Annales scientifiques de l'É.N.S.

ERIC M. FRIEDLANDER BRIAN J. PARSHALL Rational actions associated to the adjoint representation

Annales scientifiques de l'É.N.S. 4^e série, tome 20, nº 2 (1987), p. 215-226 http://www.numdam.org/item?id=ASENS_1987_4_20_2_215_0

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1987, tous droits réservés.

L'accès aux archives de la revue « Annales scientifiques de l'É.N.S. » (http://www. elsevier.com/locate/ansens) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

RATIONAL ACTIONS ASSOCIATED TO THE ADJOINT REPRESENTATION

By Eric M. FRIEDLANDER $(^{1})$, $(^{2})$ and Brian J. PARSHALL $(^{1})$

In this paper we investigate the G-module structure of the universal enveloping algebra $U(\mathscr{G})$ of the Lie algebra \mathscr{G} of a simple algebraic group G, by relating its structure to that of the symmetric algebra $S(\mathscr{G})$ on \mathscr{G} . We provide a similar analysis for the hyperalgebra hy(G) of G in positive characteristic. In each of these cases, the algebras involved are regarded as rational G-algebras by extending the adjoint action of G on \mathscr{G} in the natural way.

We prove the existence of a G-equivariant isomorphism of coalgebras $U(\mathscr{G}) \to S(\mathscr{G})$ in Section 1. (Our proof requires some restriction on the characteristic p of the base field k.) This theorem, inspired by the very suggestive paper of Mil'ner [12], can be viewed as a G-equivariant Poincaré-Birkhoff-Witt theorem. As a noteworthy consequence, this implies each short exact sequence $0 \to U^{n-1} \to U^n \to S^n(\mathscr{G}) \to 0$ of rational G-modules is split. Then in Section 2, we provide an analogous identification (in positive characteristic) of the hyperalgebras of G and its infinitesimal kernels G, in terms of divided power algebras on \mathscr{G} .

Motivated by the main result of Section 1, we study in Sections 3 and 4 the invariants of $S(\mathscr{G})$ [and of $U(\mathscr{G})$] under the actions of the infinitesimal kernels $G_r \subset G$. For r=1, Veldkamp [14] studied the invariants in $U(\mathscr{G})$, regarded as the center of $U(\mathscr{G})$. We adopt his methods and extend his results. We achieve this by considering the field of fractions of the G_r -invariants of $S(\mathscr{G})$ in Section 3. Our identification of $S(\mathscr{G})^{G_r}$ and $U(\mathscr{G})^{G_r}$ given in Section 4 has a form quite analogous to Veldkamp's description of the center of $U(\mathscr{G})$. As we show in (4.5), this portrayal illustrates an interesting phenomenon concerning "good filtrations" (in the sense of Donkin [6]) of rational G-modules.

The present paper has its origins in the authors' unsuccessful attempts to understand the proof of Mil'ner's main theorem in [12], which asserts the existence of a (filtration preserving) isomorphism $U(\mathscr{G}) \to S(\mathscr{G})$ of \mathscr{G} -modules for an arbitrary restricted Lie algebra \mathscr{G} . We are most grateful to Robert L. Wilson for providing us with the example following (1.4) below, which gives a counterexample to the key step in Mil'ner's argument ([12], Proposition 5).

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE. - 0012-9593/87/02 215 12/\$ 3.20/ © Gauthier-Villars

^{(&}lt;sup>1</sup>) Research supported in part by N.S.F.

^{(&}lt;sup>2</sup>) The first author gratefully acknowledges the support of the Institute for Advanced Study.

E. M. FRIEDLANDER AND B. J. PARSHALL

1. A G-invariant form of the P-B-W-theorem

Let \mathscr{G} be a Lie algebra over a field k with universal enveloping algebra $U(\mathscr{G})$. Recall that $U(\mathscr{G})$ has a natural (increasing) filtration $\{U^n\}$, where U^n denotes the subspace of $U(\mathscr{G})$ spanned by all products of at most n elements of \mathscr{G} . Also, $U(\mathscr{G})$ carries the structure of a cocommutative Hopf algebra in which the elements of \mathscr{G} are primitive for the comultiplication $\Delta: U(\mathscr{G}) \to U(\mathscr{G}) \otimes U(\mathscr{G})$. Note that each U^n is actually a subcoalgebra of $U(\mathscr{G})$. The adjoint representation of \mathscr{G} extends to an action of \mathscr{G} on $U(\mathscr{G})$ by derivations. If \mathscr{G} is the Lie algebra of a linear algebraic group G, then the adjoint action of G on \mathscr{G} defines in an evident way a rational action of G on $U(\mathscr{G})$ by Hopf algebra automorphisms.

If V is an arbitrary vector space over k, the symmetric algebra S(V) on V carries a Hopf algebra structure in which the elements of V are primitive under the comultiplication $\Delta: S(V) \rightarrow S(V) \otimes S(V)$. For $n \ge 0$, we denote by $S^{\le n}(V)$ the sum of the homogeneous components $S^{i}(V)$ of S(V) with $i \le n$. Note that $\{S^{\le n}(V)\}$ is filtration of S(V) by subcoalgebras.

In particular, we consider the Hopf algebra $S(U(\mathscr{G}))$ based on the vector space $U(\mathscr{G})$. The following result gives our interpretation (and strengthening) of Mil'ner's ([12], Proposition 1).

(1.1) LEMMA. — There exists a coalgebra morphism

$$\varphi: U(\mathscr{G}) \to S(U(\mathscr{G}))$$

in which $\varphi|_{\mathscr{G}}$ identifies with the natural inclusion of $\mathscr{G} \subset U(\mathscr{G})$ into $S^1(U(\mathscr{G})) = U(\mathscr{G})$ and $\varphi(x_1 \dots x_n) \equiv \varphi(x_1) \dots \varphi(x_n) \pmod{S^{\leq n-1}(U(\mathscr{G}))}$ for $x_1, \dots, x_n \in \mathscr{G}$. The morphism φ is \mathscr{G} -equivariant for the adjoint action of \mathscr{G} on $U(\mathscr{G})$ and its extension (by derivations) to $S(U(\mathscr{G}))$. Finally, φ is G-equivariant if $\mathscr{G} = Lie(G)$ is the Lie algebra of a linear algebraic group G over k.

