Annales scientifiques de l’é.n.S.

R. Mirollo
K. Vilonen
Bernstein-Gelfand-Gelfand reciprocity on perverse sheaves

Annales scientifiques de l'É.N.S. 4^{e} série, tome 20, nº 3 (1987), p. 311-323
http://www.numdam.org/item?id=ASENS_1987_4_20_3_311_0
© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1987, tous droits réservés.
L'accès aux archives de la revue « Annales scientifiques de l'É.N.S. » (http://www. elsevier.com/locate/ansens) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

BERNSTEIN-GELFAND-GELFAND RECIPROCITY ON PERVERSE SHEAVES (${ }^{1}$)

By R. MIROLLO and K. VILONEN

0. Introduction

The purpose of this paper is to extend the results of Bernstein-Gelfand-Gelfand on infinite dimensional Lie algebra representations [BGG] to perverse sheaves on a wide class of complex analytic spaces. Our method is to use the inductive construction of perverse sheaves given in [MV1], [MV2]. We give alternative proofs of the theorems in [BGG], and in some sense offer an explanation as to when such results should hold. Our main results are stated in section 1, which follows very closely the introduction to the [BGG] paper.

We thank J. Bernstein and R. MacPherson for bringing these questions to our attention and E. de Shalit for pointing out the reference $[\mathrm{Mu}]$ to us.

1. Statement of the main results

Let \mathbf{k} be a field which will be fixed throughout this paper. Let A be an associative algebra with identity which is finite dimensional as a vector space over \mathbf{k}. We say that a category is of Artin type if it is equivalent to the category of finitely generated A-modules for some A.

Such a category \mathscr{A} has several special properties (see e.g. [CR]). It satisfies the Krull-Schmidt and Jordan-Holder theorems. Furthermore, it has a finite number of irreducible objects L_{1}, \ldots, L_{r} and each L_{i} has a unique projective cover P_{i}. These modules P_{i} are precisely all the indecomposable projective modules.

Denote by [$\mathrm{M}: \mathrm{L}_{i}$] the number of times the irreducible module L_{i} occurs in the Jordan-Holder series of M . The matrix $\mathrm{C}_{i j}=\left[\mathrm{P}_{i}: \mathrm{L}_{j}\right]$ is called the Cartan matrix of \mathscr{A}. As is pointed out in $[\mathrm{BGG}]$ the Cartan matrix turns out to be symmetric in many

[^0]important examples. This is the case for modular representations of finite groups (see [CR]) and modules over the restricted universal enveloping algebra of a semi-simple Lie algebra in characteristic $p([\mathrm{H}])$. A third class of examples is given in [BGG] where the category \mathcal{O} of certain infinite dimensional representations of a complex semi-simple Lie algebra is constructed.

In all these examples a stronger duality principle holds. There is a class of modules $\mathbf{M}_{1}, \ldots, \mathbf{M}_{l}$ such that the modules P_{i} have a decomposition series with factors isomorphic to the M_{j}. Let $\left[P_{i}: M_{j}\right]$ denote the number of times M_{j} occurs in the decomposition series of P_{i}. We say that the category \mathscr{A} satisfies $B G G$ reciprocity if $\left[\mathrm{P}_{i}: \mathrm{M}_{j}\right]=\left[M_{j}: \mathrm{L}_{i}\right]$ for all i and j. In this case $\mathrm{C}={ }^{t} \mathrm{DD}$, where $\mathrm{D}_{i j}=\left[\mathrm{M}_{i}: \mathrm{L}_{j}\right]$ is the decomposition matrix. In all the above examples we have such a reciprocity. In the case of modular representations $l \neq r$ and the matrix D is not square. In the case of category \mathcal{O} and in our case the matrix D is an upper triangular unimodular square matrix (if we choose a proper ordering for L_{1}, \ldots, L_{r}). In the category \mathcal{O} the modules M are the Verma modules.

In this paper we want to show that these results are true for the category of perverse sheaves on a wide class of topological spaces. The results in [BBG] can be recovered from ours by applying localization ([BB], [BK]) and the Riemann-Hilbert correspondence ($[\mathrm{K}],[\mathrm{M}]$). Here the topological space is the flag manifold of a semi-simple complex group.

Let X be a complex analytic space with a complex analytic Whitney Stratification. Let \mathscr{S}^{\prime} denote the strata of \mathscr{S} which are not of top dimension. We make the further assumption that $\pi_{1}(\mathrm{~S})=0$ for all $\mathrm{S} \in \mathscr{S}$ and $\pi_{2}(\mathrm{~S})=0$ for all $\mathrm{S} \in \mathscr{S}^{\prime}$. We will keep this assumption all through this paper. Let $\mathrm{P}(\mathrm{X})$ denote the category of perverse sheaves of \mathbf{k}-vector spaces) on X which are constructible with respeact to the fixed stratification ([BBD], [MV2]). We recall that $\mathrm{P}(\mathrm{X})$ is the subcategory of the bounded derived category of k-sheaves $D^{b}(X)$ consisting of complexes of k-sheaves A^{\cdot} on X satisfying:
(0) $\mathrm{H}^{k}\left(i^{*} \mathrm{~A}^{*}\right)$ is a local system of finite rank on S
(1) $\mathrm{H}^{k}\left(i^{*} \mathrm{~A}^{\cdot}\right)=0$ for $k>-\operatorname{dim}_{\mathbf{C}} \mathrm{S}$
(2) $\mathrm{H}^{k}\left(i^{!} \mathrm{A}^{\bullet}\right)=0$ for $k<-\operatorname{dim}_{\mathbf{C}} \mathrm{S}$
for all $\mathrm{S} \in \mathscr{S}$, where $i: \mathrm{S} \rightarrow \mathrm{X}$ is the inclusion.
It is shown in $[\mathrm{BBD}]$ that the category $\mathrm{P}(\mathrm{X})$ is an artinian abelian category.

Theorem 1.1. - The category $\mathrm{P}(\mathrm{X})$ is of Artin type and its Cartan matrix is symmetric.
We will prove this theorem in Section 2. We remark here that it suffices to prove that $\mathrm{P}(\mathrm{X})$ has enough projectives to conclude that it is of Artin type. This follows from the following well-known

Lemma 1.2. - Let \mathscr{A} be an artinian, abelian category with enough projectives, finitely many irreducibles and $\operatorname{Hom}\left(\mathrm{A}, \mathrm{A}^{\prime}\right)$ having a structure of a finite dimensional \mathbf{k}-vector space for all $\mathrm{A}, \mathrm{A}^{\prime} \in \mathscr{A}$. Then \mathscr{A} is of Artin type over \mathbf{k}.

$$
4^{e} \text { SÉRIE }- \text { TOME } 20-1987-\mathrm{N}^{\circ} 3
$$

Proof. - Let L_{1}, \ldots, L_{m} be the irreducible objects and choose projectives $P_{i} \rightarrow L_{i}$. Then $\mathrm{P}=\oplus \mathrm{P}_{i}$ is a projective generator, and \mathscr{A} is equivalent to the category of (right) A -modules where $\mathrm{A}=\operatorname{Hom}(\mathrm{P}, \mathrm{P})$ (see $[\mathrm{B}]$).

