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CAUCHY-LERAY FORMS AND VECTOR BUNDLES

BY Bo BERNDTSSON

1. Introduction

The main object of this paper is to obtain integral formulas of Cauchy-Leray type for
(p,q)-forms on a complex manifold. We will make precise what we mean by such a
formula in section 4, but for the time being it is enough to think of it as a generalization
of the one-variable Cauchy formula. When the manifold is a domain in C" (and appropri-
ate choices are made), the kernels involved in our formula coincide with the Cauchy-
Leray kernel (see e.g. [He-L] [0]). In the case of a Stein manifold and j9=0, we find
the formulas of Henkin and Leiterer [He-L]. The original motivation for our paper was
to generalize the constructions of Henkin and Leiterer to forms of arbitrary
bidegree. Such a generalization has already been fiven by Demailly and Laurent-
Thiebaut [Dem-Lth], but they only give the leading terms in the expansion of the
kernels. Still, the idea in [Dem-LTh], to use a connection on a bundle, is of fundamental
importance in this paper as well.

Our construction uses heavily the formalism and ideas developed by Bott and Chern
in two papers, [B-Ch 1] and [B-Ch2]. To explain the relation we consider first the
Cauchy-Leray formula for a domain D in C". Let A be the diagonal in D x D, and let
[A] be the current defined by integration over A. The basic point in all constructions of
integral formulas is to find a kernel, or a differential form on D x D with singularities
on A, K, that satisfies the equation of currents

(1) JK=[A].

If moreover K is of bidegree (n,n—l) we must have 5K==0 (since [A] is of bidegree
(n,n)), so fiK==3^=[A], and this gives /2-dimensional Cauchy formulas.

For a general complex manifold, M we may still consider A as a submanifold of
M x M and try to solve (1). This is however in general impossible since [A] may
represent a non-trivial cohomology class in M x M. Therefore we settle for the weaker

(*) Partially supported by a grant from the Swedish Natural Science Research Council.
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320 B. BERNDTSSON

equation

(2) 6/K==[A]-a

where a is a smooth form. One way to solve this equation can be explained as follows.
Consider a general complex manifold X (e. g. M x M) and a complex submanifold, Y,

ofX(e .g .Y=A).

Suppose we have given a complex vector-bundle E -> X of rank p = codim Y, and let
T| be a smooth section to E. We say that T| defines Y i f Y = = { r | = 0 } and moreover

dr\^ A . . .dr[p A rfrji A . . . dr[p^0 on Y

where the r^.: s are the coefficients of n w.r.t. some frame. Then the cohomology class
defined by the current [Y] equals Cp[©] -the p:ih Chern class of E (see [Hi]). As
explained in section 3 this fact is almost equivalent to a general form of the Gauss-
Bonnet theorem. Concretely it means that whenever © is the curvature form of some
connection on E, we can solve the equation

(3) dK=[V] -c,[©] on X,

where c^(©) is the p : th Chern form of © (see section 2 and [Gr-H]). The main part of
this paper consists in finding a large family of explicit solutions K to (3) (section 2).

For this we first solve

(4) d^=-Cp[@] onX\Y,

with a form K which is singular on Y. Notice that E\ the restriction of E to X\Y
has a global nonvanishing section (namely T|). By the theory of Chern classes this
implies that Cp[E']=0, which is the same as saying that we can solve (4). The method
we use to do this is adapted from [B-Ch I], where one actually treats the more refined
equation 88L==Cp[@]. Our situation is therefore simpler than [B-Ch I], but on the other
hand our solution formulas have an additional degree of freedom. In the language of
integral formulas, [B-Ch 1] is concerned with the Bochner-Martinelli kernel, whereas we
are interested in general Cauchy-Leray forms.

Finally we have to verify that our solution to (4) actually solves (3) as well. To do
this it is practical to compute K using the formalism of Bott and Chern [B-Ch 2]. It is
then easy to see that K is a generalization of the Cauchy-Leray kernel in the flat case. It
is somewhat surprising that our method gives a nontrivial result even if the bundle E is
trivial.

