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ARTIN L-FUNCTIONS AND NORMALIZATION OF
INTERTWINING OPERATORS

BY C. DAVID KEYS (1) AND FREYDOON SHAHIDI (2)

Introduction

In this paper we prove two results on normalized intertwining operators for quasi-
split groups. Our first result is a proof of a conjecture of Langlands [14] on normalizing
the standard intertwining operators by means of Artin L-functions in the case of unitary
principal series of a quasi-split /?-adic group. As our second result, we prove certain
local and global identities satisfied by these operators in this case. They were suggested
by a conjecture of Arthur [1] and are useful in the trace formula. Finally, in the last
section of this paper, under a certain natural local assumption, we prove the global
identity in general.

More precisely, let G be a connected reductive quasi-split algebraic group over a non-
archimedean field F of characteristic zero. Fix a Borel subgroup B in G. If T is a
maximal torus in B, we let G=G(F) and T=T(F). Write B=TU, where U is the
unipotent radical of B. More generally, let P=MN be a standard parabolic subgroup,
P => B, U =3 N, of G. Denote by ̂  the L-group of M. If ̂  is the Lie algebra of the
L-group ̂  of N, then LM acts on ^n by the adjoint representation r.

Next, if AQ is the maximal F-split torus in T, let W(A()) denote its Weyl group in
G. Fix weW(Ao) such that w(M) is again a standard Levi subgroup of G. Let ̂
denote the subspace of ̂  consisting of all those root spaces whose roots are sent to the
negative roots under w. Let r^ be the restriction of r to ̂ ^

Now, let a^ be the complex dual of the real Lie algebra of A. For vea^ and an
irreducible unitary representation <j of M, let I(v, cr) be the representation of G
induced by o and v. Denote by N~ the unipotent group opposed to N and let
N^=NH wN~ w~1 , where w is as above. Then there exists a cone in a^ such that for
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68 C. D. KEYS AND F. SHAHIDI

every v in that cone and every/in the space of I(v, a), the integral

f(w~lng)dn
^w

is absolutely convergent. By means of meromorphic continuation this then defines an
intertwining operator A(v, a, w) between I(v, a) and I(w(v), w(a)), whenever v is not
a pole (cf. [20], [25], and Section 1 of the present paper).

Assume first that we are in the minimal parabolic case. Let ^ be a unitary character
of T. If WF is the Weil group of F, there exists a homomorphism (p: Wp -> ̂  the L-
group of T which determines ^ (cf. [12], [15], and Section 2 here). For every weW(Ao)
we choose a representative w of w in G as in Section 2. Let A (^, w) be the standard
intertwining operator A(0, ^, w) acting on I(X), the representation of G induced
from 'k. The map r^. (p becomes a representation of Wp whose contragredient is ?^. (p.

Given s e C, the field of complex numbers, and a non-trivial additive character \|/F of
F, let L(s, r^.cp) and e(s, r^.cp, v^p) be the Artin L-function and root number attached
to i^. (p (cf. [6], [16], and [28]). As our first result, in Theorem 3.1 we prove:

THEOREM. — Let

^(^wj^gCO.^.cp.^^^^'^A^, w).
L(0, r^.cp)

77u?n;
(a) S / ( k , WiW2)=J^(W2(X), Wi)j^(^, W^)

(b) s/(k, w)*=^(w(T), w~1), L e. s/(k, w) fs Mm r̂̂ .
This proves a conjecture of Langlands [14] in this case (see the remark after

Corollary 3.5). We should mention that if G is a real group, this has been proved in
general by Arthur [2]. Our next result. Theorem 4.1, gives an immediate application of
this theorem.

Essential to the proof are the formulas obtained for the Plancherel measures in [8] (cf.
Theorem 3.1 of the present paper).

Next, assume w(?i)=^. Let R be the R-group of I(X) (cf. [9]). It is equal to the
group S^p attached to cp by Langlands (cf. [17]). The character vj/p defines a non-
degenerate character % of U=U(F). There exists a unique ^-generic subrepresentation
KO c I(^)- The irreducible constituents of l(k) are parametrized by equivalence classes
of irreducible representations of R. We use R to denote this set of equivalence
classes. Fix a parametrization such that KQ corresponds to the trivial character of R
(cf. Section 4). If weR and n d(k) corresponds to p^eR, we let <p^, w ) = trace
p^(w). Otherwise, let < p,, w > = 1. Define the character ^p of R(), the group generated
by the representatives w of w, weR, as in Section 4. Then, using Theorem 2.6 of [9],
in part (a) of Theorem 4.1, we prove the local identity:

trace(^(?i,w)I(/))=^(w)^<p^,H;>x^(A
n
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ARTIN L-FUNCTIONS AND INTERTWINING OPERATORS 69

where/eC^(G),

!(/)- f(g)^(g)dg,
JG

and for 71 c I(^,), ̂  denotes its character.
To state the global identity in this case, assume F is a number field and G is again a

connected reductive quasi-split algebraic group over F. Let G=G(Ap) and T=T(Ap),
where T is a maximal torus in G and Ap is the ring of adeles of F. Let ^= ® ̂  be a

v

character of T. Fix weW(Ao). Let M(k, w) be the corresponding global intertwining
operator [14]. Fix a homomorphism q^Wp-^T which corresponds to K (cf. [15]). It
is not unique, but if 9y: Wp^ -> Wp is the canonical map, then every local representation
r^.cp.Oy is uniquely determined. The same is true for the Artin L-function
L(s, r^.cp). Assume w(^)=^. Let n be the multiplicity of the identity representation
in r^.cp. Then putting together all the local identities (cf. [22] for y=oo), our
Theorem 5.1 implies

trace(M(^w)I(/))=(-l)n^Z<P.^>X^a),
V Tty

/ e C^° (G), /= 00 /y, where at each place v of F, Tty runs over all the equivalence classes
v

of irreducible components of I(X^) (an L-packet). Moreover, given /, almost all the
sums in the product reduce to 1.

