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ON MINIMAL IMMERSIONS
OF S'-1 INTO S" (1)^4

BY WU-YI HSIANG AND PER TOMTER

1. Introduction

In the study of basic global objects in high dimensional spherical geometry, one of the
outstanding natural problems is the following spherical Bernstein problem formulated by
Chern [7]:

The spherical Bernstein problem: Let the (n-l)-sphere, S " ' 1 , be imbedded as a minimal
hypersurface in S"(l). Is it (necessarily) an equator?

In the beginning dimension of n = 3, one has the following strong uniqueness theorems,
namely,

THEOREM (Almgren [2], Calabi [3]). — A minimal immersion ofS2 into S^l) 15 necessa-
rily the equator.

THEOREM (Chern [8]).—A constant mean curvature immersion of S2 into S^l) is
necessarily totally umbilical, i. e. 0 (3) invariant.

However, in the dimensions n^4, one has a series of recent results on the existence of
non-equatorial, imbedded, minimal hyperspheres in S"(l), which, in our opinion, only
begins to expose the profound depth of the above spherical Bernstein problem, or rather,
the problem of minimal hyperspheres in S"(l), n^4. Roughly speaking, up to now, one
has the following known examples of non-equatorial minimal hyperspheres:

(i) There exist 18 specific orthogonal transformation groups, (G, S"(l)), each of them
accommodates infinitely many, mutually non-congruent, G-invariant examples of (non-
equatorial) imbedded minimal hyperspheres (cf. [11]).

(ii) Besides the above 18 families of infinite examples with their dimensions n ranging
over 4, 5, 6, 7, 8, 10, 12 and 14, there exists at least one more example of non-equatorial,
imbedded minimal hypersphere for each isoparametric foliation of S"(l) with rank =2
and g=3 or 4 (cf. §2). We refer to [13], [19], [20] for the actual construction of such
additional examples.

So far, there are no known examples of non-equatorial, imbedded, minimal hyper-
spheres in S2^^!), m^4. Intuitively speaking, the minimality condition only imposes
a single equation among the n-1 principal curvatures of a hypersurface in S^l), namely,
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202 WU-YI HSIANG AND P. TOMTER

^fei=0. Such a condition becomes less restrictive for larger n, therefore, the lack of
known examples of imbedded minimal hypersurfaces for high dimensional spheres, most
likely, merely reflects the limitation of the methods of construction used so far, rather
than the actual reality.

From the viewpoint of global analysis, a minimal hypersphere in S"(l) is exactly a
closed integral hypersurface of the simplest possible topological type for the minimal
equation of S"(l). Hence examples of immersed minimal hyperspheres are almost as
significant as the imbedded ones. The purpose of this paper is to give a unified, clear-
cut proof of the following theorem, which exhibits a great many varieties of examples of
immersed minimal hyperspheres in S"(l) for all n^4.

MAIN THEOREM. — For each rank t\vo isoparametric foliation c/S"(l) mth t\vo fixed
points, n^4, there exist infinitely many mutually non-congruent examples of foliated
minimal immersions o/S"~1 into S"(l).

The above theorem demonstrates that isoparametric foliations can, in fact, be exploited
to produce infinitely many examples of minimal hyperspheres in S"(l) for all dimen-
sion n ̂  4, if one does not insist on the analytically elusive restriction of imbedding. The
techniques we use in the proof of the above theorem can also be adapted to produce
many other interesting examples of minimal hypersurfaces in compact symmetric spaces.

