^V and E,=H^r|eT^) SM. We saw
already Y^(0=Y^.w). Assume ^=0. Then ^i-^Y^.w) is the zero field and in
particular parallel. Thus r|ePJF^(z?). Since w(v) is regular by (i) we have by Lemma
3.4 that dim PJF^ (zQ = k and that Y^ is a parallel field tangent to F^. Since Y^ vanishes
on the line t^t.w it vanishes everywhere. Therefore ^=0 implies T|==O. Thus w has
maximal rank. D

In order to prove Theorem 3.1 we define W: = w (V) c= SM and the operation

^: [Rfc x W -> W

\|/(z,w(z;))=w((p^)

We show that W satisfies properties (i) and (ii) of Theorem 3.1:
(i) Let w = w (v) with v = (x, z^, . . ., z^). Then

F,(z):=7i°\|/(z,w)=expj^ z^)=F,(z)/^z^W(z)
\i=l /

Thus F^, is a will structured flat and by Lemma 3.5 (i) w is a regular vector in this flat.
(ii) Let v = (x, z^, . . ., z^). Then

\|/ (z, w (2;)) = w (F, (,) (z), Par, v,, . . . , Par, ̂ )

and hence \|/(z,w(zQ) is the result of the parallel translation of w(v) along t^->F^^(t.z),
^[0,1].

In order to prove (iii) let ^eT^^W be such that Y^ is affme. Then ^=W^T| for
some T| e T^ V and Y^ (Q = Y^ (^. w). Thus it remains to prove:

3.6. LEMMA. —Let T|eT^V. Assume that t\->Y^(t.w) is an af fine field, then Y^ is
parallel and tangent to Fy.

Proof. - We split

Y,(z)=Y;(z)+Y^(z)

where Y^(Y^) is the tangent (normal) component to the flat F^. By [BBE] (2.4) Y^
and Y^ are Jacobifields along F^. Since F^ is flat and totally geodesic Y^ is an affme
Jacobifield along any line in H^. If t \-> Y^ (t. w) is affme, then also Y^ (t. w) is affme.
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Since Y^ (/. w) is affine there is a constant A > 0 such that

||Y^.HO||5.A. ^[+||Y,(0)||

for all /.

SUBLEMMA 1. — For s G R and z e R^ we have

||Y^+z)||^A. ^|+||Y,(z)||

Proof. — Let c,: [0, rj -> ̂  be the unit speed line from z to t.w where
^ = | | ^ . w — z | | . Then [ t — r^ ^ \ | z [ [. First assume that our claim does not hold for some
s^O. Using lim ^(^)=z+5•H ; we conclude that there exists p>0 such that for all t

t -> 00

sufficiently large

[|Y^))||^(A+p)..+||Y,(z)||

The convexity of || Yj| now implies

||Y^.w)||^(A+p).T,+||Y,(z)[[

But this is impossible for large / since [ [ Y^ (t. w) || ̂  A. ^+1| Y^ (0) [ [ and ^ -1 \ ̂  || z ||. The
proof for s^O is similar. D

First we treat the case that ||Y^ || is unbounded. We shall show that this case cannot
occur since it leads to a contradiction to Lemma 3.4. Since | [Y^[] is unbounded and
convex there exists a line t . Z o in R^ such that ||Y^Zo)|| grows at least linearly for
t -> oo. We choose a sequence ^ -> oo such that

^hr^irvr0^)
converges to ^eTV. Note that

^(^=11^0(^11-1.Y,(z+^zo)

and that ||(p^°(r|)|[ -> oo. Since Y^ is affine and [|Y^(/Zo)[[ grows at least linearly we
conclude Y^O. On the other hand Sublemma 1 and [| (p^20 (r() || -^ oo imply that

||Y^(z+^)||=lim ||Y^.(z+^)||
i -» oo

is bounded in 5'etR, L^. ^ePJF^,. Hence Y^O and this contradicts Lemma 3.4.
It remains to treat the case that ||Y^|| is bounded, i.e. Y^ is parallel along any line in

[R^. For every v e V we consider the subspace NPJF (z;) ("Normally parallel Jacobifields")
of T^V defined by

NPJF (v) = { T| e T, V | Y^ is parallel}

SUBLEMMA 2. — NPJF is an analytic distribution in TV.
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The proof of Sublemma 2 is similar to the first part of the proof of Lemma 3.3.
Finally we show that Y^ is parallel and Y^==0 if T|eNPJF. This will conclude the

proof of Lemma 3.6. Given T| e NPJF (v) choose a curve v: (— s, s) -> V with v (0) = T|
which is everywhere tangent to NPJF. Consider the variation F (z, t) == Fy ̂  (z) of the
Hat FO = Fy (o) and the Jacobiflelds

Y,(z)=Y^(z)=^(z,0

along Fy. We shall prove that the flats F^IR^) are parallel along n°v(t). To this end
we reparametrize Fy as F( == Fy ° ly where I; € Iso (0^) is so chosen that the tangential part
of ^ ^ S F / S t vanishes. According to l . B we can achieve this by taking 1̂  to be a
solution of

W).I—-R
\dt )

where R, is the infinitesimal isometry of IR*" satisfying

F^R^Y^z)

Then

)̂ =1^)116t

is independent of z since Y, == YJ^) and v (t) e NPJF. This implies that all the flats F, (R^)
are parallel along n ° v (Q. Hence F, (IR^) = FQ (R^) and, in particular, Y^ = Y^ = 0. That
Y^ is parallel follows as in the proof of Lemma 3.4. D

4. Closing of flats

In this section we continue to assume that the set E^ ^ is well structured so that we
have a compact submanifold W of SM with the properties stated in Theorem 3.1. In
particular W is foliated by the orbits ^(IR^), weW, of the ^-action \|/. Our aim is to
find n^eW such that \|/^: f^ -> SM is not injective. Then a k-flat F c: M which is a lift
of F^ (U^) = 7t ° \|/^ ((R^) is mapped to itself by some deck transformation y which restricts
to a nontrivial parallel translation of F. In a first step we prove the existence of a
compact subset G^0 of W which is ^invariant and on which the geodesic flow is
normally hyperbolic, cf. [HPS]. This means that the normal bundle of the foliation
restricted to G splits into two continuous ^-invariant subbundles on which g1^ expands
resp. contracts more sharply than in the directions tangent to the foliation. Then the
existence of some weW such that \|̂  is not injective can be proved by using the
Shadowing Lemma (7 A. 2) in [HPS].
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According to l . B every Jacobifield YeJ*(^), z^SM, can be decomposed into its
affine, strong stable and strong unstable components

Y-V+V+Y5"

Correspondingly we shall decompose

T,SM=E^©E;S©ES,M

and every £, e Ty SM into

^=^+^+^

Here ^eE^ if and only if ^eTySM and Y^eJ*^) and so on. Since Jacobifields
represent the differential of the geodesic flow g1 this decomposition is invariant under
g^ i.e. E^=^(E:), E^=^,(E-), E^=^(E-). Finally we have the space
E^ c= E^ which consists of the initial conditions of parallel Jacobifields. In this notation
property (3.1) (iii) of W says

T W F\ E° = T W F\ W = \1/ fIR^1 w — I I ̂ w 1 w " I I ̂ w rw^O v"" /

Note that E0, E55 and E8" may not be continuous vector bundles over SM. However
the following weak continuity properties are trivially true:

Suppose -^.eSM, limz^==z?. If ^-eE^, resp. ^eE^ and ^==lim^ then ^eE^, resp.
^,eE;. If ^.eE^, resp. ^eE:" and 1—lim^ then ^eE^eE;5, resp. ^eE^CE;".
Obviously analogous statements hold for the convergence of Jacobifields. The set
G c: W mentioned above will be the set of all v e W such that we have a splitting

T,W= (E? n T,W) e (E;5 n T,W) © (E^ n T,W)
To prove that G 7^ 0 and that G has the properties stated above we need two lemmas.

The first lemma shows that due to property (3.1) (iii) of W all Jacobifields Y^ with
^eTW\(E° © E55) grow exponentially.

4.1. LEMMA. — Suppose w 6 W and L c: T^ W is a vectorspace complement to
(E^ © E^) n T^ W. Then there exists to e R and s > 0 such that

|Y^+l)||^(l+c)||Y^)||

whenever ^ e L and t^tQ.

