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A GENERALIZATION
OF BERGER'S RIGIDITY THEOREM

FOR POSITIVELY CURVED MANIFOLDS (Q

BY DETLEF GROMOLL AND KARSTEN GROVE

In this paper we consider a rigidity problem for compact connected riemannian
manifolds M of dimension n^2, with positive sectional curvature K. For convenience
we normalize the metric so that K^l. By the classical result of Bonnet-Myers, the
diameter of M satisfies diam(M)^7i, and by a theorem of Toponogov equality holds if
and only if M is isometric to the unit sphere S"(l) in IR"4'1. The question we are
concerned with here arises from the following result of [GS], a homotopy version of
which was first proved by Berger (cf. [CE] or [GKM]).

DIAMETER SPHERE THEOREM. — A complete riemannian manifold M of dimension n ̂  2
with K^l and diam(M)>7i/2 is homeomorphic to the sphere S".

This conclusion is no longer true if the condition diam(M)>7i/2 is relaxed to
diam(M)^7i/2. Real projective space, as well as lens spaces in general, with metrics of
constant curvature 1 provide simple counterexamples. The other projective spaces with
their standard metrics of curvature 1 ̂  K ̂  4 are simply connected examples with diameter
71/2.

In this paper we give an essentially complete classification of the manifolds M with
K^l and diam(M)= 7i/2.

THEOREM A. — Let M be a complete riemannian manifold of dimension n^2 with K^ 1
and diam (M) = 7C/2. Then either

(i) M is a twisted sphere, or
(ii) M, the universal covering of M, is isometric to a rank 1 symmetric space, except

possibly when M has the integral cohomology ring of the Cayley plane CaP2.
Moreover in the non-simply connected case we have:

(1) This work was partially supported by the National Science Foundation (Grant MCS 7802679A03) and
the Danish Natural Science Research Council (511-8169, 10060).
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228 D. GROMOLL AND K. GROVE

THEOREM B. — Let M be as above with non-trivial fundamental group K^ (M) =F. Then
either

(0 M is isometric to S"(l), and the action ofT on S"(l) has a proper totally geodesic
invariant subsphere 8^(1) in S"(l), or

(li) M is isometric to CP2^1 mth its standard metric of curvature 1^K^4, and F is
isomorphic to ~S-^ acting on CP2^"1 by the involution I,

I[^l, . . . , Z^d^^d+lf • • • ? Z2d9 — — z l 9 • • • » "^L

m homogeneous coordinates ofCP2'1'1.
These results were announced in [GGJ. Special cases of Theorem B were discussed

in [SS] and [Sa]. For a classification of spherical space forms we refer to [W].
As the diameter sphere theorem generalizes the classical sphere theorem of Rauch,

Berger, and Klingenberg, Theorem A above extends the following well-known rigidity
result.

THEOREM (Berger). — Let V be a complete simply connected riemannian manifold with
1 ̂ K^4. Then V is a twisted sphere, or V 15 isometric to a rank 1 symmetric space.

In fact, the assumptions 1 ̂  K ̂  4 and V simply connected imply, although non-trivially,
that the injectivity radius of V satisfies inj(V)^7i/2 (cf. [CGJ or [KS]), in particular
diam(V)^7i/2.

The paper is divided into five sections. First we construct a "dual" pair of convex
sets A and A' in M at maximal distance (cf. also [SS], [Sa], and [S]). In Section 2, using
ideas of [GS], we show that the complement of a "tubular" neighborhood of A U A' in
M is topologically a product. This implies in particular: If A and A' are both contractible
then M is a twisted sphere (Theorem 2. 5). In the remaining cases we prove, in Section
3, that A and A' have no boundary (one of them is possibly a point), and that any
geodesic perpendicular to A gives rise to a minimal connection from A to A', and vice
versa. This leads to the construction of a riemannian submersion from the unit normal
sphere at any point of A' to A, and vice versa. Our study of metric fibrations in
[GGJand [003] is then used in Section 4 to deal with the simply connected case
(Theorem 4.3 and Remark 4.4). In Section 5 we give a similar analysis for the covering
space M of M, when M is not simply connected (Theorem 5.1, 5.2, 5.3). Theorems A
and B are immediate consequences of 2. 5, 3.2, 4. 3, 5.1, 5.2 and 5.3.

We refer to [OKM] and [CE] for basic tools and results in riemannian geometry that
will be used freely.

1. Dual convex sets

The metric distance between points x, y e M is denoted by d (x, y), and d (x, B) is the
distance from x to a subset Bc=M. For a smooth submanifold VcM and xeV, T^V
and T^ are the tangent and normal spaces of V at x, respectively. As usual
expv : T^V -> M is the (normal) exponential map, and C(V) is the cutlocus of V in M.
4s SERIE - TOME 20 - 1987 - N° 2



A RIGIDITY THEOREM FOR POSITIVELY CURVED MANIFOLDS 229

All geodesies are parametrized by arc length on [0, ], unless otherwise stated, and L
denotes the arc length functional. To specify the initial direction u e T^ M of a geodesic
emanating from x, we sometimes write Cy, i.e. c^(t)=exp^(tu) or C^(O)=M.

Recall that a hinge at p in M is a triple (c^, c^ a) where c^ and c^ are geodesies in M
with c^(0)=c^(0)=p and and ^ (Ci(0), €2(0))= a, The following version of the basic
triangle comparison theorem of Toponogov will be most important to us throughout
this paper:

THEOREM 1.1 (Toponogov). —Suppose K^l. Let (c^, c^, a) be a hinge in M and
(Ci, €2, a) a hinge in S^l) mth L(^)=L(c;)=J,, f= 1,2.

(i) Ifc^ is minimal and l^<n then

d(c,(l^c,(l,))^d(c,(l^c^l,)).

(ii) If in addition 0<a<7i and equality holds in (i), then there is a minimal geodesic €3
in M. from c ^ ( l ^ ) to c^(l^) such that: The triangle (c^ c^ €3) spans an immersed totally
geodesic surface in M, of constant curvature 1, in which the minimal connections from
c! (A) t° c^(t\ O^^i? are fl^50 minimal in M.

DEFINITION 1.2. — A subset BcM is totally ^-convex, 0<^oo, if for any pair p^,
p^eB and any geodesic c : [0, l\ -> M mth c(0)=p^ c(l)==p^ and l<a, one has c[0, /]c=B.

Obviously, B is totally convex in the sense of [CG^] if and only if it is totally oo-convex.
From now on we always assume that K^ 1 and diam(M) =n/2.
For any subset BcM let B' denote the set of points in M at maximal distance n/2

from B, i. e.

B'=L(=M|ri(x, B)=7 l l .

We refer to B7 as the dual set of B in M.

PROPOSITION 1.3. — B' is totally n-convex.

Proof. — Since clearly B^B" and 5'= (~}_{p}\ we need only consider the case
p e B

B ={p}. Suppose d(x^ p)=d{x^ p)=n/2, and let c be a geodesic from x^ to x^ with
L(c)<7i. Since x^ is at maximal distance from p, we can choose a minimal geodesic c^
from Xi to p such that a= ^ (ci(0), c(0))^n/2. But L(c)<7t and d(p, x^=n/2, and
we obtain a=7t/2 from (i) and d(p, c(t))=n/2 for any O^^L(c) from (ii) in 1.1.

The following properties of dual sets are obvious:
(i) BcB',

(ii) if BI cB2 then B\ ̂ B^,
and in particular,

(iii) B^B"'.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



230 D. GROMOLL AND K. GROVE

From now on we fix a non-empty set BcM with B'^0 and put A=B' (for B we
could choose a suitable point). Then A"=A, i. e.

^=fxeM\d(x,^)=n\, ^=!xeM\d(x,^/)=n}.

We refer to A and A' as a dual pair in M. By the structure theorem for convex sets in
riemannian manifolds, we know in particular that A and A' are topological manifolds
with (possibly empty) boundary whose interior is smooth and totally geodesic (cf. [CGJ).

Let a=dim A and a^dim A".

PROPOSITION 1 . 4 . — f l + a ' ^ n — 1 .
proof. — If A or A" is a point the claim is obvious. Assume a, a'^1 and choose

interior points x e A, x ' e A'. Let c be a minimal geodesic from x to x\ Now if a + a' ̂  n
then there exists a unit parallel field X along c which is tangent to A at x and tangent
to A' at x\ Since M has positive curvature, X gives rise to shorter curves connecting A
and A", which is a contradiction.

Aside from the intrinsic structure of A and A', their extrinsic properties are equally
important. For any subset Bc=M and any s^O, consider

eB={xeM\d(x, B)^e}.

Using the compactness of M, one easily obtains the following facts, cf. also [Wa].

LEMMA 1.5. — There exists an £o>0 such that for any e mth 0<£^£o and any closed
convex set CczM:

(i) For each qe^C there is a unique q*eC mth d(q, q*)=d(q, C), and there is a unique
minimal geodesic segment qq* from q to q*.

(ii) The map q -> q* from "C to C is Lipschitz. Deforming "C along the geodesic
segments qq* to q* defines a strong deformation retract of^C onto C.

(ii) ()eC={xeM\d(x, C)=£} is a codimension 1 submanifold in M of class C1 and a
strong deformation retract of€C\C.

If in the above lemma C has no boundary, everything is of course smooth, and ̂  is
nothing but a tubular neighborhood of C in M.

2. Topological duality and the non-rigid case

Following the ideas in [GS] we can now smooth either one of the distance functions
d( , A)=rf^ d( . A/)=dA^ and construct a smooth gradient vector field on M, which
for sufficiently small s>0 is transversal to the boundary components 3s A and ^A' of
M^MV^A L^A'), with no zeros in Mg. For many purposes it is sufficient to have
such a "gradient-like" vector field, which was observed in [G]. This simplifies some
arguments. As these constructions are rather straight-forward extensions of those in
[GS] (cf. also [G]) we only give a brief discussion.

46 SERIE - TOME 20 - 1987 - N° 2



A RIGIDITY THEOREM FOR POSITIVELY CURVED MANIFOLDS 231

Let 1-4 denote the set of all hinges (c. c\ a) at xeMo=M\(A UA"), where c, c' are
minimal geodesies from x to A, A". We define the function a : Mo -> 1R by

a(x)=min{a|(c, c\ a)eH^}

and conclude

(2.1) Jc<a^7l

from 1.1 (i).
We say that xeM\A (resp. M\A") is a critical point for the (non-smooth) function

d^ (resp. d^) if for any non-zero ueT^M there is a minimal geodesic c from x to A
(resp. A') such that ^ (u, c(0))^7c/2. By 2.1 both d^ and d^ have no critical points in
Mo. As a consequence we obtain the following topological duality between A and A" in
M.

THEOREM 2 .2 .—Let 0<e^£o as in Lemma 1.5. Then M is C1-diffeomorphic to
SAL Up6^ /or some diffeomorphism F : yA -> c^A'. Jn particular A (res/?. A") is a strong
deformation retract ofM\A' (resp. M\A).

Proof. — By 2.1, for any xeMg we find a smooth non vanishing vector field U^
defined in a neighborhood N^ of x in Mo with

(2.3) ^(U,00, c(0))<71 and <(U,(y), c'(0))>71

for all .yeN^ and all minimal geodesies c, c ' from ^ to A, A". Let ^ be a partition of
unity subordinate to the covering { N^ } of Mg. Then U = ̂  ̂ . U^/|| ̂  ̂  U^^ [[ is a smooth
unit vector field on Mg satisfying 2. 3 for all ^eMg. Notice that by 1.5, U is traversal to
both components ^A, ^A' of <9Mg. Using 2.3 and the first variation formula, d^ is
strictly decreasing on any integral curve of U. Now there is a constant T>0 such that
any maximal integral curve (p with (p(0) e^A" will reach 3s A before time T. Otherwise,
by a limiting argument, we would find a local integral curve on which d^ is constant.
Therefore we have shown Mg is C1-diffeomorphic with ^A' x [0,1] and this is enough to
complete the proof.

Remark 2.4. — It is straightforward to modify the construction of the vector field U
in the proof of 2.2 so that

U(c(0)=c(r), e^J-e,

along all minimal geodesies c from A' to A. This will be used in 3. 5.

THEOREM 2.5. — A (resp. A') is contractible iff it is a point or has non-empty boundary.
If both A and A' are contractible, then M is homeomorphic to the sphere S".

This is a direct consequence of Theorem 2.2 and the following

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



232 D. GROMOLL AND K. GROVE

LEMMA 2.6. — Let CcM be a closed convex set and let £>0 be as in Lemma 1.5.
Then ^C is homeomorphic (in fact C1-diffeomorphic) to the disc D" if 9C^0.

Proof. — First note that if dimC=k then C is homeomorphic to the disc D^. This
follows from the fact the fact that the function \|/ : C-> R given by \|/(x)=rf(x, 9C) is
strictly concave since K is positive, cf. Theorem 1.10 of [CGJ. In particular for each
a^O, the set

Ca={xeC\d(x, 9C)^a}

is convex, and the intersection of all Ca^0 is the unique point SQ where v|/ has its
maximum. In the language of [CGJ, SQ is the soul of C. Now according to Lemma
2.4 of [CGJ there is 0<8^£/2 such that

Cc^cQ,

whenever O^a^a'^max v|/ and f l /—a<§. Choose numbers 0=0o<^i< . . . <a^=max
v|/ with f l^+i —a^<8 and consider the convex sets

C=Cao=>Ca^. . . =30={So}.

Now C^c:8/2 (C^i), and hence ^(C^O^C01^) for f=0, . . . . r-1. From 1. 5 we then
get in particular that for each ge^^C01) there is a closest point g*6C f l i+ l and a unique
minimal geodesic from q to ^*, which intersects ^(C01^1) at the unique closest point
from q. The connecting minimal geodesies give rise to a C^-diffeomorphism
e/2^Q^+^ _^e/^Q^ Thus we have the following sequence of diffeomorphisms

^-^(C^^^CQ-. . . -^(C^^O^-D".

5^ also [S] for a slightly different proof of Theorem 2.5.
Remark 2.7. — We like to mention that the arguments used in Theorem 2.2 are by

now known to also provide a simple and direct proof of the diffeomorphism statement
[P] in the « Soul Theorem" of [CG^]: The distance function d^ from a soul S in a
complete noncompact manifold M with nonnegative curvature has no critical points
outside S. This follows since any xeM\S lies in the boundary of a compact totally
convex set C with Sc=int C, by the basic construction in [CGJ.

3. Normal holonomy of dual sets

From now on we assume that M is not homeomorphic to the sphere S". In view of
Theorem 2. 5 this means, at least one of the two dual sets, in this section say A, is not
contractible. In particular 9A=0 and A is not a point. We will show first that
necessarily also 9A'=0. Then we will prove: The cut locus C(A) of A in M is the dual
set A', and vice versa. The arguments involved will finally lead to the construction of a
riemannian submersion from each unit normal sphere of one dual set onto the other.
This is a crucial step toward rigidity.

4° SERIE - TOME 20 - 1987 - N° 2



A RIGIDITY THEOREM FOR POSITIVELY CURVED MANIFOLDS 233

We begin with the following observation, cf. also the proof of Proposition 1.3. For a
piecewise smooth curve CT : [0, I\ -> M, parallel transport along o is denoted by
^:T^o)M-^T^M.

LEMMA 3.1. — Let c: [0, 1} -> A be a geodesic and c^ a minimal geodesic from c(0) to
A'. Then ^(u) defines a minimal geodesic from c(t) to c^(n/2)eA/ for O^t^l. The set
of these geodesies form an immersed totally geodesic surface in M of constant curvature 1.

Proof. — It is sufficient to consider l<n, and since clearly ^ (u, c(0))=7i/2, our claim
is a direct consequence of 1.1 (ii) applied to the hinge (Cy, c, n/2).

Now Proposition 1.4, Theorem 2. 5 and Lemma 3.1 yield

THEOREM 3.2. — // n = 2 then M is either homeomorphic to S2 or isometric to R P2

with constant curvature 1.
Since any smooth curve is a limit of broken geodesies, another immediate consequence

of 3.1 is

COROLLARY 3.3. — Let a: [0, 1} -> A be a piecemse smooth curve in A and suppose the
unit vector M€T^(())A defines a minimal geodesic c^ to A", i.e. c^(K/2)eA./. Then ^(u)
defines a minimal geodesic from a(t) to c^(n/2) for all 0'^t^l.

Pick a unit normal vector M G T ^ A with Cy(7r/2)==//eA'. Consider the closure E of
the set of unit normal vectors to A obtained from u by parallel translation along piecewise
smooth paths a in A with a (0) =p. Then n: E -> A is a sub bundle of the unit normal
bundle n: Tj- A -> A of A in M. To see this let Eq = {u e E [ n (u) = q] and observe that Ep
is the orbit through u of the closure of the normal holonomy group <S>p at p. Furthermore,
we have E^=T^(Ep) for any o: [0, l\ -> A from p to q. Note in particular that the fiber
E^ is a compact homogeneous space.

As a first application of this construction we obtain

PROPOSITION 3.4. — I f A' 15 contractible then A '=={/ /} is a point and C (A) ={//},
C(//)=A.

Proof. —Let p ' e A ' be arbitrary and c^ a minimal geodesic from some p e A to p\
Consider the bundle n: E -> A constructed from u as above. We now claim that
E==T^A. Since A' is contractible the total space T^A is homeomorphic to S"~1 by 2.6
and 2.2. Thus if T^- A\E^0 we see that n: E c; T^ A ->• A is homotopic to a constant,
i.e. there is a homotopy H: Ex [0,1]-^ A with Ho =71 and H^(E)={q}. Now
7i ° idg = Ho, so by the homotopy lifting property of n: E -> A we obtain a homotopy
H:Ex[0, 1]->E with Ho==idE and fii(E)c=E^. This is clearly impossible since E is a
closed manifold, which is not a point. Now by 3.3 any v e E defines a minimal geodesic
to p\ This shows that any unit normal vector to A defines a minimal geodesic to p\
Thus A'^T/}, C (A) ={;/}, and then clearly also C(p/)=A.

As a second application of the holonomy construction above we get similarly

PROPOSITION 3.5. — If A' is not contractible, in particular 3A'=0, then C(A)=A' and
C(AO=A.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



234 D. GROMOLL AND K. GROVE

Proof. — Consider a bundle n: E -»• A as before. The diffeomorphism F: 3s A -> 36 A"
in 2.2 obtained from the flow of the vector field U of 2.4 induces a diffeomorphism
F:T^A -^Tj-A' of the unit normal bundles of A and A', via the normal exponential
maps. By construction, F imbeds E into the normal sphere S p ' of A' at p ' . Thus
TC : E -> A factors through the sphere S p ' , and we conclude as in 3.4 that F (E) = Sp.. This
proves that C(AO=A, and then also C(A)=A / .

We have seen in 3.4 and 3. 5 that for any p ' e A' there is a fibration

n^: Sp'-^A, M ' - ^ e x p j - . M i

of the unit normal sphere Sp, of A' at p ' over A. These fibrations impose additional
geometric restrictions on A, and by symmetry also on A" if k' +{?'}. The basic reason
for this is contained in

THEOREM 3.6. — For any p ' e A', the fibration n^: S p ' -> A 15 a riemannian submersion.
Proof. — By definition n^ is clearly smooth. Now let v e Tp A be a unit tangent vector

and choose i/eSp/ with n^(u')==c^(n/2)=p. From 3.1 we see that the geodesic Cy in A
together with the geodesic c^ determine a geodesic y^ in Sp, with n^ ° y^ = Cy. This shows
that n^ is a submersion. Since weT^(S^) is of unit length, all we need to prove is that
w is perpendicular to the fiber n^1 (p) in Sp' at u\ Let (p: ( — s, s) -> n^1 (p) be a smooth
curve with (p(O)eT^(Sp.). Then (p gives rise to a Jacobifield Y along c^. with Y(0)=0
and Y /(0)=(p /(0). Similarly w determines a Jacobifield X along c^ with X(0)=0 and
X7 (0) = w in T^ A'. In fact X (t) == sin t ' W, where W is a parallel field along c^ determined
by W(7i/2)=u. If we let ̂  denote the vector space of parallel fields W along c^ with
W(7i/2)€=TA, then since Y(7c/2)=0, clearly <Y, W > = 0 for all We^T. Therefore also
< Y, X' > = 0 = < Y, X" > and hence < Y', X' > = 0. In particular

<Y / (0 ) ,X / (0 )>=<( i ) (0 ) ,w> ,

i. e. w is perpendicular to any vector tangent to the fiber.
Although we will not use it in what follows, we like to point out an interesting and

almost immediate consequence of the results in this section.
Remark 3.7. — Using that Sp. is isometric to the unit sphere S""0 '-1 we find that all

geodesies in A are periodic with maximal period n. It then follows that all geodesies in
M through A are periodic, and hence from [BB] that the rational cohomology ring of M
is generated by one element.

We will, however, make use of the following much stronger and more difficult result.
Remark 3 . 8 . — Suppose A is simply connected. Topologically, the fibers of n^: S p ' -> A

are homotopy spheres ^fc, k=l ,3 or 7, and fe=7 can occur only when S^=S15 [B].
Except for that case, our work in [GGJ and [003] then implies that K^ : Sp, -> A is
metrically congruent to a Hopf fibration. In particular, A is isometric to a rank 1
symmetric space with 1 ̂  K ̂  4 and diam (A) = n/2.

We are now ready to complete the metric classification of non-spherical manifolds
with K ̂  1 and diameter n/2.
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A RIGIDITY THEOREM FOR POSITIVELY CURVED MANIFOLDS 235

4. Rigidity in the simply connected case

In this section we assume that M is simply connected and not homeomorphic to S".
In particular n^3, and the dual sets A and A" in M are totally geodesic closed submani-
folds, totally Ti-convex, one of them possibly a point. It is an immediate consequence of
3.1 that all geodesies in A, A" are periodic with common (not smallest) period In.

LEMMA 4.1. — Any closed geodesic of tenth <2n in A, A" is homotopically trivial in
A, A'.

Proof. — Let c be a closed geodesic of length I in A, i.e. c(l)=c(0). If l<ln, then
l=2n/k for some integer fc^2, in particular l^n. Let /?=c(0), q=c(to) for some
toe(0, 0, and consider the two (not normal) geodesies y^ in A defined by

Yo (5) = c (sto\ Yi (5) = c (I - s (I - to))

and O^s^ 1. Now let {y,}, O^r^ 1, be a homotopy of smooth curves in M from JQ to
Yi. Since any geodesic in M from p to q of length >TI has index ^ n — 1 ̂ 2 we conclude
from (degenerate) Morse theory (cf. [CGJ) that we may assume L(y^)^n for O^t^l.
If for some r, we have Y([O,I] HA'^0, then clearly y, is a geodesic of length n and y^
on [0,1/2] is a minimal geodesic from p to A". It then follows from 3.1 that
^=y^(l)=c(7i). By choosing to so that c(n)^c(to)=q we conclude that for all O^t^l
necessarily y^OJJcrMN^A'. Now 2.2 implies that Yo and y^ are homotopic in A, or
equivalently, c is homotopically trivial in A.

PROPOSITION 4.2. — A and A" are simply connected.

Proof. — Suppose A is not simply connected. Let c: [0, f| -> A be a closed geodesic in
A of minimal length in its free homotopy class. Then l=2n by 4.1 and dim A = a = l
by standard comparison and the minimality of c, i.e. A=c [0,2 n] is a simple closed
geodesic of length 2 n. This is impossible because A is totally jr-convex and
diam(M)=7i/2.

We are now in a position to prove

THEOREM 4 . 3 . — I f M is simply connected and not homeomorphic to S", then M is
isometric to a symmetric space of rank 1, except possibly \vhen M=M16 has the integral
cohomology ring of CaP2.

Proof. — First suppose A, A" is a dual pair, and say A'^T/}. By 3.4, all geodesies
in M starting at p ' are simple loops of length n. The generalized version of the
Bott-Samelson Theorem in [Be] then implies that M has the integral cohomology ring of
a projective space 1̂ , m ̂  2. Consider the riemannian submersion n^: Sp. -> A in 3.6.
By the main results of [003] , [003] (cf. 3.8), n^ is isometrically equivalent to a Hopf
fibration S^"1 -> F " ' 1 (k\ except possibly when Sp/ = S15 and n^ has fibers diffeomorphic
to S7, in our case. In this last case, M16 has the integral cohomology ring of the Cayley
plane CaP2. In all the other cases we will now prove that M is isometric to standard
P"1 (k) with diameter jc/2.
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236 D. GROMOLL AND K. GROVE

In the model space, for po e P" (k), we have

Ao^o^CO^P'"1^),

and Ti^o ' ' ^p'o -> Ao in 3.6 is a standard Hopf fibration. According to 3.8, we have the
commutative diagram

c __. c _ofcm-1
V——^ ^P'o ~ ̂

I lo I"A [ [ "AQ

A—. Ao =Pn-l(fc)
(

with isometries i, IQ. Clearly,

/: M -^ P" (fe), expp, (^) -^ exp^ (? io u\

0^r^7i/2, is a well defined continuous map and/|A=i. By definition, /maps minimal
geodesies in M from p ' to p e A to minimal geodesies in P" (fe) from PQ to f(p). The set
of all such geodesies in P^k) form a totally geodesic submanifold isometric to the sphere
5^(1/2) with diameter 7i/2. We claim that the same statement holds in M. In fact let
Be A be the dual set of p in A. Then B = A ^ { ^ } / is a totally geodesic, Ti-convex
submanifold of M isometric to standard P""2^). Note that { p } " ={p}. All this
depends on A being isometric to standard Pm~l(k). Now B'cM is a totally geodesic,
totally Tr-convex submanifold of M which contains the set of minimal geodesies from p
to p\ Moreover, for any q e B, n^: Sq -> B' is a riemannian submersion from the unit
normal sphere Sq = S2 k ~1 (1) to B'. Again by 3. 8, B' is isometric to S^ (1/2) and coincides
with the set of minimal geodesies from p to p\ It is now an immediate consequence
that/maps M\A isometrically onto Fn(k)\AQ, and therefore/is globally isometric.

To complete the proof, we need to find a dual pair A, A'={//}. If A, A' is a dual
pair, A symmetric, then { p Y / = { p } for any peA, as we have seen, and we are done.
By 3. 8 it only remains to analyze the possibility dim A = dim A7 = 8 and dim M = 24. Fix
peA, 7/eA' and consider the set of minimal geodesies from p to p\ By construction of
^A? ^A' we see ^at in this case the closure G of the normal holonomy group at p ' acts
on Sp'=S15, and the orbits are exactly the fibres of n^. But such an action does not
exist. A simple argument in our context can be given as follows: Let heG have a fixed
point x = hx. Then the differential h^ is the identity on the normal space v^ of the orbit
Gx at x, and thus h=id on the great sphere exp(v^). Now let yeSp. be arbitrary. The
intersection of exp(v^) and exp(Vy) contains a point z, for dimension reasons. But z=hz
and ^eexp(v^), so by the above also y=hy, and we conclude that h=id. Therefore, G
would act freely on Sp/, which is impossible, since the fibers are 7-spheres and thus not
diffeomorphic to a Lie group.

Remark 4.4. — It is clear from the above proof, that part (ii) of Theorem A in the
introduction holds without any restriction, if the only Riemannian fibration from the
euclidian sphere S15^) with fiber S7 is the Hopf fibration, up to congruence.
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5. Rigidity in the non-simply connected case

In this section we assume that M is not simply connected. Let M -> M be the universal
riemannian covering of M. Clearly, M satisfies K=l and 7i/2^diam(M)^7c.

We first observe

THEOREM 5.1. — IfM is not simply connected and say A" ={//}, then M is isometric
to real projective space RP" of constant curvature 1.

Proof. — Since A" = { p / } is totally Tt-convex, the fiber Tc"1^) consists of two points
p^ and ^2 wlt^ d(p^p^)=K. Therefore n^(M)^Z^ and M is isometric to the sphere
S"(l) by Toponogov's Diameter Theorem. Hence M is isometric to RP".

Now let A, A' be the inverse image of A, A" under the covering projection M -» M.
In (he case left, A and A" are connected, totally geodesic and totally Ti-convex closed
submanifolds of M, with dimensions a, a'^1. Observe that for any JCGM, we have
max {d^ (Jc), d^, (Jc)} ̂  n/2, and using the notation from Section 2,

(A)'=A' and (AT=A.

Hence, by arguments exactly like those in the proof of 2.2, it follows that M is the
disjoint union

M^AuMeU^'.

The closure of Mg is diffeomorphic to the product ^A x [0,1]. This leads to the following
reduction.

THEOREM 5.2. — yM is not simply connected and diam(M)>7c/2, then M is isometric
to S^l), and the induced orthogonal action of n^ (M) on V^1 has a proper invariant
subspace.

Proof. — As in the proofs of 4.1 and 4.2 we see that A (resp. A') is either simply
connected or a closed geodesic of length In. In the latter case we conclude diam(]V[) =71,
since A is totally Tr-convex, and hence by Toponogov's Diameter Theorem, M is isometric
to S"(l). Otherwise, using the above topological description of M, a simple transversality
argument shows for the inclusion i^: A -> M, that in homotopy

(f^: 71, (A) ^71, (M)

is injective for q^n—a'—l, and surjective for q^n—a/—\. An analogous conclusion
holds for (('A')*- This implies that a+a^n—l, since by the Main Theorem in [GS], M is
homeomorphic to S". Then by 3.6, both A and A" are of constant curvature 1, and
hence isometric to S^l) and S0 (1), respectively. Again by Toponogov's Diameter
Theorem M is isometric to S"(l). Moreover, in either of the above cases A, A' is a
Tii (M)-invariant pair of orthogonal (complementary) great spheres in S"(l). This comple-
tes the proof (cf. also 5.1).

It remains to consider the case diam(M)=7i/2. In this case M has the integral
cohomology ring of a projective space P"^), m= 2, by 4.3. In particular, dim M is
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even. By Synge's Theorem 7ii(M)^Z and there is a fixed point free orientation
reversing isometric involution I: M -> M and M = M/^^l (x). Such a map does not exist
for cohomological reasons when m is even. In the remaining cases M is isometric to a
standard projective space by 4. 3. It is however well-known [W] that the isometry group
of the quaternionic projective space Pm(4)=HPm is connected and hence contains no
orientation reversing element.

Now we are only left with a question about possible fixed point free isometric
involutions on Pm(2)=CPm, for m=ld—\ odd and with quotients of diameter 7i/2. It
is not difficult to see from our constructions that any quotient of CP2^"1 by a fixed
point free involution actually has diameter n/2. By induction on d, any two such
quotients are isometric. As far as existence is concerned, the map

I: CP^-^CP^-1, [z,, . . ., z^]-[^i, . . ., ̂ --^ . . ., -U

in homogeneous coordinates is a fixed point free isometric involution on CP2'1"1.
Summarizing the last conclusions we have

THEOREM 5.3. — IfM is not simply connected and not of constant curvature 1, then M
is isometric to CP2^"1/!.

This finally completes the proofs of Theorems A and B in the introduction.
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