2. Rank two isoparametric foliations on S"(l)
and foliated minimal hypersurfaces

Recall that an isoparametric hypersurface in a space of constant curvature, NT^c),
is, by definition, a level surface of an isoparametric function, namely, a func-
tion/: M^1 (c) ̂  R such that A/and IV/P^O (mod/). Geometrically, the level
surfaces of such an isoparametric function constitute a parallel foliation of hypersurfaces
of constant mean curvatures. Such nice geometric structures of rank one isoparametric
foliations were first studied by B. Segre and E. Cartan. In a series of papers of E. Cartan
([4], [5], [6]), he was particularly fascinated by the profound depth of the spherical case
and its mysterious connection with the Lie group theory. This subject was somehow
forgotten until it was revived by a sequence of recent papers ([9], [14], [15], [16]). High
codimensional generalization of isoparametric foliations was proposed in a recent paper
of Terng [17], namely, a submanifold N" in M^^c) is isoparametric if its normal bundle,
v, is flat and its second fundamental form has constant principal eigenvalues along any
parallel section of v. An isoparametric foliation of rank k on M^^c) is, by definition,
a parallel foliation of M^^c) by codimension k isoparametric submanifolds and their
focal varieties. We refer to [17] for a general theory and some basic theorems on
isoparametric foliations. One of its basic features is the existence of a totally geodesic
normal section with an induced group generated by reflections, (W^M^c)), called the
associated Coxeter group of the given isoparametric foliation. Let Co be an arbitrarily
chosen Weyl chamber of (W, Mfc (c)). Then Co intersects each "leave" perpendicularly at
exactly one point and the projection map, p : Mn+k(c) -> M^^/W^Co, is a Riemannian
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MINIMAL IMMERSIONS 203

submersion. A foliated submanifold is, by definition, a submanifold, Z"^, which consists
of a suitable subcollection of leaves. Hence, it is uniquely determined by thejransversal
intersection 271 + d pi Co.

In this paper we shall only consider those rank 2 isoparametric foliations on S^2^)
which have exactly two point-leaves. The Weyl chamber of (W, S^l)) of such an
isoparametric foliation is a spherical lune of angle n/g, g=2, 3, 4, or 6, where the two
vertices are exactly the pair of point-leaves and the two boundary arcs parametrize the
two types of focal varieties. We shall denote the multiplicities of focal directions of the
two types of focal varieties by m^ and m^ respectively. Then one has the following
(theoretical) possibilities [1]:

(i) g=2: m^ m^ can be an arbitrary pair of positive integers,
(ii) g=3: m i = m 2 = l , 2, 4 or 8,

(iii) g=6: m^=m^=l or 2,
(iv) g=4: then m^m^ must satisfy one of the following three restrictions, namely
(4 A) m i + m ^ + l is divisible by 2^; =min {2 a | 2 a >ml},
(4B 1) mi is a power of 2 and 2 mi divides (m^ +1),
(4B2) mi is a power of 2 and 3 mi divides 2(m2+l).

It is convenient to parametrize the spherical lune, Ci, by the polar coordinate system
{(r, 9); O^r^Tc, Q^Q^n/g], ds2 = dr2 + sin2 r d92. Since the n-dimensional leaf determi-
ned by (r, 9) is foliated by g pairwise orthogonal round spheres whose radii depend on
the spherical distance to the focal submanifolds, one finds the following volume functions:

(i) g=2: v(r, 9)=K.(sin ^-^.(sin 9)^. (cos 9)^

(ii) g=3: v(r, 9)=K.(sinr)3 w .^sin9.cosf9+7 l^cosf9- J C^T
L \ 6 } \ 6/J

(iii) g=6: v(r, 9)=K.(sin r)6". fsin 9. cos 9.cosf9+ K>}
L \ 6 J

.cos(9-7 ^ )cosf9+7 ^ )cosf9-7 t

\ 6J \ 3 J \ 3

(iv) g = 4: v (r, 9) = K. (sin r)2 w!+ 2 ̂ . [sin 9. cos 9p
)]•

.^cosf9+7c)cosf9-7l)T2.
L V 4; Y 4;J

LEMMA 1. — For a given rank 2 isoparametric foliation on S"^!) of the above type,
the generating curve of a foliated minimal hypersurface, S^1, is characterized by the
following ODE:

^ ^oc dQ . d6 8 , 1 dr 8W — +cos r—+sm r—.—Inv-———.—lni;=0
ds ds ds Sr sin r ds 39
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204 WU-YI HSIANG AND P. TOMTER

where a is the angle between the generating curve, y^Z^1 n Co, and the radial direction,
and v is the above volume function.