The solution of (3) occupies section 2. In section 3 we show how our formulas imply
some classical results in differential geometry, namely the Hopf index theorem, the Gauss-
Bonnet theorem and the Bott residue theorem. Neither of these proofs are very much
different from the ones in the literature (see [Gr-H] and [Ch]) but we have included them
as an illustration. The first two theorems follow from (3), even without knowing the
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CAUCHY-LERAY FORMS AND VECTOR BUNDLES 321

explicit form of K, whereas the last one relies more on the method to solve (3) from
section 2.

Finally, in section 4, we get back to the subject of integral formulas. Here Y=A, the
diagonal in M x M. We then prove a version of "Koppelman's" formula, assuming
that we can find a holomorphic bundle E and a holomorphic section T| to feed into the
machinery we have just described. In which generality this assumption is fulfilled seems
to be a difficult question, so we content ourselves with some examples.

As is clear from this introduction many of the ideas and methods in this paper are
not new. The reason for writing it is the relation it shows between two areas that do
not seem to have been previously connected. As a general background reference we
quote [Gr-H], chapter 3.

Most of this work was done when I visited the Universitat Autonoma de Barcelona,
and I want to express my sincere thanks to the members of the mathematics department
there for making my stay both stimulating and enjoyable.

2. Chern forms and currents defined by varieties

Let X be a complex manifold and let Y be a complex submanifold of codimension
p. Suppose that

E ^ X

is a holomorphic vector-bundle of rank p, which has a holomorphic section

X^E,

that defines Y in the sense explained in the introduction. Let D be any connection on
E. Thus D is a map which sends sections of E to one-forms with values in E. D
extends naturally to a map sending q-forms with values in E to (^+ l)-forms with values
in E and satisfies

Dfe=clfe-^(-\YDe

if/is a <7-form and e is a local section. The curvature operator of D is defined by

@e=D2e

(see [Gr-H] Ch. 0 sec. 5). © is a 2-form with values in Hom(E,E), and is given by a
matrix of 2-forms (©^) as soon as we fix a local frame. The p : th Chern form of © is
defined as

^^]=f—Ydet(0^\2n/
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322 B. BERNDTSSON

The determinant of a matrix of 2-forms is defined just like the determinant of a matrix
with complex entries. The matrix (©^) of course depends on our local frame, but Cp [©]
does not. Thus Cp [©] is a global form on X and it turns out it is closed. Its cohomology
class, Cp[E], is the p : th Chern class of the bundle E.

We want to solve the equation

(1) ^C=[Y]-cJ©] on X

explicitly. This equation clearly implies

(2) cK=-Cp[Q] on X\Y

and we shall start by solving (2). We know a priori that this is possible since E' = E
restricted to X\Y has a global non-vanishing section, which implies Cp [E7] = 0. To solve
(2) we shall basically retrace the proof of this fact.

Let us start by explaining the case p = 1 since the formulas are very simple then. If
e^ is a local holomorphic frame then

D/^=(^+9/0^

where 9 is the connection form. Then the curvature form, ©, is given by

Q=dQ.

If D' is another holomorphic connection with connection form 9', then

P=y-9

is a 1-form with values in Horn (E, E) so it is a scalar-valued one-form when p = 1. Hence,
i f©'=0

j_p=c,[©1-cj©]=-cj©].
271;

We therefore want to define a connection, D7, with vanishing curvature over X\Y. This
we achieve by requireing

D'r\=0

which uniquely determines D' when p=\. Then ©'^=0 so ©'=0, and we are done.
Explicitly, if e^ is a local frame,

Hence

0=D7rl=D /(r|^)=(^+97rlO^

a ' - ^iQ'=
Hi

4eSERIE - TOME 24 - 1991 - ?3
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so our solution is

-Lo'-^^-Lf^+e^.-K.
2n 2ni\^ )

Clearly we also have

^=[{r|=0}]-cJ©]

and the relation to Cauchy's formula is evident.
Let now p be arbitrary and let D be an arbitrary connection on E. Again we want to

define a new connection on E', the restriction of E to X\Y, so that

D'r}=0.