Next we impose a further condition on the space X. We assume that $\bar{S}-S$ is a Cartier divisor in \mathscr{S} (or empty) for all $\mathrm{S} \in \mathscr{S}$. For all $\mathrm{S}_{i} \in \mathscr{S}$ we define perverse sheaves M_{i} as follows:

$$
\mathbf{M}_{i}=j_{!} \mathbf{k}_{\mathbf{S}_{i}}\left[\operatorname{dim}_{\mathbf{C}} \mathbf{S}_{i}\right]
$$

where $j: \mathrm{S}_{i} \rightarrow \mathrm{X}$ is the inclusion and $\mathbf{k}_{\mathrm{S}_{i}}$ is the constant sheaf on S_{i}. This makes sense by Lemma 3.1. Let $l(X)=\max \left\{\operatorname{dim}_{\mathrm{C}} \mathrm{X}-\operatorname{dim}_{\mathrm{C}} \mathrm{S} \mid \mathrm{S} \in \mathscr{S}\right\}$.

We say that an object $M \in P(X)$ has a p-filtration if it has a filtration whose quotients are M_{i} 's.

Theorem 1.3. - In the category $\mathrm{P}(\mathrm{X})$ every projective object has a p-filtration, the BGG reciprocity is satisfied and $\mathrm{P}(\mathrm{X})$ has projective dimension $\leqq 2 l(\mathrm{X})$.

We will prove this theorem in Section 3.
To recover the results of $[\mathrm{BGG}]$ from ours we remark that given a complex semi-simple Lie Algebra g the category \mathcal{O}_{0} is equivalent to $P(X)$, where $X=G / B$ is the flag manifold with stratification by the Schubert cells.

Remark 1.4. - The condition $\pi_{1}(S)=0$ for $S \in \mathscr{S}^{\prime}$ and $\pi_{2}(S)=0$ for all $S \in \mathscr{S}^{\prime}$ can be replaced by the following weaker condition. Let X be a complex manifold with Whitney stratification \mathscr{S}. We call the stratification \mathscr{S} a good Whitney stratification if all the projections $\pi_{s}: \tilde{\Lambda} \rightarrow \mathrm{S}$ are fibre bundles, where $\tilde{\Lambda}_{s}=\mathrm{T}_{s}^{*} \mathrm{X}-\underset{s^{\prime} \neq s}{\bigcup} \overline{\mathrm{~T}_{s^{\prime}}^{*} \mathrm{X}}$. For a good Whit-

$$
s^{\prime} \in \mathscr{C}
$$

ney stratification \mathscr{S} the condition we need becomes that the map $\alpha: \pi_{1}\left(\pi_{s}^{-1}(x)\right) \rightarrow \pi_{1}\left(\tilde{\Lambda}_{s}\right)$ is an isomorphism. The crucial point here is that this condition implies that $\pi_{1}(S)=0$. By different arguments one can show that for the results of this paper to remain true it suffices to assume that α is injective with Coker $\alpha=\pi_{1}(S)$ finite and char $(\mathbf{k})=0$.

2. Construction of projectives and the symmetry of the Cartan matrix

In this section we will prove Theorem 1.1. We first apply the results of [MV1] and [MV2] to reduce it to an algebraic problem. We start by recalling the main construction of these papers.

Let \mathscr{A} and \mathscr{B} be two abelian categories, $\mathrm{F}: \mathscr{A} \rightarrow \mathscr{B}$ a right exact functor, $\mathrm{G}: \mathscr{A} \rightarrow \mathscr{B}$ a left exact functor and $\mathrm{T}: \mathrm{F} \rightarrow \mathrm{G}$ a natural transformation. Then we define a category $\mathscr{C}(\mathrm{F}, \mathrm{G} ; \mathrm{T})$ as follows. Its objects are pairs $(\mathrm{A}, \mathrm{B}) \in \mathrm{Ob} \mathscr{A} \times \mathrm{Ob} \mathscr{B}$ together with a commutative diagram

The morphisms are pairs $(f, g) \in \operatorname{Mor} \mathscr{A} \times \operatorname{Mor} \mathscr{B}$ such that the appropriate prism commutes. The category $\mathscr{C}(\mathrm{F}, \mathrm{G} ; \mathrm{T})$ has a natural abelian category structure [MV2].

Recall that we have a complex analytic space X with a fixed stratification \mathscr{S} satisfying $\pi_{1}(S)=0$ for all $S \in \mathscr{S}$ and $\pi_{2}(S)=0$ for all $S \in \mathscr{S}^{\prime}$. We denote by \mathscr{V} the category of finite dimensional k-vector spaces. Under these hypotheses we have

Theorem 2.1 ([MV1], [MV2]). - The category $\mathrm{P}(\mathrm{X})$ can be constructed by iterating the $\mathscr{C}(\mathrm{F}, \mathrm{G} ; \mathrm{T})$ construction starting with $\mathscr{A}=\mathscr{V}$ and always using $\mathscr{B}=\mathscr{V}$.

Proof. - This follows from Theorem 3.3 and section 7 of [MV2] using the hypothesis that $\pi_{1}(S)=0$ for all $S \in \mathscr{S}$, and $\pi_{2}(S)=0$ for all $S \in \mathscr{S}^{\prime}$.

So in order to prove Theorem 1.1, it suffices to prove theorems about the categories $\mathscr{C}(\mathrm{F}, \mathrm{G} ; \mathrm{T})$ which arise from perverse sheaves. For simplicity, we assume from now on that all abelian categories \mathscr{A} or $\mathscr{C}(\mathrm{F}, \mathrm{G} ; \mathrm{T})$ under discussion come from iterating the $\mathscr{C}(\mathrm{F}, \mathrm{G} ; \mathrm{T})$ construction beginning with \mathscr{V} and always using $\mathscr{B}=\mathscr{V}$. Such categories have a natural \mathbf{k}-vector space structure on their Hom sets.

General facts about $\mathscr{C}(\mathrm{F}, \mathrm{G} ; \mathrm{T})$'s. - There are several interesting functors relating \mathscr{A}, \mathscr{V} and the $\mathscr{C}(\mathrm{F}, \mathrm{G} ; \mathrm{T})$ built from $\mathrm{F} \xrightarrow{\mathrm{T}} \mathrm{G}: \mathscr{A} \rightarrow \mathscr{V}$. First, given an object

$$
\mathrm{N}=(\mathrm{A}, \mathrm{~B}, \mathrm{~m}, \mathrm{n}) \in \mathscr{C}(\mathrm{F}, \mathrm{G} ; \mathrm{T}))
$$

we have restrictions of N to \mathscr{A} and \mathscr{B} :

$$
\left.\mathrm{N}\right|_{\mathscr{A}}=\mathrm{A},\left.\quad \mathrm{~N}\right|_{\mathscr{B}}=\mathrm{B} .
$$

The restriction functors are exact. In fact, a complex $N^{*} \in \mathscr{C}(F, G ; T)$ is exact if and only if $\left.\mathbf{N}^{\bullet}\right|_{\mathscr{A}}$ and $\left.\mathbf{N}^{\bullet}\right|_{\mathscr{A}}$ are exact. This follows immediately from the description of kernels and cokernels in $\mathscr{C}(\mathrm{F}, \mathrm{G} ; \mathrm{T})$ in [MV2].

There are three functors $\hat{\mathrm{F}}, \hat{\mathrm{T}}$ and $\hat{\mathrm{G}}$ from \mathscr{A} to $\mathscr{C}(\mathrm{F}, \mathrm{G} ; \mathrm{T})$. If $\mathrm{A} \in \mathscr{A}$ we set

There are obvious maps $\hat{\mathrm{F}} \rightarrow \hat{\mathrm{T}} \rightarrow \hat{\mathrm{G}}$. Note that these functors $\hat{\mathrm{F}}, \hat{\mathrm{T}}$ and $\hat{\mathrm{G}}$ correspond to the functors ${ }^{p} j_{!},{ }^{p} j_{!_{*}}$ and ${ }^{p} j_{*}$ in $\mathrm{P}(\mathrm{X})$ (see example 4.6 in [MV2]).

```
4e SÉRIE - TOME 20 - 1987 - N N
```

The functor \hat{F} is right exact and the functor \hat{G} is left exact. We also have
Lemma 2.2. - For $\mathrm{N} \in \mathrm{C}(\mathrm{F}, \mathrm{G} ; \mathrm{T})$ and $\mathrm{A} \in \mathscr{A}$ we have

$$
\operatorname{Hom}(\hat{\mathrm{F}} \mathrm{~A}, \mathrm{~N})=\operatorname{Hom}(\mathrm{A}, \mathrm{~N} \mid \mathscr{A})
$$

and

$$
\operatorname{Hom}(\mathrm{N}, \hat{\mathrm{GA}})=\operatorname{Hom}(\mathrm{N} \mid \mathscr{A}, \mathrm{A})
$$

This lemma implies that \hat{F} preserves projectives and \hat{G} preserves injectives.
Irreducible objects. - We wish to describe all the irreducible objets in any $\mathscr{C}(F, G ; T)$ built on \mathscr{A}, \mathscr{V}.

Proposition 2.3. - The category $\mathscr{C}(\mathrm{F}, \mathrm{G} ; \mathrm{T})$ has the following irreducible objects:
1.

2. $\hat{\mathrm{T}} \mathrm{L}$, where $\mathrm{L} \in \mathscr{A}$ is irreducible.

Hence any $\mathscr{C}(\mathrm{F}, \mathrm{G} ; \mathrm{T})$ has finitely many nonisomorphic irreducible objects.
Proof. - Suppose

is irreducible, $\mathrm{A} \neq 0$. Then m is surjective and n is injective, because otherwise there would be nontrivial maps of N to or from the irreducible

Hence $\mathrm{N}=\hat{\mathrm{T}}\left(\left.\mathrm{N}\right|_{\mathscr{A}}\right)=\hat{\mathrm{T}} \mathrm{A}$. We need to show that $\mathrm{A} \in \mathscr{A}$ is irreducible. Let $\mathrm{A}^{\prime} \rightarrow \mathrm{A}$ be any nonzero map. Then $\widehat{\mathrm{TA}^{\prime}} \rightarrow \hat{\mathrm{T} A}$ is a nonzero map, and so must be surjective. Hence $\mathrm{A}^{\prime} \rightarrow \mathrm{A}$ is surjective, so A is irreducible.

> Q.E.D.

Representability of functors

Proposition 2.4. - Assume \mathscr{A} has enough injectives. Then any left exact functor $\mathrm{G}: \mathscr{A} \rightarrow \mathscr{V}$ is representable by an object $\mathrm{R} \in \mathscr{A}$.

[^1]Proof. - This follows from Grothendieck's pro-representability theorem [Mu]. However we give a simple direct proof. G is exact when restricted to injective objects of \mathscr{A}. It suffices to show that there exists $\mathrm{R} \in \mathscr{A}$ and a natural isomorphism $\operatorname{Hom}(\mathrm{R}, \mathrm{I})=\mathrm{GI}$ for I injective in \mathscr{A}. If $\mathrm{I} \in \mathscr{A}$, let $h_{\mathrm{I}}=\operatorname{Hom}(\mathrm{I},$.$) . Given v \in \mathrm{GI}$ there exists a natural map

$$
h_{v}: \quad h_{\mathrm{I}} \rightarrow \mathrm{G}
$$

defined by $\left(h_{v} N\right)(f)=(\mathrm{G} f) v, f \in \operatorname{Hom}(\mathrm{I}, \mathrm{N})$. If $\mathrm{N}=\mathrm{I}$ then $\left(h_{v} \mathrm{I}\right)\left(\mathrm{Id}_{\mathrm{I}}\right)=v$. Choose a spanning set v_{1}, \ldots, v_{r} for GI. Then we get a natural map

$$
\varphi_{\mathrm{I}}=\underset{i}{\oplus} h_{v_{i}}: h_{\mathrm{I}} \rightarrow \mathrm{G}
$$

φ_{I} has the property that $\varphi_{\mathrm{I}}(\mathrm{I}): h_{\mathrm{I}^{r}}(\mathrm{I}) \rightarrow \mathrm{GI}$ is surjective. Let $\mathrm{I}_{1}, \ldots, \mathrm{I}_{m}$ be the indecomposable injectives, corresponding to the irreducibles objects of \mathscr{A}. Consider the sum $\mathrm{I}=\oplus \mathrm{I}_{k}^{r_{k}}$ and

$$
\varphi=\oplus \varphi_{\mathrm{I}_{k}}: h_{\mathrm{I}}=\underset{k}{\oplus} h_{\mathrm{I}_{k}} \mathrm{r}_{k} \rightarrow \mathrm{G}
$$

Then $\varphi: h_{I} \rightarrow G$ has the property that $\varphi(\mathrm{J}): h_{\mathrm{I}}(\mathrm{J}) \rightarrow \mathrm{GJ}$ is surjective for any injective $\mathrm{J} \in \mathscr{A}$. Let $\mathrm{G}^{\prime}=\operatorname{ker}\left(h_{\mathrm{I}} \xrightarrow{\varphi} \mathrm{G}\right)$. Then G^{\prime} is also exact, so there exists $\varphi^{\prime}: h_{\mathrm{I}^{\prime}} \rightarrow \mathrm{G}^{\prime}$. Hence we have produced a 2 -step resolution of G :

$$
h_{\mathrm{I}^{\prime}} \rightarrow h_{\mathrm{I}} \rightarrow \mathrm{G} \rightarrow 0
$$

By Yoneda's lemma, we get a map $I \xrightarrow{\alpha} I^{\prime}$. Let $R=\operatorname{ker} \alpha$. Then R represents G because for any injective J,

$$
\operatorname{Hom}(\mathrm{R}, \mathrm{~J}) \cong \operatorname{Hom}(\mathrm{I}, \mathrm{~J}) / \operatorname{Im} \operatorname{Hom}\left(\mathrm{I}^{\prime}, \mathrm{I}\right) \cong h_{\mathrm{I}}(\mathrm{~J}) / \operatorname{Im} h_{\mathrm{I}^{\prime}},(\mathrm{J}) \cong \mathrm{GJ}
$$

Q.E.D.

Remark. - A similar statement holds for right exact functors $\mathrm{F}: \mathscr{A} \rightarrow \mathscr{V}:$ If \mathscr{A} has enough projectives, there exists an object $S \in \mathscr{A}$ st

$$
\mathrm{FN} \cong \operatorname{Hom}(\mathrm{~N}, \mathrm{~S})^{*}
$$

where ${ }^{*}$ is the dual in the sense of \mathbf{k}-vector spaces.
Projectives and injectives in $\mathscr{C}(\mathrm{F}, \mathrm{G} ; \mathrm{T})$. - The following proposition together with Lemma 1.2 establishes the first part of Theorem 1.1.

Proposition 2.5. - Suppose \mathscr{A} has enough projectives (injectives). Then any $\mathscr{C}(\mathrm{F}, \mathrm{G} ; \mathrm{T})$ built on \mathscr{A}, \mathscr{V} has enough projectives (injectives).

Proof. - We must show that any object $\mathrm{N} \in \mathscr{C}(\mathrm{F}, \mathrm{G} ; \mathrm{T})$ is covered by a projective. We can assume N is irreducible. If $\mathrm{N}=\hat{\mathrm{T}} \mathrm{A}, \mathrm{A} \in \mathscr{A}$ irreducible, $\mathrm{A}^{\prime} \rightarrow \mathrm{A}$ a projective covering of A , then $\hat{\mathrm{F}} \mathrm{A}^{\prime} \rightarrow \hat{\mathrm{T} A}$ is a projective cover of N .

```
4e SÉRIE - TOME 20 - 1987 - N N 3
```

So it suffices to cover the new irreducible

By Proposition 2.4 G is representable. Suppose $G \cong \operatorname{Hom}(R,$.$) . Form the object P$:

where $m=(\mathrm{Id}, 0),\left.n\right|_{\mathrm{FR}}=\mathrm{TR}, n(0,1)=\mathrm{Id}_{\mathrm{R}}$. For any $\mathrm{N} \in \mathscr{C}(\mathrm{F}, \mathrm{G} ; \mathrm{T})$

$$
\left.\operatorname{Hom}(P, N) \cong N\right|_{r} ;
$$

i. e., a map $\mathbf{P} \rightarrow \mathrm{N}$ is uniquely determined by the image of the element $(0,1)$ in $\left.N\right|_{r}$. Since $\left.\right|_{\mathscr{V}}$ is exact, P is projective. Clearly, P covers the new irreducible. Hence $\mathscr{C}(F, G ; T)$ has enough projectives. A similar proof works for injectives.
Q.E.D.

To complete the proof of Theorem 1.1 we have to prove the symmetry of the Cartan matrix. However this symmetry is not true for $\mathscr{C}(\mathrm{F}, \mathrm{G} ; \mathrm{T})$'s in general. The category of perverse sheaves $\mathrm{P}(\mathrm{X})$ has an involution $\mathrm{A} \rightarrow \mathrm{A}^{*}$ given by Verdier duality which satisfies
(a) $\operatorname{Hom}\left(\mathrm{A}_{1}, \mathrm{~A}_{2}^{*}\right) \cong \operatorname{Hom}\left(\mathrm{A}_{2}, \mathrm{~A}_{1}^{*}\right)$,
(b) $\mathrm{L}^{*} \cong \mathrm{~L}$ for L irreducible.

Condition (b) holds because $\pi_{1}(S)=0$ for all strata S. If \mathscr{L} is a complex link of S at a point ([MV2], [GM]) then $\mathrm{F}(\mathrm{A})=\mathrm{H}^{-d-1}(\mathscr{L}, \mathrm{~A})$ and $\mathrm{G}(\mathrm{A})=\mathrm{H}_{c}^{-d-1}(\mathscr{L}, \mathrm{~A})$. By Verdier duality we then have

$$
\mathrm{F}(\mathrm{~A})=\mathrm{G}\left(\mathrm{~A}^{*}\right)^{*} \quad \text { and } \quad \mathrm{T}\left(\mathrm{~A}^{*}\right)=\mathrm{T}(\mathrm{~A})^{*}
$$

which means that the representing objects S and R for F and G satisfy $S=R^{*}$.
Motivated by these considerations we develop a notion of duality for $\mathscr{C}(F, G ; T)$'s.
Duality. - Let \mathscr{A} be an abelian category. A duality on \mathscr{A} is by definition a contravariant functor $A \rightarrow A^{*}$ st.
(a) If $\mathrm{A}, \mathrm{B} \in \mathscr{A}, \operatorname{Hom}\left(\mathrm{A}, \mathrm{B}^{*}\right) \cong \operatorname{Hom}\left(\mathrm{B}, \mathrm{A}^{*}\right)$ naturally;
(b) ${ }^{*}$ is fully faithful.

Condition (b) is equivalent to
$\left(b^{\prime}\right)$ The natural map $\mathrm{A} \rightarrow \mathrm{A}^{* *}$ is an equivalence of categories.
Suppose \mathscr{A} has a duality ${ }^{*}$. We wish to extend ${ }^{*}$ to $\mathscr{C}(\mathrm{F}, \mathrm{G} ; \mathrm{T})$. However, we need some conditions on the representing objects for F and G.

We assume that $S=R^{*}$ and that the diagram

commutes: i. e., $T\left(\mathrm{~A}^{*}\right)=(\mathrm{TA})^{*}$ under the above identifications.
If

we can let N^{*} be the object

Then ${ }^{*}$ is a duality on $\mathscr{C}(\mathrm{F}, \mathrm{G} ; \mathrm{T})$ extending the duality on \mathscr{A}. Note that ${ }^{*} \hat{\mathrm{~F}}=\hat{\mathrm{G}}^{*}$, ${ }^{*} \hat{\mathrm{~T}}=\hat{\mathrm{T}}^{*}$ and ${ }^{*}$ fixes the new irreducible object. Hence if ${ }^{*}$ on \mathscr{A} fixes irreducible objects in $\mathscr{A},{ }^{*}$ on $\mathscr{C}(\mathrm{F}, \mathrm{G} ; \mathrm{T})$ will also fix irreducible objects in $\mathscr{C}(\mathrm{F}, \mathrm{G} ; \mathrm{T})$.

Symmetry of the Cartan Matrix. - Let L_{1}, \ldots, L_{r} be the distinct irreducibles in \mathscr{A}, and $\mathrm{P}_{i} \rightarrow \mathrm{~L}_{i}$ the projective covers of L_{i}. Note that the L_{i} 's have the property that $\operatorname{dim}_{k} \operatorname{Hom}\left(L_{i}, L_{j}\right)=\delta_{i j}$.

Consider the Grothendieck group $\mathrm{K}(\mathscr{A})$. This is a free abelian group with basis [L_{1}], $\ldots,\left[L_{r}\right]$. We have by definition

$$
[\mathrm{N}]=\sum_{j=1}^{r}\left[\mathrm{~N}: \mathrm{L}_{j}\right]\left[\mathrm{L}_{j}\right], \quad N \in \mathscr{A}
$$

Note that $\left[\mathrm{N}: \mathrm{L}_{j}\right]=\operatorname{dim}_{\mathbf{k}} \operatorname{Hom}\left(\mathrm{P}_{j}, \mathrm{~N}\right)$, because both sides are additive functions on $\mathrm{K}(\mathscr{A})$ which agree when $\mathrm{N}=\mathrm{L}_{i}$.
Recall that the Cartan matrix of \mathscr{A} is $\mathrm{C}_{i j}=\left[\mathrm{P}_{i}: \mathrm{L}_{j}\right]$. We are interested in the symmetry of $\mathrm{C}_{i j}$.

The category of perverse sheaves $\mathrm{P}(\mathrm{X})$ is constructed by iterating the $\mathscr{C}(\mathrm{F}, \mathrm{G} ; \mathrm{T})$ construction where $F=\operatorname{Hom}(., S)^{*}$ and $G=\operatorname{Hom}(R,$.$) are represented by dual objects$ $S=R^{*}$. Since ${ }^{*}$ fixes irreducibles, $\left[R^{*}\right]=[R]$ in the Grothendieck group. Therefore the following proposition shows that the Cartan matrix for $\mathrm{P}(\mathrm{X})$ is symmetric, and completes the proof of Theorem 1.1.

```
4e}\mathrm{ SERIE - TOME 20 - 1987 - N ` 3
```

Proposition 2.6. - The Cartan matrix of $\mathscr{C}(\mathrm{F}, \mathrm{G} ; \mathrm{T})$ is symmetric precisely when the Cartan matrix of \mathscr{A} is symmetric and $[\mathrm{R}]=[\mathrm{S}]$ in $\mathrm{K}(\mathscr{A})$.

Proof. $-\operatorname{In} \mathscr{C}(\mathrm{F}, \mathrm{G} ; \mathrm{T})$ let $\hat{\mathrm{L}}_{i}=\hat{\mathrm{T}}_{i}, \hat{P}_{i}=\hat{F} P_{i}, 1 \leqq i \leqq r$,

its projective cover.
Let $\hat{\mathrm{C}}_{i j}$ be the Cartan matrix of $\mathscr{C}(\mathrm{F}, \mathrm{G} ; \mathrm{T})$. If $i, j \leqq r$ then by adjunction $\hat{\mathrm{C}}_{i j}=$ $\operatorname{dim} \operatorname{Hom}\left(\hat{F} P_{j}, \hat{\mathrm{~F}} \mathrm{P}_{i}\right)=\operatorname{dim} \operatorname{Hom}\left(\mathrm{P}_{j}, \mathrm{P}_{i}\right)=\mathrm{C}_{i j}$. So we need only check that that $\hat{\mathrm{C}}_{i, r+1}=\widehat{\mathrm{C}}_{r+1, i}, 1 \leqq i \leqq r$. Write the new projective

in terms of \hat{P}_{i} 's:

$$
\hat{\mathrm{P}}=\hat{\mathrm{P}}_{r+1} \oplus \stackrel{r}{\oplus} \underset{i=1}{\mathrm{P}_{i}^{\alpha_{i}}}
$$

Then $\quad \operatorname{dim} \operatorname{Hom}\left(\hat{\mathrm{P}}_{r+1}, \hat{\mathrm{P}}_{i}\right)=\operatorname{dim} \operatorname{Hom}\left(\hat{\mathrm{P}}, \hat{\mathrm{P}}_{i}\right)-\sum_{j=1}^{r} \alpha_{j} \mathrm{C}_{i j}, \quad$ and $\quad \operatorname{dim} \operatorname{Hom}\left(\hat{\mathrm{P}}_{i}, \hat{\mathrm{P}}_{r+1}\right)=$ $\operatorname{dim} \operatorname{Hom}\left(\hat{\mathrm{P}}_{i}, \hat{\mathrm{P}}\right)-\sum_{j=1}^{r} \alpha_{j} \mathrm{C}_{j i}$. So we need to compare $\operatorname{Hom}\left(\hat{\mathrm{P}}_{i}, \hat{\mathrm{P}}\right)$ and $\operatorname{Hom}\left(\hat{\mathrm{P}}, \hat{\mathrm{P}}_{i}\right)$. By adjunction

$$
\operatorname{dim} \operatorname{Hom}\left(\hat{\mathrm{P}}_{i}, \hat{\mathrm{P}}\right)=\operatorname{dim} \operatorname{Hom}\left(\mathrm{P}_{i}, \mathrm{R}\right)=\left[\mathrm{R}: \mathrm{L}_{i}\right]
$$

and

$$
\operatorname{dim} \operatorname{Hom}\left(\hat{\mathrm{P}}, \hat{\mathrm{P}}_{i}\right)=\operatorname{dim} \mathrm{FP}_{i}=\operatorname{dim} \operatorname{Hom}\left(\mathrm{P}_{i}, \mathrm{~S}\right)^{*}=\left[\mathrm{S}: \mathrm{L}_{i}\right]
$$

So $\hat{\mathrm{C}}_{i j}$ is symmetric $\Leftrightarrow[\mathrm{R}]=[\mathrm{S}]$ in $\mathrm{K}(\mathscr{A})$.
Q.E.D.

3. The BGG reciprocity

In this section we will give a proof of theorem 1.3. We start with some topological considerations. As in the previous section, after this the rest of the proof is purely algebraic.

We recall that we have a complex analytic space X with an analytic stratification \mathscr{S} satisfying the Whitney conditions. As before we assume that $\pi_{1}(S)=0$ for all $S \in \mathscr{S}$ and
$\pi_{2}(S)=0$ for all $S \in \mathscr{S}^{\prime}$. From now on we assume furthermore that $\bar{S}-S$ is a Cartier divisor in $\overline{\mathrm{S}}$ (or empty) for for all $\mathrm{S} \in \mathscr{S}$. (If X is algebraic this means that $\mathrm{S} \rightarrow \mathrm{X}$ is affine.)

Lemma 3.1.-Let $\mathrm{S} \in \mathscr{S}$ and $j: \mathrm{S} \rightarrow \mathrm{X}$ be the inclusion. Then $j_{!} \mathbf{k}_{\mathrm{S}}\left[\operatorname{dim}_{\mathrm{C}} \mathrm{S}\right]$ is perverse. (See [BBD] 4.1.3 for the algebraic case).

Proof. - Clearly $j_{!} \mathbf{k}_{\mathrm{S}}\left[\operatorname{dim}_{\mathrm{C}} \mathrm{S}\right]$ satisfies the first perversity condition. It remains to check the second condition or equivalently the first perversity condition for the dual $\mathbf{R} j_{*} \mathbf{k}_{\mathbf{S}}\left[\operatorname{dim}_{\mathrm{C}} \mathrm{S}\right]$. Let $d=\operatorname{dim}_{\mathbf{C}} \mathrm{S}$.

Cutting by a normal slice reduces the problem to the case of a point stratum $\mathrm{S}^{\prime}=\{x\} \subset \overline{\mathrm{S}}$. Let $i:\{x\} \rightarrow \mathrm{X}$. Then if B is a small neighborhood of x in X ,

$$
\mathrm{H}^{k}\left(i^{*} \mathrm{R} j_{*} \mathbf{k}_{\mathrm{S}}[d]\right)=\mathrm{H}^{k+d}\left(\mathrm{R} j_{*} \mathbf{k}_{\mathrm{S}}\right)_{x} \simeq \mathrm{H}^{k+d}\left(\mathrm{~B}, \mathrm{R} j_{*} \mathbf{k}_{\mathrm{S}}\right) \cong \mathrm{H}^{k+d}(\mathrm{~B} \cap \mathrm{~S}, \mathbf{k}) \cong 0 \quad \text { for } \quad k>0
$$

because $B \cap S$ is a Stein manifold of dimension d.
Q.E.D.

For any stratum $\mathrm{S}_{k} \in \mathscr{S}$ we define the object M_{k} by $\mathbf{M}_{k}=j_{!} \mathbf{k}_{\mathbf{S}_{\mathbf{k}}}\left[\operatorname{dim}_{\mathbf{C}} \mathrm{S}_{\mathbf{k}}\right]$, where $j: \mathrm{S}_{\mathbf{k}} \rightarrow \mathrm{X}$ is the inclusion.

The construction of the objects \mathbf{M}_{k} can be done inductively as follows. Let $X \subset \hat{X}$ such that X is stratified by S_{1}, \ldots, S_{r-1} and let $\hat{X}-X=S_{r}$. We assume that $\operatorname{dim} S_{k} \geqq \operatorname{dim} S_{h}$ if $k \leqq h$. Let $\hat{j}: \mathrm{X} \rightarrow \hat{\mathrm{X}}, j_{k}: \mathrm{S}_{k} \rightarrow \mathrm{X}$ and $\hat{j_{k}}: \mathrm{S}_{k} \rightarrow \hat{\mathrm{X}}$ be the inclusions. Then if we denote $\hat{\mathbf{M}}_{k}=\hat{j}_{!} \mathbf{k}_{\mathbf{S}_{k}}\left[\operatorname{dim}_{\mathbf{C}} \mathbf{S}_{k}\right]$ we have $\hat{\mathbf{M}}_{k}=\hat{j}_{!} \mathbf{M}_{k}$ for $k \leqq r-1$. Or because $\hat{\mathbf{M}}_{k}$ is perverse we can phrase this as $\hat{\mathrm{M}}_{k}={ }^{p} \hat{j_{!}} \mathrm{M}_{k}$ for $k \leqq r-1$.

If we interpret this in terms of the $\mathscr{C}(\mathrm{F}, \mathrm{G} ; \mathrm{T})$ via theorem 2.1 we get that $\hat{\mathrm{M}}_{k}=\hat{\mathrm{F}}\left(\mathrm{M}_{k}\right)$ for $k \leqq r-1$ and $\hat{\mathrm{M}}_{r}=\hat{\mathrm{L}}_{r}$.

Lemma 3.2. - We have $\mathrm{L}^{1} \hat{\mathrm{~F}}\left(\mathrm{M}_{k}\right)=0$.
Proof. - It suffices to show that given any exact sequence $0 \rightarrow \mathbf{N}^{\prime} \rightarrow \mathbf{N} \rightarrow \mathbf{M}_{k} \rightarrow 0$ the sequence $0 \rightarrow \hat{\mathrm{~F}} \mathrm{~N}^{\prime} \rightarrow \hat{\mathrm{FN}} \rightarrow \hat{\mathrm{F}} \mathrm{M}_{k} \rightarrow 0$ is exact. Because ${ }^{p_{j}} \mathrm{M}_{k}=j_{!} \mathrm{M}_{k}$ we have an exact sequence $0 \rightarrow{ }^{p} j_{!} N^{\prime} \rightarrow{ }^{p} j_{!} N \rightarrow{ }^{p} j_{!} M_{k} \rightarrow 0$ in $P(X)$, but this is just the exact sequence $0 \rightarrow \hat{\mathrm{~F}} \mathrm{~N}^{\prime} \rightarrow \hat{\mathrm{FN}} \rightarrow \hat{\mathrm{F}} \mathrm{M}_{\boldsymbol{k}} \rightarrow 0$.

Remark. - Because we are using a fixed stratification in our definition of $\mathbf{P}(\mathbf{X})$ it is not true that $\mathrm{Ext}^{k}(\mathrm{~A}, \mathrm{~B})$ is the same in $\mathrm{P}(\mathrm{X})$ and in $\mathrm{D}^{b}(\mathrm{X})$. It is however, clearly true for $k=0,1$.

We now turn to algebra. We make the additional hypothesis that $\mathrm{L}^{\mathbf{1}} \hat{\mathrm{F}}\left(\mathrm{M}_{k}\right)=0$ at every stage of the construction of our $\mathscr{C}(\mathrm{F}, \mathrm{G} ; \mathrm{T})$. We also assume duality at every stage.

Recall [BBG] that we say that N has a p-filtration if there is a filtration $N_{1} \subset N_{2} \subset \ldots$ such that $\mathbf{N}_{k} / \mathbf{N}_{k+1} \cong \mathbf{M}_{i}$ for some i. We will start by proving a lemma about the existence of p-filtrations which in particular shows that every projective object has a p-filtration.

Lemma 3.3. - Let \mathscr{C} be a category which is constructed by iteration with the above hypotheses. Then N has a p-filtration if and only if $\operatorname{Ext}^{1}\left(\mathbf{M}_{i}, \mathrm{~N}^{*}\right)=0$ for all i.

```
4e}\mathrm{ SÉrie - tome 20-1987 - N ` 3
```

Proof. - We proceed by induction. Assume that it is true for \mathscr{A} and construct a $\mathscr{C}(\mathrm{F}, \mathrm{G} ; \mathrm{T})$ from \mathscr{A}. Suppose $\operatorname{Ext}^{1}\left(\hat{\mathbf{M}}_{i}, \mathrm{~N}^{*}\right)=0$ for $i=1, \ldots, r+1$.

To calculate $\operatorname{Ext}^{1}\left(\hat{\mathbf{M}}_{r+1}, \hat{\mathrm{~N}}^{*}\right)$ we use the resolution

$$
0 \rightarrow \hat{\mathrm{~F} R} \rightarrow \hat{\mathrm{P}} \rightarrow \hat{\mathrm{M}}_{r+1} \rightarrow 0
$$

This gives

$$
\operatorname{Hom}(\hat{\mathrm{P}}, \hat{\mathbf{N}}) \rightarrow \operatorname{Hom}\left(\hat{\mathrm{F} R}, \hat{\mathbf{N}}^{*}\right) \rightarrow \operatorname{Ext}^{1}\left(\hat{\mathbf{M}}_{r+1}, \hat{N}^{*}\right) \rightarrow 0
$$

Let $\hat{\mathrm{N}}=\mathrm{FA} \xrightarrow{m} \mathrm{~B} \xrightarrow{n} \mathrm{GA}$.
Then $\operatorname{Hom}\left(\hat{\mathrm{P}}, \hat{\mathrm{N}}^{*}\right)=\mathrm{B}^{*}$, and

$$
\operatorname{Hom}\left(\hat{\mathrm{FR}}, \hat{\mathrm{~N}}^{*}\right)=\operatorname{Hom}\left(\mathrm{R},\left.\hat{\mathrm{~N}}^{*}\right|_{\mathscr{A}}\right)=\mathrm{G}\left(\mathrm{~A}^{*}\right)=(\mathrm{FA})^{*}
$$

