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MODULI SPACES
OF STABLE REAL ALGEBRAIC CURVES

BY M. SEPPALA (i)

ABSTRACT. — The construction that the Geometric Invariant Theory has developed to compactify the moduli
spaces of smooth complex algebraic curves can be interpreted analytically. In that setting the same construc-
tions can be applied to curves defined over the real numbers. That way we <»onstruct a topology for the
space of real isomorphism classess of stable real algebraic curves of a given genus g, g> 1. In that topology
this moduli space is a connected and compact Hausdorff space.

1. Introduction

We study real algebraic curves. Locally they are defined as sets of zeros of a finite
number of real polynomials in a real projective (or affme) space. This set of polynomials
has to satisfy certain regularity conditions.

We may equally well consider the same set polynomials as polynomials defined in a
complex projective (or affine) space. From this point of view real algebraic curves are
complex algebraic curves defined by real polynomials. That is the usual way of looking
at real algebraic curves (cf. [9] or [2]).

A complex projective curve is simply a compact Riemann surface. If the curve
is defined by real polynomials, then the corresponding Riemann surface carries an
antiholomorphic involution (which is induced by the complex conjugation). Conversely,
any compact Riemann surface together with an antiholomorphic involution can be
embedded in a complex projective space in such a way that its image is a curve defined
by real polynomials. We conclude, therefore, that a projective real algebraic curve is
simply a compact Riemann surface together with an antiholomorphic involution. We
call such a Riemann surface symmetric.

The arithmetic genus of a real curve is the genus of the corresponding Riemann surface,
L e., the genus of the corresponding complex curve.

Real algebraic curves of a given arithmetic genus g fall into [(3 g + 4)/2] topologically
different types. This was realized already by Felix Klein (see e. g. [10] and
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[15]). Consequently Klein started investigating the set of isomorphism classes of real
algebraic curves of a given topological type. Analytically this can be viewed as the space
M (;?, n, k) of isomorphism classes of dianalytic structures of a compact surface of genus
p with n boundary components and k cross-caps. Here the topological invariants p , n
and k satisfy g=2p-}-n-\-k-\. For more details see e. g. [2].

It follows from the classical Teichmuller theory that this moduli space M (p, n, k) is
connected. It carries also real analytic and semialgebraic structures [13], Theorem 2.2.

The disjoint union of the moduli spaces M (77, n, k) forms the space of isomorphism
classes of real algebraic curves of arithmetic genus g. Keeping this topological classifica-
tion in mind it is clear that there is no natural topology on the space M^ of smooth real
algebraic curves of arithmetic genus g which would make that space connected. One
cannot change the topological type of a real algebraic curve without doing some violence
to it.

The situation changes, however, if we extend our considerations to stable real algebraic
curves. We say that a real algebraic curve (with double points) is stable if the correspond-
ing complex curve is stable. It turns out that one can change the topological type of a
real algebraic curve by a continuous deformation that first pinches some Jordan curve
on the real algebraic curve to a point and then thickens it again to a Jordan curve.

To be more precise, a real algebraic curve is a complex algebraic curve C together
with an antiholomorphic involution a:C^C. Two such curves (C\, a^) and (C^, a^)
are real isomorphic if there exists an isomorphism/: C\ -> C^ of complex curves satisfying
/°ai=a20/.

A real curve (C, a) is stable if the complex curve C is stable. We construct in this
paper a topology for the space M^ of real isomorphism classes of stable real algebraic
curves of arithmetic genus g, g> 1. We show that this space is a compact and connected
topological Hausdorff space.

The case g==l can be treated with explicit methods. There are, however, some
unexpected technical complications here. One compactification of the moduli space of
smooth genus 1 real algebraic curves is a circle. Robert Silhol has worked out the
details in this case. The case g==Q is completely elementary. The moduli space M^ of
real algebraic curves reduces in this case to be a set consisting of two points.

Our problems and results can be best formulated in the language of real algebraic
geometry. Our constructions and proofs are, however, quite geometrical. In all proofs
we view a real algebraic curve as a compact Riemann surface with a symmetry.

Therefore it is necessary for our proofs to recall a number of well known results
concerning real algebraic curves and Riemann surfaces. That is done in the subsequent
chapter.

Certain proofs included here are technically quite complicated. It would be desirable
to find shortcuts. Most of what is presented here was known already to Klein. For
instance, the result which states that the moduli space of stable real curves is connected,
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was probably known to Klein. In [10]. p. 8, Klein writes:

Wir konnten z. B. mehrere Ziige unserer Curve gleichzeitig in isolierte Doppel-
punkte uberfuhren. Wir kontten auch jeden einzelnen der erhaltenen Dop-
pelpunkte vollends verschwinden lassen, wodurch das Geschlecht wieder auf
p steigt, die Zugerzahl und Art unserer Curve aber eine andere wird. Es 1st
besonderes intressant... alle diese Moglichkeiten ins Einzelne zu vervolgen...
wir lassen also alle diese Entwicklungen hier der Kurze halber bei Seite.

Here the word "Ziige" refers to the components of the fixed-point set of the complex
conjugation of the real curve.

It is clear that Klein understood that one can pass with a continuous deformation
from one topological type of real algebraic curves to any other type by letting the smooth
curve degenerate to a curve having isolated double points or, more precisely, to a stable
real algebraic curve.

Klein was mainly working with polynomials that define the real curve in question.
Using only the polynomials and the information one can derive from them it is

probably impossible to give a precise proof to the connected-ness of the moduli space.
Here we start from this interesting observation of Klein and follow through all the

possible configurations. That leads to proving that the moduli space of stable real
curves is connected. Our methods are, however, completely different from those of
Klein.

This paper is closely related with [12] and [13]. In [12] I studied the moduli space of
stable complex curves of a given genus g, g>3, and the subset formed by real algebraic
curves. It turned out that this subset is a connected semialgebraic sub variety and the
quasiregular real part of the complex moduli space. This result has been improved recently.
Robert Silhol and, independently of Silhol, Marc Coppens and Jan Denef have shown
that the subset of real curves is a semialgebraic sub variety even in the case g=3.

In [12] I studied complex isomorphism classes of real algebraic curves. In the present
paper we study real isomorphism classes of real algebraic curves. The latter moduli
space is a covering of the former. This covering is generically one-to-one but it is not
injective because some complex curves carry several different real structures.

The space of real isomorphism classes of real algebraic curves is, of course, the correct
moduli space for real algebraic curves. Together with Robert Silhol I studied the real
moduli space of smooth real algebraic curves first in [13]. There we showed that this
moduli space is a semialgebraic variety (which is not connected). In this paper we
compactify that moduli space by adding points corresponding to stable real curves. The
construction is based on an extension (Theorem 4.8) of a result of Lipman Bers. This
theorem is the key result which enables us to compactify the real moduli space of real
algebraic curves. It also yields a new and direct proof for Theorem 7.1 in [12].

We observe finally that the methods of the present paper cannot be applied to the
case of genus 1 curves. The reason is that real algebraic curves of genus 1 do not carry
metrics of constant curvature — 1. The methods of the present paper rely on
Theorem 4.8 which does not make any sense in the case of genus 1 curves.
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2. Real algebraic curves and symmetric Riemann surfaces

For the benefit of the reader we start with recalling a number of classical results in
this and in the proceeding section. Everything here is well-known, but, for later applica-
tions, it is necessary at least to fix the notation as clearly as possible.

A smooth complex algebraic curve C of genus g>l is a smooth Riemann surface X
of genus g. C is isomorphic to a curve defined by real polynomial if and only if X carries
an antiholomorphic involution a: X -^ X. The pair (X, a) is a symmetric Riemann
surface. The involution a: X -> X is a symmetry ofX.

A symmetric Riemann surface (X, a) is determined topologically by the following
invariants:

1. The genus g ofX.
2. The number n=n (or) of connected components of the fixed-point set X^ of the

mapping a.
3. The index of orientability, k=k(<j), which is defined setting k==2- the number of

connected components ofX\X^.
These invariants satisfy:
1 .O^n^g+1.
2. For ^==0, n>0 and n=g+\ (mod 2).
3. For k=l, O^n^g.
These are the only restrictions for topological types of involutions of a genus g

Riemann surface X. One computes that there are |(3^+4)/2| topological types of
orientation reversing involutions of a genus g surface. This formula was shown by
G. Weichhold, a student of F. Klein ([15], see also [9]).

For our applications it is necessary to get a concrete picture of the different topological
involutions of a surface. Consider first involutions a with k(a) = 0. Let n be an integer
with g—(n— 1)=^+ 1 —n even.

Take first a Riemann surface of genus (^+1-^)/2. Delete n open disks from
it. Assume that the disks are chosen in such a manner that their closures are
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disjoint. Then one gets a Riemann surface Y of genus (g-\-\—n)ll with n boundary
components.

Let Y denote the Riemann surface obtained from Y by replacing the complex structure
of Y with its conjugate structure, i. e. by replacing all local variables z with their complex
conjugates z. Y is simply the mirror image of Y. Glue the Riemann surfaces Y and
Y together identifying the boundary points. In that way one gets a compact Riemann
surface X of genus g. The identity mapping Y -> Y induces an antiholomorphic involu-
tion a: X -> X such that the curves of X corresponding to the boundary curves of Y
remain point-wise fixed. Therefore n(a)=n and k(a)=Q for this involution. This is
how one can construct topologically all symmetries a of a genus g Riemann surface X
satisfying k (a) = 0 and n (a) ==g + 1 (mod 2).

Let a be a closed curve left point-wise fixed under the above involution CT. Let A be
a tubular neighborhood of a. Then the universal covering of A is the strip

A = { z £ C | - l < I m z < l } .

Furthermore we may suppose that a maps A onto itself and that the complex conjugation
is a lifting of a: A -> A onto A. Then the real axis covers the curve a.

Everything here is only topological. So assuming that the covering group of A -> A
is generated by z \—> z + 2 we do not restrict the generality.

Define the function H : A - » A setting H(x+^)==(x+ 1 —y+iy). Then the complex
conjugation T(x+iy)=x—iy and H ° T are both self-mappings of A. Both of them map
the real axis onto itself but only the complex conjugation keeps it point-wise fixed.

Let/^: X -> X be defined setting/„ (p) =p for p eX\A. In A define/„ as the mapping
induced by H: A -> A. Then /^: X -> X is continuous and f^ ° a is also an involution

facer

Q a

0 fa 0 <7(/?)

Fig. The twisted involution /^° a does not keep the curve a point-wise fixed.

of X. For this involution we have k (/^ ° a) = 1 and n (f^ ° a) = n (a) — 1. Figure 1 illus-
trates how the involution/^°<j maps a curve that intersects the curve a.

This is how one can construct topological models for symmetric Riemann surfaces.
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3. Stable Riemann surfaces, Fenchel-Nielsen coordinates

Next we have to review certain definitions related to stable Riemann surfaces. Here
we follow the presentation of Bers [3].

Recall first that a surface with nodes S is a Hausdorff space whose every point has a
neighborhood homeomorphic either to the open disk in the complex plane or to

N = { ( z , w)eC2\zw=0,\z\<\,\w\<\}.

A point p of Z is a node if every open neighborhood of p contains a open set
homeomorphic to N. Component of the complement of the nodes of Z is a part
of £. The genus of a compact surface with nodes Z is the genus of the compact smooth
surface obtained by thickening each node of S.

A stable surface with nodes is a compact surface with nodes whose every part has a
negative Euler characteristic. A stable Riemann surface with nodes is a stable surface £
together with a complex structure X for which each component of the complement of
the nodes of S is obtained deleting a certain number pj points from a compact Riemann
surface of genus gj. The stability condition means that

2-2^.-^,<0.

If X is a stable Riemann surface, then every part X .̂ of X is a hyperbolic Riemann
surface, i. e., every X .̂ carries a canonical metric of constant curvature — 1. This metric
is obtained from the non-euclidean metric of the upper half-plane (or the unit disk) via
uniformization. When we later speak of lengths of curves on parts of a stable Riemann
surface, we always refer to this canonical hyperbolic metric.

A stable surface S of genus g can have at most 3g— 3 nodes. We say that S is
terminal if it has this maximal number of nodes.

A strong deformation of a surface with nodes 2^ onto a surface with nodes 2^ ls a

continuous surjection S^ -> 2^ such that the following holds:
• the image of each node of 2^ is a node of £2,
• the inverse image of a node of S^ ls either a node of 2^ or a simple closed curve on

a part of 2^,
• the restriction of S^ -> 2^ to the complement of the inverse image of the nodes of

2^ is an orientation preserving homeomorphism onto the complement of the nodes of 2^.
A pair of pants is a sphere from which three disjoint closed disks (or points) have been

removed. A pair of pants P2 has three boundary curves 04, o^ and 0X3. A pair of
pants can be equipped with a hyperbolic metric m for which the boundary curves are
geodesic curves of a finite length /i, /^ and l^. We call such a metric intrinsic. It is
well known that the lengths of the boundary curves specify the metric m up to an
isometry isotopic to the identity mapping (cf. e. g. [I], Theorem on page 82). We allow
the boundary components to be of length 0. We say that the pair of pants with an
intrinsic hyperbolic metric for which some boundary component(s) has (have) length 0
is thight.
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Let £ be a stable genus g surface. A decomposition of £ into pairs of pants is an
ordered collection

^=(P,,P,, . . . ,P^ -2 )

of disjoint pairs of pants on £ such that:
• The union of the closures of the pairs of pants Pj covers the whole surface £.
• The intersection of the closures of any two pairs of pants P^, Pp i^j\ is either empty

or a union of nodes of S and of closed curves a on S.
It follows that all the nodes of £ appear as boundary components of pairs of pants in
any decomposition of S into pairs of pants.

If £ is a terminal stable surface, then all the boundary components appearing in any
decomposition of S into pairs of pants are nodes of S. If S is not terminal, then, in
addition to the nodes, there will be a number of other boundary components which are
simple closed curves on £. We call these nodes and curves decomposing nodes and curves
of^.

A decomposition ^=(P^.) of S into pairs of pants is oriented if:
1. The set of boundary components of each pair of pants P;£^ is ordered as well.
2. All decomposing curves are oriented.
If ^ is an oriented decomposition of S into pairs of pants, then we may speak of

the first, second and third boundary component of any pair of pants belonging to
^. Furthermore, the ordering of the pairs of pants together with the ordering of the
boundary components in the various pairs of pants induce an order in the set of boundary
components of the individual pairs of pants in the decomposition ^. Observe that each
decomposing curve appears twice in this ordered set of boundary components of the
pairs of pants.

Let (P, d) be a pair of pants with ordered boundary components and with an intrinsic
hyperbolic metric d. For a later construction it is necessary to associate a base point ^
to all boundary curves ocy of (P, d). That is, as usual, done in the following way. Let
ji • be the geodesic curve in (P, d) which joins the rth boundary component to the
7'th boundary component, i^j\ and is perpendicular to both of them. Such a geodesic
curve is always uniquely defined. For a notational convenience, define 73 4 setting
73,4=734. The base point ^ of the boundary component Oy is the starting point of
Tj , j+ i onocJ••

Let X be a complex structure of S. Then X=(S,X) is a stable Riemann
surface. Each part of X carries a canonical hyperbolic metric.

An oriented decomposition of X into pairs of pants is called geodesic if every boundary
curve of that decomposition is a geodesic curve on X. If ^ is any decomposition of X
into pairs of pants, then we get always a geodesic oriented decomposition of X into
pairs of pants by replacing each decomposing curve by the geodesic curve in its homotopy
class.

Let ^ be any geodesic and oriented decomposition of X into pairs of pants. Let
oc^, . . ., 0X30-3 be the decomposing curves or points. Each curve (or point) oc. is either
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a boundary component of two different pairs of pants or appears twice as a boundary
component of a single pair of pants.

Let ^ be the distinguished boundary point of the yth boundary component of the
kth pair of pants of the decomposition ^, 7'== 1, 2, 3, k= 1, . . ., 2^—2. On each curve
(or point) o^, s== 1, . . ., 3g—3, there are exactly two points ^. The ordering of the
pairs of pants belonging to ^ and their respective boundary components gives us an
ordering of these points ^ lying on one decomposing curve o^. We conclude that on
each o^ we have two distinguished points ^J and ^. These distinguished points are
uniquely defined by the complex structure X.

Observe that strong deformations act on the set of oriented decompositions of a stable
surface £ into pairs of pants. More precisely, let /: £' ->• £ be a strong deformation
of stable surfaces and let ^ be an oriented decomposition of £ into pairs of pants
PI, . . . , P-ig-i- Then /*(^) is the decomposition of 2V into pairs of pants f~1 (P .̂),
7== 1, 2, . . ., 2^—2. This is the pull back of the pants decomposition ^.

If /: £' -> £ is a strong deformation and ^f is an oriented decomposition of £ into
pairs of pants such that each curve/"i { a node of £ } is a decomposing curve (or point)
of^, then we can define the induced decomposition f(^') of £ into pairs of pants. The
pairs of pants of/(^) are images of pairs of pants in ^ ' under the strong deformation
/ If/is a homeomorphism, then the induced decomposition/^7) is defined for any
decomposition ^.

Let M^ be the set of isomorphism classes of stable genus g Riemann surfaces. We
proceed and recall the definition of the Fenchel-Nielsen coordinates for (parts of) M^.

Let £ be a stable topological surface of genus g. Fix first an oriented decomposition
^ of £ into pairs of pants. Let X be a complex structure of £. Then there is always
a mapping/:£ -> £, homotopic to the identity mapping, such that the decomposition ^
is a geodesic decomposition for the pull back structure/* (X). Recall that the pull-back
structure/* (X) is defined requiring the mapping/: (£, /* (X)) -> (£, X) be holomorphic.

In M9 the complex structures /* (X) and X define the same point. Therefore, when
defining parameters for subsets of M^, we may start with a fixed decomposition ^ of £
into pairs of pants and restrict — without loss of generality — our considerations to those
complex structures of £ for which the given decomposition ^ is geodesic. Let Ji (^)
be the set of these complex structures.

Let oc^, . . ., o^ _ 3 be the oriented decomposing curves of the pants decomposition
^. Recall that any Xe^(^) defines two distinguished points ^J and ^ on each Oy.
Let Xj denote the distance from ^J to E,J measured to the positive direction of o .̂.

In ^(^) we can define the functions lpj== 1, 2, . . . . 3 g—3, setting

(1) ^==the length of a,

fe-2^,//, if /,>0
1 e,==o if /,=o

It is clear that X and X' e M (^) are isomorphic complex structures if lj (X) == Ij (X') and
Qj(X)=Qj(X') for all y = l , 2, . . . . 3g-3. A necessary condition for X and X7 to be
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isomorphic is that there exists a homeomorphism /: X -> X' and a decomposition ^ ' of
X' into pairs of pants such that the following holds:

1. ^^y*^).
2. Let /} and Q'j be the coordinates of X' with respect to ^ which correspond to the

coordinates lj and 9̂ . of X with respect to ^. Then l^l^ and 6j =9} for all
y = l , 2 , . . . , 3 ^ - 3 .

The coordinates /^ and 9̂ . are referred to as the Fenchel-Nielsen coordinate. The above
definitions are quite classical. For a clearly written account of the Fenchel-Nielsen
coordinates see [5].

4. Pants decomposition of symmetric Riemann surfaces

Let £ be a fixed compact smooth topological surface of genus g, g> 1, and let a: £ -^ £
be a fixed orientation reversing involution. Let X be such a complex structure of £
that the mapping a: (£, X) -^ (£, X) is antiholomorphic. That is equivalent to saying
that a is an isometry of the hyperbolic metric of the Riemann surface (£, X).

It is well known that there exists a constant M=M(§-)~ which depends only on the
topological type of £ - such that the Riemann surface (£, X) can be divided into pairs
of pants in such a manner that the boundary curves of this pants decomposition are of
length <M {see e.g. [4], Theorem 2, p. 88).

For our applications it is necessary to see that the above pants decomposition can
be chosen in such a way that it is invariant under the antiholomorphic involution
a:(£,X)-^(£,X).

We shall prove that by symmetrizing the proof presented in [4] for this result in the
case of Riemann surfaces (without a symmetry).

First of all we need a number of well known auxiliary results concerning the hyperbolic
geometry of Riemann surfaces. For the convenience of the reader we shall here briefly
recall these results.

Let W be a compact hyperbolic Riemann surface with boundary curves oc^, . . ., Op.
On W we use the intrinsic hyperbolic metric in which the boundary components are
geodesic curves of a finite length (see e.g. [I], p. 45). This metric can be obtained in
the following way. First form the Schottky double of W by gluing W and its mirror
image W together along the boundary components (for the definition of the mirror image
of W see Section 2). The intrinsic metric of W is the restriction of the usual hyperbolic
metric of the Schottky double of W to W itself.

Let s>0. For an index 7, 1 ̂ j^p, form the set

Aj=[pe^W\ distance ofp from o^.<c}.

We say that A .̂ is a collar at Oy if it is homeomorphic to a ring domain. The number 8
is the width of the collar A .̂. A collar Aj of area ^ will be called a ^-collar. N.B. We
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are here always using the intrinsic metric in which the boundary components o .̂ are
geodesic curves of a finite length.

A collar at a boundary component a- has itself two boundary components oc- and oc*.
The latter is called the inner boundary component, while ocy is the outer boundary

component. Let ^y be the length of Oy and "kj that of oc*.

LEMMA 4.1. — The length of the inner boundary component a^ of a [i-collar A. at a. is

^^T^.
Any simple closed curve that is freely homotopic to oĉ . and lies outside of this collar has
length at least ^*.

Proof[^, Lemma 4, p. 89].

LEMMA 4.2. — A ^-collar at a boundary component of length ^o contains a ^{-collar for
every y, 0<y<p.. Every point of the inner boundary component the former lies at the
distance

from the inner boundary component of the latter.

Proof[4. Lemma 5, p. 90].

LEMMA 4 .3 .— There is positive continuous decreasing function oc(^), ^0, such that
about every boundary component of length ^o there is a ^-collar for every [i, |j,<oc(^o).
Two of these collars about two disjoint boundary component are disjoint.

The best possible value of a (t) is

ocQ)- . /. . . .
sinh^/2)

Proof. - See [4], Lemma 6, p. 90, [8], [7] or [I], pp. 95-96.
We also need the following well known result:

LEMMA 4.4. — There exists a universal constant T|, T|>O, such that for any compact
Riemann surface W (which may have boundary components) the following is true: Let oc
and P be closed geodesic curves on W with lengths <T|. Then either oc=P (as set of
points) or the curves a and (3 do not intersect.

This result is well known. For a best possible estimate see e.g. [14]. There we give
an inequality for the lengths of intersecting geodesic curves on a Riemann surface. That
inequality is the best possible and yields the constant of Lemma 4.4. Another inequality
of the same type is given in [I], Lemma 1 on page 94.

Let £ be a surface with boundary components and a: S -> £ an orientation reversing
involution. A pair (oc^, oc^) of simple closed curves o^ and oc^ on £ is called a a-pair if
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cr(o4)=oc2 and if either 04=0^ or the curves are disjoint. A cr-pair (04, oc^) is called
essential if 04 is not freely homotopic to any boundary component of S. Observe that
this condition implies that for an essential a-pair (04, oc^) neither one of the curves o .̂ is
freely homotopic to a boundary component.

A o-pair (04, o^) on a Riemann surface (S, X) is geodesic if both curves ocy, 7= 1, 2,
are geodesic curves in the intrinsic hyperbolic metric of (L, X).

THEOREM 4.5. — Let (S, X) be a hyperbolic Riemann surface with (or without) boundary
components, and let a; (S, X) -> (Z, X) be an antiholomorphic involution. There exists a
constant M that depends only on the topological type of S and on the intrinsic lengths of
the boundary curves of (S, X) such that the Riemann surface (£, X) has an essential
geodesic <j-pair (04, a^) such that both geodesic curves ocy are of length less than M.

Proof. — We will show the above theorem by making the elegant arguments presented
by Lipman Bers in [4] symmetric. Argumentation proceeds exactly as presented by
Bers. We only have to check a number of possible different configurations related to
the involution a.

To start, let T|, be the constant of Lemma 4.4.
Assume that there is a simple closed geodesic curve a on (S, X) such that the length

of oc is <T| and a is not freely homotopic to any boundary component of S. Then by
Lemma 4.4 either <j (a) = a or the curves a and a (oc) do not intersect. If that is the
case, we are done because we may choose M=T| and (04, 0^)= (a, a (a)).

Assume next that every simple closed geodesic curve that is not freely homotopic to a
boundary component is of length at least T|. Let L be the intrinsic length of the longest
boundary curve of the hyperbolic Riemann surface (S, X). If (S, X) does not have any
boundary curves, we set L=0.

Let

2 H = 3 T = oc (L), 8 = log

where oc(0 is the function of Lemma 4.3.
Let

(3) 4£=min(T, 8, T|),

where T| is the constant of Lemma 4.4. Then s>0 and it depends only on L.
Let BI, . . ., Bp be the ^-collars and B^, . . ., Bp the T-collars at the boundary com-

ponents 04, . . ., oCp of the Riemann surface X=(E, X). Then B^c=B^. and the collars B^
are disjoint.

Let X^ be the complement of B^ (J B^ U . . . U B ,̂ and X^ that of
B'i U B^ U • • • U B^,. Since £ < 8 Lemma 4.2 implies that every point of
B[ U B^ U . . . U B'p lies at a distance >s from X^, i. e., X^ contains the s-neighborhood
ofX,,.
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If the Riemann surface (S, X) does not have boundary components, we set
X^=X^==X.

By the preceding considerations and by the choice of e we are now left to consider
the case in which the surface X^ does not have any simple closed geodesic curves of
length less than 4e. Considering Lemma 4.1 these choices imply also that, for any
point qeX^^, the set of points lying at a distance less than s from the point q is a disk.

We have two cases to consider: let us first assume that the topological genus p of S is
at least 1. That means that the surface £ has at least one handle. The case of genus 0
surfaces £ will be considered later.

Considering an explicit model for the action of the involution a as described in
Section 2 it is clear that we can always find simple closed curves oc that are not freely
homotopic to any product of the boundary curves and which satisfy a (oc) = a. Let P be
one such simple closed geodesic curve having minimal length among all these curves.

Since a: (£, X) -> (£, X) is an isometry of the intrinsic metric, we have the following
possibilities:

1. a has exactly two fixed points on P.
2. a has no fixed-points on P.
3. a keeps all the points of P fixed.
Assume first that we have case (1), i. e., that o- has exactly two fixed-points in P. Call

these fixed points p^ and p^. They divide the curve ? into two arcs R^ and P^ satisfying
^(Pi)^.

Let Lp denote the length of P. Set m = [Lp/6 e]. On Pi choose first m — 2 inner points
q^ . . . . q^-i OI Pi such that the arc of Pi between any two of them is of length more
than 2s and that the arc of P connecting any one of them to either one of the end-
points p^ or p^ of Pi is of length more than 2 e.

This can be done, of course. On the arc P^ consider the points

a(^), . . ., o(^_2).

They satisfy the same condition as the points ^, . . ., q^-r
In this way we have chosen 2 m points on the geodesic curve P and the set of these

points is symmetric with respect to a.
Let D(^), D(^), D(^) , . . . ,D(^_^ D(a(^)), . . ., D(a(q^_^) be disks of

radius £ and centers at the respective points p^ p^ q^ . . .
The choice of c implies first that the disks D(j?i) and D(j^) are disjoint. For if

I^C^i) H DCp2)^0? then this intersection has two components which get mapped onto
each other by the involution a. Therefore the union V>(p^)\JD(p^) would contain a
geodesic curve of length less than 4 s. That is not possible by our present assumptions.

The area of a hyperbolic disk of radius s is 471 sinh2^/!). If all of the above 2m
disks are disjoint, then their the total area is

mSjrsinh2 (s/2).
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This number is, of course, bounded by the intrinsic area of (S, X) which equals

-27ix(£)

where /(S) is the Euler characteristic ofZ.
We conclude therefore that

531

(4) m^- X(S)
4sinh2(£/2)

Since Lp<6e(m+ 1), (4) gives an upper bound

X(S)
2sinh2(£/2)

(5) M=-3s

for the length of the curve P. This number M depends only on the topological type of
S and on the lengths of the boundary curves of (£, X). The curve P is, furthermore,
invariant under the involution a. Therefore an essential a-pair satisfying the conditions
of the lemma is simply ((3, or(P)).

Assume next that the above disks D(j?i), D(^)-> D(^.), D(a(^.)), 7=!, 2, . . ., are
not disjoint. If D (̂ .) 0 D (j^) ̂  0 then also

a (D (̂ .)) H o (D (^)) = D (a (̂ .)) U D (a (^)) ̂  0.

Using arcs lying in the unions of intersecting disks and arcs of P we can then find simple
closed geodesic curves y^, . . ., y^, o-(yi). . ., a(yj such that the curve P is homologous
to the product

(6) Y i Y 2 - • •ym^(Yi). • -CT(yJ,

and the length of each curve jj is bounded by the number M of (5). Figure 2 illustrates
this case.

D(pj) ___ D{a(p,))

Fig. 2. - The disks D(^), D(^.) and D(cr(^)), D((7(^.)) intersect.

If now the simple closed curve y .̂ is homologous to 0 modulo the boundary of E then
such is a (y .̂) as well. The product (6) is homologous to ? which is not homologous to
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0 modulo the boundary. We conclude therefore that among the above curves we may
choose geodesic curves yy and a (y^) such that neither one of them is homologous to 0
modulo the boundary and both of them are of length less than the above number
M. This concludes the proof in the subcase 1.

In subcase 2 the involution a has no fixed points in P. Then choose first any point
p^ of P. Let ^2=cr(7?i). Replace now, in the previous argument, the fixed points p^
and p^ of a on P by these points p^ and p^. Then we may repeat the above argument
word by word to prove the theorem also in subcase 2.

In subcase 3 the involution a keeps the geodesic curve P point-wise fixed. In this
case a is a reflection in the curve P.

Let now m'== [Lp/3 s]. On the curve P choose m' points q^, . . ., q^ such that the arcs
of P connecting any two points q^ and qj is of length more than 2 c. Let D (q •) be a
disk of radius £ with center at the point q^.

We next proceed to show that the disks D(^.) are disjoint. To that end assume that
D (̂ .) 0 D (^) ̂  0. Then the sets

D(^,)\P and D(^)\P

both have two component. Call them Dj, D^ and D^, D^, respectively.
Assuming now that the numbering is propely chosen, we have Dj PlD^=/0. Then

a(D})=Dj and a(D,;)=D^. Therefore also D^UD^0. Figure 3 illustrates this

Fig. 3. — The intersection D(^) 0 D(j^.) has two components.

case. This would imply that we can find, on the Riemann surface (S, X) a simple closed
geodesic curve of length less than 4c<r| which is contained in the union
D(/^.)UD(A). By our initial choices this is not possible. We conclude that all the
disks D(j^.) are disjoint. As before this gives an upper bound M for the length of the
geodesic curve P. This upper bound depends only on the topological type of £ and on
the intrinsic lengths of the boundary curves of (S, X). The pair (P, a (?)) satisfies now
the requirements of the theorem.

To complete the proof of the lemma we still have to consider the case where £ is
homeomorphic to a sphere from which a number (^4) of disks have been removed.

Let X^ and X^ be the surfaces obtained from the Riemann surface (£, X) by removing
the collars B .̂ and Bp as explained in the beginning of this proof. Let s be the number
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fiven by equation (3). Recall that we have used the notation oci, . . ., oc^ for the boundary
curves of the Riemann surface (S, X). Let a*, oc*, . . ., oc* be the corresponding bound-
ary curves of the surface X^.

By Lemma 4.1, the intrinsic lengths of the curves a* are bounded by a number
depending only on the intrinsic lengths of the respective curves a..

We say that boundary components a* and aj* are adjacent if, among all curves
connecting oc* to oc* in X^ there is one which has minimal length and which does not
intersect any other boundary curve oc*, i^j\ k, ofX^.

LEMMA 4.6. — The length of a minimal curve connecting two adjacent boundary com-
ponents ofX^^ to each other is bounded by a number depending only on the intrinsic length
of the longest boundary component of the Riemann surface (S, X) and on the total intrinsic
areaof^X).

Proof. — Let ocj" and oc* be adjacent boundary components of X^, and let y be a
curve connecting them to each other, having minimal length and not intersecting any
other boundary component. Let L be the intrinsic length of y. Then we proceed
exactly as in the preceeding argumentation replacing the curve (3 by the curve y and the
number Lp by Ly.

For any point q e y, the set of consisting of points lying at a distance less than s from
the point q is a disk. If q and q are two points of y such that the arc of y connecting q
to q is of length more than 2 s, then the corresponding disks are disjoint. Repeating
the above arguments we now get an upper bound for the intrinsic length of the curve y.

LEMMA 4.7. — There is a number M depending only on the intrinsic length of the
longest boundary component o .̂ of (S, X) and on the number p of the boundary components
ofL such that the distance, in X^, between any two boundary components a* and oc* of
X^ is bounded by M.

Proof. — Lemma 4.6 proves this result for adjacent boundary components. Assume
that oc* and oc* are arbitrary boundary components. Let y be a curve of minimal length
connecting oc* to oc* in X^.

The curve y can be divided into arcs y^, Pi, . . ., y^-i, Pn-i, Vn, n^p, such that the
arcs P^ are arcs on the boundary components oc* and the arcs y^ are arcs connecting two
adjacent boundary components to each other. Now the length of each arc y; is bounded
by a number depending only on the length of the longest boundary component and the
total area of the Riemann surface (S, X). This can be proved by repeating the previous
arguments.

Each curve P^ is, on the other hand, shorter than the longest boundary component of
X^. There are less than I p arcs y; and P^. This proves the lemma.

In order to complete the proof of Theorem 4.5 we use the above lemmata to find a
a-pair (y, a (y)) satisfying the conditions of the theorem.

Let P be a curve of minimal length connecting two adjacent boundary components oc*
and a* of X^ to each other in X^. By Lemma 4.6 the length of P is bounded by a
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number depending only of the length of the longest boundary component and on the
area of (£, X).

We conclude first that the curves P and <7(p) do not intersect. For if they would
intersect, then they would intersect at a positive angle at some point. That would allow
us to find a shorter curve (V connecting two boundary components of X^ to each
other. Since (3 has minimal length among all such curves this is not possible.

Assume that (T(OC*)T^OC*, for f, l==j\ k. In this case take y to be the geodesic curve
homotopic to the product o^ Ra^ P~ 1 (this is homotopic to a simple closed curve provided
that the orientations of the curves a* and P are properly chosen. It is obvious how to
do this.

The length of this curve y is bounded by a number depending only on the length of
the longest boundary curve a, and on the total area of (S, X). Therefore the a-pair
(y, a (y)) satisfies the conditions of the theorem.

We still have to consider the following cases:

1. c^ap^aj" and a(o^)=o^,
2. a(af)=af and a(oc?)^ay,
3. a(ocf)=a?.

All these cases can be treated repeating the above arguments in suitably modified
forms. In these cases we construct a geodesic curve y such that <7(y)==y and whose
length is bounded by a constant depending only on the length of the longest boundary
curve and on the total area of the Riemann surface (£, X). This geodesic curve will be
homotopic to a closed curve constructed by taking twice the curve ? and suitable arcs
on the boundary curves a* and a? of X^. This finally proves the theorem. Details
in this last part are easy and left to the reader.

Theorem 4.5 can be use inductively to prove the following result.

THEOREM 4 . 8 . — L e t (S, X) be a Riemann surface of genus g, ^>1. Let
a: (S, X) -> (S, X) be an antiholomorphic involution. There exists a constant M depending
only on the topological type of S such that (Z, X) has a decomposition ^ into pairs of
pants such that

• a (̂ ) = ̂ , and

• the decomposing curves of^ are simple closed geodesic curves of length <M.

The proof is an immediate consequence of Theorem 4.5. The proof is word-by-word
same as the one presented by Lipman Bers in [4], § 5, pp. 92-93, and will be omitted
here.

The above proof contains a number of rather straightforward details. That result is
necessary for our applications. It would be desirable to find a shorter proof by using
the corresponding lemma in the case of Riemann surfaces (without symmetries). Unfortu-
nately I was not able to do this.
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5. Moduli spaces of real curves

Recall that stable real algebraic curves are stable symmetric Riemann surfaces. Two
such real curves (X, o-) and (Y, r) are real isomorphic if there exists a holomorphic
homeomorphism/: X -> Y satisfying/0 a =T°/. Our basic object of study is the moduli
space of real algebraic curves of a given genus. Here is a formal definition for it.

DEFINITION 5.1. — The set M^ of real isomorphism classes of stable real curves of
genus g is the moduli space of real algebraic curves of genus g.

We aim to show that the moduli space M| carries a natural topology in which M^ is
a compact and connected Hausdorff space. To that end we use the above defined
Fenchel-Nielsen coordinates. We continue proceeding in the spirit of the exposition of
Abikoff [1].

Let c and 8 be positive numbers. We say that the point [(Y, T)]eMn belongs to the
(s, 5)-neighborhood Ug § ([(X, a)]) if and only if the following conditions are met:

1. There exists a decomposition ^ of X into pairs of pants which is invariant under
the symmetry a.

2. There exists a strong deformation /: Y -> X such that f° T = a °f.
3. The Fenchel-Nielsen coordinates l\, 0^ . . ., I'^g-^ Q^-s of Y with respect to/* (^)

satisfy:
(a) | ^ - / ; . [<£fora l l7=l ,2 , . . ., 3g-3.
(b) For all values of/ if ^->0 then 9^-9} <8.
Here lj and 9j are the Fenchel-Nielsen coordinates of X with respect to ^.
The sets Ug § ([(X, a)]) form a basis for the topology of MR. This definition for the

topology of MR is an adaptation of the definition given in [I], p. 103, for the topology
of the moduli space M.g of stable Riemann surfaces of genus g. The fact that this
topology is a Hausdorff topology is rather obvious and can be shown by repeating the
arguments that Abikoff has presented in [I], pp. 103-104.

We next proceed and show that M^ together with this topology is a connected and
compact space.

6. Compactness theorem

The moduli space M^ can be divided in a natural way into parts that can be studied
using the classical methods. These parts are very similar to charts of a manifold but
they do not form an open covering of Mp.

Let

V(/2, ^)=={[(X, <7)]eM|[X a smooth Riemann surface, n (a) = n, k(a)=k].

We will first show that the closure of each V (n, k) is compact in MR.
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The proof of the compactness is an extension of the arguments presented in [I],
pp. 99-104, and relies on Theorem 4.8. We assume that the constructions and results
concerning the moduli space M9 of stable Riemann surfaces of genus g, g>\, are
known. For an analytic approach see e.g. [1]. Observe especially, that it follows
immediately from the definitions of the topology of MR and that of M0 that the projection

(7) M^IvP, [(X,a)]^[X]

is continuous.
We will have to deal with several different symmetries of the surface S. To make

this distinction clear we write sometimes (S, X, a) to denote the symmetric Riemann
surface X==(S, X) together with the symmetry a: (T, X) -> (S, X) which is then an
antiholomorphic involution.

THEOREM 6.1. — The closure of V (n, k) in M^ is compact.
Proof. — Let a: S -»E be an orientation reversing involution, k (a) = k and

n (o) = n. Let ([S, X^, a)]) be an infinite sequence of points of V (n, k) in M^. It suffices
to show that there exists a subsequence ([(S, X^, a)]) that converges in M^.

We shall, at various stages of the proof pass from a sequence to its subsequence. To
keep the notation as simple as possible we use the same notation for a sequence and its
suitable subsequence when there is no danger of confusion.

Let M be the constant of Theorem 4.8. Use first Theorem 4.8 to find, for each
index n, a decomposition ̂  of S into pairs of pants in such a way that each decomposing
curve aj of each pants decomposition ̂  has length <M on (Z, X^). By Theorem 4.8,
we can choose these pants decompositions ̂  in such a way that, for each n, a(^)=^.

There are only finitely many topologically different decompositions of the surface S
into pairs of pants. Therefore we may—by passing to a subsequence—assume that
there is a fixed decomposition ^ of £ into pairs of pants and orientation preserving
homeomorphisms /„: S -> Z such that /„ (^) = ̂  for each n.

Let Y^ be that complex structure of S for which the mapping /„: (S, XJ -> (S, Y^) is
holomorphic. Let T^=/^ ° a °/71. Each mapping ^ : (S, YJ -»(S, Y^) is then an anti-
holomorphic involution. Furthermore, T^ (^) = ̂  for each n.

LEMMA 6.2. — For infinitly many indices n we can choose a representative (S, W^, r)
of the point (S, Y^, Ty,) ^c/? ^/^ the following holds.

1. T:(S, W^)-^ (S, W^) is an antiholomorphic involution. The corresponding mapping
T : Z —> Z ^fo^y ?26^ depend on the index n.

2. T w^y the pants decomposition ^ of^L onto itself.

3. Lengths of each decomposing curve of ^ on hyperbolic Riemann surfaces (S, W^)
form a bounded sequence.

Proof. — There are only [(3 g + 4)/2] topologically different orientation reversing involu-
tions T^ : S -> S of a genus ^ surface S. Therefore, by passing to a subsequence, we may
suppose that all the involutions !„ are of the same topological type. This means that
all the surfaces S/<T^) are homeomorphic to each other. Here ( r^) is the group
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generated by the involution T^. Observe that these surfaces may have boundary and
need not be orientable.

Since T^(^)=^ for each n, the decomposition ^ induces a generalized decomposition
of the surface £/( T^ ) into pairs of pants. This decomposition is generalized in the sense
that it is a decomposition of £/( T^ ) into pairs of pants and into parts that are quotients
of pairs of pants modulo an orientation reversing involution of the pair of pants. In
any case, each surface S/(r^) has only finitely many topologically different such
decompositions. This means that — by passing to a subsequence and changing the numer-
ation again—we may, for n>l, find homeomorphisms G^ : S/(TI ) -^/(c^) which
map the induced decomposition of Z/( T^ ) onto that of S/<( Ty,).

Let g^ '. S -> S be the orientation preserving lifting of G^ : S/( T^ ) -> S/( T^ ). Write
T=TI . Then g^^i^^^Sn anc^ Sn maps the decomposition ^ of £ into pairs of pants
onto itself, i. e., g^ maps each decomposing curve of ^ onto some decomposing curve
of^.

Let now W^ be that complex structure of Z for which the mapping g^ : (S, W^)
->(S,Y^) is holomorphic. Then, for each n, the mapping T=Ti=g^ 1 °T^°^ is an
antiholomorphic involution, r(^)=^ and, in MR, [(S, W^, T)]=[(S, Y^, TJ|.

The decomposition ̂  of (£, W^) into pairs of plants satifies also the second condition
of Theorem 4.8. This proves the lemma.

Let P], 9^,7=1, 2, . . . , 3 ^ — 3 , b e the Fenchel-Nielsen coordinates ofW^ with respect
to the pants decomposition ^. Then by statement 3 of Lemma 6.2, we find a constant
M, M < oo, such that T] < M for each j and n. Also we have 0 ̂  9^ < 2 71. Therefore — by
passing again to a subsequence—we may assume that all the sequences /J, /J, /J, . . .
and 9J, Q], 9f, . . . converge. Let ^.= lim V] and 9^.= lim 9^,7= 1, 2, . . ., 3^-3.

n -» oo n -» oo

We deform next the surface £ in the following fashion. If ^-=9 then we replace the
decomposing curve o .̂ of the pants decomposition ^ by a node. Do that for each y
with ^-=9. That construction yields a stable surface £* of genus g. The identity
mapping £ ->- £ induces a strong deformation

(8) /: I^£*.

By Lemma 6.2 we deduce that T induces an orientation reversing involution
T : £* ->- £*. Also the decomposition ^ofS into pairs of pants gives a similar decompo-
sition ^ of S* into pairs of pants. Here we actually need only the following
observation. If the length of a decomposing curve o^ on (S, W^) tends to 9 as n -> oo
then also the length of T (Oy) on (S, W^) tends to 9.

On E* define a complex structure Y* using the Fenchel-Nielsen coordinates lj and 9̂ .
with respect to the decomposition ^ of S* into pairs of pants. We do that in such a
fashion that the mapping T : (S*, Y*) -> (Z*, Y*) becomes antiholomorphic.

To this end, let Pi, P^, . . ., ̂ ig-i be the pairs of pants of the surface E*. It is
probably best to think of these pairs of pants as a collection of separate pairs of pants
and not as subsets of the surface S*. We start with defining the complex structure of
each Pj first.
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The limits lp 7= 1, 2, . . ., 3g- 3, of the Fenchel-Nielsen length coordinates ^ associ-
ated to W^ give the lengths of the decomposing curves of the pants decomposition ^ of
(I*, Y*).

Start with defining on P^ any complex structure for which the boundary curves have
the lengths given by these limits Ij. If r (Pi)==P^ then we require, in addition, that the
mapping T restricted to Pi is antiholomorphic. Otherwise we define the complex struc-
ture of r(Pi) by requiring the mapping T : P^ -> r(Pi) to be antiholomorphic.

If r(Pi)^P2 then repeat the same for P^. Otherwise we continue with P^. We
repeat this construction until every pair of plants Pj of the decomposition ^ of E* into
pairs of pants gets a complex structure. This can obviously be done without any
problems.

Next we have to glue these complex structures of the various pairs of pants together
to form a global complex structure of the surface S*. That we do by the identification
pattern given by the original decomposition ^ of Z* and the gluing angles given by the
limits 9j= lim Q] of the gluing angles associated to the complex structures W^. That

n -*• oo

gives us the complex structure Y* of £*.
For each n, the diagram

(9)
(£,W,)^(E*,Y*)r r
(£, W«) ̂  (E*, Y*)

commutes.
Here/: (£, W») -^ (E*, Y*) is the strong deformation induced by the identity mapping

[cf. (8)]. Each mapping T : (£, WJ -^ (£, W«) is an antiholomorphic involution.
The restrictions of the mapping T : (£*, Y*) ̂  (Z*, Y*) to the pairs of pants P .̂ are

antiholomorphic by the construction. The commutative diagram (9) together with the
definition of T : (S*, Y*) -^ (E*, Y*) and the fact that each T : (£, W^) -> (£, W^) is
antiholomorphic then finally assures that the mapping T : (S*, Y*) -»(E*, Y*) is globally
antiholomorphic. Therefore (S*, Y*) defines a point in M^.

From the construction it follows then immediately that

[(£, X^)] - [(S, W^)] ̂  [(£*, Y*)] as ^ -. oo

in M|. This proves the theorem.

7. Connectedness theorem

Next we consider various points where the closures of the sets V (n, k) intersect. We
will show that there are enough intersection points so that the union of the closures is
actually connected. We start with showing that the union of the closures of the sets
V(/?, k) covers the whole moduli space MR. To that end we need a continuous way of
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thickening the nodes of a stable symmetric Riemann surface. That is, we need to make
the deliberations of Klein (see Introduction) precise.

Let (£, X) be a stable Riemann surface that represents a point peM9. Assume that
the surface S has nodes, let them be N^, N3, . . ., N^. For our purposes it is necessary
to obtain a concrete and continuous way to thicken these nodes. One such thickening
has been given by Fay (cf. e. g. [6]).

Let us first describe this thickening at one node Ne£. Since N is a node of the
stable Riemann surface X, we can take a neighborhood U of N such that U\{ N}
consists of two open sets U^ and U^ that are both holomorphically homeomorphic to
the unit disk A* <= C which is punctured at the origin. Let ocj : U .̂ -> A* be holomorphic
homeomorphisms.

The thickening of the node N that we are presently describing depends on the sets U,
and on the conformal mappings Oy. So we have to fix them first. Assume that they
are now fixed.

The thickening of the node N will depend on one complex parameter
z e A = = { z e C | | z | < l } . Let now zeA be fixed. Let A * = { ^ e C | 0 < | ^ | < z|} be the
punctured disk of radius | z |, 1 > | z | >0, with center at the origin.

Delete, from the Riemann surface (S, X), the punctured disks a/1 (A^), y= 1, 2, and
the node N. In that way get a Riemann surface with two boundary components y^
and Y2 which correspond to the deleted punctured disks aj"1 (A^) and a^^A^), respec-
tively.

Let ̂  (w) = z | z |/w. The mapping ̂  is conformal and maps the inside of the punctured
disk {w 1 1 w < | z } onto its outside. Therefore we obtain, by identifying the point p ey^
with the point oc^1 °^°oci (;?), a stable Riemann surface X^ such that the node N has
been replaced by a closed curve. Rotating the point zeA* means a partial Dehn twist
on the surface X^ around the simple closed curve of X^ that corresponds to the curves
Yi and y^-

Important is that the mapping

(10) A^M^, [z]^[XJ

is continuous. This is essentially the construction presented already by Fay [6] and then
used by many other authors.

Actually the above construction could easily be modified to get a holomorphic thicken-
ing of the type (10). That is, actually, the way this is usually done. For our computations
this mapping (10) is, however, more convenient.

The mapping (10) thickens only one node. If the stable surface X has m nodes
NI, . . ., N^, then we can repeat this construction and obtain a continuous mapping

(ii) A-^M^, ^py
to get a continuous mapping that thickens all the nodes simultaneously.

We use this thickening of the nodes to prove the following result (cf. [II],
Proposition 3.1, p. 90).
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THEOREM 7.1. — M^ is the union of courses of the sets V(n, k).

Proof. - We have to show that any neighborhood of a point in M^ defined by a
stable Riemann surface (Z, X, a), with symmetry a, contains points belonging to some
V(^fc).

Let N^, . . ., N^, w>0, be the nodes of (Z, X). To this end we have to thicken the
nodes in a fashion which is compatible with the involution a.

The mapping or must map the set of nodes of (S, X) onto itself. To thicken the
nodes of (£, X) we use the continuous thickening (11) with suitably chosen parameters
^=(zi, ....zJeA"

In order to see how we have to choose these parameters we need to divide the nodes
N .̂ into different classes according to the behaviour of the mapping a. So we assume
that the nodes are numbered in such a fashion that the following holds.

1. Nodes NI, . . ., N^ are kept pointwise fixed by or in such a way that each node
N^. has a neighborhood consisting of the node itself and of two punctured disks U^.
and U^. which are both kept fixed by a (as sets).

2. Nodes N^+i, . . ., N^ are kept pointwise fixed by a in such a way that each N^
has a neighborhood consisting of the node itself and of punctured disks U^ and U^
around the node such that a (U^) = U^ and or (U^) = U^.

3. Nodes N^+i, . . ., N^3 are mapped by or onto the nodes N^3+1, . . ., N^ which
are numbered in such a way that cr(N^.^)=N^+fe for all values of k.

The type of the node N .̂ determines how we have to choose the thickening parameter
Zj in order to ensure that the involution or induces an involution of the thickened surface
X^=X^.

First we choose disjoint neighborhoods {N^.} U U} \J Uj of the nodes N .̂ such that
each Uj and each Uj is holomorphically homeomorphic to the punctured disk,
UjnU^=0 for each index j\ and if or(N^.)=Nfe, then either or(Uj)=Ufc1 and
or(U^=U^ or or(Uj)=U^ and a(Uf)=Ufc1.

Next we choose holomorphic homeomorphisms

ocj : Uj -. A*, af : Uf ^ A*

such that

(12) a}°o°(a0- l(z)=z

whenever defined.