When p> 1, this does not determine D', so we need to choose a rank (p— 1) subbundle
F which together with T| spans E at every point, and then decide how D' should be
defined on F. A choice of F is equivalent to a choice of a section i; to the dual bundle
E* satisfying (^ ,T | )=I by the correspondence F = = { ^ ; ( ^ , ^ ) = 0 } . For simplicity we
let D7 = D on F, which implies

Dfe=De-(^e)Dr[.

Clearly D7 T| = 0 implies ©' T| == 0 which in turn implies

^[©']==0

since ©/ has a non-trivial null-vector. By a theorem of Well ([B-Ch 1]) the Chern class
is independent of the choice of connection so there exists a form a on X\Y solving

d^c,[@'}-c, [©]=-€,[©].

To find a explicitly we shall recall the usual proof of Weils theorem.
The difference between our two connections

(3) ^e=Dfe-De=-(^e)Dr[

defines a 1-form with values in Hom(E,E) over X\Y. Let

D,e=:De-t(^e)Dr[ for O^^l,

and let ©,=D,2. If now P(Ai, . . .,Ap) is the polarization of the homogeneous matrix
polynomial

f-Ydet(A),
\2n}

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



324 B. BERNDTSSON

the formula is

c,[Q'}-c^}=d[p rp (p ,©p. . .,©,)Al
C Jo J

so the form a we are looking for is given by

(4) a=prP(P,©,,...,Q,)A.
Jo

We shall now compute this integral.
For this we will use the exterior algebra introduced in [F] and applied in [B-Ch2].

Consider the Whitney sum

E*©E

and the exterior algebra A (E* © E).
A (E* ® E) has a natural bigrading in the following way: If e^, . . ., €p is a local frame

for E* and e\^ . . ., e^ the dual frame for E* we define

A^E*®^ ^ a,^ A ̂ *=^ A . . .e^e,=e^ A . . .^}
| I | = r , | J | = s

This is clearly invariant under change of frame and A = ^ A^s.
r, s^p

(It should be noted that our definition differs from [B-Ch 2] in as much as we use the
dual bundle instead of the conjugate bundle).

The exterior product on E* © E extends to forms with values in this bundle. In terms
of our local trivialization a form a with values in A^5 can be written

o^S^i* A e!

where Ojj, are forms. If

P==Z^KL^A6?L

is another such object we define

a A P=^^j A b^ef A e, A e^ A ̂

In other words forms commute with vectors from E* @ E and the product between forms
is the usual one.

Now suppose that A is an w-form with values in Horn (E, E) (for instance a curvature
form or a difference between two connections). Given a local trivialization, A is given
by a matrix A^ of w-forms so that

MZ^^IA-fcW-
4e SERIE - TOME 24 - 1991 - N° 3



CAUCHY-LERAY FORMS AND VECTOR BUNDLES 325

We can associate to A the element

^EA^A^

of A 1( 1. This correspondence is independent of the choice of frame.

LEMMA 2.1:

A^=:A A . . .A==p!det(A,,)^A^ A . . . ^ A 6 ? ,
p times ' p

if the Ajk: s are forms of even degree.
Here, as in the scalar-valued case,

det(A,,)=$>iA^AA^A...A^

where the sum is over all permutations I=(^. . .y and e, is the sign of the
.permutation. The proof is the same as in the scalar-valued case since forms of even
degree commute.

In particular if © is a curvature form we have the formula

(5) (^y^p=^[©]^A^A.. .^A^
Let us put e\ A e, A . . .^ A ^=A. Since it equals IP where IeHom(E,E) it is

P^
independent of frame.

We shall use this formalism in (4), so we need to compute the elements P and ©, in
A 1'1 corresponding to P and ©,. First it is clear from (3) that

P = - ^ A D r | .

On the other hand

Qte=:Dfe=D,(De-t^e)Dr})=@e-td^e) A D^-t^e)@r}

-tDj} A <^,D6->+^<^>DT1 A <^ ,DTI>.

At this point we recall that the dual connection on E* is defined by

^<; ; ,TI>=<D^,TI>+<^DTI> ,

if ^ and TI are arbitrary smooth sections to E* and E, respectively. Hence

© ^ = © ^ - / < D * ^ , ^ > A D T i - ^ < ^ , ^ > © T i + ^ < ^ ^ > D r | A < ^ D r | > ,

which gives

©^©- /D^ADTI-^A ©ri+r^A DT| A <^,DT|>.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



326 B. BERNDTSSON

Clearly

P A ©f-^Pdi, ©„...,©,) A.