The significance of such an identity can be explained as follows. Suppose w is an
element of W(Ao) which only fixes the split torus in the center of G (an element of
W(Ao)reg in the notation of [1]). Then, up to a constant depending on w, the term
trace (M(X, w)I(/)) is among the terms appearing in the discrete part 1° (/) of the trace
formula coming from the Eisenstein series [cf. equation (3.2.2) of [I], for
example]. Suppose n>0. Then w becomes the trivial element of each local R-group
and consequently the distribution / \-> trace (M(^, w)I (/)) becomes stable as expected
(cf. [1] and [17]). In fact if n>0, there must exist a positive root a with w(a)<0 for
which the Plancherel function (|^(^, s) in the notation of [9]) vanishes at
zero. Therefore aeA', the root system for the subgroup W of W(^) for which norma-
Hzed intertwining operators act as scalars (cf. [9]). Now, if 1 ^w is in the R-group, then
w(P)>0 for all the positive roots Re A'. But w(a)<0, which implies that w is trivial in
each local R-group. On the other hand, if n=0, then w(a)>0 for every positive root
aeA' and therefore w must be a non-trivial element of every local R-group. The
distribution trace (M(^, w)I(/)) is then no longer stable, and is therefore expected to be
cancelled off by an unstable distribution coming from a stable distribution attached to
some proper cuspidal endoscopic data for G (cf. [I], [17], [24]). These endoscopic data
are easy to find. The connected component of the corresponding L-group must contain
the connected component of the centralizer of ^(Wp) in W, the connected component
of ^the L-group of G. Since w(X-)=^, it then contains a representative
for w. Consequently, it cannot be contained in any proper Levi subgroup of ^^ w
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70 C. D. KEYS AND F. SHAHIDI

being a member of W(Ao)reg. This then implies the cuspidality of the data. It is also
easily seen that the corresponding group is not equal to G. Moreover (p factors through
the L-group ''H of the corresponding endoscopic group H. In fact, if T| : 41 -> ̂ G is
the embedding, then (p^.q/, where (P^WF-^H. Thus (p' must correspond to a
certain cusp form on H which cannot be lifted to any representation in the discrete
spectrum of G (in particular any cusp form). Taking into account all such unstable
distributions (for all parabolics) will then determine all those cuspidal representations on
all the cuspidal endoscopic groups attached to G (and different from G) which do
not lift to a representation in the discrete spectrum (cf. [1]). We refer the reader to
Theorem 14. 5.2 of [19] for an example of this in the case of U(3). Finally, we should
mention that these identities can also be used to stabilize the trace formula [13], as well
as to prove certain local character identities [19].

The characters ^p (w) play the role of the functions Cy (s^) explained in [1]. As it is
explained there (p. 27), it is expected that

m^)=i-
v

This is automatic in our identities since ^p (w) is a product of Langlands' ^--functions
whose global values are always one (cf. [16]). Finally, the reader must observe that an
identity as in Theorem 2.6 of [9] can not be used by itself to prove the global identity. In
fact, it is important to know how the local normalizing factors relate to each other
globally and how a base representation Tie y can be chosen in a consistent way at every
place. It is exactly for these reasons and the behavior of the intertwining operators at
the unramified places that we have chosen Artin factors to normalize them.

We refer to [13] (Lemma 3.6) and [21] for similar types of results.
Finally in Section 6, under an assumption about local L-functions, we prove the global

identity in general for a representation induced from a generic cusp form. The proof is
based on the functional equation proved in [20]. More precisely, if CT == g) <jy is a 7-

v

generic cusp form on M==M(AF.), let I(<7)=®I((7y) be the corresponding induced
v

representation. For a fixed weW(Ao), we again denote the global intertwining operator
by M(a, w). Assume w(a)=a. Let S be a finite set of places including the archime-
dean ones such that for y^S, everything is unramified (cf. Section 5). For every v^S
and seC, let L(s, CT^, r^.r|y) be the local Langlands L-function attached to Oy and
r ^ v ' r { v ^ where r\^:LMy -> L]^ is the natural map. Set

Ls (s, CT, r^) = ]~[ L (s, CT ,̂ r^. r^).
v^S

Let n be the order of the pole of Lg(s, a, r^) at 5=1. Under our Assumption 1 it is
independent of S. Our global identity is then (Theorem 6.4)

trace(M(^,w)I(/))=(-l)n^Z^(w)x^a),
v nv
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ARTIN L-FUNCTIONS AND INTERTWINING OPERATORS 71

/eC^(G), f= ® /y, where for each constituent TCy c= I(a^), c^ is a class function and
v

each sum is taken over equivalence classes of constituents of I(ay). We finally observe
(Proposition 6.4) that when Oy is in the discrete series, the class functions c^ are in fact
characters of irreducible representations of the R-group of I(cjy).

In the special case of a unitary group in three variables these results were first discussed
in a lecture with the same title as this paper, given by the second author in the "Seminar
on the Analytical Aspects of the Trace Formula II" (cf. [19]) at the Institute for Advanced
Study, during its special year on Automorphic Forms and L-functions (1983-84). The
second author would like to thank the Institute for Advanced Study for its warm
hospitality during his stay there.

1. Preliminaries

Let F be a non-archimedean local field of characteristic zero. Denote by 0 its ring
of integers and let R be the unique maximal ideal of 0. As usual CT denotes a generator
of R which we shall fix throughout. Let q denote the number of elements in the residue
field 0/R. If | I? denote the absolute value on F, then l^lr^"1.

Let G be a connected reductive quasi-split algebraic group over F. Fix a Borel sub-
group B of G and write B=TU, where T and U are a maximal torus and the unipotent
radical of B, respectively. Let AQ be the maximal F-split torus inside T.

If we use v|/ to denote the set of F-roots of Ao, then B determines a partition
^l^vl^U^" of these roots to the positive roots ^+ and the negative roots \|/~. Let
A c= ̂ + be the set of simple roots.

By a standard parabolic subgroup P of G, we shall mean a parabolic subgroup P
containing B. Write P=MN, where M is a Levi factor, M =^ T, and N^=U is its
unipotent radical. If A denotes the split component in the center of M, then A ^= AQ. Let
9 c= A generate M.

We shall use G to denote G(F). Similarly we have B, T, U, P, M, N, A, and Ao.
Let W(A()) and W(A) be the Weyl groups of A() and A in G, respectively. Then

every element of W(A) can be extended to one of W(A()).
We fix a special maximal compact subgroup K for G. Then G == BK and G = PK.
If X (M)^ denotes the group of F-rational characters of M, we let

a=Hom(X(M)F, R)

denote the real Lie algebra of A. Then

a*=X(M)p (82 R=X(A)F (g)^ R

and a^=a* ® C is the complex dual of a. Similarly we have do, a$, and (Oo)^ for Ao.
OS
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72 C. D. KEYS AND F. SHAHIDI

Given an irreducible unitary representation <j of M and vea^, let I(v, a) be the
unitarily induced representation

I(v,o)= Ind a®q<vfHP( ) > ®!,
MN T G

where the homomorphism Hp: M -> a is defined by
^<X.Hp(.)>^^

for all ^eX(M)F and meM. We use V(v, a) to denote the space of I(v, a). Finally
we let I (a) = I (0, o) and V (a) == V (0, a). Moreover let

W(a)= {weW(A)|w(a)^a}.