Proof. – If $\mathbf{x} = \{x_1, \ldots, x_n\}$ is an ordered sequence of elements of \mathscr{G} , for $\mathbf{I} = \{i_1 < \ldots < i_k\} \subset \mathbf{N} = \{1, \ldots, n\}$ we set $x_1 = x_{i_1} \ldots x_{i_k} \in \mathbf{U}(\mathscr{G})$. Consider the element

$$\Psi(\mathbf{x}) \equiv \sum x_{\mathbf{I}_1} \dots x_{\mathbf{I}_k} \in \mathcal{S}(\mathcal{U}(\mathscr{G})),$$

where the summation extends over all partitions $I_1 \cup \ldots \cup I_k$ of N into nonempty disjoint ordered subsets. (Each I_j is an ordered subset of the ordered set N, whereas the different orderings of I_1, \ldots, I_k are not distinguished.) On the right hand side of the above expression, the product of the x_{I_j} is taken in $S(U(\mathscr{G}))$. Thus, in $S(U(\mathscr{G}))$, x_{I_j} has homogeneous degree 1, so that $x_{I_1} \ldots x_{I_k}$ has homogeneous degree k. In particular, the image of $\psi(\mathbf{x})$ in $S \leq n(U(\mathscr{G}))/S \leq n-1(U(\mathscr{G}))$ is $x_{\{1\}} \ldots x_{\{n\}}$. Suppose $1 \leq j < n$ and $x_{j+1} x_j = x_j x_{j+1} + \xi$, for $\xi \in \mathscr{G}$. Set

$$\mathbf{y} = \{x_1, \ldots, x_{j-1}, x_{j+1}, x_j, x_{j+2}, \ldots, x_n\}$$

and

$$\mathbf{z} = \{x_1, \ldots, x_{i-1}, \xi, x_{i+2}, \ldots, x_n\},\$$

 4^{e} série – tome 20 – 1987 – n° 2

ADJOINT REPRESENTATION

and let P be the set of partitions of N in which j and j+1 occur in the same ordered subset (which we index to be I_1). Using the surjective order preserving map $N \rightarrow N-1 = \{1, \ldots, n-1\}$ sending j and j+1 to j to identify P with the set of partitions of N-1, we conclude the equalities

$$\psi(\mathbf{y}) - \psi(\mathbf{x}) = \sum_{\mathbf{p}} (y_{\mathbf{I}_1} - x_{\mathbf{I}_1}) x_{\mathbf{I}_2} \dots x_{\mathbf{I}_k} = \sum z_{\mathbf{I}_1} \dots z_{\mathbf{I}_k} = \psi(\mathbf{z}).$$

It follows from the definition of $U(\mathscr{G})$ as a quotient of the tensor algebra based on \mathscr{G} that ψ defines a linear map $\varphi: U(\mathscr{G}) \to S(U(\mathscr{G}))$ by setting $\varphi(1) = 1$ and $\varphi(x_N) \equiv \varphi(x_1 \dots x_n) = \psi(x)$ for any $\mathbf{x} = (x_1, \dots, x_n)$. To see that φ is a coalgebra morphism, we note that for a sequence $\mathbf{x} = \{x_1, \dots, x_n\}$ of elements in \mathscr{G} , we have

$$(\varphi \otimes \varphi) \Delta(x_1 \dots x_n) = (\varphi \otimes \varphi) (\sum x_I \otimes x_{N \setminus I}) = \sum x_{I_1} \dots x_{I_k} \otimes x_{J_1} \dots x_{J_l}.$$

In this expression, I runs over all ordered subsets of the ordered set N, while the last summation runs over all such I and all partitions I_1, \ldots, I_k (respectively, J_1, \ldots, J_l) of such I (resp., N 1). (By convention, we set $x_{\emptyset} = 1$.) This term clearly equals

$$\Delta \varphi(x_1 \ldots x_n) = \Delta (\sum x_{\mathbf{K}_1} \ldots x_{\mathbf{K}_r}).$$

whence it follows that φ defines a coalgebra morphism. It is immediate, from its definition, that φ has the required equivariance properties. \Box

Making use of this result, we easily obtain the following theorem, inspired by the main theorem of Mil'ner [12] [cf. remarks following (1.4) below].

(1.2) THEOREM. — Let \mathscr{G} be a Lie algebra over a field k. There is a \mathscr{G} -equivariant, filtration preserving isomorphism of coalgebras

$$\beta \colon \mathrm{U}(\mathscr{G}) \to \mathrm{S}(\mathscr{G})$$

if and only if the natural inclusion $\mathscr{G} \subset U(\mathscr{G})$ splits relative to the adjoint action of \mathscr{G} on $U(\mathscr{G})$. Furthermore, if $\mathscr{G} = \text{Lie}(G)$ is the Lie algebra of a linear algebraic group G, β can be taken to be G-equivariant if and only if the inclusion $\mathscr{G} \subset U(\mathscr{G})$ splits as rational G-modules. When β exists, the associated graded map $\text{gr}(\beta) : \text{gr}(U(\mathscr{G})) \to \text{gr}(S(\mathscr{G})) \cong S(\mathscr{G})$ is an isomorphism of Hopf algebras.