Since ? contains a factor £. and since ^ A ^ = 0 we can replace © by

Q-^D*^ADr |

in this equation. The result is

P(P,©, . . .,©,) A = - li; A DTI A ̂  (^^-tY-^^D^ A Drir-1^ A ©k

p\ k=o \ ^ 7

Thus

K^rPdB.e,,...,®,)^
Jo

is determined by

(6) KA= -^f^Y^ A Dr! A 'Z (p\- ir'^D*^ A Drir-1^ A ©fc.
/?!\27i/ k=o\k/

Let us now also note that if we replace ^ by ft, in (6), the k: th term in K becomes
multiplied by/^"^ since again, ^ A £,=0.

Therefore, if we replace ^ in (6) by

OTI>

where ^ is an arbitrary section to E* we obtain

KA————^ . DnZ' f^t- ./•̂  A D11)':'" A 9-.(7) ^(2710^ fc=oW (^nY"'

Writing KR, r|] to indicate the dependence of K on ^ and T| we have proved

PROPOSITION 2.2. — dK R, T|] = - Cp [©] \vhere < ^, T| > ̂  0.
Before we go on, let us note that so far we have not used the holomorphicity of our

bundle E, only its complex structure. Indeed, we have not even used that X is a complex
manifold so Proposition 2.2 holds for complex bundles over arbitrary manifolds.

Let us also see what becomes of K in case our bundle and connection are trivial. Let
e ^ . . . €p be a global frame with respect to which

^nj^E^Vj-
4eSERIE - TOME 24 - 1991 - N° 3
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Then © is zero so

KA=^7^yi; A DT| A (D*i; A Dri)"-1

=^u(D^rlA(D11)p

since D* ̂  and DT| commute.

LEMMA 2.3. — Let DT| = ̂  (DT^. ̂ . ̂  D*^ = ̂  (D* ̂ . ̂  ̂

(Dr|)^!(DTi)i A . . .(DTI)^A . . .^=:(O(DTI)^ A . . .^

and

p
i; A (D-^)"-1^!^. A (D )̂̂ f A . . .^=:(B'(^,D*Oef A . . .e*

0 k^j '

Hence

(9) K= -g'—f-Dptp-i)^ <a'(P*0 A (O(DTI)
(2^ <^11>"

if©=0.

Proo/:

(Dri)" = ^ (DT|)^ A . . . (Dri),^ e^ A . . . e,
permutations

= !̂(Dr|)i A...(DTI)^I A . . . e p ,

and the formula for ^ is proved similarily.
Let us now say that ^ is admissible for T| if for any compact K c= X

|i;|^C,Jr||and

laiiX^hi2
This is for instance the case if t, is the dual vector to T| with respect to some metric.

We shall now compute the contribution to dK. that comes from K:s singularity
assuming that t, is admissible for T) and that X is orientable. First we need to discuss
the orientation of the manifold Y=Y^ where T) vanishes. Recall that T| is assumed to
define ¥„, which we have taken to mean that if r|i, . . ., r|p are the coefficients of r| with
respect to some frame then there are, locally, complex valued functions r)p+i, . . .,T|,
such that all the r|̂ .: s together form a local coordinate system on X. Then

^^Ip+n^Tlp+i, • • • Rer|,,,Imr),,

ANNALES SC1ENTIF1QUES DE L'ECOLE NORMALE SUPER1EURE



328 B. BERNDTSSON

form a local coordinate system on Y^. We declare this coordinate system oriented if
the coordinate system

ReTh,Imr|i, . . . Rer^,Imr|,,

is oriented on X, and then we define the current of integration [Y^] using this
orientation. In case p=n this should mean that [Y^] is a sum of Dirac measures

^ ind^(r|)8^
T\(X)=0

where, by definition, ind^ (r|) is +1 if T| defines an oriented coordinate system at x? and
— 1 otherwise.