Proof. — Otherwise there exist ^eL, t, -> oo and ^-> 0 such that

l|Y,,a.+i)||<(i+£,)||Y^.^)||
We define

Y^O-HY^^H^Y^^+O
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Then Y, e J* (^ w), || Y; (0) || = 1 and || Y, (1) || < 1 + s^. Hence there exists a subsequence
of the Y, converging to a Jacobifield YeJ*(z;) for some limit vector veW of the g^w.
Since Y^ is not in J5^) for all ^eL\{0} a compactness argument shows that there
exists tpGU such that ||Y^(0|| is increasing for I ^ I Q and for all ^eL\{0}. Hence
||Y(0|| is non-decreasing and | Y(0) | |== 1 =||Y(1) ||, i.e. YeP(^) by analyticity.
According to (3.1) (iii) the component Y1^ of Y normal to the flat F^ vanishes. On the
other hand we shall now prove that there exists SQ e R and 8 > 0 such that
||Y^(0||^8||Y^(0|| whenever ^eL, t^So. By continuity this implies HY^O) ||^5>0
and this contradiction will complete our proof.

To proof || Y^ (01| ̂  5 || Y^ (01| note that || Y|" H' (0) > 0 for all ^ e L\{ 0}. Hence there
exists oc>0 such that for all ^eL\{0}:

iiYrirw^ii^ii
Since || Y|" (t) || is convex this implies || Y|" (Q || ̂  a || ^ || t.

Similarly we obtain A>0 such that for all ^eL, ^0: HY^O |[^A || ^ || and
|| Y^ (0||^ A || ^11(^+1) . Since the affme part of Y^ is orthogonal to Yf+YI5 we can
estimate for t^O:

llY^Oll^llYI^O+YI^Oll^ll^Kar-A)

Since the tangential part Y^ grows at most linearly the proceeding inequality imply the
existence ofS^,^^ such that | |Y^(0||^8||Y^(0 || whenever ^eL and t^So. D

We denote by L^(W), resp. L^(W) the a- resp. co-limit set of the geodesic flow on the
compact ^-invariant set W.

4.2. LEMMA.—Suppose ^eL^(W), say v=\[mgtiw where weW and lim^=co. If
^eT^W then the strong unstable part ^su of^ lies in T^W, i.e.

T, W == ((E; © E;5) U T, W) © (E- U T, W)

Proof. - Given ^eT^W choose ^eT^W such that ^=lim^^. Choose L c T^W
as in (4.1) and decompose ^ = ̂  + ̂  where ̂  e L and Y?: = V^ e J*0 (w) © J55 (w). We
setY^:=Y^. Then

Y^(0=lim(Y^O+^)+Y?0+r,))
i —> oo

First we want to show that a subsequence of Y^+^) converges: otherwise we may
assume that there exists a sequence ^ -> 0 such that ^ Y^ (t + ^) converges to a non-zero
Z e J* (v). Now (4.1) implies

| |Z(r+l) | |^( l+£) | |Z(0| |

for all t e R since Y^ = Y^i, ̂  e L and ^ -> oo. On the other hand lim ̂  = 0 implies

Z(Q=- lim ^Y?^+^)
I —» 00
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where Y? e J*° (w) © J55 (w). Hence Z e J*° (v) © J55 (zQ and this contradicts the exponen-
tial growth of Z. So we may assume that Y,1 (t-\-1,) and Y? (^+ ^) converge individually,
say lim Y,1 (t + t,) = Z1 (Q, lim Y? (t + .̂) = Z2 (Q and Y^ (t) = Z1 (Q + Z2 (Q. As above we
have

l lz^+i^i^i+^iiz1^!!
for all t e U, hence Z1 e J5" (zQ. Moreover Z2 e J*° (z;) © J55 (zQ so that indeed Z^ == (Y^)5".
Since (Y^)5" = Y^u by definition we obtain ^su = lim^ ̂  e Ty W. D

As mentioned before we let G denote the set of all v e V such that we have a splitting

T,W= (E^ U T,W) © (E- U T,W) © (E- n T,W)

The theorem below proves the properties of G mentioned in the introduction to this
section.

4.3. THEOREM:
(i) G is ^-invariant, compact and G^0, more specifically (L^ (W) (~\ L^ (W)) c= G.

Over G the bundles W C\ TW, E55 U TW, E5" 0 TW are continuous, g^-invariant vector
bundles. W 0 TW is the distribution tangent to the leaves \|/(^ x {^}), weW, and,
consequently, (E55 H TW) © (E5" P| TW) restricted to G coincides with the normal distribu-
tion of the foliation \|/ (^ x { w ^), w e W.

(ii) There exists ^o>0 andQe(0,1) ^c/? ^^

and

while

||^(0||^9||^|| if ^eE-nTW^^^

^(Oll^e-1!!^! zy ^eE-nTw^^^^

ll^^ll-ll^ll ^ ^eW^^andteR

Note. - \. We do not exclude the possibility that G has several components and that
the fibre dimensions of E'TiTW and, consequently, of E^^TW are different on
different components of G.

2. The statements in (ii) do not only hold over G.

Proof of (ii). — We first show that there exists s>0 such that

| |Y^(1)|^(1+8)| |Y^(0)| |

for all ^eE^PiTW. This is similar to the proof of (4.1): otherwise there exists a
sequence ^, e E5" n TW and 8, ̂  0 such that || Y^ (0) || = 1 and || Y^. (1) [| ̂  1 + ̂  We may
assume that the Y^. converge to a Jacobifield Y^ with ^ e T^ W. Then

|| Y, (0) || = || Y, (1)||=1
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and ||Yj| is monotonic, hence Y^eP(w) by analyticity. By (3.1) (iii) we have
O^^e^^Q^). On the other hand ^eE5" implies that ^==lim^ is orthogonal to
E^H T^W ==11/^0(11^). This contradiction proves the existence of £>G such that
I ] Y^ (1) || ̂  (1 + e) || Y^ (0) || for all ^ e E5" H TW. To complete the proof of (ii) note that
if -a2 is a lower bound for the curvature of M then 11^(01)^1^(011 for all teR
and all stable and all unstable Jacobiflelds, cf. e.g. [BBE], sect. 1. Hence on E^OE5"
the norms || ̂  || and || n^ (^) || are equivalent,

||̂ | ̂ ©ii^d+a2)-1/2^!!
Together with our first estimate this implies (ii) for E5" 0 TW. One can take 6~ i = 1 + s
and /o=2+ln( l+<2 2 ) ln((l+£))~1 . The proof for E^QTW is analogous. The last
claim in (ii) is obvious.

Proof of (\). - Lemma (4.2) states that

((E; © E5;) U T, W) © (E^ U T, W) = T, W

provided weL^W). We shall use (ii) to show that this decomposition holds also if
weL^(W). If H^.eL^(W) converge to w we may assume that (E^©E^)HT^W and
(E^". U T^W) converge to subspaces L^ and L^ of T^W. Then L^1 c= E^@ E^5 and the
uniform estimate (ii) implies that L^ <= E^. In particular L^C\L^=[Q} and hence
L^©L2==T^W. This implies the above decomposition also for weL^(W). In com-
plete analogy we obtain for all w e L^ (W)

((E; © E5;) H T, W) © (E^ H T, W) = T, W

Recalling that E° H TW = W C\ TW we see that the preceeding statements imply
(L^ (W) H L^ (W) <= G. Since L^ H L^ contains every minimal set of the geodesic flow
restricted to the compact manifold W we see that G^0. Moreover the preceding
arguments also show that G is closed and that E55 H TW and E5" H TW are continuous
vector bundles over G.

Finally we prove the i)/-invariance of G, the remaining statements in (i) being
trivial. Suppose veG and v = \)/ (z, v) = ̂  (v) for some ze^. We want to prove
that veG. It suffices to show that ^(E^HTW^E^, \|̂  (E55 0 TW) <= E55 and
^ (E5" H TW) c= E5". If^eW then j| ̂  ̂  || = || Y^ (t) || is constant. Since \|/^ is uniformly
bounded also ||^(^0||=||^(^y|| is bounded in t. In particular ||Y^(0|| is
bounded, hence v^eE^. If ^eE^HTW then lim ||g^||=0 by (ii). The same

t ->• 00

argument as above shows that lim j|Y^z^(0|]=0, hence vj/^eE55. The proof for
t ->• 00

^ 6 E5" H TW is analogous. D
We now turn to the problem to apply the results from [HPS] to our situation. We

adjust our notation to the symbols used in [HPS].
Choose some v e G and let m == dim (E^5 0 Ty W). We consider the set

A={weG|d im(E^nT^W)=w}
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This set is non-empty, compact and ^-invariant. The last property follows easily from
vl/^E^HTW) c= E55, cf. the end of the proof of 4.3. Let ^ denote the restriction of
our foliation to the ^-invariant compact subset A of W. Then ^ is a C^-smoothable
lamination of A in the sense of [HPS], p. 123. Throughout the rest of this section we
shall use the following important fact which is a consequence of Theorem 4.3:

For every I^IQ and every reN the diffeomorphism/== ̂ f: W —> W is r-normally hyper-
bolic to J^f. The notion "r-normally hyperbolic to ̂  is defined in [HPS], p. 116.

For the convenience of the reader we recall some of the terminology and some of the
results from [HPS] that we need. For £>0 smaller that the injectivity radius of M let
B, c ff^ be the closed ball of radius s and for weW set P^=\|/^(B,). We call P^ the
e-plaque with center w. The family {\[/^ Bg weW} is a plaquation of the foliated
manifold W in the sense of [HPS], p. 72. Now we fix some t^to and consider the
diffeomorphism/==^: W -> W. A 8-pseudo orbit of/is a sequence H^, neZ, in W such
that d(f(w^),w^+^)<S for all neJ-. We say that a 5-pseudo orbit w^ of/respects the
e-plaquation if/(n^)eP^^. The first fact that we need is:

4.4. LEMMA. — There exists s>0 such that f is ^-plaque expansive on A. This means:
^/(^nez? (H 'n)ne^ are ^--pseudo orbits in A which respect the ^-plaquation and if d(v^ H^)<S
for all n el. then v^ e P^.

Proof. — This follows from the normal hyperbolicity of/and the smoothness of J^f,
cf. [HPS], Theorem (7.4). In our situation one can also give a simple geometric argu-
ment to prove (4.4) even for s-pseudo orbits in W. D

Next we want to show that the Shadowing Lemma (7 A. 2) from [HPS] holds in our
situation. Recall that a sequence v^ in W s-shadows a sequence n^eW if rf(z^,H^)<s
for all n.

4.5. LEMMA. — For every s>0 there exists 8>0 such that every S-pseudo orbit of/in
A can be s-shadowed by an ^.-pseudo orbit for f in A which respects the ^.-plaquation of A.

Proof. — We have to verify that the following hypotheses of [HPS], (7 A. 2) are
satisfied in our situation:

(a) If L and L' are leaves of ^ then W5 (L) H L' and W" (L) U L' are open in \J.
(b) There exists s>0 such that W^(A) nW^(A)=A.
Before we can prove this we have to remember the meaning of W5 (L), W^ (L), etc.
For v e A set

W^zO^weW] lim <^w,^z;)=0}
t ->• 00

If £ > 0 is smaller than the injectivity radius set

WS/(v)={weWSS(v)\d(gtw,gtv)^sfor8i\\t^O}

Finally ^(1^)= U W(v) and W^(A)= U W^(^). The sets W51^), W^(^), W"(L)
v e L v e A

and W^(A) are defined analogously. From [HPS], Theorem (6.1), we know that W5^),
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W51^), W^L) and W"(L) are projections to SM of submanifolds of SM and that the
tangent spaces of W55 (v\ resp. W5" {v) at v are E5,5 U T, W, resp. E^ U T, W. Moreover
the tangent spaces to W5^), resp. W5"^) vary continuously with their footpoints in
U W^z;), resp. U W(v\ cf. [HPS], Theorem (6.1) (e).

v 6 A u eA

To prove (a) we show more specifically: if ve\ ze f f^ then W^vj/^^xl/^W^u)).
This implies W5 (L) Pi L' = I/ if W5 (L) U L'^ 0. Now suppose w e W55 (zQ, L ^. w e W
and lim d(gtw,gtv)=^. Since \|/2 commutes with the geodesic flow g1 we obtain

( ->• 00

\|/2 (w) e W55 (\[/2 (zQ) and thus v^ (W55 (zQ) c= W55 (v^ (z;)). This implies our claim. Finally
we show that (V) is true independently of s. We obviously have A c= (W^(A) C\ W^ (A)).
Conversely suppose veW(v+) HW5^^.) with z?+ , r -eA. Let T denote the tangent
space of W^T^) at v. Since A is compact we can find VQ^A and a sequence ^ -^ oo
such that lim ^z^^o. The above mentioned continuity of the tangent spaces to

W55 (w), w e A, implies that

lim gU(T)=T.o(wss(^;o))=E:sonT„W
I ̂  00

It is easy to see that this implies T c= E;5. Similarly we see that the tangent space S
of W51^-) at v is contained in E^". By the definition of A we have
dim (E5; U T, W) = m and k + m + dim (E^ U T, W) = dim W. Since

dim W5^^ dim (E5^ HT^W), dimW^^din^E^ HT,_ W)

and v+, v_e\ we obtain A;+dimT+dim S=dimW and dimT=m. Since T c E;5,
S c= E;" this implies v e A. D

Using 4.4 and 4.5 we are now able to prove

4.6. THEOREM. — There exists weW such that \[/^: ̂  -> W ^ ̂  infective.

Proof. - As before we fix ̂  ^o and consider/=^: W -> W. Since A is compact and
/-invariant we can find a minimal set K c: A of the action of/ on A. Choose s>0
according to 4.4 and 5>0 according to 4.5 and for 8/2. Choose veK. Then there
exists j >0 such that d(f3(v),v)<S. Let (z^ez denote the y-periodic sequence defined
by ^y1^) for 0^</. Then (v^nez is a 8-pseudo orbit for / in A. By 4.5 there
exists an 8-pseudo orbit (w^ez for/in A which 8/2-shadows (z^) and which respects the
8-plaquation. Since Vn+j= ̂ n we obtain d(w^ w^+j) < 8 for all n e Z. Hence we can apply
4.4 to (w^^ and (^n+j)nez and conclude that w^+^-eP^. In particular we can find
zef f^ with ||^||<£ such that w,=\|/^(z). On the other hand (n^) is an 8-pseudo orbit
for f=g1 which respects the 8-plaquation. Hence we can find a sequence z^eIR^
with ||zJ|^ n\(t-E) such that v|/^(z^)=^, in particular ||zJ^/'(^-8), and
^ ^.)=^.=YJ/^ (z). Since we may assume that ^-8>8 we see that Zj^z, i.e. \|/^ is
not inject! ve. D

4.7. COROLLARY. — There exists a k-flat F c M and a deck transformation y such that
y F = = F and Y[F is a non-trivial translation.
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Proof. - From 4.6 we obtain w e W and z ^ ^ z ^ e (R^ such that \|/ (z^, w) = \|/ (z^, nO. Let
Z ^ Z I — Z ^ T ^ O . Since \|/ is an [Reaction we obtain vj/^ (x + z) = \|/^ (.x) for all XGIR^. Let
F^-^M be a lift to M of F^=7r°\|^: ̂  -^ M. Since p° F(x-^z)=p°P(x) for all
xetR^ there exists a deck transformation y such that F (x + z) = y (F (x)) for all
xetR^. Hence y maps the flat F^^cM to itself and VJF^ ) corresponds to the
translation by z 7^0. D

5. Proof of the Theorem

We collect the results of sections 2, 3, 4 to prove the theorem stated in the introduction.

Let ^=dim(M). We assume inductively that the theorem is true for all manifolds
M' with dim(M')<^. Exactly as in [Sl] section 2, this implies the theorem for manifolds
of dimension ^n whose universal cover has a (non-trivial) euclidean de Rham factor.

First we assume that for some s^2 the set E^(M) as defined in section 2 is well
structured, while ^s-i k(^) ls n0^- wen structured. Then, by Theorem 2.5, for all flags
(a^, . . ., a^) e E^ ^ (M), the set P^ is closed. Fix (a^, . . ., a^) and consider a lift
(T,...,T,)eE^(M). LetM=M/F.

Recall that H=P^ is a complete totally geodesic submanifold of M. Since P^ is
closed there exists a subgroup A of F which operates on H with compact quotient. Then
H = H/A with the metric induced from H c: M is a compact analytic Riemannian manifold
of nonpositive curvature whose universal cover H has a euclidean de Rham factor of
dimension s ̂ 2. Since moreover dimH^dimM=/2 the theorem holds for H. Since H
contains a A;-flat we obtain a closed ^-flat in H and hence also in M.

Hence we are left with the case that E^ j,(M) is well structured and we can apply the
results of sections 3 and 4. According to Corollary 4.7 there exists a ^-flat F c= M
which is invariant under a deck transformation y which restricts to a non-trivial parallel
translation of F. We denote by H c: M the union of all geodesies which are translated
by y. Then F c= H and p (H) is a compact subset of M since it consists of all closed
geodesies in the free homotopy class determined by y. If v e SM is an initial vector of a
geodesic translated by y then H is contained in the parallel space P^. The isometry y
splits on Py = IR x Q as y (t, g) = {t + L, y^ q) where y^ is an isometry of the totally geodesic
submanifold Q c: M. Hence H is the totally geodesic submanifold [RxFix(y^) of M.
In particular H has a non-trivial euclidean de Rham factor. Since p (H) is compact and
contains the /r-flat p (F) we can argue as above and conclude that p (H) and hence also
M contains a closed ^-flat. D

Remark. — A closer look at the proofs of (4.6) and (4.7) shows that we can achieve
that y translates F into a regular direction. Then H = F so that F itself is projected
onto an isometrically immersed flat /r-torus in M, cf. also [BBS] (4.7).
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