Proof. - Straightforward computation will show that the mean curvature of ^n+l at
an interior point, say p=(r(s\ 9(s)), of y is equal to the mean curvature of y in Co
minus the normal derivative of In u, namely,

W+\p)=H(7,p)-d\nv^6)\,
an

fdd dQ\ ( . dQ <9 1 dr Q , \= —+cos r— - -sin r — — l n r + — — — — \ n v .
\ds d s / \ ds 9r sinr ds 9Q )

Hence, ^n+l is minimal if and only if its generating curve y satisfies the ODE (^).
Q. E. D.

3. The reduced minimal equation and its singularities

From now on, we shall simply call the ODE (^) the reduced minimal equation.
Observe that the volume function v(r, 9) is of the form K.(sin rr.^(9); the reduced
minimal equation may be reformulated as the following dynamical system:

dr— = cos a
ds

dQ sin a
W

ds sin r

den ..sin a cosa_ , - ,—=-(n+l)-—.cosr+——G(9)
ds sin r sin r

where G (9) = (d/dQ) In g (9) =^ (Q)/g (9).

LEMMA 2. — (d/dQ) G(9)+n+l<9, and G(9) decreases from +00 to -co as 9 varies
from 9 to n/g.

Proof. - Straightforward case-by-case verification. For example, in the case g=2,
G(9)=mi cot 6—m^ tan 9,

„G(9)=-ml( l+cot 2 9)-m2(l+tan 2 9)<-(ml+m2+2)=-(n+l) .d\j

Notice that G (9) =g' (Q)/g (9) and g (9) =g (n/g) = 9.
Q. E. D.

Set 9o to be the unique value of 9e[0, n/g] such that G(9o)==0. It is easy to see that
(^) has the following two obvious solutions, namely,

(i) The "equator solution": r=n/2 whose inverse image is an equator in S" !̂).
46 SERIE - TOME 20 - 1987 - N° 2



MINIMAL IMMERSIONS 205

(ii) The "meridian solution": 9==9o whose inverse image is the suspension of the
isoparametric submanifold passing through (n/2, 9o) which is itself a minimal submanifold
in the above equator S"^ (1).

Observe that the inverse image of a solution curve, y, of (^) which starts at one of
the boundary arcs of Co and terminates at the other boundary arc of Co is necessarily
an immersed minimal hypersphere in S^Q). Therefore, the basic approach of this
paper is exactly to establish the existence of infinitely many, geometrically distinct,
solution curves of the ODE (^) of the above type for each given case of isoparametric
foliation. However, points of the two boundary arcs of Co, namely, B i={( r , 0 ) ;
0<r<7c} and 82= {r , n/g), 0<r<7i}, are singularities of the ODE (^). Therefore, one
needs the following lemmas concerning the behavior of solution curves which start or
terminate at points of B^ or B^.

LEMMA 3. — To each boundary point (b, 0)eBi [resp. (b, TC/^eBJ, there exists a unique
solution curve, y^ (resp. y^) \vhich starts at (b, 0) [resp. (fc, n/g)], namely

Y^ (s) = (r, (fc, 5), 9i (fc, s)) and lim y^ (s) = (fc, 0)
s ^ 0 +

^2) (5) = Q-2 (fc, 5), 92 (fc, s)) and lim y^ (s) = (fc, n/g).
s^0+

Moreover, both r,(fc, 5) and 9,(fc, s), f = l or 2, are automatically analytic functions of b
and 5.

Proof. - Let y^ (resp. y^) be a given solution curve of the ODE (^) starting at
(fc, 0) [resp. (b, n/g)]. Then it follows easily from (^) that y^ must be automatically
perpendicular to B,., i= 1 or 2. Therefore, its inverse image, p ~ 1 (y^, is a smooth minimal
hypersurface in S"^!) and hence, it follows from the standard regularity theorem of
elliptic PDE that p ~ 1 (y^) is analytic. This, in turn, implies that ̂  is also analytic. The
rest of the proof of Lemma 3 is by the method of formal power series substitution and
majorization.

Changing variable from 5 to 9, (^) becomes:

9^ +eG(9)^ ̂ ^^^-^(^V
d62 dQ \dQ) sin2^ \dQ)

where 9G(9) is analytic near 9=0.
We refer to Proposition 1 of [10], or, in greater generality, to [21], for such a proof of

uniqueness, existence, and analytical dependence of power series solutions of this type of
singular differential equations.