THEOREM 2.4. — Suppose E is a complex vector bundle over the oriented manifold X,
that T| is a smooth section to E and that ^ is admissible for r\. Suppose that r\ defines the
oriented submanifold Y^. Then

^R,TI]=[YJ-C,[©].

If moreover E, D and r\ are holomorphic, then 3K=0 so

SKR,TI]=[Y]-C,[©].

Proof. - All that remains to be checked is that the contribution from K: s singularity
is precisely [YJ. This is purely local so we may choose a frame. Moreover, we can
assume that D is trivial with respect to this frame since all terms involving the curvature
or the connection form have singularities of lower order. In other words we may assume
that

- K - ^ ( n^-i^fe^)^^)
^-^-W' 1) On)- •

But this is precisely the classical Cauchy-Leray form and a proof that

^o=[{n=0}]

can be found in [A-B].
The last assertion of the theorem follows since K can have no component of bidegree

(m,l) if m<p and D is holomorphic. Since [Y] and Cp[0] are of bidegree (p,p) in this
case we must have 5K=0.

Remark. - For any choice of sections T| and £, we obtain a kernel KK,T|]. As in [B-
Ch 1] we can consider all those forms as pullbacks of a universal form Jf defined on the
set

F ={(^T i ) eE*© E;<^ ,n>^0} .

4eSERIE - TOME 24 - 1991 - N° 3
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JT can be defined in the following way: First we use the projection map

n: E*©E-^X
to pull back E* © E to a bundle over itself, and then we take the restriction of that
bundle to F. On F we can define ^ and T| as the tautological sections taking the point
(^, T|) in F to the same vector in E* © E. Then Jf is the kernel K K, T|] on F.

Introducing a metric on E we can choose ^ as the dual vector to T| under this
metric. Then K defines a form on E by a variant of the above argument. Since this ^
is clearly admissible for y we find

rfK=[X]-c,[7C*(©)]

where X is considered as the submanifold of E defined by its zero-section.

Remark 2. — It is tempting to define a notion generalized connection, so that D'
becomes a connection on E and not just on E7.

A generalized connection would then be a map

D: r(E)-^Curri(g)r(E)

where Curr^ is the space of currents of degrees 1. D should satisfy

Dfe=dfe-^-fDe

whenever e is a section of E and/is a C°°-function.

3. Some geometric applications

Theorem 2.4 says that [Y^] and Cp [©] are cohomologous. The Hopf index theorem
and the general Gauss-Bonnet theorem are easy consequences of this (together with
Lemma 3.2), and do not depend on the explicit form of K or on the holomorphicity of
any object involved. They are thus not related directly to the subject matter of this
paper, but we want to give the proofs anyway since they require very little additional
effort. However, in the proof of Bott's residue theorem we will use arguments similar
to those in section 2.

First we write Theorem 2.4 in integrated form.

THEOREM 3.1. — Under the same assumptions as in Theorem 2.4 we have, iff is a
closed 2 (n—p)-form on the compact manifold X

f/=(\[®]A/
JY Jx

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



330 B. BERNDTSSON

In particular, if p = n, we obtain

^ ind,(r|)=[\[©].
x)=0 Jxil0c)=0 JX

Theorem 3.1 could have been obtained by combining the Hopf index theorem and
the Gauss-Bonnet theorem, but here we shall follow the reverse path. The missing
part is given by an alternate description of [A], where, again, A is the diagonal in
X = M x M . Suppose M is compact. Then its cohomology groups are finite so for
each q we can choose a basis

fQ f<l
J I? • • • Jdq

forW(M,C). Let

^1, . . . ̂

be the dual basis for H2n~q(M,C\ so that

f/?A^=8,,.
JM

Then it is well known that the set

/KOAgK^). ^J\k^ O^q^ln

form a basis for H2 " (M^ x M,, C)

LEMMA 3.2. — The cohomology class of [A] in H2 n (M x M, C) equals
In dq

C=: S(-irZ/?(OA^(z).
q=0 j = l

Proof. — We just need to check that

[ ^Agf (OA/ s , ( z )=f ^A/l.
JM^xMs JM

The left hand side equals

(-1)5 [ /KO A gf(z) A ^(0 A/KZ)^-!)^2^2 f ^(Z) A/^OO
JM^MZ JMz

which is the same as the right hand side.
Since we know that [A] is cohomologous to €„ [©], so is c. Hence