Fix a w e W (Ao) such that w (9) c: A and let w e G be a representative for w. Let
N^NplwN'w"1, where N~ is the unipotent subgroup opposed to N. Given
/eV(v,a),let

(1.1) A(v,a,w)/^)= f f^-lng)dn.
J^w

The integral converges absolutely if Re<v, H^> ^> 0 for all aeA—9, where H,ea is the
standard coroot attached to a. Moreover, it extends to a meromorphic function of v
on all of a^ (c/. [20], [25]), and away from its poles, it defines an intertwining
map between I(v, o) and I(w(v), w((7)), where w(cT)(m / )=CT(w~ l m / w) with
m' e M' = w M w~1. Finally let A (a, w) = A (0, a, w).

Next, let LM be the L-group of M and if ̂  is the L-group of N, we let ̂  be its Lie
algebra (cf. [4]). The group ̂  acts by adjoint action on ̂  It sends ^.y, the Lie
algebra of the L-group of N^;, into itself. We use r^ to denote the restriction of this
adjoint action to ^^. Let p be half the sum of the roots whose root spaces generate
N. Then for each a with X „ v e L n , < 2 p , a > i s a positive integer. Let a^<a^< . . . < a^
be their distinct values. Set

V.^X^e^^p.o^a,}.

Each Vf is invariant under r^. We let r^ ^ be the restriction of r^ to V\-.
Let WF be the Deligne-Weil group of F (cf. [4]). Recall that according to

Langlands' conjectures (cf. [4]), the representation CT is attached to a homomorphism
cp: WF -> LM. Then r^. (p is a complex representation of Wp.

Given a complex numbers seC and a non-trivial additive character \|/€F, let
L(s, r^.cp) and s(5, r^.(p, v[/) be the Artin L-function and root number attached to
r^. (p, respectively (cf. [16]). As it was suggested by Langlands [14], we shall now norma-
lize our intertwining operator A(o, w) by

(1.2) ^(a, w)=e(0, ̂ . cp, ̂ ) L(l?^ (p) A (a, w),
L(0,^.(p)
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ARTIN L-FUNCTIONS AND INTERTWINING OPERATORS 73

where r^ is the contragredient of r^. The question is then whether this is a valid
normalization, i. e. if it satisfies the following conditions:

(L3) ^(<^WiW2)=^(w2(CT),Wi)^(CT,W2)
(L 4) ^ (<7, w)* = ̂  (w (a), w ~1) i. e. e^ (a, w) is unitary.

As our first result we shall prove this when P=B and therefore CT is a character. The
induced representation I (a) is then in the principal series. We recall that for real groups
this has been verified in general by Arthur in [2].

We shall conclude this section with some necessary facts about generic representations.
Let / be a generic character of U (c/. Section 3 of [23] for its exact definition). Then

by restriction / is also a generic character of U°=U°(F), where U°=UnM. An
irreducible admissible representation CT of M is called /-generic if it can be realized in a
space of smooth functions W° satisfying

W°(um)=^(u)W°(m),

where m € M and u = U°. We shall call this realization (which is unique), the /-Whittaker
model W(o) for CT.

There exists a canonical functional (cf. [20]) ^(v, CT) on the space V(v, CT) such that

\ (v, a) (I (v, a) (u) /) = / (u) \ (v, a) (/),

where ue\J and/eV(v, CT). If \(w(v), w(a)) is the canonical functional attached to
I(w(v), w(o)) (cf. [20]), then there exists a complex number C^(v, CT, w) such that

(1 •5) \ (v, o) = C^ (v, CT, w) \ (w (v), w (a)) A (v, a, w).

This is what we call the local coefficient attached to /, v, o, and w. The reader
must observe that we have supressed its dependence on the defining measures. We let
q((j,w)=q(0,a,w).

We also recall (Lemma 3.1 of [23]) that if CT is a unitary /-generic representation, then
its contragredient CT is /-generic and moreover

(1-6) q(CT,w)=q(CT,w).

Finally, it was proved in [20] that

(1-7) C,(w(v), W(CT), W-^C^-V.CT.HO

and

(1.8) A(v, CT, w)A(w(v), W(CT), w-^C^v, CT, w)-1 C^(w(v), w(<7), w-1)-1.

2. Artin factors for the principal series

We shall now concentrate on the case where P=B. Let 'k be a unitary
character of T.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



74 C. D. KEYS AND F. SHAHIDI

For a positive reduced root aex^, let G^ be the corresponding rank one subgroup
of G. If Q^ D is the simply connected covering of the derived group of G,, then there
are only two possibilities. Either G^i^Res^/FSL^ or G^D=ResF^FSU(2,l), where
F^ is a finite (separable) extension of F.

Choose weW(Ao) and let w=w^ . . . w^ be a reduced decomposition (not uniquely)
of w where I is the length of w and 04, . . ., o^eA. If o^ is such that 2a, is not a root,
we choose

^=
'o -r
< i o

as a representative for w^. Otherwise we let

^0 0 1s

0 - 1 0
J 0 0

w ^ = | 0 -1 0

Let w=w^ . . . w^. Then w is independent of the decomposition of w (c/ Part b of
Lemma 83 of [27]).

Let (p: WF -> ̂  be the homomorphism attached to X-. Choose a finite Galois extension
L of F such that (p factors through WL/F. Define a homomorphism (po: L* -^ LTO by
(p(ax l)=((po(a), ax 1). Unwinding the isomorphism in Theorem 2 of [15] (cf. [12] for
a new proof) we have

(2.1) M^r^a-.cpo,

where on the left hand side o^ denotes a coroot of T, while on the right it is a root of
^ More precisely, we first identify ̂  by X (T)p 0 C*. Next if < , > denotes the
duality between X (T)p ® C* and X* (T)p ® C*, where X* (T)p is the group of F-rational
morphisms from GL^ into T, then we can identify X*(T)p ® C* as the group of complex
characters of ̂  through (cf. [18])

(2.2) ri^^^'^^e^.r^eX^F^C*).

In this way a" becomes a root of ^^
Now, if o^ is considered as a coroot of T, then

(2.3) Ix^On))^!^01^

for every ^eX(T)F. Comparing (2.2) with (2.3) then justifies the inverse sign for o^
in (2.1). Observe that (2. 3) implies He (a v (in)) = - a v.

Fix a positive reduced root a such that X^v ^n^. Let ^v ̂ n^ be the Lie algebra
of L^^ where N,=G,,nU. The adjoint action r^ of ^ leaves Sx^v invariant. If
r°y=r^ | ̂ ^ then equation (2.1) implies that r°y. (po acts on X^v by ̂ 1, where ̂  denotes
^.a\
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ARTIN L-FUNCTIONS AND INTERTWINING OPERATORS 75

We shall now compute the Artin factors attached to F^. (p, where F^ is the contragredient
ofr^.

First suppose that a is such that G^, D^R^a/pSI^ for some finite (separable) extension
F^ of F. The representation r^.cp when restricted to ^v becomes equivalent to the
representation Ind ^, where \, which is a character of F^ by means of

WF, t WF
^(a)=X,(av (a)), aeF^, is identified by a character of Wp through the isomorphism
W^^F^ (cf. [3], [28]). This is a consequence of Frobenius reciprocity law since ?^. (po
acts on X^v by \ and dim^n^v =[F(, : F].

Throughout this paper we shall fix a non-trivial additive character vj/p of F.

Fix a complex number seC and for a finite-dimensional representation p of Wp, let
L(s, p) and e(5, p, vj/p) be the corresponding Artin L-function and root number, respec-
tively (cf. [16] and [6]; beware of the differences, cf. [28], since we are using [16]).

For every finite separable extension E of F and every non-trivial additive character
\|/F, in [16] Langlands has attached a complex number X(E/F, vl/p) such that if CT is a
finite-dimensional representation of Wg and co= Ind CT, then

W E f W p

(2.4) e (s, 0), vM = ?i (E/F, iM'1"1 0 e (5, a, vl^),

where \|/E/F = ̂ F • Tre/p. It satisfies

(2.5) MB/F,iMWF,^)=l.

Moreover, if [E : F]=2, then ^(E/F, vl/p) is given by the formula

r|(a)v|/F(a)ria
(2.6) X (E/F, vl/p) = -^————————

r|(a)\|/F(a)da
i/F*

where TI is the quadratic character of F* attached to E/F by local class field theory, i. e.
Ker (T|) == Ng/p (B*). It satisfies

(2.7) ME/F^p)2^-!).

For any local field E, a non-trivial additive character vl/g of E, and a character (not
necessarily unitary) % of E*, let Le(s, %) and s^(s, ̂ , vl/g) be the corresponding Hecke-
Tate L-function and root number, respectively (cf. [28]). Finally let

Wl-^X"1)(2. 8) Ye (s, X, ^n) = SB (5, X, ^a)
LEC^, X)

In the case in hand, we then easily see that

(2.9) L^^.cpl^v)^^,^)

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



76 C. D. KEYS AND F. SHAHIDI

and

(2. 10) £(5, ^. (p I hy, VM =MF^/F, VM epjs, ̂  V|/F,/F).

Next, suppose that a is such that C^ D^^^/F^ where &„ is the group SU (2, 1)
as a group over F,, defined by a quadratic extension E, of ¥ y .

Let {o^, P^, a^ +P;' | l ^ i^n} denote the set of roots in ^v, n=[F,: F]. Then
again ^.(p leaves the subspace of ht^v generated by {X^v, Xp^v | l ^ f ^ n } invariant and
for the same reason its restriction to this subspace becomes equivalent to Ind \.

WE, t WF

Next, let y^ =0^ +P^, l^ f^n . Let Gal(E,/FJ={ 1, Oo}. Then X^v =[X^v, X^v],
p^ =(70(0^), and therefore

(2.11) ao.X^=-X^v.

Then clearly Wp^ acts on each X^v by a character of W^F^. More precisely, we
have the following commutative diagram (cf. [3], [28])

(2.12)
B; ^W^

.̂M ^

F? ^W?,

where the vertical arrow on the right is the homomorphism T induced by the inclusion
i: We <^ WF . Let T|̂  be the quadratic character of F^ attached by class field theory
to EJF^. Then Ker(r|J=NE^(B;) can be identified by T(W^). The quotient
W^/^W^) is then isomorphic t'o'GaHE^FJ. By (2.11), it acts on each X^v by the
character T|,. On the other hand by (2.1) the representation r^.cpo acts on each X^v
by ^.y^. But

^.Y^^.NE^.

If we now identify W^ as a semi-direct product of ^W^^NE^FJE?) and Gal(E,/FJ,
then W^ ̂  F^ acts on each X^v by the character \ (g) T|̂  . Note that here \ denotes
the restriction of ^ to F^. Consequently, the restriction of y^. (p to {X^v 11 ̂ i^n} is
equivalent to Ind T|̂  ̂ . We repeat that here \ denotes \ \ ¥^.

WF„ t WF

Now the corresponding Artin L-function is given by (cf. [16])

(2.13) L(s, ^.(p 1^)^(5, ^Lpjs, TI,U

while the corresponding root number is

(2.14) e (s, ̂ . (p | ̂ v, \|/F) = X (F^/F, vl/p) ^ (E,/F, \|/F) £E« (s, ̂  ^E«/F) SF^ (s, ria ̂  ^F^)-
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3. Normalization of interwining operators

77

In this section we prove one of our main results:

THEOREM 3.1. — Let

^(^ w)=c(0, F,.(p, vM^^A^ w).
L(0,r^.<p)

Then
(a) e^(^, WiW2)=^(w2(^), Wi)^(^, ^2)
(fr) j^(X, w)*=^/(w(X), w~1), f.^. j^(^, w) 15 unitary,
To prove the theorem we need to compute A (X, w) A (w(5i), w~1). We shall use (1.8)

to do this.
Let for a moment G be equal to SU(2, 1), defined by a quadratic extension E/F. More

precisely, set

Q(XI, X2, X3)=XiX3-X2X2+X3Xi ,

where for xeE, x=o(x). Here a denotes the non-trivial element of Gal (E/F). Then
G=G(F) is the stabilizer of Q in SI^E), i. e.