Q. E. D.
Equation (^) is symmetric with respect to reflection of parameter; hence any solution

curve which hits the boundary can be continued back along the same trajectory with a
discontinuous jump in a at the boundary; hence all solution curves may be considered
as defined for all s. Close by solution curves will generically avoid the boundary, but
one has the phenomenon of "sharp turning" close to the boundary.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



206 WU-YI HSIANG AND P. TOMTER

Let BJa, c] be a compact segment of B^ with a^r^c. One can always choose a
sufficiently small § > 0 such that the 8-collar neighbourhood of B^ [a, c] is foliated by the
small segments of yj,, a^b^c. In other words, one may introduce a new coordinate
system (t, 9) for the above 8-collar neighbourhood N^ja, c], i= l or 2, such that y^ is
given by t=b. Since the behavior of solution curves of (^) in N^ is essentially the
same as that of N^\ we shall, for simplicity of notation, only state the latter case.

Let ^r,Q,a (s)=(r(s\ ^(^ a(s)) be the unique solution curve of (^/) with initial
conditions r(0)=r, 9(0) =9, a(0)=a, where re(0, 71), 9e(0, n/g\ aeR(mod 2 71), and let
Yr, e, a (s)== (r (s)? 8 (5)) be its projection to the orbit space.

PROPOSITION 1. — For any positive e there exists a positive 8 such that any solution
curve Y^e,a(5) ^hich intersects N^^a,^] at 5=0, has | (7t/2) — a (So) | <£ for some 5oe(0,e).

The details of this argument involve delicate estimates, [19]. Let b e [a, c], by reflectional
symmetry we may assume b^n/2. Consider F^e^(s), and let a6[—7i/2, Ti/2—s]. From
(^/) it follows that a(s)=0 as long as a(s)e[—7i/2, 0) and r(s)=7i/2, [8 is chosen less
than 9o, so G(9(s)) remains positive]. From (^ /) and Lemma 2 it follows that for a
given e>0, one can determine a 8>0 such that in N^la.c], da/ds will be dominated by
the term (cosa/sinr)G(9) as long as |cos a|>e, 9<8. It follows that for sufficiently
small 8, a(5i)^0 for some Sie(0, e/10). When a(s)^0, 9 is increasing, and G(9) is
decreasing; hence it is more delicate to estimate the increase in a(s).

From (^ /) and the form of g(Q) it is clear that we can choose a 9^ such that
a > k (cos a/sin r) cot 9 for ae[0, Tr/2—s], 9e(0, 9^), and k a positive constant depending
on n and g (9).

Then da/d9>fe cot a cot 9. The solution of the equation da/d9= k cot a cot 9 with
initial condition 0(9^=0 is cos ai=(smQ^)k/(smQ)k for 0<92<9<9i. Comparing with
this we obtain for our orbit: cos a (9)^ (sin 92)^^19)^ Hence

cos(a(2-9^-^^
"(sinl^es)1

sin 9; Y
, 2P+1 (cos 2? 62) (cos 2"-162). . . (cos Q^ (sin O^) /

^2-k<p+l)(cos2p92)-'c(''+l).

Choose/? so large that 2 - t (p+l )<e/8 and then O^ so small that

/ fep2\
2 p + le2<max(e l——)

\ 8 /

and

cos*a)+1) (I" 62) > 1/2, cos (2P+1 62) > 1/2.

Then cos (o '̂1'1'1 92))<e/4. Choosing 6 small enough to satisfy the above conditions
for 62 and setting 62=6(51), we now observe that a(6) reaches 7i/2—e for a 6=63<21'+l

4° SfeRIE - TOME 20 - 1987 - N° 2



MINIMAL IMMERSIONS 207

O^ < k e^S. Let 9 (s^) = 63, then

eka > k cos a cot 9 > k sin £ cot 63 > — cot (V +162)
i, ̂

cfe _ / f e E 2 ^ 2> —sin~1 ( —— )> - for S^<S<SQ (e assumed small).2,4 \ 8 / e i o ^

Since

a(so)-a(si)<_ and S o - S i > 5 o - ,

it follows that So<£ [otherwise a(5o)—a(5i)>2/e.9/10e=1.8>7i/2]. This concludes the
argument when a (0) e [ — 7i/2, n/2 — s]. [Case (a)].