(8) f cj©]= f c=^(-l)^dimW(M,C).
JA JA o

4eSERIE - TOME 24 - 1991 - N° 3
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All we know a priori about © is that it is the curvature of some bundle which has a
smooth section that defines A. Such a bundle and section always exist, at least over a
neighbourhood of A in M x M. (To see this we can use the fact that A has a neighbour-
hood which is diffeomorphic to a neighbourhood of the zero section in the normal
bundle of A.) From this (8) follows, and moreover it is easy to see that the restriction
of any such bundle to A must be the normal bundle of A in M x M. This bundle is in
turn isomorphic to the tangent bundle of M so (8) implies:

THE GAUSS-BONNET THEOREM. — If M. is a compact complex manifold of dimension n
then

X(M)=:^(-l)^dimW(M,C)= f cJT^o]
o JM

Combining this with Theorem 3.1 we get

POINCARE-HOPF THEOREM. — If T[ is any field of tangent vectors with only simple zeros
on the compact complex manifold M then

^ ind,Oi)=/(M).
T\(X)=0

Let now P(A^, . . .,A ) be an arbitrary invariant polynomial, homogeneous of degree
p in the matrix arguments A^ (see [Gr-H]). Here we assume that E is the complex
tangent-bundle of X so that dim X=p. We assume T| is a holomorphic section to E
with isolated simple zeros, x^, . . . ,XN, on the compact manifold X. Near an Xj we can
choose local holomorphic coordinates so that z (xj) = 0. Define r|^ by

^ 8^E^.-8zk

in a neighbourhood of Xj. By assumption, the matrix

^w}
is nonsingular. Since P is invariant P (Aj) =: P (Ap . . ., Aj) is well defined and indepen-
dent of choice of local coordinates.

THEOREM (Bott residue theorem):

^/mp(e)
idetA, \2n} Jx

if@ is the curvature form of any holomorphic connection on E=T^o(X).
To prove this we shall again construct a new connection D' so that its curvature form

€)' satisfies P(© /)=0 and then apply Weils theorem. Let first V be the connection

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



332 B. BERNDTSSON

defined in the previous section L e.

V^=D^-<^ ,e>DTi ,

where ^ is a (1,0) form satisfying <^ ,T | )=I outside {r |==0}. As usual if Z is any
vectorfield on X and D is an connection we let Dz e denote

(D^,Z)

(the vector valued form D e acts on the vector Z, so D^ e is the co variant derivative of e
in the direction Z). We now define, if Z and W are (1,0) vector-fields,

DzW=VwZ+[Z,W].

The basic idea is thus to change the role of Z and W and we have added the Lie bracket
of Z and W to make sure D' is a connection. If Z is of type (0,1) we put

Dz=Z(W).

which means that Z acts on W componentwise in any holomorphic frame. With this
definition D' is a holomorphic connection on T^' ̂ (X).

Since VT| = 0 we get

D,W=h,W].

Assume that W is also holomorphic. Then

D,-D,W=0

and

D,D,-W=0.

Thus

(2) (©'W.TIAT^O.

But this implies immediately that P (©') = 0 for any invariant polynomial of degree p. If
we think of T| = 8/9^ i, in a local coordinate system, (2) means that (®^) has no component
^ A d^i, so any product of p such forms is zero).

Hence

-P(e)=P(© /)-P(©)=rfa

where

a=p |P(P i ©,,...,©,)A.
Jo

As before P=D'-D, D,=D+rp, and ©,=D,2.
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We need to compute a only near a zero x, of T|. Here we may assume we have
chosen a connection D which is flat. Hence if

Y- 8

^^k——Qzf,

then

^e=^de8

Qzk

and

Ve=De-^e)^9

8zk

Therefore

D' ^-=V 8 -? V3^ 8
^j ^ ^i^i T"'" ̂  L ~r- ~^~'^i czj k 8zi 8zk

In other words

W-8-^9^-9-
Qzi k 9zi Sz^

so

^D-e-De^^e8

k, i dzi Qzk

and the matrix corresponding to P in our local frame is ^ ( -r[k \ =: A. Now
V ^ i )