G={^eSL3(E)[^=w},

where

/O 0 1\
w= | 0 -1 0 1

J 0 0,

We may choose T=T(F) to be

T=
^a * 0 0
0 aa~1 0 1 aeE*
0 0 (o)-1,

Let K be a unitary character of E*. Then it is one of T.
Let \|/F be a non-trivial additive character of F and denote by vl/g/p the corresponding

character of E. We take U to be

/I x y .
U= K = | O 1 x \x,yeE,~N^(x)=TTE,p(y)

\0 0 \ )

We then let ^{u)=^^(x). Finally let w represent the non-trivial element of the Weyl
group.
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Suppose E = F (r) and write x = u + v T, u, v e F. Then y = (1/2) xx + z T with z e F. The
measure dx on N=U is then equal to dxdz, where dx and dz are measures on E and F,
respectively.

Next, fix a uniformizing parameter tD^ °f E. Assume for a moment that the largest
ideal on which vj/p is trivial is 0, i.e. \|/F is unramified. Given a positive integer m,
define a new additive character v|/^ of E by

^m M = ̂ E/F (NE/F (^E m) ^)-

Define a function /^ ^eV(^) according to equation (3.3) of [8]. Then there exists a
complex number y^ ^ (X) such that

(3.1) A(X,w)/^,=y,.,(^)^^,

Applying an appropriate Whittaker functional on either side of (3.1) and formal mani-
pulations now show that if

To, w(^)= I™ y^ ̂ ),
w -» 0

then

(3.2) Yo.^)=C,(^w)-1.

We now borrow the following result from [8]. It follows from equation (3.2) and a
careful analysis of the formulas given for Ym,w(^-) m P^0 124 of that paper, (vj/p is no
longer assumed to be unramified.)

PROPOSITION 3.2. — Let dn be the measure defining A(X-, w). Write dn=dxdz, where
dx and dz are measures on E and F, respectively. Let each y-function be defined as in
equation (2.8). Then

C^ W)=M-I)YE(O, ^.NE/F, vM^(0, ̂  ^E/F)YF(I, ^-1, vM,

where the measures defining yg and y? c^ dx and dz, respectively.

COROLLARY 3.3. — Let T| be the quadratic character of F* attached to E/F by local
class field theory. Then

C,(?i, w)=X(E/F, vl/^-^^O, ^ V|/E/F)YF(O, ̂ , vM,

w^r^ ^- m YE(O, XT|, \|/F) denotes ^| F*.
Proof. — This is a consequence of the relations

YF(1-5, X-1, v|/p)YF(s, ^ ^)=?l(-l)

and

?i(E/F, \MYE(S, ^.NE/F, ^E/F)=YF(^ ^ ^F)YF(S, ^r|, \|/F),
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s e C, and Proposition 3.2.
We shall now go back to the general G. Assume that the restriction of 7 to every

simple root space is given by ^^p=^.TTp^ where a is the corresponding simple
root. Let Ai(w) and A^(w) denote the sets of reduced roots in ^+ with w(a)e\|/~ for
which G, D=ResF^SL(2) or ResF^SU(2,l), respectively. The product formula for
q(X, w), together with equations (2.9), (2.10), (2.13), (2.14), and

(3.3) X (E,/F, vM == K (¥J¥ vM2 ?. (E,/F,, v^/p),

and finally Corollary 3.3 will now imply:

PROPOSITION 3.4. — Choose the representative w of w as in Section 2. Then

C,(^W)= PI W/F,^)-1. n ME./F.VM-'.W/F.VM
a e A i (w) a e A 2 (w)

xe(0, ^.(p, V|/F)L(I, r,.(p)/L(0, ^.(p).

COROLLARY 3.5. — Choose the representative w o/w as in Section 2. TT^n

A(^, w)A(w(?i), w- l)=£(0, r,.(p, ^-^(O, F,.(p, ̂ ) -1 MO^^P^(O^^
L(l, r^.(p)L(l, r^.(p)

Proo/ — This is a consequence of equations (1.7) and (1.8), the identity

L(s, r^.(p)=L(s; ^.(p),

and the fact the ^-functions are of absolute value one.
Theorem 3.1 is now immediate
Remark. - We should remark that the normalization of Thorem 3.1 is slightly

different from the one suggested by Langlands in [14]. In fact e(0, ^.(p, vj/p) in our
normalization must be changed to s(0, r^. (p, vl/p). By Corollary 3. 5 this new normaliza-
tion is also valid. But we rather use the normalization in Theorem 3.1 since it is more
appropriate for the results of the next several sections.

4. Identities for intertwining operators

Throughout this section we shall assume w^=^. Then A(^-, w) is a self intertwining
operator on V(^)=V(0, X.).

There exists a finite group R=R(^)c:W(^), the R-group of I(^), which determines
the reducibility of I(^). More precisely, if R is the set of classes of finite-dimensional
irreducible complex representations of R, then every irreducible component of I(5l) is
attached to an element of R, and moreover every such component appears in I(X) with
multiplicity equal to the dimension of the corresponding finite-dimensional representation
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of R (c/ [9], [17]). Given TIC:I(X), let p^eR be the corresponding equivalence class of
finite-dimensional representations of R.

Assume ^ corresponds to (p. Define a function X^p by

(4.1) ^(w)=e(0, ^.cp, ̂ ^'-^.C,^ w)-1

= n W/F,vM ]-[ MEa/F^W/F.vM-1.
a e A i (w) aeA2 (w)

Then by (1.7)

^-^Mvv)^^)-1.

It is now easy to check that ^p is a character of the group Ro generated by

{ w | w e R } ,

where each representative w is fixed as before. We finally observe that there exists a
central homomorphism of Ro onto R and therefore every representation of R can be
considered as one of Ro.

Fix reR and peR, let <p, r>=9p(r), where 9p is simply the character of p (its
trace). The parametrization of the components of I(^) with the elements of R depends
on the normalization j2/(X, r), reR, of our intertwining operator. More precisely, let
Pp be the operator (cf. [9])

(4.2) Pp=|R|~1 dim p ̂  9p(^(^ r).
FeR

Then Pp projects the space V(X) of I(X.) onto its TCp-isotypic component. Now, suppose
^ (X, r) is changed to ̂ / (K, r) = G) (r) ̂  Ck, r), ?G R, where o is a one-dimensional unitary
character of R (In general they differ by a character of the group Ro introduced
before). Then under ̂ f (^, r), the representation Tip corresponds to p ® co. This follows
immediately from (4.2).

There exists a unique ^-generic subrepresentation KQ of I(X,).
Given TI;C:I(^), let ̂  denote its character. Moreover given /eQ°(G), let

!(/)=[ lW(g)f(g)dg.
JG

A character vj/p of F is called unramified if the ring of integers 0 of F is the largest
ideal of F on which vj/p is trivial.

We shall say G is unramified if it splits over a (finite) unramified extension of F. We
then let K=G(0). Finally a character X of T is called unramified if X|T(0) is trivial.

We now prove the following theorem.

THEOREM 4.1. — Fix weW(X) and choose a representative w for w as before.
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(a) Let e^/(X, w) be the operator normalized as in Theorem 3.1. Fix a parametrization
between 7tc=I(X) and p^efe such that HQ corresponds to the trivial character o/R. Then

(4.11) trace(^(?i, w)I(/))=^(w)$:<p,, w>^(/)

/or V/eQ°(G), wtere < p^, w > = 1 unfcss weR in which case < p^, w > = = trace pn(w).
(fc) Suppose \|/F, G, and ^ ar^ a/? unramified. Let K=G(0). TTi^n ̂  unique K-fixed

function ofICk) belongs to KQ and X^p is trivial. Consequently

trace(^(5i, w)I(/))=^<p,, w>^(/),
n

/eC^(G), wfc^r^ ̂  coefficient of^(f) in the sum is equal to 1.
Proof. — With Theorem 2.6 of [9] in hand, to prove part (a), we only need the

following lemma.

LEMMA 4.2. — Fix weR and choose a representative w as before. Let s ^ ' (X, w) &^ ̂
normalization of A (X, w) w/nc/i attaches KQ to the trivial character of R. If ^ (X,, w) 15
^ normalization fixed in Theorem 3.1, t^n

ja^(^, w)=^p(w)jar(^, w),

"where K^ is the character o/Ro defined by (4.1).
Proo/. — We first observe that under the assumption ^=wX, the representations

r^. (p and r^. (p are equivalent and since X is unitary L(l, r^. (p) and L(l, r,y. (p) are both
finite and equal. It then follows from Proposition 3.4 that j^(5i, w) acts on the space
of HQ by X^p(w). Finally if KQ corresponds to the trivial character of R by j^'(^, w),
then the orthogonality of characters when applied to (4.2) immediately implies that
^f (^, w) acts on the space of KQ by 1. The lemma is now complete.

To complete the theorem we shall now prove part (fc).
Let/o be the unique K-fixed function of I(X) normalized by/o(^)=l. If ^(0, 'k) is

the Whittaker functional attached to I(X) (c/. Section 1), then by Theorem 5.4 of [5]

\(0,Wo)=L(l,^.(p)'1

which is non-zero since X is unitary. This completes the theorem.

5. The global identity

Suppose now that F is a number field and for every place v of F, let Fy be the
corresponding completion of F. Denote by Oy its ring of integers. Let Ap denote the
ring of adeles of F.

Let G be a quasi-split connected reductive algebraic group over F. We use B, T, U,
P, M, N, AQ, and A to denote the same objects as those in Section 1. Finally for every
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group H over F, let H=H(Ap) and Hy=H(Fy) denote its groups of adelic and
Fy-rational points, respectively.

If G is unramified over v, let Ky=G(Oy). Otherwise Ky denotes a special maximal
compact subgroup of Gy. Let K = (g) Ky.

v

Let X be a unitary character of T(F)\T. Then X= 00 ̂ , ^eT^. Define I(^-) to be
y

I()i)= Ind ?i®l=®I(^).
TU T G y

Fix weW(Ao) such that w^=^. We choose a representative w of w in
G(F) 0 K. Moreover we assume that each component of w, which we still denote by
w, is as in Section 2. If we let

M(X, w)= lim A(v, \ w),
v -- 0

then M(^-, w) becomes a global intertwining operator, sending I(^) onto itself.
Fix feC^ (G). Then /= 0 /y, where for almost all v over which G is unramified, /y

i;
is the characteristic function of G(0y). Next let \|/F be a non-trivial unitary character
of F\AF. Write vj/p = ® \|/p . Then each vj/p is non-trivial and moreover for almost

v

all v, \|/F is unramified. At each place v, we then define ̂  as before and let Tio. „ be the
unique /^-generic component of I(X-y).

By Part (b) of Theorem 4.1 for almost all u, the unique G(0y)-fixed function in the
space of I(^) belongs to the space of Tio, v ^d therefore the coefficient of 5^ ^ in the
local identity (4.1.1) is equal to 1. Moreover, if at an unramified place u, /o y denotes
the characteristic function of G(0y), then ̂  ^(/o, „)= 1, while x^(/o, y)=0 if ^+7to, *;•

Let (p be a homomorphism of Wp into ̂  attached to 'k. It is not unique. But if
9y : WF -> WF is the canonical homomorphism and q/ is another such homomorphism,
then by part (b) of Theorem 2 of [15] (also cf. Theorem 6.4 of [12]):

((p-cpO.e^O

and therefore at each place v, (py = (p. 9y is uniquely determined. It is the homomorphism
attached to ^y. Moreover at each v, the representation r^. (p. 9y==r^. (p^,, as well as each
r^ ,.. (p. Q^=r^ ^ (p^, are also uniquely determined. Let n be the multiplicity of the trivial
representation in r^. (p. We then have:

THEOREM 5.1. — Fix w e W W and f= (g) /„ in C,00 (G). Then
v

(5.1.1) trace(M(?i, w)I(/))=(-iyn Z<P^ ̂ .CO
y "v

w^r^ at ^ac/i y, Ky runs over all the equivalence classes of irreducible components of
I(̂ ). Moreover at each place v, the coefficientof^ ^(/y) is equal to one and furthermore
for a given f almost all the sums in the product are equal to 1.
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Proof. - We first observe that n^p^)"1' usm^ the properties of ' k '
v

functions. Next for every representation p of Wp and every seC with Re(s)>0, let

L(5,p)=nL(5,p.9,)

and

e(s, p)=ns(5, P. Op, ^F,)-

Then

(5.12) L(5,p)=e(s,p)L(l-5,p),

where p is the contragredient of p (cf. [6], [16], [28]).
Using (5.1.2), we then have

M(X, w)= lim ]-[ efe ^..CP)"1^^1"^,®^^ w)
s-o-^^ i L(l+is, r^,.(p) p

=lim n^-"^0^^).s-.o+*==lL( l+^, r^,.(p) ^

We must now evaluate the following limit

lim ]~[ L(l-fs, r^.(p)/L(l+f5, ^,.(p).
s ^ O - ^ ^ l

This is then clearly equal to

m

(-ir lim ^L (n)(l-^r,,,.(p)/L^(l+f5,^,.(p),
s - ^ O - ^ ^ l

where for each p, L^s, p) denotes the n-th derivative of L(s, p) with respect to s. But
now for Re(s)>0

L(")(s,r,^..(p)=L(n>(s,^,.(p),

i=l, . . ., m, using the equality r^ ,.. cpy=?^ ,. (p,, at each t^. Moreover

lim L^s,^.^ lim L^ (s, ̂ ,. (p)
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and they are both finite. Thus

lim L^ (1 - is, r^ ,. (p)/!^ (1 + fs, ̂  ,. (p) = 1.
s-o-^-

Now the theorem is a consequence of Theorem 4.1 of the present paper when u<oo
and Theorem 4.1 of [22] otherwise.

6. The global identity in general

In this section, under a certain natural assumption, we shall prove the global identity
in general. Thus we resume the notation from the previous section and therefore G is a
quasi-split connected reductive algebraic group over a number field F. As before, let
P=MN be a standard (P=>B) parabolic subgroup of G. Let CT=® <jy be a cusp form
onM=M(AF).

Fix a unitary character 7= (g) ̂  of U=U(AF), and let / also denote its restriction to
v

U Pi M. We shall assume o is /-generic. This means that each Oy is /y-generic. We
shall say CT is generic, if it is generic with respect to some generic character /.

Let S be a finite set of places, including the archimedean ones, such that for v ̂  S, G,
a,,, and /„ are all unramified (c/. [23] for more detail).

Let W (Ao) be the Weyl group of Ao in G. Fix w e W (Ao) such that w (o) = o. Choose
a representative weG(F) 0 K for w and let w also denote each of its components.

Fix v e a*, where a* = X (A)p 0 R. Given f= ® /„, /„ e V (v, a^), define
v

M(v, a, w)/= ® A(v, a ,̂ w)/^
v

for v in some appropriate Weyl chamber. Then

M(a, w)= lim M(v, a, w)
v -» 0

is a self intertwining operator on I (a) = (g) I(<jy).
v

At every place r, let KQ^ be the unique /y-generic component of I(<Jy).
The L-group ̂  of M acts on the Lie algebra ^ of the L-group of N by adjoint

representation. It sends ̂ ^ the Lie algebra of the L-group of N^, into itself. We also
define r^ , and V,, 1 ̂ i^m, as in Section 1.

For each i and v^S, let L(s, a^, r^ i.r|y) be the corresponding unramified Langlands
L-function {cf. [4], [23]), where T^ : ̂  -> ̂  is the natural map. Finally, set

^ (^ ^ r^ i) = ft L (5' °^ ̂  i • Tir)-
t^S

We start with the following lemma.
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LEMMA 6.1.— For each i^S, letfo^be the unique K^-fixed function in V(a,,), normali-
zed by fo^(e^)=l.

(a) Assume m = 1. Then for each v ̂  S, /o y belongs to the space of TCQ „.
(b) Suppose m>l . Assume further that the restriction of a to the center of M is

trivial. Then for each v t S, /^ „ belongs to the space of KQ, „.

Proof. - By Theorem 5.4 of [5] this is equivalent to L(l, <jy, r^. r|y)~1 ̂ 0. But this
is just Lemma 5.8 of [23], completing the lemma.

Next, let
m

a^(s)= ]~[ Ls(l-f5, a, r^,)/Ls(l+fs, a, r^,).

LEMMA 6.2. — Assume W(<T)=CT and furthermore ifm>l, suppose that the restriction
of a to the center ofM is trivial. Then lim a^(s) is independent ofS. The same is true

s - ^ o
for the order n of the pole ofL^(s, a, r^) at s= 1 (It is non-zero by Theorem 5.1 of [20]),
and moreover ifa^= lim a^(s), then Oy =(—!)".

s - ^ o

Proof. — It is easy to see that under the assumption w (<jy) = a,, for each unramified v,

L(5, <7y, r^,.ri^)=L(5, a^y^.r^),

l ^ f^m. Moreover, still resuming the assumption in part (b) of Lemma 6.1, they are
both finite at 5=1 and therefore lim a^s) is independent of S. The fact that n is

s -+ 0

independent of S follows for the same reason. To show a^ =(—!)", one only has to
imitate the same part in the proof of Theorem 5.1.

We are now led to make our assumption.

ASSUMPTION 1. - For every v^S, the local L-function L(s, o^, r^.r|y) is holomorphic at
5=1.

As we just observed (cf. Lemma 5.8 of [23]), its truth can be presently verified in
many cases. It is always true if o^ is tempered [in fact for Re(s)>0].

Next we prove:

PROPOSITION 6.3. — We resume Assumption 1 and that H;(CT)=<J. Let f= ®fv be a
v

function in V(<7). Assume that for every u, /„ belongs to the space o/7io. v ^hich is possible
in vie\v of Lemma 6.1. Let n be the order of the pole ofL^(s, a, r^) at s= 1. Then

(6.3.1) M(ar,w)/=(-l)"/

Proof. - Enlarge S, if necessary, so that for every i^S,^=/o,,, the unique K,-fixed
function in V(o,), satisfying /o,i,(^)=l- In view of the equations (2.7) and (3.6) of
[23], for Re(s)^>0, the operator M(2sp, CT, w)f can be written as (/ /eV(2sp, o),
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f'.=f'o,» for i^S)

(6.3.2) M(2sp, a, w)f'= n C^(2sp,, a,, w)
veS

x ̂ f'^^^^ls^ ̂  ̂
,=1 Ls(a,s, a, r^,) .

=a^(5) ® C^(25p^, a,, w)A(2sp,, a^, w)/,® ®7o,..
y e S viS

where Jo i; ls a similar Ky-fixed function in V(2sw(p^), <jy). Choose // such that
f= lim //.

s^0+

Now, since each/,,, veS, belongs to the space of 7io,y it follows immediately that for
veS

( lim C^(25p^, CT^, w)A(25p^, c ,̂ w))/,=/,
s-^ O"^

[c/ equation (1. 5)]. Now (6. 3.1) is a consequence of taking limits as s -> 0 + in (6. 3.2)
and Lemma 6.2.