Case (fo): a (0) e [7i/2 + 8, 371/2). From Lemma 5(c)a(s) has no relative minimum when
a(5)e(7c, 37i/2). If a(0)<0, it follows that a(s)<0 as long as a(s)e(7i, 3 7i/2) and
6(s)<9o. By the argument in case (a), the conclusion follows. If a(0)>0, there are the
following possibilities:

(i) a(s) increases past 3 7i/2, this reduces to case (a).
(ii) a(s) increases to 3 7i/2 as the solution enters B^.

(iii) a(s) reaches a relative maximum a^ = a (5^) ̂  3 7i/2. If a^ = 3 7i/2, we get r (s^) = 7i/2
from (^/), hence this would be the equator solution, which is a contradiction. Hence
a(s^)<37i/2, and 6c(5)<0 for s>s^; this reduces to the previous case a(0)<0. The
estimate on SQ is obtained as above.

Q. E. D.
Proposition 1 demonstrates that small perturbations of initial data around s= —5' for

^(s), s'>0, will give a solution curve which follows y^ closely towards the boundary
B^, turns sharply, and leaves N^[0, c] with initial data close to y^. However, since 5 is
small, this is in the region where the Lipschitz constant of (^ is not under control,
and we cannot conclude from Proposition 1 that the solution continues to follow y^
closely. For this conclusion we need the following:

LEMMA 4. — Let N^ [a, c] be the above S-collar neighbourhood with the new coordinate
system (t, 9). Let {y^ ne^} be a sequence of solution curves of(^) such that y^ enters
N5 at (t^\ 8), reaches its unique Q-minimal at (r^\ O^) and exits N5 at (t^\ 8). If
O^ > 0 for all n, lim ̂ 2) exists, and lim O^ = 0, then lim ̂ 1) = lim ̂ 2) = lim t^\

Proof. — Let a^ and a^ be respectively the entrance and exit directions of y^.
Obviously, one may assume without loss of generality that lim t^ and lim a^ both exist
for 7=1 or 3. Then it follows from the assumption lim O^ = 0 that

limoc;.1^-7', lima;.3^
2 " 2

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



208 WU-YI HSIANG AND P. TOMTER

because lima^^ —71/2 or lima^ 9^71/2 clearly implies that limO^ exists and is non-zero.
Moreover, one must have

lim^limr^lim^,

for otherwise lim^^&i^^^im^, and the segment of y^ before (resp. after) its
9-minimal point would approach the curve t=b^ (resp. t=b^) as the limiting curve, which
is clearly impossible for a sequence of solution curves o^^).

Q. E. D.

PROPOSITION 2. — Compact segments of solution curves of the ODE (^) depend conti-
nuously on their initial conditions, also when they contain some bouncing back points on
the singular boundary arcs B^ and B^.

Proof. — Let y^ be as in Lemma 3, and let B^ [a, c] and N^[0, c] be as above with
a<b<c. It is sufficient to consider a sequence of solution curves to ( ^ / ) : Y^=(t^ 6^ a^)
which enter N^[a, c] at (^1), 8) with entry direction a^; here ^1) -> b and a^ -> a1, the
entry direction of y^. By the standard theorem on continuous dependence on initial
conditions F^ contains points (^, 9^, a^) converging to (b, 0, —n/2). From Proposition 1
it follows that for sufficiently large n, a^ gets close to n/2 while y^ is still in N^[a, c].
Hence, for a fixed be (a, c), it follows that for sufficiently large n, the solution curves
(r^, 9^) enter N^ et (^1), 5), reach their unique 9^^, and then leave N^ at points
(t^\ 8). By Lemma 4 the initial data of these curves at the exit points converge to the
corresponding initial data for yj,^: (b, §, —a1). This is a fixed point where we have
control over the Lipschitz constant; hence we can apply the standard theorem on
continuous dependence on initial conditions beyond this point.

Q.E.D.