Dte=de+tAe

so

©te=(d-{-tA)(de^tAe)=td(Ae)+tAde+-^t2A2e=t(dA)e,

since A2 = 0. Hence the matrix of ©, is

^(i?')^.^)\ 9zi ) \ 8z, )

Since ^ A ^ = 0 the second term gives no contribution so we find

P(p,0,, . . .,e,)=f-1^ A (dQP-^f9^}
\8zJ
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and

^AW-Pf^).
\8zi )

Thus a= — T 1 f c zl . a' where a7 is the form a we get when P = determinant. Since
det(3r|,/5z,)

N

^'-18,,-c^O]

in that case (see Theorem 2.4), it must hold

^Z-^s.-f^Ypce)
^de^A,) 'J \2KJ

in general. This completes the proof.

4. The Cauchy-Leray-Koppelman formula

We now return to the situation in section 2, in the special case which is relevant to
integral formulas. Let M be a complex manifold of dimension n and let X be M x M. E
is now supposed to be a holomorphic vectorbundle of rank n over X and T| is a
holomorphic section to E such that

^=0}=A={C; ,z )eMxM,( ;=z}

If finally £, is any smooth section to E* which is admissible for T|, we have by Theorem
2.4

(1) ^=[A]-cJ©].

This means that if \[/ is a 2 /z-form on X with compact support then

(2) f K A f A l / = f v | / - f c J © ] A ^ .
Jx JA Jx

Let in particular \|/ be of the form

^/(OACpCz)

where/is a A:-form on M^ and (p is a (2n-k)-form on M^ Then

(3) f K A df(Q A q^+C-^ [ K A/(Q A Ap(z)= [ /A (p- [ cj©] A / A (p.
Jx Jx JA Jx
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Now, if a is a form or current on M^ x M^ of degree (2 n - s), then a defines an
operator which sends compactly supported (A:+5')-forms on M^ to ^-currents on M^, in
the following way:

Let g (0 e C^+^, (M^). Then a (g) is defined by

a(^) A (p== a A ^ A (p
JM^ Jx

for any test form (peC^-.^^M^). If a has coefficients that are locally integrable we
can write

a= E ocu^i A bj
\l\+\J\=2n-s

where a^ are locally integrable functions and a^ and bj are forms in ^ and z respectively,
then

(4) a A / A (p = ^ ocu a?i A bj A / A (p
Jx | I |=2n-k-s, |J |=fcJx

=(_ l )M^s)^L^^^^^^^

Therefore, in this case we can realize a (f) concretely as

aCO^-iy^^Eff oc^A/k=:f O A /
\JM^ / JM^

Using this definition we can rewrite (3) as

f K^ACp^- l^f K ( Y ) A r f ( p = f / A ( p - f CJ0]A/A(P.
jMz JM^ JM^ JX

Applying Stokes' Theorem to the second term on the left hand side we find

/=K(rfy)+rfK(y)+cj©](A
This holds under the assumption that / has compact support in M. Suppose now

that D is a smoothly bounded domain in M and that/eC°°(D). If ^eC^D) we can
^PP^Y (4) to jf and obtain

X/= K W) + K Wf) + dK (xn + c, [0] Oc/)

=-^ A K(y)+K(x^)+^(x/)+Cp[©](x/).

Letting ^ tend to the characteristic function, /p of D we get for zeD (recall that
-d^=[8D])

/= [3D] A K (V) + K (XD df) + rfK (XD/) + ̂  [©] (XD/)
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THEOREM 4.1 (Koppelmans formula). — Suppose that f is a smooth form of degree k
on D. Then, for z e D

(6) /(z)= f K A/+ f K A df+d f K A/+ f cj©] A/.
JQD JD JD JD

IfE is a holomorphic bundle and r\ and D are holomorphic then

(7) /(z)= [ K,,, A/+ [ K,., A 3/+3 f K^_, A/+ [ cj©]^ A/
JQD JD JD JD

;//^ a (p,q)-form and Kp ^ denotes the component ofK ofbidegree (p,q) in z.