Fix a place v of F. Let n^ c^ I(<7^) and denote by V(7iy) the 7^-isotypic subspace of
V(<jy), the space of I(c^). Fix a normalization ^(dy, w) of A(0y, w). It can be easily
seen that given an irreducible constituent n^ c; I(0y), there exists a function c^(w), such
that

(6.1) tracey ̂  (^ (a,, w) I (/)) = c^ (w) x^ (/),

where for every fe C^ (G,), X^ (/)= trace 71, (/) with

^C0=[ ^fe)/fe)^.
JG^

In fact trace v(^)(^(cy,, w)I(/)) must only be computed on those components of V(T^)
which are sent to themselves by ^(Oy, w). It then acts on each of them by a scalar
and (6.1) follows. From the properties of the trace it is clear that the functions c^(w),
Tiy c^ I(<7y), are all class functions on the group generated by { w | w G W ( < j y ) } , where the
representatives w are chosen as in Section 2. We therefore have

(6.2) trace (^ (a,, w) I (/)) = ̂  c^ (w) ̂  (/),
HV

feC^ (G^), where each c^ is a class function on the group generated by { w | weW((jy)}.
Observe that if TCy is multiplicity free, then c^ is in fact a character. We shall now

assume that at each u, ^(c^, w) is so normalized that c^ ^ is the trivial character. Here
KQ „ is the unique ^-generic component of I(0y). If v is unramified, we attain this by
taking the standard normalization of ^(Oy, w) suggested by equation (2.7) of [23].

Before stating our final result, we shall elaborate more on the functions c^.
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By the theory of L-packets (cf. [17], [24], and Section 4 here), it is desirable to interpret
the class functions c^ as characters of irreducible representations of a certain finite
group. In what follows, we shall show that this is the case if a^ is in the discrete
series. We shall also discuss the case of non-discrete series tempered representations.

Assume (Jy is in the discrete series (also generic). Let Ry be the R-group of Oy which
is simply the quotient of W(<7y) by the subgroup W^oJ (in the notation of [26])
consisting of those weW(a^) for which J^(a^, w) are scalars. It can also be considered
as a subgroup of W((7y). Harish-Chandra's Commuting Algebra Theorem
(Theorem 5.5.3.2 of [25]) for I(c^) implies that the normalized operators
^ (o^, w), w e Ry, span the commuting algebra of I (a^). Moreover by Silberger's Dimen-
sion Theorem [26] they form a basis.

Now, given an equivalence class p of irreducible (finite-dimensional) representations
of R^, let ___

Pp^Rj^dimp ^ <p,?>^(a,,r),
r'6Ry

where < p, F>== trace p(r). Moreover, if V denotes the space of I(<7y), let
Vp=PpV. Then a proof, word by word similar to the one given in Theorem 2.4 of [9],
implies that Pp is the projection of V onto one of its isotypic components and that every
isotypic component of V is obtained in this way. Moreover, if n^ <= I(<^) corresponds
to p, then its multiplicity in I(0y) is equal to dim p. (The triviality of the cocycle T| of
[9] is a consequence of (jy being generic which results in I(0y) having a component which
appears with multiplicity one; cf. the discussion in Section 6 of [9].)

Now, let R^ be the group generated by {r [ re Ry}. There is a central homomorphism
from R^ onto R^ which sends reR^ to FeRy. Extend ^(a^, r) to all of R^ by
j^((jy, ri)=j^(<7y, r^) if ?i=?2. If p is an irreducible representation of Ry, then it
becomes one of R^, and it can be easily seen that Pp is equal to

[R^ l^d imp ^ <p,F>^(a,,r).
reR«

Then
| R,° | -1 dim p ^ < p, F> tracey ̂  (^ (o,, r) !(/))= dim p. ̂  (/).

reR^

Since tracev(^)(^(<Jy, r)l(f)) is a class function on R^, it then follows from the
orthogonality of characters that

tracey ̂  (^ (o,, r) I (/)) = < p, F>

Equation (6.2) can now be stated as follows.

PROPOSITION 6.4. —Assume Oy is a generic discrete series representation and let Ry
denote its J^L-group. For Tiy c I(0y), let p^ be the equivalence class of irreducible (finite-
dimensional) representations of Ry which is attached to Uy. (It depends on the choice
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of r.) Fix fe C^ (G,,). Then for every re R^

(6.4.1) trace(^(a, r)I(/))=i:<p^ r)^(f\
"V

w/i^r^ the sum is taken over equivalence classes of irreducible constituents ofl(a^). In
particular c^(r)= < p^, F>.

Now suppose CT,, is only tempered (i.e. not necessarily in the discrete series). It is
then again expected that the constituents of I (a,,) are parametrized by equivalence classes
of irreducible representations of a certain finite group. When Fy=R, this has been
accomplished in [11]. In fact, we may take <jy be a basic representation (i.e. induced
from discrete series or limits of discrete series) with non-degenerate data [11]. Then by
Theorem 12.6 of [11] the constituents of I(c^) are parametrized by the equivalence
classes of irreducible representations of the R-group of I(<Jy) given by a non-degenerate
data. The R-group then agrees with the one in [24]. For a non-archimedean field the
problem is wide open.

We now state our global identity.

THEOREM 6.5. — Let a be a generic cusp form on M and let weW(Ao) be such that
w (cr) = CT. Suppose that for every v^S, the component c^ of a satisfies Assumptions 1
(In particular ifo is tempered—also see Lemmas 6.1 and 6.2). Let n be the order of the
pole of Lg (s, a, r^) at s = 1. Fix /= ® /„ in C,°° (G). Then

v

(6.4.1) trace (M (a, w) I (/)) = (-1)" fl 2X W Xn, (A
V Ttv

where at each v, c^ ,;=!, and the sum is taken over equivalence classes of constituents of
I(o,).

Proof. — There is a constant c^O such that

M(a, w)=c®j^(<jy, w)

Since each normalized operator ^(a^ w) is such that c^ „ is the trivial character, it
follows immediately that the coefficient of ^ ^ (/„) is equal to 1 for all v. Now
proposition 6. 3 implies that €=(—1)" and the theorem follows from equation (6.2).
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