4. Some qualitative features
of solution curves under deformations

LEMMA 5. — Let (r(s), 9(s), a(s)) be any solution o/^). Then
(a) Any relative maximum (minimum) ofr(s) occurs with r > n/2 (r < 7C/2).
(fc) Any relative maximum (minimum) ofQ(s) occurs mth 9>9o(9<9o).
(c) Any relative maximum (minimum) o/a(s) occurs mth a in the first or third (second

or fourth) quadrant.

Proof. — (a) and (b) are quite obvious. We shall only prove (c) as follows.
At an a-extremal point, one has a=0 and it follows from (^ /) by differentiation and

substitution that

o^s in ' " 2 ^ .—G(9)+n+l .sinacosa.

4eSERIE - TOME 20 - 1987 - N° 2
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Hence (c) follows from Lemma 2, which proves that

^G(9)+(n+l )
d\j

is always negative.

Q.E.D.

DEFINITION 1. — Set the regions I-IV in the Weyl chamber Co to be

?...>«>.,'•,2 7 I v'< / \ ^

(.,̂ (̂ )
111: (o,j)x(9,9o),

Iv: (^)x(0,9o).

DEFINITION 2. — Let r,(5)=(r,(5), 9,00, a,(s)) be the solution of (^/) with
^(O)^, 9, 7i/2), and let y,(s) be the corresponding solution curve of (^) in Co. Let
r^(b) and r^(b) be respectively the f-th maximum and f-th minimum of r,(s), s>9, and
define their corresponding argument to be s^ and 5 ,̂ namely, r^(b)=r^s^) and
rimW=r,(s^). Similarly, let aM(fc)=a,%J and <(fc)=a^) be respectively the f-th
maximum and f-th minimum of a, (s), s > 9.

DEFINITION 3. — Let Yb" be the largest segment of y^(s), s>9, which does not touch
the singular boundary.

LEMMA 6. — Let fee (9, n/2). Then all critical points for ^(s) and ^(s) along y^ are
non-degenerate and vary continuously with b. None of them can coincide.

Proof. - By the uniqueness theorem of ODE applied to (^), r^(b), r^(b)^n/2 for
all i. It is easy to see that r=(n+ 1). cot r at a critical point of r(s). Hence all of them
are non-degenerate and stable and vary continuously with b.

It follows from Lemma 5 that a critical point of a is non-degenerate provided that sin
a. cos a ̂  0. Suppose the contrary, that there is a place with 6^ (so) = 9 and cos o ,̂ (5o) = 9.
Then it follows from (^ /) that cosr,(5o)=9, i.e., r,(5o)=7t/2, which implies, again by
the uniqueness theorem, that y^ is the equator solution and hence a contradiction.
Similarly, if there is a place with ^(s^)=0 and sin 0^(51)= 9, then it follows from (^/)
that G(9,,(si))=9, namely, 9^(si)=9o and hence y^, must be identical with the meridian
solution which is clearly impossible. Therefore, all critical points of a along y^ must be
non-degenerate and stable and, moreover, the critical points of r^ (s) and a^ (s) can never
coincide.

Q.E.D.
ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



210 WU-YI HSIANG AND P. TOMTER

DEFINITION 4. — The N-th(r, a)-pattern of y^, PN(^)? is the finite sequence of symbols
constructed as follows: we assign symbols r^, r^, a^, a^ in the same order as the critical
points r^(b), r^(b\ a^fe), ^mW occurring along y^, 5>0, until we have passed the
N-th critical point or y^, (s) has reached the boundary.

Remark. — By Lemma 6, the above P^(b) is well defined.

COROLLARY. — Assume that y^" has at least N critical points among the r1^ (b), r1^ (&),
^(b) and a^(fc) for b=b^. Then the N-t/i (r, y)-pattern, P^fc), is locally constant around
b=b,.

Observe that any change of the (r, a)-pattern, P^b), must result from y^ hitting the
boundary. This provides a scheme for establishing the existence of "closed" solution
curves y^, which start and terminate at boundary points, or rather, oscillating back and
forth between two boundary points.

LEMMA 7. — Let y^(5) intersect B^ or B^ at s=s^ for b=b^. Variation ofb around b^
then allots a continuous crossing of critical points of a^, (s) and r^ (s) at the intersection
point according to the following scheme:

Intersection point in:

I: An y\i (b) crosses an a^ (fc).

II: An r^ (b) crosses an a^ (fc).

Ill: An r^ (b) crosses an oc^ (fc).

IV:AnrM (b) crosses an a^ (fo).

Proof. — The proofs for the above four separate cases are essentially identical.
Therefore, we shall only give the proof of case IV as follows:

Assume that r^(s^)>n/2, 9b(si)=0 for b=b^. By the continuous dependence of 7^(5)
on b and Lemma 5, there are only the following possibilities for y^, with | b—b^ \ sufficiently
small:

(i) a^(5) reaches a relative minimum a^(fc)> —n/2 and then turns sharply up to 7i/2—s.
Here o^ (s) actually reaches 7i/2, and hence an r^ (b), after a short s-interval (which tends
to zero as b->b^). This follows since both terms of a in (^/) are positive in the given
region, and the first term can be estimated by a positive constant. Hence we need only
choose s small.

(ii) a^(s) decreases to —n/2 as y^(s) approaches an intersection with the boundary.

(iii) (Xfc(s) decreases beyond —7i/2, i.e., an r^(Jb), and then turns sharply to —37i/2+£.
By choosing b sufficiently close to b^ one may assume that y^, remains in IV up to that
stage. Now, we claim that o^(s) must reach a relative minimum within a very short
5-interval. For otherwise, the curve y^, must continue almost vertically with a%0 over
this stretch. The first term (positive) of a in (^') is approximately constant, while the
second (negative) term decreases in absolute value at a steady rate, a contradiction.
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Hence, in case (i) an a^(7?) precedes an r^(b), in case (ii) they coincide, and in case (iii)
an a^ (b) succeeds an r^ (n). This proves Lemma 7 for region IV.

Q. E. D.

5. Evolution of solution curves
and the proof of the main theorem

In this section we shall provide a uniform proof of the main theorem stated in the
Introduction which covers all cases of rank two isoparametric foliations on S^^l) with
exactly two point-leaves. Let us begin with a brief outline of the basic ideas involved in
such a proof. As was already pointed out in paragraph 2, the construction of infinitely
many foliated minimal hyperspheres inSn+2(l) can be reduced to the proof of existence
of infinitely many global solution curves of the ODE(^) which start at B^ and terminate
at B^. It follows from Lemmas 3 and 4 that compact segments of the following family
of solution curves

S(Bi)={y,;0<^<7i,y,(0)=(^,0)}

varies continuously with respect to the parameter b. Observe that y,^ is exactly the
"equator solution" which bounces back and forth between B^ and B^ along the line
r = 7i/2. Therefore, small perturbations of y^, namely, y^ ̂ th | b — n/2 \ sufficiently small,
consist of solution curves which "wrap around" the line r=7c/2 many times before they
wander away (cf. Lemmas 8 and 9). The key point of the proof of the main theorem is
to study the change of the (r, a)-pattern of y^, as b varies from 7i/2—e to e.

LEMMAS.— Let r(s)=(r(5), 9(s), a(s)) be a solution of (^/) mth 0<a(0)<7i/2,
a (0) < 0, (r (0), 6 (0)) e III. Then y (s) = (r (s), 6 (s)) escapes the region III by 'crossing 6 = 9o
for an S=SQ>O; furthermore, a(5)<0 for se(0, 5j. In particular this holds for y^,,
be (0,7i/2).

Proof. — In III we have a>0 at a==0 and a<0 at a = 7i/2, hence a(5)e(0, 7i/2) until
y(s) escapes III. By Lemma 5 (c), a (s) has no relative minimum, hence a(s) remains
negative until the escape. By (^) wehave a>0 at r=n/2, hence the escape must be
across 9= Go. Since y^Cs) starts in III, and a(5)<0 for ae(7i/2, 71), we must have
QCfc (s) < 7i/2 to begin with, and the result follows.

Q. E. D.

LEMMA 9. — For any N, there exists an £ > 0 such that

p2N/L\_ / 1 1 2 2 N N\
r \P) — VM» 'w? 'M? 'm? • • • •> 'M? " m )

forbe{n/2-^ n/2).