Proof. — All that remains to prove is (7). This follows by the previous argument if
we note that K is of degree at least 2 n in the holomorphic differentials and if we choose
the test form (p to be of bidegree (n—p, n—q).

Example 1. — If M=C", the canonical choice of bundle E is of course the trivial
bundle of rank n, and the usual choice of T| is

r(=i;-z.

The choice of ^ is then precisely equivalent to the choice of section to the Cauchy-Leray
bundle in the classical construction (see e. g. [0]).

Example 2. — If M is a Stein manifold we can, following Henkin and Leiterer [He-L]
find a bundle E whose transition functions depend only on z. More precisely, E is the
pullback of the holomorphic tangent bundle on M^ under the projection map

n: M^ x M^ -> M^.

This bundle has a holomorphic section TI such that

{TI=O}=AUO,

where Q is a closed set disjoint from A. The extra zeros of T| introduce a new difficulty,
which however can be handled in the same way as in [He-L]. We may thus assume
that the connection and curvature forms depend only on z and are of degree 1 in
dz. Therefore they give no contribution to K() y so our form K is the kernel of Henkin
and Leiterer in this case. Notice also that the first term in our expansion of K is
precisely the kernel of Demailly and Laurent-Thiebaut [Dem-LTh], for arbitrary (p, q).

Finally, let us notice that if we reverse the roles of z and (3 then we obtain a curvature
form that depends only on (3, so that

^n[®]^=0 if (^)^(O.O).

Therefore, the last term in (7) represents no obstruction to solving the 3-equation in this
case.
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Example 3. — If M=P" is the ^-dimensional project! ve space, then we can choose E
as follows. Let first E' be the bundle over P^ x p^ whose fiber over the point (^,z) is

E^C^/C^;.

Then we let

E=^(1)®E'

where ^(1) is the line bundle whose sections are 1-homogeneous in z and 0-homogenuous
in ^. If now

^=CW+ l-^Cn+l/C£;

is the natural projection we can define a section to E by

r|(^,z)=^(z).

Then T| is a holomorphic section to E that defines the diagonal.
I would like to thank the referee for pointing out a mistake in the first version of this

example.

REFERENCES

[A-B] M. ANDERSSON and B. BERNDTSSON, Henkin-Ramirez Formulas with Weight Factors (Annales de
I'lnstitut Fourier, Vol. 32, 1982, pp. 91-110).

[B-Ch 1] R. BOTT and S. S. CHERN, Hermitian Vector bundles and the Equidistribution of Zeros of their
Holomorphic Sections (Acta Mathematica, Vol. 114, 1965, pp. 71-112).

[B-Dh 2] R. BOTT and S. S. CHERN, Some Formulas Related to Complex Transgression (Scripta Mathematica,
Vol. XXIX, 1973, pp. 243-251).

[Ch] S. S. CHERN, Meromorphic Vector Fields and Characteristic Numbers. In Essays on Topology and
Related Topics, Springer-Verlag 1970, pp. 48-57.

[Dem-LTh] J. P. DEMAILLY and C. LAURENT-THIEBAUT, Formules integrates pour les formes differentielles de
type (p,q) dans les varietes de Stein (Ann. scient. EC. Norm. Sup., Vol. 20, 1987, pp. 579-598).

[F] H. FLANDERS, Development of an extended Exterior Differential Calculus (Trans. Amer. Math.
Soc., Vol. 75, 1953, pp. 311-326).

[Gr-H) Ph. GRIFFITHS and J. HARRIS, Principles of Algebraic Geometry, John Wiley and Sons, 1978.
[He-L] G. M. HENKIN and J. LEITERER, Function Theory on Complex Manifolds, Akademie Verlag, Berlin,

1984.
[Hi] F. HIRZEBRUCH, Topological Methods in Algebraic Geometry, Springer Verlag, 1966.
[0] N. OVRELID , Integral Representation Formulas and \f-Estimates for the ^-Equation (Math. Scand.,

Vol. 29, 1971, pp. 137-160).

(Manuscript received March 6, 1990,
revised April 23, 1990).

B. BERNDTSSON,
Department of Mathematics,

CTH
S-412 96, Goteborg, Sweden.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE


