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p-ADIC ESTIMATES
FOR EXPONENTIAL SUMS

AND THE THEOREM OF CHEVALLEY-WARNING

BY ALAN ADOLPHSON (1) AND STEVEN SPERBER (2)

1. Introduction

The purpose of this article is to give an estimate for the ^-divisibility of a general
exponential sum over a finite field k of characteristic p. Since exponential sums can be
used, in a well-known manner, to count the number of rational points on a variety in
characteristic p, we obtain as a corollary an estimate for the /^-divisibility of the number
of rational points. This estimate improves the classical theorem of Chevalley-
Warning[17], which states that the number of common zeros in k of polynomials

m

gi, • • • ? gm °^ degrees d^ . . ., d^ in n variables with ^ d,<n is divisible by p. Our
1=1

work also improves recent work of Sperber[16] on exponential sums, and the application
to counting points on a variety improves recent generalizations of the Chevalley-Warning
Theorem due to Ax [4] and Katz[10].

These earlier results have the common feature of estimating the ^-divisibility in terms
of the number of variables and degrees of the polynomials involved. Let k be the finite
field with q=pa elements, let g^ . . ., g^ be polynomials over k of degrees d^ . . ., d^
respectively, and let V be the variety defined by the common vanishing of the ,̂. Let ^
be the least nonnegative integer ^ ̂ o, where

m

n-^di
1=1

^0=————7—Y.max { di}

The theorem of Katz asserts that the number of fe-rational points on V is divisible by
q^. This implies the earlier results of Ax and Chevalley-Warning.

(1) Partially supported by N.S.F. Grant No. DMS-8601872.
(2) Partially supported by N.S.F. Grant No. DMS-8601461.
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546 A. ADOLPHSON ET S. SPERBER

Our work gives a qualitative improvement by taking into account which monomials
actually occur in the given polynomials. Let V be a nontrivial additive character of k.
For any polynomial / e fe [x^, . . ., xj we form the exponential sum

(1.1) S( / )= ^ V(/(x,, ...,x,))eQ(y,
xi, . . . , X n ^ k

where ̂  is a primitive 7?-th root of unity. We shall assume that/is not a polynomial in
some proper subset of the variables x^ . . ., x^. This involves no loss of generality, for
if/(xi, . . ., x^)=g(x^ . . ., xj with a<n, then S(f)=qn~aS(g); so a ;?-adic estimate
for S(/) is a trivial consequence of a/?-adic estimate for S(g).

Let A(/) be the Newton polyhedron of / (the definition of Newton polyhedron is
recalled in section 2). Let G)(/) be the smallest positive rational number such that
co(/)A(/), the dilation of A ( f ) by the factor co(f), contains a lattice point with all
coordinates positive. Let ord^ be an additive valuation on Q(^), lying over p and
normalized by the condition ord^g= 1. Our main result is:

THEOREM 1.2. — Iff is not a polynomial in some proper subset of the variables
Xi, . . ., x^ then

ord,S(/)^o)(/).

If/has degree d, then co(/)^n/^ (see section 5). Hence:

COROLLARY 1.3. — Under the hypotheses of Theorem 1.2, ord^S(/)^n/A
Theorem 1.2 will be shown to imply the theorems of Katz and Sperber.
Katz used his result to extract a lower bound for the slope of the first side of the

Newton polygon of the primitive middle-dimensional factor of the zeta function of a
smooth projective complete intersection. Deligne [6], using Hirzebruch's formula for the
Hodge numbers of a complete intersection, had calculated the first nonvanishing primitive
Hodge number, and Katz's result shows that the first slope of the Newton polygon is at
least as large as the first slope of the Hodge polygon (s^[10], Conjecture 2.9 for the
definition of the Hodge polygon). Dwork[8], section 7, had already shown that the
Newton polygon of the primitive middle-dimensional factor of the zeta function of a
smooth projective hypersurface lies over its Hodge polygon, so Katz was led to conjecture
that this relationship holds for smooth projective complete intersections as well. This
conjecture was subsequently proved by Mazur[13].

By [4], section 1, our result may be interpreted as giving a lower bound for the first
slope of the Newton polygon of the L-function associated to the exponential sum. In a
future article we shall determine, under certain restrictions on the exponential sum
(namely, that it be nondegenerate and commode in the sense of [II], which forces the L-
function to be a polynomial), a lower bound for the entire Newton polygon of this L-
function. We believe that this lower bound is also connected with Hodge theory.

Consider the equation f(x^ . . ., x^)=N, where /eZDq, . . . , xj has positive integer
coefficients and N is a positive integer. Our work implies that when G) (/)>!, the
congruence f(x^ . . ., x^)=N (modp) for any prime p has at least pa( f)~l solutions,
provided that it has at least one solution. We believe these congruences have so many
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P-AD1C ESTIMATES FOR EXPONENTIAL SUMS 547

solutions because the equation f(x^ . . ., x^)=N has many solutions in positive integers.
More precisely, we conjecture that if co(/)> 1 and if there are no congruence obstructions,
the number of solutions in positive integers of f(x^ . . ., x^)=N grows like N®^"1.
We shall return to this question in a future article.

The outline of the paper is as follows. In section 2 we derive two consequences of
Theorem 1.2 (Theorems 2.11 and 2.14) which generalize the theorems of Katz and
Sperber, respectively. We also give some examples to show that our work gives a strict
improvement over previous results. Sections 3 and 4 are devoted to the proof of
Theorem 1.2. In section 5 we show how Corollary 1.3 and the theorems of Katz and
Sperber follow from taking the largest possible Newton polyhedron that can occur in
Theorems 1.2, 2.11, and 2.14, respectively. Finally, in section 6, we discuss some
connections with other recent work.

We would like to thank Pierrette Cassou-Nogues for some very helpful discussions.

2. Statement of further results

Let N denote the nonnegative integers and write7'=(/\, . . .,j'^)eN", x==(xi, . . ., x^),
x^x^ . . . x^. For/ek[xi, . . ., xj, write

(2.1) /=E^
J e 3

where J is a finite subset of N". Let s^ be the (n x | J | )-matrix whose columns are the
J ^ d i ^ • • • ? ^n)6^ Given reN", consider the matrix equation

^i\ /^i
(2.2) ^

^Ul/ Vn

We define a weight function Wy by

(2.3) w ^ ( r ) = i n f { M i + . . . +M|J | } ,

where the inf is taken over all nonnegative rational solutions u=(u^ . . ., M | J | ) of (2.2)
and we put Wy (r) = + oo if there are no such solutions.

This inf can be calculated by standard techniques in linear programming, which also
show that the infimum is in fact a minimum, but it seems more useful to have a geometric
description of w^. The Newton polyhedron A(/) is defined to be the convex hull in R"
of the set J U {(0, . . ., 0) }. Let R+ < / > denote the subset of R" consisting of all linear
combinations with nonnegative real coefficients of elements of J. Then R+ < / > is the
union of all rays emanating from the origin and passing through A(/). Equation (2.2)
has a solution u whose components are nonnegative rational numbers if and only if
r e R + < / > . Thus v^(r)=+oo if and only if r ^ R + < / > . If r e R + < / > , the ray
emanating from the origin and passing through r intersects A(/) in a face that does not

n

contain the origin. Let ^ a,X,==l be the equation of a hyperplane passing through
1=1
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548 A. ADOLPHSON ET S. SPERBER

this face (this hyperplane is not uniquely determined unless the face has dimension n— 1).
Then by standard arguments in linear programming,

n

(2.4) v^(r)=^a,r,
1 = 1

We have immediately [3], Lemma 2.14:

LEMMA 2.5. — (a) If k is a nonnegative integer, then Wy (kr) = fewy (r).
(b) If Wy (r), Wy (r') < + oo, then w^ (r -h r') < + oo. Furthermore,

^.(r+r^w^+w^).

(c) T^r^ ^cis^s a positive integer M SMC/I ^/la^ w^N^^O/M) N U { + oo }.
Let N+ denote the positive integers and set

(2.6) o)(/)= min {v^(r)}.
r e (N+)"

Equivalently, o)(/) is the smallest positive rational number such that co(/)A(/) contains
a point of (N+)".

Let V be the variety over k defined by the common vanishing of polynomials
g^ . . ., g^ek[x^, . . ., xj and let N(V) be the number of fe-rational points on V. Then

(2.7) ^N(V)= ^ ^(^ViSi^ ' • - ^(^CLVigi))'
xi, . . . , X n e k \i=l /
yi. . . . ,ym(=k

Suppose g^ . . ., g^ are not all polynomials in some proper subset of x^ . . ., x^. Then
from Theorem 1.2 we get

(2.8) ord,N(V)^(o(^,)-m.

When V is a hypersurface, this estimate has a simple consequence:

COROLLARY 2.9. — Let V be the hypersurface defined by the equation g(x^ . . ., ^)=0.
If^(yg) does not contain a point ^(N^)"'1'1, then N(V) is divisible by q.

To see that this is a strict improvement over Chevalley-Warning, suppose that g has
degree n, i. e., the number of variables equals the degree. Then Chevalley-Warning gives
no information, but the hypothesis of the corollary will be satisfied when the point
(1, . . ., 1) does not lie in the convex hull of the set of exponents of monomials of degree
n occuring in g. For example, if the only monomial of degree n occuring in g is xj and
if x^x^ . . . x^, then this condition is satisfied so N(V) is divisible by q.

We can say more about ^(^.ViSi)' If we 1̂  ^i? • • • ? Ym correspond to the last m rows
of ^/ and write the right-hand side of (2.2) as (r^, . . ., r^ s^ . . ., s^)\ then

M I + . . . +M| j |=5 i+ . . . +5^.

4s SfeRIE - TOME 20 - 1987 - N° 4



/?-ADIC ESTIMATES FOR EXPONENTIAL SUMS 549

Thus

(2.10) (o(i> .̂)=miiJ ̂  s, (r; s)eR^ < ̂ >^ > 0(^)^1.
U=i J

Equation (2.8) implies immediately:

THEOREM 2.11. — If g^, . . ., g^ are not all polynomials in some proper subset of
x^ . . ., x^ then

(2.12) ord,N(V)^min{ ̂  5, (r; 5)eR^ < ̂ y,g, > r^N^-l-m.
U=i J

For example, suppose V is the hypersurface

a^x^-^-. . . +a„xj;n=0.

Set di=(ji, q-\\ For ^(={1/4 . . .,(^.-l)/rfJ, let .̂ be the multiplicative character
on k " defined by sending a generator to ^27l^T(\ For each n-tuple a=(a^, . . ., a^),
define a Jacobi sum J(a) by

nj(a)= i nx«,(".)-
M I + . . .Un=0 1=1

According to Weil's calculation [18],

^W=qn-l-^l ^ J(a).
^~ 1 a i+ . . . + a n e Z

If the ji are relatively prime, then so are the d^ and there are no n-tuples a satisfying
oci + . . . + o^ € Z. Hence N (V) = q" ~l and ord^ N (V) = n -1. In general, Katz's theorem
does not predict any divisibility by p in this case. However, an easy calculation shows
that the right-hand side of (2.12) equals n-1, hence Theorem 2.11 is sharp in this
example.

Finally, we note that we can generalize further to the case of an exponential sum on
the variety V. Take fek [x^ . . ., xj and let V(fe) be the set of fe-rational points of V.
Define

S(V,/)= ^ V(/(xi, ...,xJ).
(xi, . . .,Xn)eV(k)

Then S(V, f)=q~mS(f+^yigi) and an argument similar to the derivation of (2.10)
shows that

f w 1(2.13) (o(/+^>^.)=min^ t+ ^ s,\(r; s; t)eR^ < zf^y.g, > HON^^xQJ ^
I .=1 J

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



550 A. ADOLPHSON ET S. SPERBER

where 04. denotes the nonnegative rationals. Thus Theorem 1.2 implies:

THEOREM 2.14. — Iff, g^ . . ., g^i are not all polynomials in some proper subset of
x^ . . ., x^ then

f w 1ord,S(V,/)^min^ t+ ̂  5,|(r; s; QeR^ < zf^y,g, > nONJ^xQJ ^-m.
I 1=1 J

3. Trace formula

To prove Theorem 1.2 it is convenient to consider also the exponential sums S*(/)
defined by

(3.1) S*(/)= S ^(/(xi, . . . ,x^) ) .
xi, . . . , X n e k x

They are related to our basic exponential sums S(/) in the following way. Put
S = { 1, 2, . . ., n]. For any subset A^S, let f^ be the polynomial obtained from/by
setting Xi=Q for f eA . Let | A | denote the cardinality of A. Then

(3.2) S(/)=^S*(A)
A

(3.3) S^/)^-!)'^^).
A

We recall some basic facts about the sums S*(/J from our earlier article [3]. These
facts were proved there for the case A=S, but the arguments in the general case are
identical. Let Q be the completion of an algebraic closure of the /?-adic numbers Qp and
let "ord" denote the additive valuation on Q normalized by ord 7?= 1. Let E(t) be the
Artin-Hasse exponential series:

(3.4) E(0=expf^ ^6(Z^nQ)[M].
\m=0 P )

oo

Let ye Q be a root of ^ tpm/pm=0 satisfying ord y =!/(/?-1). The series
m==0

GO

(3.5) 9(t)=E(Yt)= I ^(m

m=0

is a splitting function in Dwork's terminology [7], section 4 and its coefficients satisfy

(3.6) ord^-^-, ^eQp(Y).
p-\

Furthermore, one has Qp (y) = Qp (^p).

4s SERIE - TOME 20 - 1987 - N° 4
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Let K denote the unramified extension of Qp in Q of degree a, where q =//'. For / as
in (2.1), let

(3.7) f=^d,xjeK[x„ . . . ,xJ
J'eJ

be its Teichmiiller lifting, i.e., (dj)q=dj. Let T be the Frobenius automorphism of K,
which is extended to K(y by defining T(^)=^p. Set

(3.8) F(x)=^9(^XJ)eK(y[M]
J 6 J

a-1(3.9) Fo (x) == n T l F (^l) ̂  K (y [M]
1=0

We denote by F^ and F() ^ Ae corresponding series in K(£;p)[[{xJ^s\J] obtained by
starting with f^ in place of /

Let L(fc) be the space of all power series ^ A^eQIDc]] satisfying
reZ"

(3.10) ordA^&w^(r)+0(l).

In particular, this means A^=0 if Wy(r)= + oo. By [3], section 2,

(3.11) ^P-)' ^^(—^—l-
V?-l/ \^(^-1)/

Define an operator \|/ on power series by

vKlAxQ^A^.

Let i: L (^/(p — 1)) q; L ( p / q (p — 1)) be the canonical injection and denote by a the composi-
tion

P Y T ( P ^ F O T / P \^^( PL M- c,L -^—— 4L -^—— ->L
.-!/ ^^-l)/ ^(P-l)/ ^-1.

where the middle arrows means "multiplication by Fo". It follows from Serre [15] that
the trace Tr(a| L ( p / ( p — 1))) is well-defined. The Dwork trace formula asserts that

(3.12) S*(/)=to-l)"Tr(a l.(-p-
\ v?-lC-̂ ))

where the nontrivial additive character implicit on the left-hand side is derived from the
splitting function Q(t).

A similar formula is valid for S*(f^). Denote by L^(Jb) the space of power series
^A^eQ^xJ^sUll satisfying the growth condition (3.10) (note that
w^ I R H - I A i = Wy^), and denote by oc^ the endomorphism of L(^) ( p l ( p — 1)) defined in analogy
with a using Fo ^ in place of Fo. Then one has

(3.13) S^/J^-ir'^TrL L^f-^-V).
\ \ P - [ / /

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



552 A. ADOLPHSON ET S. SPERBER

By repeating the argument of [14], Lemma 7.4 (2), one can derive from (3.13) a trace
f ormulaf or S(/) itself. Set

L^f-^-W ^ A.^eLf-^-L^OforaU^Al.
V^-l/ I j eN" V7-!/ J

Note that L^ ( p / ( p — 1)) is stable under a and that Tr(a|LA(p/(p—l))) is well-defined.
Then

(3.14) S(/)= ^ (-l^'^-'^Tr^lL^/^-l))).
Acs

4. Proof of Theorem 1.2

For convenience we denote L^(p/(p— 1)) by L^. From equation (3.14) it follows that

(4.1) ord,S(/)^min{n-|A|+ord,Tr(a|LJ}.
Acs

We first estimate ord^Tr(a | L^).
By Lemma 2. 5 (c), we may define for each A ^= S a function W^ : N -> N by

( k 1
WAW^ard^eN^w^^—andr^OforalHeA ^.

I M J
The series

( 00 »»»\

det(I-?a LJ^exp - ̂  Tr(aw |LA)^-)
m=0 W/

is a/?-adic entire function, i.e., it converges for all ^eQ([15], see also [3], section 2).

PROPOSITION 4.2. — For A^=S, the Newton polygon of de t ( I—ta |LA) computed mth
respect to ordq lies above the polygon with vertices (0, 0) and

( l 1 l \E WAW, _ _ E few^fe) , <=o, i, 2 , . . .
\fc=o M k=o )

Proof. — The case A=0 is the content of [3], Proposition 3.13. The general case is
proved by an identical argument. D

Set
(OA(/)=min{w^(r) | reNwandr^>Oforalh 'eA}.

Since —Tr(a|LA) is the coefficient of (in det (l—t^\L^) we have immediately:

COROLLARY 4.3. — ordq Tr (a [ L^) ̂  €OA (/).
From (4.1) we then have

(4.4) ord,S(/)^min{n-|A|+o)A(/)}.
Acs

4'1 SERIE — TOME 20 — 1987 - N° 4



p-ADIC ESTIMATES FOR EXPONENTIAL SUMS 553

Since o)s(/)=co(/), Theorem 1.2 will be established if we can show that the minimum
on the right-hand side of (4.4) occurs for A=S. But this is an immediate consequence
of:

LEMMA 4.5. — Suppose A ̂  S and P e S\A. Then

O)AU{P}(/ )^A(/)+I .

Proof. — From the definitions of ®A(/) ^d w? there exists a |j [-tuple
u=(u^ . . ., M|J|) of nonnegative rational numbers and an n-tuple r=(r^ . . ., r^) of
nonnegative integers with ^>0 for f e A such that ^u==r and

»A(/)=^I+- • • +M|J|.

If rp^O, then from the definition of co^u {?}( / ) we ^ave ^A u {?} ( / )= ̂ A^)' Suppose
rp=0. Not all entries in the P-th row of ^ can vanish, since we assumed/could not be
written as a polynomial in some proper subset of the variables x^, . . ., x^ Suppose the
entry in column v, row |3 is >0. Since rp==0 we must have ^=0. Let u' be the |j|-
tuple obtained from u by putting 1 in the v-th entry and leaving the other entries
unchanged. Define r'=(r\, . . ., r^) by r ' ^ ^ u ' . Then r\^r, for f = l , . . ., n, and
rp>0, so

G ) A U { P } ( / ) ^ Z ^ = ( O A ( / ) + I . D

5. Theorems of Katz and Sperber

For any convex polyhedron A in R" with one vertex at the origin, let ©(A) be the
smallest positive rational number such that co(A)A contains a point of (N+)". If
A(/)^=A, then we have clearly O)(/)^G)(A), so by Theorem 1.2

(5.1) ord,S(/)^o)(A).

For example, if/has degree d, then A(/) is contained in the simplex A whose vertices
are the origin and the points de^ . . ., de^ where e, is the point with 1 in the ;'-th
coordinate and zeros elsewhere. Clearly, (1, . . ., l)e(n/^)A but (KA)n(N+)"=0 if
K < n / d , hence G) (A) = n/d. Thus (5.1) implies Corollary 1. 3.

The theorem of Katz can be derived in similar fashion. In the notation of
Theorem 2.11, if ^ has degree ^ and e,, 7= 1, . . ., n (resp. e^, f= 1, . . ., m) denotes the
point in R"^ with coordinate 1 in the 7-th entry [resp. the (n+0-th entry] and zeros
elsewhere, then A^^-g^gR"'^ lies in the polyhedron A with vertices at the origin,
e,'0'=l, . . ., m), and ^.e^.+e^ (/=1» . . ., ^ (=1, . . ., m). In fact, A is the largest
polyhedron that can occur as the Newton polyhedron of some ^.y,^, given the number
of variables and the degrees of the g^. We have from (2. 8)

(5.2) ord,N(V)^(o(A)-m.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



554 A. ADOLPHSON ET S. SPERBER

Let p, be the least nonnegative integer ^ ̂ o, where
m

n- ̂  rf,
i=i

^0=————7—7.max { d i }
We shall show that

(5.3) o)(A)=^i+m,

hence (5.2) implies the theorem of Katz.
The polyhedron A is bounded by the hyperplanes x,=0, ^,=0, and the two hyperplanes

Vi 4- . . . -\-y^=\ (which contains all vertices except the origin) and

(5.4) x,+ . . . +^=di^+ . . . +d^

(which contains all vertices except the e^). Let R + < A > be the cone defined by the
inequalities x^O, y^O, and

(5- 5) Xi+ . . . +x^d^+ . . . +^^.

The same argument that proved (2.10) shows that
r m .

(5.6) o)(A)=min^ ^ 5, (r; s)eR^ < A > r^N^- ^
U=i J

Suppose for convenience that ^==max {rfj . Inequality (5.5) is equivalent to
n m

Z ^+ Z (^n-^

(5.7) ^——^—————^,+ . . . + .̂
^m

The min of the left-hand side of (5.7) on (N^)"^ occurs when all Xj and y, equal 1,
hence by (5.6), G)(A)^+m. But the point x,=l for ;=1, . . . , n , ^.=1 for
f = l , . . . , m - l , ^==^+1 satisfies (5.7) [hence satisfies (5.5)], therefore lies in
R + < A ^(N+y-^ It then follows from (5.6) that o)(A)^+m also, so (5.3) is
established.

Assume the notation and hypotheses of Theorem 2.14, and let degree /= do. Sperber's
theorem is the assertion that ord^ S (V, /) ̂  |LI', where ^ is the least element of do 1 N that
is ^j^o, where

n- E d,

1^0=max{d,}^o

It can be derived similarly, by considering the largest possible Newton polyhedron that
can occur in Theorem 2.14 when the degrees of the given polynomials are specified.

4° SERIE - TOME 20 - 1987 - N° 4
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6. Connections with recent work

LEMMA 6.1. —Suppose every face o/A(/) of codimension 1 that does not contain the
n

origin lies in a hyper plane ^ 0^X^=1 (a so-called hyper plane of support) -where all a^O.
1=1

Suppose also that (1, . . ., l ) e R + < / > . Then Q)(/)=(O^(I, . . ., 1).
Proof. - Set Po=(l, . . ., 1), 0=(0, . . ., 0). Let F be the hyperplane of support

intersecting the ray 0 P(), say, in the point Q. Let FQ be the hyperplane passing through
PO parallel to r. If P is any other point in Z" with all coordinates positive then FQ
separates 0 and P. Let the ray 0 P intersect the hyperplane TQ in R() (so | 0 R.o | ̂  10 P |).
Suppose proceeding along the ray 0 P from 0 that the first hyperplane of support that
0 P intersects is F, say, in the point R. Suppose it intersects Y in the point R. Then
the convexity of A (/) implies that 10 R | ̂  10 R |. Hence

w^(Po)= |OPo | / |OQ|= |ORo | / |OR|^ |OP | / |OR|=w^(P) . D

As a consequence we have the following immediate results:
1. Let n=2 and let/be as in (2.1). Let/be a lifting of/to C[x] whose coefficients

are algebraic integers with positive real parts. Suppose that A( / )=A (/) and that every
face of A(/) that does not contain the origin lies on a line 04X^4-a^X^l with a^,
a^O. If/is nondegenerate and commode in the sense of [II], then (o(/) is the abscissa
of convergence of the Dirichlet series (s e C)

Z(/s)= ^ ——1——^
mi,m2^1/ (Wi , m^f

studied by Cassou-Nogues [5].
2. Now let n be arbitrary. Let / be a quasi-homogeneous polynomial with an isolated

singularity at the origin, defined over some number field, and let / be the reduction of /
modulo some prime ideal. Then A(/) has only one hyperplane of support ^a^X^l,
and we assume all a^O. If we assume that A(/) has dimension n, that
(1, . . . . l )eR+ < /> , that/is nondegenerate in the sense of [II], and that A(/)=A(/),
then it follows from Ehlers-Lo[9] * that ©(/) is the negative of the maximal root of the
Bernstein polynomial associated with/ (The Ehlers-Lo result does not require quasi-
homogeneity. This condition is to insure that our definition of Newton polyhedron
coincides with theirs.)

At present we do not have an explanation for these apparent connections, other than
the fact that they all involve the Newton polyhedron of / in some way. For a relation
with the local zeta function of Igusa, see Lichtin-Meuser [12]. Newton polyhedra and
local zeta functions are also the topic of a forthcoming paper by J. Denef.

* Added in proof. The referee informs us that in the quasi-homogeneous case this result was known before
Ehlers-Lo. See I. N. Bernstein (Funct. Anal. and its AppL, Vol. 2, No. 1, 1968, pp. 85-87) and B. Malgrange
(Springer Lect. Notes No. 459, pp. 98-119).
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