It is a simple matter to see that we can choose the mappings o .̂ : U} -> A* in such a
manner that equations (12) are satisfied. For any choice of holomorphic homeomor-
phisms o .̂ the mapping oc^or^o^)"1 (z) is an antiholomorphic self-mapping of the unit
disk which keeps the origin fixed whenever defined. Such a mapping is always conjugate
to the complex conjugation.
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After all these choices we can start thickening the nodes Ny. We have to perform
this thickening in a way that is compatible with the involution a. That imposes certain
conditions on the coordinates Zj of the thickening parameter ^eA^

To shorten the notation, let X^. denote the deformed surface X(Q ^. o) where we
have thickened only the node Ny.

The nodes N^, . . . ,N^ of the type 1 impose conditions on the coordinates
z^, . . ., z^ . A straightforward verification shows that, for 7== 1, . . ., m^ the involution
a : X -> X induces an antiholomorphic involution of X^. if and only if ẑ . is real.

In the same way the nodes N^+i, . . ., N^ impose conditions on the thickening
coordinates z^ +1, . . . , z^ . If these coordinates z^ are real then the involution
a : X -> X induces an antiholomorphic X^ -> X^.

At this point of the proof we make an observation that will be used later.

OBSERVATION 7.2. - Let j be any of the indices m^ m ^ + 1, . . ., m^ Then the nodes
N .̂ are of type 2. In the construction of this proof, the curves

y,=(a})- l{z||z|=|z,|}=(^)- l{z||z=z,|}

remain point-wise fixed under the involution a : X^. -> X^. if and only ifzj>0. For z,<0,
the involution a maps the curve jj onto itself mapping each point p e y onto its antipodal
point.

To prove the above observation is a simple matter of checking all the definitions. This
is also the observation that Klein made in [10], p. 8.

The remaining nodes impose a slightly different condition. Remember that for all
values of k, a(N^+fc)=N^+fe. Therefore, if we want to thicken these nodes in a way
that the involution a induces an antiholomorphic self-mapping of the deformed surface,
we have to thicken the nodes N^.^ and N^+fe simultaneously for each value of k.
Denote by X^ ^ the surface obtained from X by thickening the nodes N^^ and
^rn^+k according to the parameters z^^^ and ^3^, respectively. Then a straightforward
verification shows again that the involution a : X -^ X induces an antiholomorphic
mapping

. y _ y

^^^^^fe^^^^k zm2+kzm3+k

if and only if z^ ^ =z^ ^. This condition is always verified if the parameters ^+fe
and z^, are real and z^^=z^^

The mapping (11) is continuous into the complex moduli space of stable Riemann
surface of genus g.

Let

(^f)m={^^m\r=(r^ . . ., r^, r^^, r^^, . . ., r^^)}.

On basis of the above construction, it is now clear that we get a continuous mapping

(13) (ATW^'F^AT-^MR, rh->[X,, a].
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For a real number e, - 1 <e< 1, let £=(^, . . ., ^(AT^R). Provided that <?^0, the
surface Xg is a smooth Riemann symmetric surface of genus g. Therefore, for any such
e with e^O, the point [(Xg, a)] belongs to the union of the sets V(^, k). This completes
the proof.

COROLLARY 7.3. — The moduli space M^ of stable and symmetric Riemann surface of
genus g, g> 1, is compact.

Proof. — By Theorem 7.1 M^ is the union of the closures of the sets V(^, k). By
Theorem 6.1 each of these closures is compact. For a fixed genus g there are only
[(3 g + 4)/2] sets V (n, k). Therefore

M|==UV(^,fe)
n,k

is compact.
We can draw another conclusion from the above theorem. From the continuity of

the mapping M| —> M9 and from the compactness of M| we deduce immediately:

COROLLARY 7.4. — Stable real algebraic curves of genus g, g> \,form a compact subset
in the moduli space M9 of stable complex algebraic curves of genus g.

The moduli space of stable complex algebraic curves is a projective variety. In [12] I
have shown that real algebraic curves form a real analytic and semialgebraic subset of
the moduli space W. The compactness of the set of real algebraic curves in W was a
crucial part in that construction. The above Corollary gives an alternative proof for
that fact.

We conclude this paper by the following result:

THEOREM 7.5. — The moduli space M| of stable real algebraic curves of genus g, g> 1,
is connected.

Proof. — In [13], Theorem 2.2, we have shown that each set V(n, k) is
connected. (This is actually a simple consequence of the connectedness of the corre-
sponding Teichmuller spaces.) Therefore also the closures of the sets V(/7, k) are
connected. It suffices to show that there are enough points where the closures of the
sets V (n, k) intersect. To that end we will use Observation 7.2 and the construction of
the related proof.

To construct first such point, let g > 1. Take two copies of the Riemann sphere C
and identity the points 0, 2, 4, . . ., 2g. In this way we get a stable Riemann surface X
of genus g with g+ 1 nodes N^, N^, . . ., N^+i at the points 0, 2, 4, . . ., 2g.

The mapping, which takes the point z of the first copy of the Riemann sphere onto
the point z in the second copy, is an antiholomorphic involution a : X -> X. Therefore
(X, a) defines a point in M^.

When defining the thickening (11) we had first to choose punctured disks Uj and Uj,
which form a neighborhood of the node Ny plus holomorphic mappings ocj : Uj -> A*
and o^ : U? -> A*. In the present construction we choose the punctured disk Dj to be

4eSERIE - TOME 24 - 1991 - N° 5



MODULI SPACES OF STABLE REAL CURVES 543

the punctured disk of radius 1 with center at the point 2(7-1) in the first copy of the
Riemann sphere. Similarly, Vj is the corresponding punctured disk in the second copy
of the Riemann sphere. The mappings oc} are translations a}(2)=z—2(/— 1), i= 1, 2.

Choose any number e, 0<e< 1. Let c(^) denote that (g+ l)-tuple

G(n)=(e, . . ., e, -<?, . . ., -<?),

where e appears n times and —e appears g-\- 1 —n times.
Then, by Observation 7.2 and by the considerations in Section 2, for each n, O^n^g,

(14) [X,^ a]eV(^ 1) and K^), a]eV(^+l, 0).

From the continuity of the mapping (13) we conclude then that the set

______ / 9 ____\
Vfe+l,0)U U V(^, 1)

\M=0 /

is connected in MR.
In the same fashion and using the concrete construction of Section 2 we can construct

points where the sets V (n, 0) and N(n-\, 1) intersect. That is done by replacing
the Riemann sphere in the above example by a Riemann surface of genus
(^+ 1 -n)/2. [Recall that, by the considerations of Section 2, for a component V(^, 0)
the number g^r 1 —n is always even.]

Let X be this Riemann surface. Select n points p^ . . .,^ on X. Let X be the
mirror image of X. Then the identity mapping induces an antiholomorphic mapping
X -> X. Glue X and X together identifying the points p^ . . ., p^ In this manner one
obtains a stable Riemann surface Y of genus g. The antiholomorphic mapping X -> X
determines an antiholomorphic involution a : Y -> Y. Then (Y, a) is a symmetric stable
Riemann surface of genus g, i. e., (Y, o) is a stable real algebraic curve.

Repeating the previous construction word by word we observe that the point [(Y, a)]
lies in the closure of V(^, 0) and in the closure of V(j9, 1) for any p , p<n. This
concludes the proof.

Here we have considered only real algebraic curves of genus > 1. Similar constructions
can be carried over to real algebraic curves of genus 1. There are, however, unexpected
technical complications. In this case a compactification of the moduli space of smooth
real curves is a circle. Robert Silhol has worked out all the details in this case.
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