Therefore $\operatorname{Ext}^{1}\left(\hat{\mathrm{M}}_{r+1}, \hat{\mathrm{~N}}^{*}\right) \cong \operatorname{Coker}\left(m^{*}\right)=\operatorname{Ker}(m)^{*}$.
Hence m in an injection. It follows from this that we have a short exact sequence

$$
0 \rightarrow \hat{\mathrm{~F}}(\hat{\mathrm{~N}} \mid \mathscr{A}) \rightarrow \hat{\mathrm{N}} \rightarrow \hat{\mathrm{M}}_{r+1}^{\oplus q} \rightarrow 0, \quad q \geqq 0 .
$$

So it is enough to show that $\mathrm{F}(\hat{\mathrm{N}} \mid \mathscr{A})$ has a p-filtration or since $\mathrm{L}^{1} \hat{\mathrm{~F}}\left(\mathrm{M}_{i}\right)=0$ that $\hat{\mathrm{N}} \mid \mathscr{A}$ has a p-filtration. But $\mathrm{L}^{1} \hat{\mathrm{~F}} \mathrm{M}_{i}=0$ means we have

$$
\operatorname{Ext}^{1}\left(\mathbf{M}_{i}, \hat{\mathrm{~N}}^{*} \mid \mathscr{A}\right)=\operatorname{Ext}^{1}\left(\hat{\mathrm{M}}_{i}, \hat{\mathrm{~N}}^{*}\right)=0
$$

and therefore $\hat{\mathrm{N}}^{*} \mid \mathscr{A}$ has a p-filtration.
For the converse it suffices to check that $\operatorname{Ext}^{1}\left(\hat{M}_{i}, \hat{M}_{j}^{*}\right)=0$. By duality $\operatorname{Ext}^{1}\left(\hat{\mathbf{M}}_{i}, \hat{M}_{j}^{*}\right)=\operatorname{Ext}^{1}\left(\hat{\mathrm{M}}_{j}, \hat{\mathrm{M}}_{i}^{*}\right)$. If either i or j is $\leqq r$, then $\operatorname{Ext}^{1}\left(\hat{\mathrm{M}}_{i}, \hat{\mathrm{M}}_{j}^{*}\right)=0$ by adjunction and the vanishing of $\mathrm{L}^{1} \hat{\mathrm{~F} R}$. And $\operatorname{Ext}^{1}\left(\hat{\mathrm{M}}_{r+1}, \hat{M}_{r+1}^{*}\right)=0$ as before.
Q.E.D.

Next we give a proof of the BGG reciprocity. Assume that we have constructed a category \mathscr{C} by iteration, where $\mathrm{F}(\mathrm{A})=\mathrm{G}\left(\mathrm{A}^{*}\right)^{*},(\mathrm{TA})^{*}=\mathrm{TA}{ }^{*}$, and $\mathrm{L}^{1} \hat{\mathrm{~F}}\left(\mathrm{M}_{k}\right)=0$ for all k at each stage of the iteration.

Note that the decomposition matrix $\mathrm{D}=\left[\mathrm{M}_{i}: \mathrm{L}_{j}\right]$ is unipotent upper triangular and therefore the \mathbf{M}_{i} form a basis for $\mathrm{K}(\mathscr{C})$. Let $\mathrm{E}=\left[\mathrm{P}_{i}: \mathbf{M}_{j}\right]$, where $\left[\mathrm{P}_{i}\right]=\sum\left[P_{i}: \mathbf{M}_{j}\right]\left[M_{j}\right]$ in $K(\mathscr{C})$. Since the P_{i} have a p-filtration the matrix E has positive entries.
Theorem 3.4 (BGG Reciprocity). - We have $\mathrm{E}={ }^{t} \mathrm{D}$ and therefore $\mathrm{C}={ }^{t} \mathrm{DD}$.
Proof. - We proceed by induction. Let E and D be the decomposition matrices of \mathscr{A} and $\hat{\mathrm{E}}$ and $\hat{\mathrm{D}}$ the corresponding matrices in $\mathscr{C}(\mathrm{F}, \mathrm{G} ; \mathrm{T})$. Because the P_{i} have p-filtrations and $\mathrm{L}^{1} \hat{\mathrm{~F}}\left(\mathrm{M}_{j}\right)=0$ we have

$$
\hat{\mathrm{E}}_{i j}=\mathrm{E}_{i j} \quad \text { if } \quad 1 \leqq i, j \leqq r
$$

and

$$
\mathrm{E}_{i, r+1}=0 \quad \text { if } \quad 1 \leqq i \leqq r .
$$

So to prove the proposition we must only check that

$$
\hat{\mathrm{D}}_{r+1, i}=\hat{\mathrm{E}}_{i, r+1} \quad \text { if } \quad 1 \leqq i \leqq r+1
$$

i. e.

$$
\left[\hat{\mathrm{P}}_{r+1}: \hat{\mathrm{M}}_{i}\right]=\left[\hat{M}_{i}: \hat{\mathrm{L}}_{r+1}\right]
$$

We have the short exact sequence $0 \rightarrow \hat{\mathrm{~F} R} \rightarrow \hat{\mathrm{P}} \rightarrow \hat{\mathrm{L}}_{r+1} \rightarrow 0$ where R represents G and $\hat{\mathrm{P}}$ is the new projective constructed in paragraph 2 . Write

$$
\hat{\mathrm{P}}=\hat{\mathrm{P}}_{r+1} \oplus \underset{i=1}{\oplus} \hat{\mathrm{P}}_{i}^{\alpha_{i}}
$$

as before. Then if $1 \leqq i \leqq r$

$$
\begin{aligned}
& {\left[\hat{\mathrm{P}}_{r+1}: \hat{\mathrm{M}}_{i}\right]=\left[\hat{\mathrm{P}}: \hat{\mathrm{M}}_{i}\right]-\sum_{j=1}^{r} \alpha_{j}\left[\hat{\mathrm{P}}_{j}: \hat{\mathrm{M}}_{i}\right]=\left[\mathrm{R}: \mathrm{M}_{i}\right]-\sum_{j=1}^{r} \alpha_{j} \mathrm{E}_{\mathrm{j} i} ; } \\
{\left[\hat{\mathrm{M}}_{i}: \hat{\mathrm{L}}_{r+1}\right]=} & \operatorname{dim} \operatorname{Hom}\left(\hat{\mathrm{P}}_{r+1}, \hat{\mathrm{M}}_{i}\right) \\
= & \operatorname{dim} \operatorname{Hom}\left(\hat{\mathrm{P}}, \hat{\mathrm{M}}_{i}\right)-\sum_{j=1}^{r} \alpha_{j} \operatorname{dim} \operatorname{Hom}\left(\hat{\mathrm{P}}_{j}, \hat{\mathrm{M}}_{i}\right) \\
= & \operatorname{dim} \hat{\mathrm{F}} \mathrm{M}_{i}-\sum_{j=1}^{r} \alpha_{j} \mathrm{D}_{i j} \\
= & \operatorname{dim} \operatorname{Hom}\left(\mathbf{M}_{i}, R^{*}\right)-\sum_{j=1}^{r} \alpha_{j} \mathrm{D}_{i j} .
\end{aligned}
$$