Proof. — Geometrically speaking, the above lemma asserts that y;, wraps around the
line r = 7i/2 at least N times before it encounters its first a-critical point if b is sufficiently
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close to 7i/2. Its analytical proof is as follows:
Choose a sufficiently small 5>0 and set

Ri(resp. R 2 o r R 3 ) = { ( r , 9); r-71 <8, 9^8(resp. 8<9<JC-8or O^-sU
C 2 \ g g ) \

Suppose that y is a segment of a solution curve of (^) which goes from R^ (resp. R3)
to R3 (resp. R^) through R^. The linear approximation of the ODE (^') in the region
R2 is the following ODE

(^o)
\r= a, 9=1 (resp.-l),
[a=?=-(n+l)F-a.G(9)

where r=r—(n/2) and a=(7i/2)—a. Along an integral curve of (^o), one has

^"^-<e')-©-•^+^G<e>]-©-l<-("+•)^o
as long as r < n/2 (by Lemma 5 (a), dr/dQ = a stays > 0 for r < n/2). Then

^>'r"(9,)^(91) for 9>9,
dQ~d6 ' g(Q) ~ '

From the form of g (9) it follows that there then is a positive constant C such that

dr. C
dQ~sm(K/g-6)

in this region. The integral of the right side is unbounded as 9 -> n/g; hence the solution
curve Y must cross the line r=7i/2 on the way up.

Now, by choosing e sufficiently small, be(n/2-£, 7i/2), it follows from Lemma 3 and
Proposition 1 that y^, goes through R^ back and forth for at least N round trips.
Furthermore, in this region the coefficients of (^/) can in this way be approximated by
the coefficients of (^o) with arbitrary accuracy. Since compact segments of solution
curves also depend continuously on coefficients, it follows by repeated applications of
the above approximation and Lemma 8, that the curve y^, must go through at least N
cycles of

III -> II -> I -> IV -> III,

and make sharp turns in R^ and R3. Moreover, it follows from the argument in (i) of
the proof of Lemma 7, that such a solution curve y^ must have an r-minimum (resp.
r-maximum) after it makes a sharp turn in R^ (resp. R3). We observe that ^(s) remains
negative throughout the above N cycles of wrapping around the line r=7i/2 as follows:

By Lemma 8 a^<0 in III. By (^/) both terms of a^ are negative in II until the
crossing in R^. After crossing into I, it follows as in Lemma 8 that a has no minimum
before a=0; by Proposition 1 a must turn sharply in I near B^. By (^/) a is now
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negative in I until a= —7C/2. It follows as in Lemma 8 that y^, must cross from I into
IV, and the argument continues in the same way. Q. E. D.

Finally, after the preparation of all the above nine lemmas, the proof of the main
theorem can be given as follows:

Proof of the Main Theorem. — Let us consider the geometric feature of the (r, a)-pattern
of the subfamily of S(Bi) with b<n/2. For b sufficiently close to 7i/2, it follows from
Lemma 9 that jj, has an arbitrarily long sequence of r-extremals before it encounters its
first a-extremal. On the other hand, it is quite easy to show (c/[13], [19]) that Y& will
have an a-minimum before it encounters any r-extremals if b is sufficiently close to 0.
Set

b-infLiP21-1^)^, r^ . . ., r^) for c^b, jU

E,=mfh\P2i(c)=(r^ . . ., ri,, r,) for ce(b, ̂ l.

It follows from the above discussion that b^ b^ feN, are well defined values in (0, n/2).
Moreover, by Lemma 7, y^(resp. y^) intersects the boundary arc of IV (resp. II) at a
point when r^ (resp. r^) and a^ coincides. This proves the existence of infinitely many
solution curves with distinct geometric characteristics, {y^.; f e N } (resp. {y^.; ieN}),
which start at B^ and terminate at B^ (resp. B^). The inverse images of such solution
curves provide infinitely many foliated minimal immersions of Sn+l (resp. generalized
Clifford torus) into S"" !̂) which are, clearly, mutually non-congruent. This completes
the proof of the main theorem.

Remark 1. — The above method, in fact, produces many more varieties of minimal
hyperspheres than is exhibited in the above proof.

Remark 2. — In higher dimensions, most examples of minimal hyperspheres we
constructed in the above process actually have stable cones in Rn+3.
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