Proof. — If the isomorphism β exists, it maps $\mathscr{G} \subset U(\mathscr{G})$ isomorphically to $\mathscr{G} = S^1(\mathscr{G})$ since \mathscr{G} is the space of primitive elements contained in $S^{\leq 1}(\mathscr{G})$. It follows that $\mathscr{G} \subset U(\mathscr{G})$ splits for \mathscr{G} (or G if applicable). Conversely, assume that the inclusion $\mathscr{G} \subset U(\mathscr{G})$ splits for the action of \mathscr{G} on $U(\mathscr{G})$. Thus, there exists an equivariant projection $p: U(\mathscr{G}) \to \mathscr{G}$ of \mathscr{G} -modules, which induces an equivariant morphism $S(p): S(U(\mathscr{G})) \to S(\mathscr{G})$ of Hopf algebras. It follows that if φ is as in (1.1), then $\beta = S(p) \circ \varphi: U(\mathscr{G}) \to S(\mathscr{G})$ is an equivariant, filtration preserving morphism of coalgebras. By (1.1), β induces an isomorphism gr(β): $U^n/U^{n-1} \to S^{\leq n}(\mathscr{G})/S^{\leq n-1}(\mathscr{G})$, so that β itself is necessarily an isomorphism. This establishes the first part of the theorem, while the second is obtained similarly, using (1.1). The final assertion follows from the property $\varphi(x_1...x_n) \equiv \varphi(x_1)...\varphi(x_n)$ (mod $S^{\leq n-1}(U(\mathscr{G}))$) for φ as in (1.1). □

We proceed to investigate circumstances under which an isomorphism β in (1.2) exists. If k has characteristic 0, the mapping $\eta : S(\mathscr{G}) \to U(\mathscr{G})$ defined by

$$\eta(x_1...x_n) = 1/n! \sum x_{\tau(1)}...x_{\tau(n)} \qquad (x_1,\ldots,x_n \in \mathscr{G})$$

(where τ runs over permutations of $\{1, \ldots, n\}$) is clearly equivariant. By [2] (Ch. II, §1, No. 5, Proposition 9), η is an isomorphism of coalgebras, and we can therefore put $\beta = \eta^{-1}$.

For the rest of this paper we assume therefore that k is an algebraically closed field of positive characteristic p.

If \mathscr{G} is a restricted Lie algebra over k with p-operator $x \to x^{[p]}$, we denote its restricted enveloping algebra by $V(\mathscr{G})$. Thus, $V(\mathscr{G})$ is a finite dimensional Hopf algebra which is obtained from $U(\mathscr{G})$ by factoring out the ideal generated by elements of the form $x^{[p]} - x^p$, $x \in \mathscr{G}$. The adjoint action of \mathscr{G} defines an action by derivations of \mathscr{G} on $V(\mathscr{G})$. Also, if \mathscr{G} is the Lie algebra of a linear algebraic group G, the adjoint action of G on \mathscr{G} extends to a rational action of G on $V(\mathscr{G})$ by Hopf algebra automorphisms.

Recall that the bad primes p for a simple, simply connected algebraic group G defined and split over k are as follows:

none if G is of type A_i ;

p=2 if G is of type B_l , C_l , or D_l ;

p=2 or 3 if G is of type G₂, F₄, E₆, or E₇;

p=2, 3, or 5 if G is of type E₈.

If a prime p is not bad for G, it is called good. Then we have the following result.

(1.3) LEMMA. — Suppose $G = GL_n$ or that G is a simple, simply connected algebraic group defined over an algebraically closed field k of positive characteristic p which is good for G. If $G = SL_n$, assume also that p does not divide n. Then the natural inclusion $\mathscr{G} \subset V(\mathscr{G})$ of rational G-modules is split.

Proof. — Let I be the ideal of functions in the coordinate ring *k*[G] of G which vanish at the identity 1. Then 𝔅 identifies with the linear dual (I/I²)*. It follows from [1] (4.4, p. 505) that, under the hypotheses of the lemma, we may assume that the quotient map π: *k*[G] → 𝔅* \cong *k*[G]/(I² ⊕ *k*) admits a G-equivariant section *s*. Let G₁ be the infinitesimal subgroup of G of height ≤ 1 with Lie(G₁) = 𝔅 ([5], II, §7, No. 4.3). If σ : *k*[G] → *k*[G₁] is the restriction map on coordinate rings, the quotient map π_1 : *k*[G₁] → 𝔅* admits $\sigma \circ s$ as a G-equivariant section. Moreover, in the identification of the dual Hopf algebra *k*[G₁]* with V(𝔅) ([5], II, §7, No. 4.2), the dual mapping π_1^* identifies with the natural inclusion 𝔅 ⊂ V(𝔅). This establishes the lemma. □

We use this result in proving the following G-equivariant P-B-W theorem.

(1.4) THEOREM. — Assume that G is a linear algebraic group over k of one of the following types: (i) $G \cong GL_n$; (ii) G is a simple, simply connected algebraic group not of type A_l and p is good for G; (iii) G is of type A_l and p does not divide l+1. Then there is a G-equivariant, filtration preserving isomorphism

$$\beta: \quad \mathbf{U}(\mathscr{G}) \to \mathbf{S}(\mathscr{G})$$

 4^{e} série - tome 20 - 1987 - n° 2

of coalgebras, whose induced morphism $gr(\beta)$ is an isomorphism of G-Hopf algebras.

Proof. – By (1.3), the natural inclusion $\mathscr{G} \subset V(\mathscr{G})$ splits for the action of G on $V(\mathscr{G})$. Composing a G-equivariant projection $V(\mathscr{G}) \to \mathscr{G}$ with the natural quotient morphism $U(\mathscr{G}) \to V(\mathscr{G})$, we obtain that the inclusion $\mathscr{G} \subset U(\mathscr{G})$ also splits for the action of G. Thus, the theorem follows from (1.2). □

Robert Wilson has kindly given us the following example which shows that the conclusion of Lemma 1.3 is false for a general restricted Lie algebra. Let \mathscr{G} be the central extension of sl_2 with basis e, h, f, z satisfying $[e, f]=h, [h, e]=2e, [h, f]=-2f, [\mathscr{G}, z]=0$. We make \mathscr{G} into a restricted Lie algebra by defining $e^{[p]}=z, h^{[p]}=h, f^{[p]}=0, z^{[p]}=0$. Assume that p > 3, and put $w = e^{p-3}h^3 \in V(\mathscr{G})$. Then $w \notin \mathscr{G}$ and $(ad e)^3 w = -48z$. Since $(ad e)^3 \mathscr{G}=0$, if w_1 is the projection of w into any subspace of $V(\mathscr{G})$ which is a complement to \mathscr{G} in $V(\mathscr{G})$, we obtain that $(ad e)^3 w_1 = (ad e)^3 w$ is a nonzero element in \mathscr{G} . Thus, the inclusion $\mathscr{G} \subset V(\mathscr{G})$ does not split for the action of \mathscr{G} as claimed by Mil'ner ([12], Proposition 5). For p=2 and $\mathscr{G}=sl_2$, a similar example can be given replacing w by ef and $(ad e)^3$ by (ad f) (ad e). Note in this case that the monomials $e^a h^b f^c$ of degree > 1 in $U(\mathscr{G})$ span an $ad(\mathscr{G})$ -invariant subspace, providing an isomorphism $U(\mathscr{G}) \to S(\mathscr{G})$ of coalgebras which is equivariant relative to the adjoint action of \mathscr{G} .

2. A G-equivariant P-B-W theorem for hyperalgebras

In this section we obtain results analogous to those of Section 1 for the hyperalgebras of certain algebraic groups. The reader is referred to [3] for a more detailed discussion concerning the theory of hyperalgebras which we require.

Let k be an algebraically closed field of positive characteristic p, and let G be a connected, linear algebraic group defined over the prime field \mathbf{F}_p . For $r \ge 1$, G, denotes the group-scheme theoretic kernel of the r-th power of the Frobenius morphism $\sigma: \mathbf{G} \to \mathbf{G}$. The coordinate ring $k[\mathbf{G}_r]$ of G, is a finite dimensional commutative Hopf algebra. By definition, the hyperalgebra hy(G_r) of G, is the Hopf algebra dual of $k[\mathbf{G}_r]$. The natural inclusions $\mathbf{G}_r \subset \mathbf{G}_{r+1}$ provide Hopf algebra embeddings hy(\mathbf{G}_r) \subset hy(\mathbf{G}_{r+1}), and the hyperalgebra of G is realized as the limit

$$hy(G) = \lim_{\to} hy(G_r).$$

As such, hy(G) is a cocommutative, infinite dimensional (if $G \neq e$) Hopf algebra. The conjugation action of G on itself induces a natural (rational) G-action on each hy(G_r) and hence on hy(G) by Hopf algebra automorphisms.

For example, suppose G is the d-dimensional vector group $V = G_a^{\times d}$. If x_1, \ldots, x_d is a basis for $V(\mathbf{F}_p)$, hy (V) has a k-basis on symbols $x_1^{(m_1)} \ldots x_d^{(m_d)}$, $m_1, \ldots, m_d \ge 0$. Since hy (V) is commutative, the rules $x_i^{(a)} x_i^{(b)} = {a+b \choose a} x_i^{(a+b)}$ specify its multiplication. Also, the comultiplication is given by $\Delta(x_i^{(a)}) = \sum_{b+c=a} x_i^{(b)} \otimes x_i^{(c)}$. Thus, the $x_i^{(m)}$ behave like the

divided powers $x_i^m/m!$ [and hy (V) identifies with the graded dual S (V*)*^{gr} of the symmetric algebra S(V*)]. Note that hy (V) is naturally graded by setting hy^m(V) equal to the linear span of all monomials $x_1^{(m_1)} \dots x_d^{(m_d)}$ satisfying $m = m_1 + \dots + m_d$. This defines an increasing filtration {hy^{$\leq n$}(V)} on hy (V) by subcoalgebras in which the associated graded Hopf algebra gr (hy (V)) identifies with hy (V). For $r \ge 1$, the hyperalgebra hy (V_r) of the infinitesimal subgroup scheme V_r corresponds to the subspace of hy (V) spanned by those monomials above satisfying $m_i < p^r$, $1 \le i \le d$. Finally, GL_d acts naturally on hy (V) by Hopf algebra automorphisms, preserving the grading, etc.

If G is a simple, simply connected algebraic group defined and split over F_p , hy(G) has a basis consisting of monomials

$$x_{-\beta_1}^{a_1}/a_1!\ldots x_{-\beta_N}^{a_N}/a_N! \binom{h_1}{b_1}\ldots \binom{h_l}{b_l} x_{\beta_1}^{c_1}/c_1!\ldots x_{\beta_N}^{c_N}/c_N!$$

(usual notation, cf. [3; 5.1]). Observe that hy (G) is graded by setting hyⁿ(G) to be the linear span of those monomials of total degree $\sum a_i + \sum b_j + \sum c_k = n$, and we obtain an increasing filtration {hy^{\leq n}(G)} of hy (G) by subcoalgebras, stable under the action of G on hy (G). We do not go into further details here, but refer instead to [3] (§ 5), [2] (Ch. 8, § 12, No. 3).

We now prove the following companion theorem to Theorem 1.4. In the statement of this result, hy (\mathscr{G}) denotes the hyperalgebra of \mathscr{G} regarded as a vector group defined over \mathbf{F}_p . For simplicity we omit the case of GL_n ; the interested reader should have no trouble supplying the modifications to handle this group.

(2.1) THEOREM. — Let G be a simple, simply connected algebraic group defined and split over \mathbf{F}_p . Assume that p is good for G and that if G is of type A_l then p does not divide l+1. Then there exists a G-equivariant, filtration preserving isomorphism of coalgebras

$$\beta$$
: hy(G) \rightarrow hy(\mathscr{G})

with the property that the induced map $gr(\beta)$: $gr(hy(G)) \rightarrow hy(\mathscr{G})$ is a G-isomorphism of Hopf algebras. Moreover, for each $r \ge 1$, β restricts to a G-equivariant, filtration preserving isomorphism of coalgebras

$$\beta_r$$
: hy (G_r) \rightarrow hy (\mathscr{G}_r)

for which $gr(\beta_r)$ is a G-equivariant isomorphism of Hopf algebras.

Proof. — As noted in the proof of (1.3), the natural quotient map $k[G] \rightarrow \mathscr{G}^*$ admits a G-equivariant section $\mathscr{G}^* \rightarrow k[G]$. Composing this map with the restriction homomorphism $k[G] \rightarrow k[G_r]$ provides a G-equivariant section $s_r: \mathscr{G}^* \rightarrow k[G_r]$ to the quotient map $k[G_r] \rightarrow \mathscr{G}^*$. Since $k[G_r]$ identifies with a truncated polynomial algebra $k[T_1, \ldots, T_d]/(T_1^{p^r}, \ldots, T_d^{p^r})$, $d = \dim G$, by [3] (§9.1), [5] (III, §3, No. 6.4), it follows that s_r identifies $k[G_r]$ G-equivariantly with $S(\mathscr{G}^*)/\mathscr{G}^{*p^r}$ as commutative algebras. Taking

4° série – tome 20 – 1987 – n° 2

duals, we obtain the desired G-equivariant isomorphism β_r : hy $(G_r) \rightarrow$ hy (\mathscr{G}_r) of coalgebras. Because the s_r are by construction compatible, it follows that the β_r define a G-equivariant isomorphism β : hy $(G) \rightarrow$ hy (\mathscr{G}) of coalgebras. Furthermore, using the usual basis of hy (G) we easily see that gr (β) is an isomorphism of Hopf algebras. \Box

Further information concerning the G-module structure of hy(G) will be given in paragraph 4 below.

3. Fraction fields and their invariants

Let G be a linear algebraic group defined over \mathbf{F}_p , as in Section 2 above. In this section, we investigate the invariants of the field of fractions of $S(\mathscr{G})$ under the action of the infinitesimal subgroups \mathbf{G}_r . (Recall that a rational module V for an affine k-group H is, by definition, a comodule for the coordinate ring k [H] of H. If $\Delta_v: V \to k$ [H] $\otimes V$ is the corresponding comodule map, then the subspace of invariants is defined by $V^{\mathrm{H}} = \{v \in V: \Delta_V(v) = 1 \otimes v\}$ ([3], 1.1). From an equivalent functorial point of view ([5], II, §2, No. 1), V^{\mathrm{H}} consists of those $v \in V$ such that $v \otimes 1 \in V \otimes R$ is H(R)-fixed for all commutative k-algebras R.)

Let $\rho: G \to GL(V)$ be a finite dimensional rational F_p -representation. Let A = S(V)and set K equal to the field of fractions of A. In general, K is *not* a rational G-module since it need not be locally finite for the action of G. However, it is interesting to note that each infinitesimal subgroup G_r does act rationally on K. To see this, first observe that relative to a fixed basis for $V(F_p)$, any $x \in G_r(R)$ (R a commutative k-algebra) is represented on $V \otimes R$ by a matrix of the form I+D, where the matrix entries in D have p^r-power equal to 0. Thus, for $v \in V$, the element

 $\rho(x)(v \otimes 1) - v \otimes 1 = D(v \otimes 1) \in V \otimes R \subset S(V) \otimes R \cong S(V \otimes R),$

satisfies the relation $[\rho(x)(v \otimes 1) - v \otimes 1]^{p^r} = 0$. Hence, given any $f \in S(v)$ and $x \in G(\mathbb{R})$, we have $(\rho(x)(f \otimes 1))^{p^r} = f^{p^r} \otimes 1$. This shows that $\mathbb{K} \otimes \mathbb{R}$ is isomorphic to the localization of $\mathbb{A} \otimes \mathbb{R}$ relative to the multiplicative subset generated by $\rho(G_r(\mathbb{R}))$ ($\mathbb{A}^{\times} \otimes 1$), and hence $\mathbb{K} \otimes \mathbb{R}$ is a $\mathbb{R} - G_r(\mathbb{R})$ -module, functorial in \mathbb{R} . By [5] (II, §2.1), \mathbb{K} is a rational G_r -module. Of course, when r = 1, this merely amounts to the familiar procedure of extending an action of the Lie algebra \mathscr{G} on \mathbb{A} by derivations to an action (by derivations) on the fraction field \mathbb{K} by the quotient rule of calculus.

We can now state the following result concerning invariants.

(3.1) PROPOSITION. — Let G be a linear algebraic group defined over \mathbf{F}_p and let $\rho: \mathbf{G} \to \mathbf{GL}(\mathbf{V})$ be a finite dimensional rational \mathbf{F}_p -representation. Let K denote the field of fractions of $\mathbf{A} = \mathbf{S}(\mathbf{V})$ and let K, denote the field of fractions of the algebra of invariants $\mathbf{A}^{\mathbf{G}_r}$. Then K, equals $\mathbf{K}^{\mathbf{G}_r}$ for any r > 0, where K is given the structure of a rational \mathbf{G}_r -module described above.

Proof. – Clearly, $K_r \subset K^{G_r}$. Conversely, if $\lambda = x/s \in K^{G_r}$ with $x, s \in A$, then $s^{p^r} \in A^{G_r}$ and $\lambda = xs^{p^{r-1}}/s^{p^r} \in K_r$. \Box

Now fix a simple, simply connected algebraic group G defined and split over \mathbf{F}_p . Assume that p does not divide the order of the Weyl group W of G. In particular, this implies that the Killing form on \mathscr{G} is non-degenerate, and we thereby identify $\mathscr{G} \cong \mathscr{G}^*$ as rational G-modules. Let $\mathscr{H} = \text{Lie}(T) \subset \mathscr{G} = \text{Lie}(G)$ be the Lie algebra of a maximal split torus T of G. Then $S(\mathscr{G})^G \cong S(\mathscr{H})^W$ [13] is isomorphic to a polynomial ring J on homogeneous generators T_1, \ldots, T_l (l = rank G) of degrees $m_1 + 1, \ldots, m_l + 1$ where the m_i are the exponents of the root system of T in G [4]. Let K be the field of fractions of $S(\mathscr{G})$. Extending arguments of Veldkamp [14] for r = 1, we identify $K_r = K^{G_r}$ using this polynomial algebra J. We first require the following result.

(3.2) LEMMA. — Fix an ordered basis $\{X_1, \ldots, X_n\}$ of \mathscr{G} and let C be the $n \times n$ K-matrix (a_{ij}) , where $a_{ij} = [X_i, X_j] \in K$. Then rank $(C) \ge \dim G/T = n - l$.

Proof. — Let Φ be the root system of T in \mathscr{G} , and for $\alpha \in \Phi$, let e_{α} be a nonzero root vector of weight α . Since the rank of C is independent of the choice of basis for \mathscr{G} , we may assume that $\{e_{\alpha}\}_{\alpha \in \Phi}$ is part of our basis $\{X_i\}$. It is therefore enough to show that the submatrix $\mathbf{B} = ([e_{\alpha}, e_{\beta}])$ of C is nonsingular. Let $\tau: S(\mathscr{G}) \to S(\mathscr{H})$ be the algebra homomorphism defined by $\tau(e_{\alpha}) = 0$ for all $\alpha \in \Phi$ and $\tau(h) = h$ for all $h \in \mathscr{H}$. Since G is simply connected, each $[e_{\alpha}, e_{-\alpha}]$, $\alpha \in \Phi$, is a nonzero element of \mathscr{H} . Hence, $\tau(\mathbf{B})$ has exactly one nonzero entry in each row and column, and so is nonsingular. Hence, B is nonsingular.

(3.3) THEOREM. — Let G be a simple, simply connected algebraic group defined and split over \mathbf{F}_p of dimension n and rank l with the property that p is prime to the order of the Weyl group W of G. For each positive integer r, the natural G-map $S(\mathscr{G}^{(r)}) \otimes_{J^{(r)}} J \rightarrow S(\mathscr{G})^{G_r}$ is an injection and induces an isomorphism on associated fields of fractions

$$\operatorname{frac}(S(\mathscr{G}^{(r)})\otimes_{J^{(r)}}J)\cong K_r.$$

Here $S(\mathscr{G}^{(r)})$ (respectively, $J^{(r)}$) is the subalgebra of $S(\mathscr{G})$ (resp., J) generated by the p^r-th powers of the homogeneous generators of $S(\mathscr{G})$ (resp., J) and $J = S(\mathscr{G})^G$.

Proof. — We first assert that the monomials $T_{i_1}^{a_1} \ldots T_{i_i}^{a_i}$, $0 \le a_i < p^r$, in S(\mathscr{G}) are linearly independent over S($\mathscr{G}^{(r)}$). Fix a basis $\{X_i\}$ of \mathscr{G} . We recall from [14] (7.1) that the Jacobian matrix $(\partial T_i/\partial X_j)$ has rank l at $\varphi \in \mathscr{G}^* \cong \mathscr{G}$ if and only if φ is regular. Since the regular elements of \mathscr{G} form an open dense subset, $(\partial T_i/\partial X_j)$ has rank l. As argued in [14] this establishes our assertion when r=1. The general case then follows by an easy inductive argument on r.

Thus, the natural map $S(\mathscr{G}^{(r)}) \otimes_{J^{(r)}} J \to S(\mathscr{G})^{G_r}$ is injective, and we let K'_r be the field of fractions of the image domain. Since J is a free $J^{(r)}$ -module of rank p^{rl} , we conclude that K'_r is a subfield of K_r which is an extension of degree p^{rl} over $K^{p'}$. Hence, $[K:K'_r]=p^{r(n-l)}$. To prove the inclusion $K'_r \subset K_r$ is actually an equality, it suffices to prove that $[K:K_r] \ge p^{r(n-l)}$. We proceed to prove that $[K_s:K_{s+1}] \ge p^{n-l}$ for each $s, 0 \le s < r$ (with $K_0 = K$).

$$4^{e} \text{ série} - \text{tome } 20 - 1987 - n^{\circ} 2$$

By Proposition 3.1, $K_{s+1} = K_s^{G_{s+1}/G_s}$. Identifying G_{s+1}/G_s with G_1 , and the G_{s+1}/G_s module K_s with the corresponding "untwisted" G_1 -module $K_s^{(-s)}[3](3.3)$, we obtain that $K_{s+1} \cong (K_s^{(-s)})^{G_1} = (K_s^{(-s)})^{\mathscr{G}}$. Thus, the Jacobson-Bourbaki theorem ([10], Theorem 19, p. 186) implies that $[K_s: K_{s+1}] = p^{(\mathscr{G}_s: K_s^{(-s)}]}$ where \mathscr{G}_s denotes the $K_s^{(-s)}$ -span of the image of \mathscr{G} in the derivation algebra Der $(K_s^{(-s)})$. For X, $Y \in \mathscr{G}$, the derivation of $K_s^{(-s)}$ defined by X maps $(Y^{p^s})^{(-s)} \in K_s^{(-s)}$ to $([X, Y]^{p^s})^{(-s)}$. Thus, $[\mathscr{G}_s: K_s^{(-s)}]$ equals at least the rank of the matrix C of (3.2). Thus, by (3.2), $[K_s: K_{s+1}] \ge p^{n-l}$ as required. \Box

In the course of the above proof we have also established the following result which may be of independent interest.

(3.4) COROLLARY. — Let G be as in (3.3). Then the matrix C of (3.2) has rank exactly equal to dim G/T. Furthermore, if K \mathscr{G} is the K-span of the image of \mathscr{G} in the derivation algebra Der(K), then K \mathscr{G} has dimension equal to dim G/T over K. \Box

We also obtain the following corollary from (the proof of) Theorem 3.3.

(3.5) COROLLARY. — Let G be as in (3.3). Then K is purely inseparable of dimension $p^{r(n-l)}$ over $K_r = K^{G_r}$, whereas K_r is purely inseparable of dimension p^{rl} over frac $S(\mathscr{G}^{(r)}) = K^{p^r}$. \Box

It is amusing to observe that the extension analogous to K_1/K^p in the context of $U(\mathscr{G})$ is separable. Namely, the field of fractions of the center of $U(\mathscr{G})$ [which we may view as $U(\mathscr{G})^{G_1}$ to preserve the analogy with $S(\mathscr{G})$] is separable over the field of fractions of the central subalgebra $\mathscr{O} \cong S(\mathscr{G}^{(1)})$ [11], Lemma 4.2) (see also Proposition 4.5 below).

4. Infinitesimally invariant subalgebras

In Theorem 4.1 below we identify for a simple, simply connected algebraic group G defined and split over \mathbf{F}_p the G_r-invariants of $S(\mathscr{G})$ in terms of $S(\mathscr{G}^{(r)}) = S(\mathscr{G})^{p^r}$ and the polynomial subalgebra $J = S(\mathscr{G})^G \subset S(\mathscr{G})$. We then use this result to provide a corresponding identification of the G_r-invariants of $U(\mathscr{G})$, thereby extending Veldkamp's determination of the center of $U(\mathscr{G})$ [14]. Our proofs are modifications of Veldkamp's original arguments. In Proposition 4.5, we interpret the information given by Theorem 4.1 in the light of the existence of a "good filtration" on $S(\mathscr{G})$.

(4.1) THEOREM. — Let G be a simple algebraic group defined and split over \mathbf{F}_p of dimension n and rank l with the property that p does not divide the order of the Weyl group W of G. For each positive integer r, there is a natural isomorphism

$$S(\mathscr{G}^{(r)}) \otimes_{J^{(r)}} J \cong S(\mathscr{G})^{G_r}$$

of rational G-algebras.

Proof. – For notational convenience, let $A'_r = S(\mathscr{G}^{(r)}) \otimes_{J^{(r)}} J$ and let $A_r = S(\mathscr{G})^{G_r}$. By Theorem 3.3, the natural map $A'_r \to A_r$ is an inclusion which induces an isomorphism on the corresponding fields of fractions. Since $A'_r \to A_r$ is clearly a finite map, it suffices

11

to prove that A'_r is integrally closed. We explicitly write the extension $J \rightarrow A'_r$ as

$$k[T_1, \ldots, T_l] \to k[T_1, \ldots, T_l][x_1^{p^r}, \ldots, x_n^{p^r}]/(T_i^{p^r} - t_i(x_1^{p^r}, \ldots, x_n^{p^r}), 1 \le i \le l)$$

The Jacobian matrix $(\partial t_i/\partial x_j)$ has rank l at an element φ of \mathscr{G}^* (naturally homeomorphic to the maximal ideal space of A'_r) if and only if $\varphi \in \mathscr{G}^*$ ($\cong \mathscr{G}$ via the Killing form) is regular. Hence, A'_r is regular in codimension 2. As presented above, A'_r is clearly a complete intersection of hypersurfaces in affine n+l space. Hence, Serre's normality criterion ([9], 5.8.6) implies that A'_r is normal as required. \Box

Identifying \mathscr{G} with \mathscr{G}^* via the Killing form, we can restate Theorem 4.1 in geometric language as follows.

(4.2) COROLLARY. — For G as in (4.1), there is a natural isomorphism of G-schemes

$$\mathscr{G}/\mathbf{G}_{\mathbf{r}} \cong \mathscr{G}^{(\mathbf{r})} \times_{(\mathscr{G}/\mathbf{G})} \mathscr{G}/\mathbf{G}$$

Because the isomorphism $U(\mathscr{G}) \cong S(\mathscr{G})$ of Section 1 is not multiplicative, a description of $U(\mathscr{G})^{G_r}$ analogous to that of $S(\mathscr{G})^{G_r}$ in Theorem 4.1 requires a little effort. We recall the central G-subalgebra $\mathcal{O} \subset U(\mathscr{G})$ given as the (isomorphic) image of the G-algebra map $S(\mathscr{G}^{(1)}) \to U(\mathscr{G})$ sending $X \in \mathscr{G}^{(1)}$ to $X^p - X^{[p]} \in U(\mathscr{G})$. We define \mathcal{O}^r to be

$$\mathcal{O}_{\mathbf{r}} = \mathrm{S}(\mathrm{span}\left\{e_{\alpha}^{p^{\mathbf{r}}}, (h_{\beta}^{p} - h_{\beta})^{p^{\mathbf{r}-1}}; \alpha \in \Phi, \beta \in \Pi\right\}).$$

Here Φ denotes the root system of G, Π is a set of simple roots, and $\{e_{\alpha}, h_{\beta}; \alpha \in \Phi, \beta \in \Pi\}$ is a standard (Chevalley) basis for \mathscr{G} . The following corollary is a generalization to r > 1 of Veldkamp's description of the center $U(\mathscr{G})^{G_1}$ of $U(\mathscr{G})$ [14; 3.1].

(4.3) COROLLARY. — For G as in (4.1) and $r \ge 1$, $U(\mathscr{G})^{G_r}$ is isomorphic as a rational G-module to a direct sum of p^{rl} copies of \mathcal{O}_r . More precisely, if S_1, \ldots, S_l are G-invariant elements of $U(\mathscr{G})$ whose representatives in $gr(U(\mathscr{G})) \cong S(\mathscr{G})$ are the homogeneous generators T_1, \ldots, T_l of $S(\mathscr{G})^G$, then the natural map

$$\mathcal{O}_{\mathbf{r}}[s_1,\ldots,s_l] \to \mathbf{U}(\mathscr{G})^{\mathbf{G}_{\mathbf{r}}}, \qquad s_i \to \mathbf{S}_i$$

restricts to an isomorphism from the submodule $\mathcal{O}_r[s_1, \ldots, s_i; p^r]$ of polynomials of degree $\langle p^r \text{ in each of the } s_i \text{ onto } U(\mathcal{G})^{G_r}$.

Proof. – Because $\mathcal{O}_r \subset U(\mathscr{G})$ has the property that its associated graded group (with respect to the filtration $\{U^n\}$ on $U(\mathscr{G})$) is $S(\mathscr{G}^{(r)}) \subset S(\mathscr{G})$, we conclude using Theorem 4.1 that the associated graded group of the image of $\mathcal{O}_r[s_1, \ldots, s_i; p^r] \to U(\mathscr{G})^{G_r}$ is $S(\mathscr{G})^{G_r} \subset S(\mathscr{G})$. Hence, $\mathcal{O}_r[s_1, \ldots, s_i; p^r] \to U(\mathscr{G})^{G_r}$ is surjective. On the other hand, the associated graded group of $\mathcal{O}_r[s_1, \ldots, s_i; p^r]$ maps injectively to $S(\mathscr{G})^{G_r}$, so that $\mathcal{O}_r[s_1, \ldots, s_i; p^r] \to U(\mathscr{G})^{G_r}$ must be injective as well. □

We conclude by investigating one aspect of the G-extensions occuring in $S(\mathscr{G})$. Let G be as in (4.1), and let T be a maximal split torus contained in a fixed Borel subgroup $B \subset G$. For any dominant weight λ , denote by $I(\lambda)$ the rational G-module obtained by inducing to G the one-dimensional rational B-module defined by the character $w_0(\lambda)$.

 4^{e} série – tome 20 – 1987 – n° 2

An increasing filtration by rational G-modules of a given rational G-module M is said to be *good* if its sections are of the form $I(\lambda)$, *cf.* [6]. Then we have the following result.

(4.4) PROPOSITION. — Let G be a simple, simply connected algebraic group defined and split over \mathbf{F}_p as above. Assume that p does not divide the order of the Weyl group of G. Then:

(a) S(G) has a good filtration;

(b) $U(\mathcal{G})$ has a good filtration; and

(c) hy(G) does not have a good filtration.

In particular, $U(\mathcal{G})$ is not isomorphic to hy(G) as a rational G-module.

Proof. – (*a*) follows from [1] (4.4) (improving the bounds in [8]), and (*b*) is clear from Theorem 1.4. To prove (*c*) it is enough by Theorem 2.1 to prove that hy(*G*) does not have a good filtration. We assert that the component hy^{*p*}(*G*) does not admit a good filtration. First, observe that if v is the maximal root in the root system Φ of G, then pv is the maximal dominant weight in hy^{*p*}(*G*), so that if hy^{*p*}(*G*) admits a good filtration, there exists a surjective G-module homomorphism hy^{*p*}(*G*) → I(pv) [6]. On the other hand, the subspace V of hy^{*p*}(*G*) spanned by those monomials $x_1^{(a_1)} \dots x_n^{(a_n)}$ with $0 \le a_i < p$ is clearly G-stable and hy^{*p*}(*G*)/V \cong *G*⁽¹⁾. It follows from universal mapping that if there exists a surjective G-module homomorphism hy^{*p*}(*G*) → I(pv), then this map must factor through *G*⁽¹⁾. This is not possible since *G*⁽¹⁾ ≠ I(pv) identifies with the socle of I(pv). \Box

The following question (originally asked by S. Donkin) is of considerable interest. If M is a rational G-module with a good filtration and r > 1, then does $(M^{G_r})^{(-r)}$ also have a good filtration? An easy universal mapping property argument gives a positive answer to this question in the very special case of a rational G-module with a split good filtration: $I(p^r \lambda)^{G_r} \cong I(\lambda)^{(r)}$, whereas $I(\mu)^{G_r} = 0$ if $\mu \neq p^r \lambda$ for some dominant weight λ . Our next result gives additional examples for which the answer to Donkin's question is positive.

(4.5) PROPOSITION. — Let G be a simple algebraic group defined and split over \mathbf{F}_p and assume that p does not divide the order of the Weyl group of G. Then $(\mathbf{S}(\mathscr{G})^{\mathbf{G}_r})^{(-r)}$ has a good filtration for any r > 0. On the other hand, let v be the maximal root. For any n < p for which the induced module $\mathbf{I}(nv)$ is not self-dual, the good filtration on $\mathbf{S}^n(\mathscr{G})$ does not split.

Proof. — By Theorem 4.1, $(S(\mathscr{G})^{G_r})^{(-r)}$ is isomorphic as a G-module to a direct sum of copies of $S(\mathscr{G})$ and thus also has a good filtration by (4.4a). If the good filtration of $S^n(\mathscr{G})$ splits, one and only one summand is isomorphic to I(nv) since nv occurs with multiplicity one in $S^n(\mathscr{G})$. For n < p, $S^n(\mathscr{G})$ is self dual so that a splitting of the good filtration for $S^n(\mathscr{G}) \cong (S^n(\mathscr{G}))^*$ would imply that I(nv) is likewise self-dual. \Box

REFERENCES

 H. ANDERSEN and J. JANTZEN, Cohomology of Induced Representations of Algebraic Groups (Math. Ann. Vol. 269, 1984, pp. 487-525).

E. M. FRIEDLANDER AND B. J. PARSHALL

- [2] N. BOURBAKI, Groupes et algèbres de Lie, Chap. 2, 3, ..., Hermann, Paris, (1972...).
- [3] E. CLINE, B. PARSHALL and L. SCOTT, Cohomology, Hyperalgebras, and Representations (J. Algebra, Vol. 63, 1980, pp. 98-123).
- [4] M. DEMAZURE, Invariants symétriques entiers des groupes de Weyl et torsion (Inv. Math., Vol. 21, 1973, pp. 287-301).
- [5] M. DEMAZURE and P. GABRIEL, Groupes Algébriques, I, North-Holland, 1970.
- [6] S. DONKIN, Rational Representations of Algebraic Groups: Tensor Products and Filtrations (Lec. Notes in Math., No. 1140, Springer, 1985).
- [7] E. FRIEDLANDER and B. PARSHALL, On the Cohomology of Algebraic and Related Finite Groups (Inv. Math., Vol. 4, 1983, pp. 85-117).
- [8] E. FRIEDLANDER and B. PARSHALL, Cohomology of Lie Algebras and Algebraic Groups (Amer. J. Math., Vol. 108, 1986, pp. 235-253).
- [9] A. GROTHENDIECK, Éléments de géométrie algébrique, IV, (Publ. Math. I.H.E.S., Vol. 24, 1965).
- [10] N. JACOBSON, Lectures in AbstractAlgebra, III, Van Nostrand, 1964.
- [11] V. KAC and B. WEISFEILER, Coadjoint Action of a Semi-Simple Algebraic Group and the Center of the Enveloping Algebra in Characteristic p (Indag. Math., Vol. 38, 1976, pp. 135-151).
- [12] A. A. MIL'NER, Maximal Degree of Irreducible Lie Algebra Representations Over a Field of Positive Characteristic (Funks. Anal., Vol. 14, No. 2, 1980, pp. 67-68).
- [13] T. SPRINGER and R. STEINBERG, Conjugacy Classes (Lec. Notes in Math., No. 131, Springer, 1970, pp. 167-266).
- [14] F. VELDKAMP, The Center of the Universal Enveloping Algebra of a Lie Algebra in Characteristic p (Ann. scient. Ec. Norm. Sup., 1972, pp. 217-240).

(Manuscrit reçu le 12 mai 1986, révisé le 12 décembre 1986).

Eric M. FRIEDLANDER, Department of Mathematics, Northwestern University, Evanston, IL 60201; Brian J. PARSHALL, Department of Mathematics, University of Virginia, Charlottesville, VA 22903.

226

4° série – tome 20 – 1987 – $n^{\circ}2$