So we must show that $\left[R: M_{i}\right]=\operatorname{dim} \operatorname{Hom}\left(\mathbf{M}_{i}, \mathbf{R}^{*}\right)$. We have $\operatorname{Ext}^{1}\left(\mathbf{M}_{i}, \mathbf{M}_{j}^{*}\right)=0$ and $\operatorname{dim} \operatorname{Hom}\left(\mathbf{M}_{i}, \mathbf{M}_{j}^{*}\right)=\delta_{i j}$ (this can easily be established by induction). Using this and the fact that R has a p-filtration we see that $\left[\mathrm{R}: \mathrm{M}_{i}\right]=\operatorname{dim} \operatorname{Hom}\left(\mathrm{M}_{i}, \mathrm{R}^{*}\right)$.
Q.E.D.

We will conclude by proving that the projective dimension of $\mathrm{P}(\mathrm{X}) \leqq 2 l(\mathrm{X})$, where

$$
l(\mathbf{X})=\operatorname{dim}_{\mathbf{C}} \mathbf{X}-\min \left\{\operatorname{dim}_{\mathbb{C}} \mathbf{S} \mid \mathbf{S} \in \mathscr{S}\right\}
$$

We define another length function $l(k)$ by induction as follows. $l(1)=0$. Suppose \mathscr{A} has objects $\mathrm{M}_{1}, \ldots, \mathrm{M}_{r}$ and $\mathscr{C}=\mathscr{C}(\mathrm{F}, \mathrm{G} ; \mathrm{T})$ is constructed with representing object R . Let $l(r+1)=l(r)$ if R has a decomposition series with M_{k} such that $l(k)<l(r)$, $l(r+1)=l(r)+1$ otherwise. Note that if X has strata S_{1}, S_{2}, \ldots then $l(k) \leqq \operatorname{codim}_{\mathbf{C}} S_{k}$. Let $l(\mathscr{C})=\max _{k \geqq 1} l(k)$. Then $l(\mathscr{C}) \leqq l(\mathbf{X})$.

Lemma 3.5. - We have p. $d . \mathrm{M}_{i} \leqq l(i)$.
Proof. - We proceed by induction. Construct $\mathscr{C}(\mathrm{F}, \mathrm{G}, \mathrm{T})$ from \mathscr{A}. Since \mathscr{A} has finite projective dimension by induction, $\mathrm{L}^{q} \hat{F}\left(\mathrm{M}_{i}\right)=0$ for all $q>0$, i. e. the modules $\mathrm{M}_{\boldsymbol{i}}$ are \hat{F}-acylic. Hence p.d. $\hat{F} M_{i}=$ p.d. M_{i}. Therefore it is enough to prove the result for

```
4e SÉRIE - TOME 20 - 1987 - N N 3
```

the new $\hat{\mathrm{M}}_{r+1}=\hat{L}_{r+1}$. But we have a short exact sequence

$$
0 \rightarrow \hat{\mathrm{FR}} \rightarrow \hat{\mathrm{P}} \rightarrow \hat{\mathrm{~L}}_{r+1} \rightarrow 0
$$

so p. d. $\hat{\mathrm{M}}_{r+1} \leqq \mathrm{p} . \mathrm{d} . \mathrm{R}+1 \leqq l(r+1)$, because R has a p-filtration.
Q.E.D.

Proposition 3.6. - We have p.d. $\mathrm{L}_{i} \leqq 2 l(\mathscr{C})-l(i)$ and hence p.d. $\mathrm{P}(\mathrm{X}) \leqq 2 l(\mathrm{X})$.
Proof. - If $i=r+1$ this follows from Lemma 3.5. Consider the short exact sequence

$$
0 \rightarrow \hat{\mathrm{~K}}_{i} \rightarrow \hat{\mathrm{M}}_{i} \rightarrow \hat{\mathrm{~L}}_{i} \rightarrow 0
$$

The module $\hat{\mathrm{K}}_{i}$ has a decomposition series involving only $\hat{\mathrm{L}}_{j}$, where $l(j)>l(i)$. We proceed by descending induction on i. Hence assume that p.d. $\hat{\mathrm{L}}_{j} \leqq 2 l(\mathscr{C})-l(j)$ for $j>i$. Then

$$
\text { p. d. } \hat{\mathrm{L}}_{i} \leqq \max \left(\text { p. d. } \hat{\mathrm{M}}_{i}, 1+\text { p. d. } \hat{\mathrm{K}}_{i}\right) \leqq \max (l(i), 1+2 l(\mathscr{C})-(l(i)+1))=2 l(\mathscr{C})-l(i) .
$$

Q.E.D.

REFERENCES

[B] H. Bass, Algebraic K-Theory, W. A. Benjamin, New York, 1968.
[BB] A. Beilinson and J. Bernstein, Localisation des g-Modules (C.R.Acad. Sci. Paris, T. 292, Série I, 1981, pp. 15-18).
[BBD] A. Beilinson, J. Bernstein and P. Deligne, Faisceaux Pervers (Astérisque, Vol. 100, 1983).
[BGG] J. Bernstein, I. Gelfand and S. Gelfand, Category of g-Modules (Functional Anal. Appl., Vol. 10, 1976, pp. 87-92).
[BK] J.-L. Brylinski and M. Kashiwara, Kazhdan-Lusztig Conjecture and Holonomic Systems (Inv. Math., Vol. 64, 1981, pp. 387-410).
[CR] C. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Wiley, 1962.
[GM] M. Goresky and R. MacPherson, Morse Theory and Intersection Homology (Asterisque, Vol. 101, 1983, pp. 135-192).
[H] J. E. Humphreys, Modular Representations of Classical Lie Algebras and Semisimple Groups (J. Algebra, Vol. 19, 1971, pp. 51-79).
[K] M. Kashiwara, The Riemann-Hilbert Problem for Holonomic Systems (Publ. R.I.M.S., Kyoto, Vol. 20, 1984, pp. 319-365).
[MV1] R. MacPherson and K. Vilonen, Une construction élémentaire des faisceaux pervers (C.R. Acad. Sci. Paris, T. 299, Series I, 1984, pp. 443-446).
[MV2] R. MAcPherson and K. Vilonen, Elementary Construction of Perverse Sheaves (Inv. Math., 1986).
[M] Z. Mebkhout, Une équivalence de catégories et une autre équivalence de catégories (Comp. Math., Vol. 51, 1984, pp. 51-88).
[Mu] J. P. Murre, Sur la pro-représentabilité de certains foncteurs en géométrie algébrique, mimeographed notes, 1964.
(Manuscrit reçu le 6 octobre 1986, révisé le 4 mai 1987).
R. Mirollo,

Brown University, Providence, R.I. 02912
K. Vilonen, Harvard University, Cambridge, MA 02138.

[^0]: (${ }^{1}$) Partially supported by N.S.F.

[^1]: ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE

