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ALGEBRAIC K-THEORY
AND ETALE COHOMOLOGY

BY R. W. THOMASON

Let F be a prime power, and let X be a separated regular noetherian scheme in which
/ is invertible. If (9^ contains a primitive Fth root of unity, there is canonical element P
in the second algebraic K-group of X with coefficients Z/F, K//; (X), which Bocksteins
to the primitive root as an F torsion class in Ki(X). The graded ring K//»(X) may be
localized by inverting this P. Under a few mild extra hypotheses on X, the main
Theorem 4.1 yields a strongly converging Atiyah-Hirzebruch type spectral sequence that
computes K/ft(X) [p~1] in terms of the etale cohomology of X:

(o.i, ^•-{"u\z'^q•2'} - K/^X)^-].
The result may be reformulated in terms of the etale or topological K-theory of Dwyer

and Friedlander as giving an isomorphism between the localized algebraic and topological
K-groups as in Theorem 4.11:

(0.2) K/^ (X) [p -1] ̂  K/l^ (X).

The result holds even without the assumption that ^x contains Fth roots of unity,
when P is defined as in Appendix A. There is a variant of the result for singular schemes
in terms of algebraic G-theory and topological K-homology as in 2.48, 4.15-4.16.

The result is quite remarkable in that it expresses a deep and subtle link between
algebraic geometry and the topology of varieties. The groups K/^(X) are defined in
terms of the category of algebraic vector bundles on X, and reflect the delicate algebraic-
geometric structure of X. They carry much subtle information about intersection theory
on X, and on Euler characteristics in coherent cohomology of algebraic vector bundles
on X. On the other hand, K/fiic^X) is a much cruder invariant depending only on
the underlying topology of X. As X runs through the moduli of K3 surfaces over the
complex numbers, the rank of the image of K/^(X) in K/^^X) under the forgetful
map is known to take on all values from 3 to 22, despite the fact that all such surfaces
are diffeomorphic ([103], IX). Nothing in the definition of K/ft(X) involves or evokes
the etale topology, or leads one to expect that etale cohomology can be constructed out
of K//*(X). For varieties over the complex numbers, K/ft^X) can be defined in a
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438 R. w. THOMASON

manner parallel to K/l^ (X), with the category of topological vector bundles playing the
role of algebraic vector bundles. However, the two categories of vector bundles are
quite different: not every topological vector bundle is algebraizable, algebraic vector
bundles may be isomorphic as topological bundles without being isomorphic algebraically,
and not every short exact sequence of algebraic vector bundles splits algebraically, though
it must split topologically. Thus K/;*(X) and K/fii^X) look quite
different. However, the theorem says that they are also quite alike, in that they differ
only by P-torsion, hence only in "codimension at least one". As inverting p takes a
direct limit over groups in higher degrees as in (0. 3),

(0.3) K/^Xnp-^hm^K/^X) ̂ K/^p(X) ̂  . . .),

the Theorem says that algebraic K-theory asymptotically approaches topological K-
theory in high degrees. It also says that the category of algebraic vector bundles on X
knows about the non-algebraizable topological vector bundles.

There are many applications of the main result. As etale cohomology is usually easy
to calculate, it is usually possible to calculate the groups K/ft(X)[p~1], which are at
least close to K//* (X) if not identical to it. Examples for curves, semi-simple algebraic
groups, and smooth hypersurfaces in projective space are given in paragraph 4, along
with a few arithmetic examples.

As another application, it is possible to use Theorem 4.1 to ^ show directly that
K/^(X) [p~1] has all the formal properties used in applications of the Dwyer-Friedlander
topological K-theory. Thus it may be used to replace this construction for regular
schemes, and so avoid the gruesome technicalities of etale homotopy
theory. Theorem 4.11 shows that this gives exactly the Dwyer-Friedlander groups.

If/: X -> Y is a proper map between regular varieties, there is an obvious commutative
diagram

(0.4)

K//*(X)^K/r*(X)[P-1]
I/ I/
+ • t '

K/^(Y)^K/R,(Y)[P-1]

The groups on the right of (0.4) can be computed via Theorem 4.1. This makes it
possible to compute the map/* on the right of (0.4). This/* may be identified to the
Gysin map in topological K-theory. Thus (0.4) solves the Riemann-Roch problem as
a variant of Grothendieck's Riemann-Roch Theorem. For a generalization to singular
varieties and a fuller discussion, see 4.16-4.17. This generalizes those higher Riemann-
Roch theorems of Gillet and of Shekhtman that deal with the Chern character from
algebraic K-theory to Q^ etale cohomology.

An application related to the above is my proof of Grothendieck's absolute cohomologi-
cal purity conjecture for Q^ etale cohomology, as discussed in 4.18.
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ALGEBRAIC K-THEORY 439

Known connections between zeta functions and etale cohomology may be reformulated
in terms of K/^(X) [p~1] thanks to 4.1. This is important for calculations in arithmetic
cases as in 4.7 and 4.8. It also sheds a bit of light on the results and conjectures of
Beilinson, Coates, Lichtenbaum, Mazur, Soule, and Wiles.

Most of my results concern the mod / algebraic K-groups introduced by Browder. As
in A. 5, there is a universal coefficient sequence

(0.5) 0 ̂  K, (X) (x) Z/F ̂  K//; (X) ̂  r-torsion in K, _ , (X) ̂  0.

See A. 12 for the ?-adic version. From this one sees that most of the information in
K*(X) is encoded in the /-adic K*(X)^ or in the system of K/^(X) as v increases: only
the uniquely /-divisible subgroups of K*(X) are irretrievably lost. There is good reason
to lose something, for it is well-known that the groups K* (X) violate Lefschetz's principle
and that Mayer-Vietoris for closed covers and the homotopy axiom fail for
singular X. Suslin has recently shown that the groups K/^ (X) satisfy Lefschetz's princi-
ple [117], and Weibel has proved Mayer-Vietoris and the homotopy axiom for K//*(X)
and singular affine X [139]. Thus these pathologies disappear mod l\ Similarly, etale
cohomology exhibits pathology unless restricted to torsion coefficient sheaves. Suppose
X is a projective variety over the complex numbers. Then the classical topology allows
one to define an integral Kl^X), and there is a Dwyer-Friedlander or forgetful map to
it from K*(X). Using Hodge theory, Gillet ([44], 5.5) has shown that this map has
torsion image in degrees above 0. As K^X) is often torsion-free, this map is often
zero in positive degrees. In contrast, the map from K//*(X) to K/^^X) is a localiza-
tion by 4.1, and so is highly non-trivial. In fact, a more delicate version of 4.1 shows
that this map is surjective in sufficiently high degrees [129]. In integral terms, this means
that the copies of Z in K^X) for large n correspond not to Z's in K^(X), but rather via
the universal coefficient theorem to torsion groups Q/Z in K^_i(X) . This is like the
classical relation of H1 ( ; Z) of a curve to the Tate module of torsion points on the
Jacobian of the curve. This relation is much easier to see working mod lv. However,
a rather messy integral form of the key descent theorem is given in 2. 50, and a simple
rational descent Theorem is proved in 2.15-2.18.

The general outline of the proof of the main Theorem is this: First, the machinery of
homological algebra must be generalized to a "homotopical algebra" that applies not
only to chain complexes, but to the spaces and spectra that occur in Quillen's definition
of algebraic K-theory. The foundation for this was laid by Puppe and Quillen, and a
superstructure is built on it in paragraphs 5 and 1. There is a close analogy between
ordinary homological algebra and this generalization. The analog of a chain complex
is a spectrum in the sense of algebraic topology. The analogs of homology groups of a
chain complex are homotopy groups of a spectrum. Short exact sequences of complexes
correspond to fibration sequences of spectra; they yield long exact sequences of homology
or homotopy groups. Quasi-isomorphism of complexes corresponds to weak homotopy
equivalence of spectra, and the derived category to the stable homotopy category. The
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440 R. W. THOMASON

derived category treatment of homological algebra generalizes, and all fundamental results
stated in this language carry over. The basic results are proved in paragraph 5, and the
theory of sheaf and Cech hypercohomology of a topos with coefficients in a presheaf of
spectra is developed in paragraph 1.

In paragraph 2, I prove that K/^( )[P~1] has a cohomological descent spectral
sequence with respect to Cech covers for the etale topology, and also has a related
descent spectral sequence for etale sheaf cohomology. The Mayer-Vietoris and localiza-
tion properties of algebraic K-theory and the properties of etale hypercohomology
developed in paragraph 1 allow reduction from the case of general schemes to that of
local rings, and then to that of fields. The essential ingredient in handling the last case
is Hilberfs Theorem 90.

In paragraph 3, I complete the proof of the main theorem by showing that the sheaf
K/^* ( ) [P~1] on the etale site is Z/F (i) or 0 depending on the degree. This amounts to
showing that there is no excess in K//*(R) [p~1] beyond what is detected by the Dwyer-
Friedlander map when R is a nice strict local hensel ring. This is done by the classical
splitting principle for K() plus dimension-shifting techniques of Dayton and Weibel that
allow one to reduce to a Ko problem.

This is the second edition of this paper. The first was an MIT preprint of 1980. There
are several significant differences between editions. The cases where 1=2, 3 are now
covered, and with fewer restrictions than announced in [126] or the erratum to the first
edition. There was a slip in the proof of 2.13 in the first edition, which was fixed under
additional hypotheses in the erratum. The proof of the main theorem in this edition
avoids this difficulty entirely, but still needs the additional hypothesis that the residue
fields of X not only have bounded etale cohomological dimension, but that they have a
filtration like (2.112) between them and their separable closures. This is not a serious
restriction as all the usual examples satisfy (2.112). In fact, there is no field known to
have finite etale cohomological dimension which does not satisfy (2.112), for (2.112) is
the grip by which Tsen's Theorem grasps the problem in all known proofs of finite
cohomological dimensionality.

The method of proof of the descent Theorem for fields in this edition is completely
new. It is shorter, more conceptual, and gives a stronger result than my older Karoubi
periodicity proof. However, Karoubi periodicity applies more generally to solve other
problems of a related type, and I hope to return to this subject in another paper. The
reader may see a sketch of the old proof and get an idea of this general applicability
from [128].

This edition also includes the results of [126], which did not appear in the first edition.
Throughout this paper, I have ignored the usual set-theoretic problems and the fact

that certain "functors" are really only pseudofunctors. Rigorous correction of the first
is by means of Grothendieck's method of "universes" as in [SGA 4]. The second problem
is resolved by rectification of pseudofunctors into equivalent strict functors, as in [116],
[122], 114.4, or any of the other footnotes on this nuisance.

The background expected of the reader consists of comfortable familiarity with the
basic ideas of homotopy theory; a fair knowledge of algebraic geometry on the level of
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Hartshorne's text; thorough knowledge of Quillen's foundational paper on algebraic K-
theory [97]; and a little exposure to Galois and etale cohomology on the level of [3], or
the first few sections of Deligne's summary in [SGA 41/2].

I have received much help while doing the work reported on here. Useful suggestions,
political support, and patient attention were provided by Mike Artin, Armand Borel,
Bill Browder, Bill Dwyer, Eric Friedlander, Dale Husemuller, Max Karoubi, Robert
Langlands, Ronnie Lee, Peter May, Vie Snaith, and Chuck Weibel. Without Dan
Quillen's support this work would not have appeared. Henri Gillet deserves special
thanks for his many perceptive suggestions. Christophe Soule actually read most of the
first edition with a fair amount of attention, and his remarks have been very
useful. Beilinson and Shekhtman have spent their own money to keep me informed of
their interesting work in K-theory; one hopes that someday they will be able to get the
academic jobs their talents deserve. To all these mathematicians, I am very grateful. I
also owe thanks to the institutions that have supported me during this work: M.I.T., the
Institute for Advanced Study, The Johns Hopkins University, and the National Science
Foundation. Anne Wolfsheimer capably converted my handwriting into typescript, so
both I and the reader are much in her debt.

Suggestions for reading:
If you're an: then read in order:

Honest man § 5, Appendix A, § 1, 2, 3 and 4;
Reckless cheat § 2, 3 and 4, bearing in mind the above

analogy between homological and homotopi-
cal algebra;

Thrill seeker § 4.

1. Cech and sheaf hypercohomology
with coefficients in a spectrum

In this section I develop the basic properties of hypercohomology of a topos with
coefficients in a spectrum. I assume familiarity with the material reviewed in
paragraph 5.

By a site, I mean a small category C which has pullbacks and is endowed with a
Grothendieck topology. This consists of assigning to each object U a collection Cov(U)
of families y^ of objects with maps to U. Each family V^ is thus a collection
{ V f ^ U | i e I } . The families in Cov(U) are covers of U. The usual axioms hold:
see [3], 10.1 or [SGA 4], II, § 1 for a list of these. Roughly they say that a pullback of
a cover is a cover, a cover of a cover is a cover, and that each U covers itself. It is
often convenient to assume C also has a terminal object. Each site C has a category of
presheaves C" and a category of sheaves C~, which is the topos associated to the
site. This C ~ is a full subcategory of CA consisting of presheaves satisfying a descent
condition for covers [SGA 4], II, § 2. A topos has a sheaf cohomology and even a sort
of homotopy type ([5], [36]).
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Example 1 . 1 . — Let X be a topological space and C the category whose objects are
the open sets of X. Morphisms are inclusions. T = {V^ -> U} is a cover if U == U V,.
For X a scheme, this yields the Zariski site. Sheaves are sheaves in the usual sense.

Example 1.2. - Let X be a scheme, and C = Et/X the category of schemes etale over
X. An object is an etale map M : U ->X. The morphisms in the site are the maps
U-^LT that respect the maps to X. These maps U-^IT are then etale. A family
^=={^. :V,-^U} is a cover if it is faithfully Hat, or equivalently if U = U M f ( V , ) as
sets. For details, consult [SGA 4], VII 1.2.

Example 1 . 3 . — Let X be a separated noetherian scheme. The objects of the restricted
etale site Etr/X are affine schemes U together with a map u: U -> X which is separated,
etale, and of finite presentation. A covering family of X is a finite collection of such
Ui: Uf -> X, satisfying the condition that U Mf(U^)=X.

Note that the U^ are also noetherian. In this site the family { U ^ X } may be
replaced by U = LIU; -> X. Thus I may consider a covering family as a single noetherian
affine scheme etale and faithfully flat over X.

Sometimes X itself is given honorary membership in this site to provide a terminal
object. In any case, the site has pullbacks over X. I can also take the same site, but
remove the condition that covering families be finite. Proposition 1.4 remains true.

PROPOSITION 1.4. — For X a separated noetherian scheme, the sites Et/X and Etr/X
have the same topos, hence the same cohomology.

Proof. - [3], III, Thm. 1.1 or [SGA 4], VII, § 3.
I can therefore switch between these sites whenever I want.

DEFINITION 1.5. — A presheaf on a site C is a contravariant functor from C to the
category of sets, or to the category of fibrant spectra as in 5.2, or to that of group
objects in the category of fibrant spectra, depending on context.

Examples 1.6.- The K-theory spectra of Appendix A are examples of presheaves of
fibrant spectra on Et/X. They may be replaced by weak homotopy equivalent presheaves
of fibrant group spectra by 5. 38-5. 39.

Example 1 . 7 . — Take any presheaf of chain complexes on a site. As in Scholium
5. 32, this may be regarded as a presheaf of fibrant abelian group spectra.

CONSTRUCTION 1 . 8 . — Let F be a presheaf on a site, and let ^ = { U\ -> U | i e I} be a
cover. The Cech complex F'̂  is the cosimplicial set, cosimplicial fibrant spectrum, or
cosimplicial group spectrum

(1.1) F,,=n F(U.o) $ n F(U,,xU^...
^el (»o. i'i)el2 u =^

For n in A, F^, the thing in cosimplicial codimension n is the product

(1.2) FS,= n F (H,xU, ,x . . . xU^).
( f o , 4 , . . . .^e l^ 1 U U U
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ALGEBRAIC K-THEORY 443

I'll denote the factor indexed by f*=(fo, i'i, . . . . , ij by F(U(f*)). The coface operator
^: F^ -> ¥y1 is determined as follows. Let 7* be in I^2, and let

dkj*=UoJl, ' • 'Jk-iJk+i. • • ^.A.+Oer''1.

Then ^ followed by projection on the factor F(U(;*)) is projection on the factor
F(U(dJ^)) followed by the map

(L3) F(U(^))^F(U(^)).

This map is obtained by applying F to the map U(/*) ->\J(dJ^) induced by the
projection U^ -> U.

Similarly, the codegeneracies 5^ F^1 -> F^ are such that composing 5^ with projection
on the factor indexed by 4=(;o, . . ., f^eP''1 yields the map which is the composite of
projection on the factor indexed by ^4= (to, ;i, . . ., ^, i^ . . ., ^el^2 and a map
F((7(Sfc4))-^F(U(4)). This map is obtained by applying F to the map
(7(4) -> U(Sfc4) induced by the diagonal

(1.4) U^U,,xU,.
u

The cosimplicial identities (5.12) are easily but tediously checked.
For F a presheaf of abelian groups, this construction yields one of the usual forms of

the Cech complex under the equivalence of cochain complexes and cosimplicial abelian
groups in Scholium 5. 32.

There is a canonical augmentation F(U) -> F^ induced by the projections U(4) -> U.
(See 5.26.)

DEFINITION 1.9. - For F a presheaf of fibrant spectra and ̂  a cover of U, define the
Cech hypercohomology spectrum of F with respect to ̂  to be the homotopy limit over A
of F^:

(1^) H ' ( ^ ; F)=holimF^=H'(A; F,,).
A

The augmentation induces a natural map by 5.26.

(1-6) F(U)-^H'(^; F).

See paragraph 5 for a discussion of homotopy limits.
^For F a presheaf of abelian group spectra, or equivalently, of chain complexes,
(HT (^; F) is equivalent to a chain complex whose homology is the usual Cech hypercoho-
mology of F with respect to %. In fact, it is essentially the total complex of the Cech
cochain complex on the presheaf of chain complexes F. This is clear from Scholium
5.32 and Remark 1.10.
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444 R W. THOMASON

Remark 1.10. — If F' is a presheaf of fibrant group spectra, the natural map
Tot(F^) -> holim F'^ is a weak homotopy equivalence by 5.25 and 5. 37. By 5. 38 and
5.39 I may naturally replace any presheaf of fibrant spectra F by a weak homotopy
equivalent presheaf of fibrant group spectra F'. By the above and 5. 8, there is a natural
chain of weak equivalences between tHl'(^; F)== holim F^ and Tot F'^.

DEFINITION 1.11. - Let ̂ = { U, -^ X | f e l } and ^== {V^. -> X \jeJ } be two covers of X
in a site. A map of covers ^U -> i^ consists of a function (p: J -> I and for each j e J a
morphism y}: Vy -^ Up(j) compatible with the projection to X. i^ is a refinement of ^ if
there is a map of covers % -> i^.

LEMMA 1.12. — A map of covers ^ ->i^ induces a cosimplicial map F^ -> F^, and a
map of fibrant spectra NT (^; F) -> 1HT OT; F). TTius tHT( ; F) is functorial in

covers. (Later F\\ show any two maps of covers ̂  ̂  i^ induce homotopic maps of Cech
hypercohomology spectra.)

Proof. — The cosimplicial map F^ -> ¥9^ is determined as follows. Let
y*=(jo,7\, . . .,jn)eJn+l. Then the projection of F^ -> F^ on the factor indexed by 7*
is defined to be the projection of F^ on the factor indexed by
<P(7*)=((P7o. Wi. • • • » <P7'n) followed by a map F(U(cpO'*))) -> F(V(7*)). This map
results from applying F to the map V(j'*) -^ U((p(7*)) induced by the/,: V^ -> U<p(^.

To obtain the map on 1H1'( ; F), apply holim to the cosimplicial map.

DEFINITION 1.13. — For C a site with terminal object X, the category of covers of C
is the category of covers of the terminal object X with morphisms as in 1.11.

A category of covers may be defined without assuming C has a terminal object by
means of the Yoneda embedding of C in C^ (See [SGA 41).

CONSTRUCTION 1.14. — Let s/ be a directed or filtering system of covers ,̂, aej^ in
the site C. Let F'̂  be the cosimplicial fibrant spectrum which is the colimit of the F^
along j^. Let H' (^; F) be holim F'̂ .

Choose a filtering system s^ of covers of C weakly cofinal in the category of covers,
and define the Cech hypercohomology spectrum of C with coefficients in F to be

(1 .7) H' (C; F) = H' (X; F) = holim F'̂ .
A

The augmentations F(X) -> F^ induce natural maps

F(X)^H'(^;F),
( ' ) F(X)-.IHT(X; F).

Here "weakly cofinal" means that every cover of C has a refinement in the filtering
system. I'll show below that a different choice of weakly cofinal ^ yields a weak
homotopy equivalent H*(C; F). For now define IHT(C; F) using the direct system of
sieves or "cribles" as in [SGA 4], II 1.1.1, II 1. 3. (The site C may have to be enlarged
to C A with a Grothendieck topology to make this work, but the bigger site has the same
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ALGEBRAIC K-THEORY 445

Cech cohomology so this is harmless. The site Etr/X of 1. 3 must be enlarged as sieves
aren't finite families. The site of 1.3 with the finiteness restriction dropped and the
sites of 1.1 and 1.2 have weakly cofinal systems of sieves as is.)

LEMMA 1.15. — Let F, G, H be presheaves of fibrant spectra on C, ^ a cover of C,
and ^ a filtering system of covers. Then:

(i) H"(^; F), H"(^; F), H'(C; F) are fibrant spectra.
(ii) [H'(^; ), H'(^; ), [HT(C; ) preserve finite limits and hence group objects.

(iii) ///: F -> G is a weak homotopy equivalence or fibration, so are the induced maps
H'(^;/), H-(^;/),H-(C;/).

(iv) If F -> G -> H is a homotopy fibre sequence, so is
H9 (^; F) -. H • (^ G) -. H' (^; H),

and similarly for tHl'(j^; ) and H"(C; ).

Proof. — Cech hypercohomology preserves these properties as the Cech construction
1. 8, filtering colimits, and homotopy limits do. (See 5.5, 5.8, 5.9, 5.11, 5.12.)

PROPOSITION 1.16. - Let ¥ be a presheaf of fibrant spectra on C, ^ a cover of C, and
^ a filtering system of covers. There are hypercohomology spectral sequences

I E^=H^;^F) => 7^H-(^;F),

(L9) { E^^H^T^F) => ^_pH-(^;F),
7^0,

oo >q> —oo,

E^=fP(C;7r,F) => 7^H-(C;F),

The indexing is funny so differentials run d/. E?' q -> E^' ^+r-1.
The E^ terms are the usual Cech cohomology groups for the presheaf of abelian groups

n, F. Thus H^ (^; 71, F) = lim fp (̂ ; ̂  F).
a

The spectral sequences converge strongly if there is an N such that Kq¥==0 for q>^ or
ifE^q=Oforp>]^. In general, the discussion of convergence in 5.44-5.48 applies to
these spectral sequences.

Proof. - The spectral sequences are special cases of the spectral sequence of 5.13
for 7i* holim. This yields all but the identification of the E2 term with Cech
cohomology. This identification results from 5.31, as the complex (5.16) applied to
F^ or F*̂  yields the usual Cech complex, as the functor n^ preserves products and
filtering colimits.

LEMMA 1.17. — If¥ is a presheaf of fibrant spectra such that n^¥=0for ^>N, and
^={^ai} is a filtering system of covers, then the natural map

(1 • 10) lim H' ( ,̂; F) ̂  H' (^; F),
a

is a \veak homotopy equivalence.
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446 R. W. THOMASON

Proof. — This follows by comparing the strongly converging spectral sequences of
1.16 for the two sides, as in 5.50. (The result requires some hypothesis on F or on
the ̂  because of the phenomena discussed in 5.49.)

LEMMA 1.18. — Let F { n } be a tower of fibrations in the category of presheaves of
fibrant spectra, with inverse limit F=l imF{n}. Then (HT(^; F { n } ) is a tower of

fibrations. Suppose for all q there exists an N^ such that Kq F -> Kq F { n } is an isomorphism
for all n > N^. Then the canonical map is a weak homotopy equivalence

(1.11) IHT(^; F)^limtHT (j^; F{n}) .
n

If s/ is a single cover ^, (1.11) is, a weak homotopy equivalence without additional
hypothesis beyond F = lim F { n}.

Proof. — The first statement follows as filtering colimits over ^ and holim over A
preserve fibrations by 5.5 and 5.9. As holim over A commutes with holim along a
tower by 5. 7, the last statement holds and the third reduces to showing (1.12) is a weak
homotopy equivalence

(1.12) F^= lim l imF{n}^ ->\im lim F { n } ^ .___^ ^_ v - ~a ^_ v '- -' "a
a n n a

To check this it suffices to see this map induces an isomorphism on n^ in each cosimplicial
codimension. But the hypothesis identifies Kq of both sides of (1.12) to 7^F{n}^ for
any n>N^.

DEFINITION 1.19. - If ^={\Ji->\J\iel} and -r={y^->y\jeJ} are covers, let
^ x -T be the cover { U, x V .̂ -> U x V | (f, j) e I x J}. The axioms of Grothendieck topolo-

X X X

gies and a simple argument show this is indeed a cover of U x V. If i^ is the cover
x

{ V = V } , denote ^ x ^r by ̂  x V. If X is the terminal object, the subscript X may be
x x

dropped. Similarly, if U==V=X, the cover may be denoted ̂  x ̂  by abuse of notation,
or by changing the site C to the local site C/U.

LEMMA 1.20. — Lei ((p, /), (\|/, g) ^ -^ V he two morphisms of covers of X as in
1.11. Then the two induced maps of 1.12, IHT(^; F) -^ H' (V; F) agree in the stable
homotopy category.

Proof. — Consider the cover % x ̂ . There is a map of covers ^ x ̂  -> i^ given by
(pl\ | / :J^Ix! and ^•l^:V^Up^xU^). There are two maps ^->^x^ given
by the two projections I x I -> I with LJ( x L^ -> U^ or U^. The two composites
^ -» ̂  x ̂  -> 1^ are the two original maps. As H' ( ; F) is a functor, it suffices to show
the two maps ̂  -> ̂  x ^U induce homotopic maps on H' ( ; F).

There is a map of covers ^x^-^ given by the diagonals I ^ - I x I and
U, -> U, x U(. Either of the two composites ^ -> ^U x ̂  -> ̂  is the identity. Thus the
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two maps H' (^; F) -> HI' (^ x %\ F) will agree in the stable homotopy category if
IHT (^ x ̂ ; F) -^ H' (^; F) is a weak homotopy equivalence, for both maps will then be
the unique homotopy inverse in the stable category.

To show H' (^ x ̂ ; F) -> HI* (^; F) is a weak homotopy equivalence, by 1.18 it suffices
to do it for each Postnikov stage F < n > . (See 5.51 for the Postnikov tower.) So
replacing F by F < n > , I may assume T^F=O for q>n. Then the spectral sequences of
1.16 converge strongly. It suffices to show the map induces an isomorphism on the E^
term of the spectral sequences. For any presheaf of abelian groups A, it is well-known
that any two maps of covers induce the same map on Cech cohomology
H* (^; A) -^ H* (-T; A), e. g. [3], 13.4 or [SGA 4], V 2. 3. 5. Thus
H*(^<x^; A) -^H*(^; A) is an isomorphism with inverse either map
H* (^; A) -> H* (^ x ̂ ; A); for both composites are the identity. Thus
H' (^ x ̂ ; F) -> H' (^\ F) induces an isomorphism on the E^ terms of the spectral sequen-
ces, and so is a weak homotopy equivalence as required.

It is possible, but technically gruesome to generalize the usual proof of [3], 13.4 to
produce an explicit homotopy between the two maps HI' (<^; F) -> H' (Y^; F).

COROLLARY 1.21. — If ̂  and V are covers ofX which are each refinements of the
other, then H* (^; F) and IH* (^; F) are weak homotopy equivalent.

Proof. — By hypothesis there are maps of covers ^ -> V, i^ -> ̂ . By 1.20 these
induce inverse weak homotopy equivalences.

LEMMA 1.22. — Let ̂ , aeja^ and ^<p, Re^ be two filtering systems of covers of the
terminal object X in a site C. Suppose for each ̂  there is a ^<p which refines it, and
conversely that each ^p is refined by some ^Uy Then for any presheaf ¥ there is a natural
weak homotopy equivalence between (HT(j^; F) and IHT(^; F).

Proof. — Without changing the Cech hypercohomology I may add the trivial cover
of X by X as an initial object to both systems of covers ^ and ^. Let ^ x ̂  be the
filtering system of covers ̂  x ^fp for (a, P) e ̂  x ̂ . There are maps of filtering systems
^-^x^, ^-^x^ sending ^ to ̂  x X, etc. It suffices to show these maps
induce weak homotopy equivalences on H" ( ; F).

Note each cover in ^ x ̂  is refined by one in ja^, and conversely. For if ̂  x ^<p is
in ^ x ̂  and ^p is refined by ̂  in ja^, let ̂ . be a common refinement of ̂  and ^^
in the filtering system^. Then ^» refines ^.x^», and so refines ^x^, and
^ x ^p. Conversely, ̂  is refined by ̂  x X in ^ x ̂ .

To show H' (ja^; F) -> H" (^ x ̂ ; F) is a weak homotopy equivalence, it suffices
by 1.18 and 5.51 to do this for F replaced by each of its Postnikov stages F < n >. Thus
I may assume there is an n such that 7i^F=0 for q>n. Then by 1.17, the problem is
to show (1.13) is a weak homotopy equivalence:

(1.13) lim H' ( ,̂; F) -> lim H9 (^, x ^p; F).
a (a, P)

As homotopy groups preserve filtering colimits, it suffices to show that (1.14) is an
isomorphism.
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(1.14) lim TT* HI' (̂ ; F) -> lim TI* H' (^ x ^p; F).
a (a, P)

The hypothesis on ̂  and s/ x ̂  do not imply that either system of covers is strictly
cofinal with respect to the other in the category of all covers of C. However, consider
the poset of covers formed from the category of covers by identifying all different maps
of covers % -> ̂  for the same ̂  and Y^, and identifying ̂  and ̂  if they refine each
other. By Lemmas 1.20 and 1.21, the functor TI* H ( ; F) on the category of covers
factors through this poset. The cofinality of ^ and ^ x ̂  with respect to each other in
this poset (above) shows that (1.14) is an isomorphism as required.

Remark. — The Lemma 1.22 shows that I get weak homotopy equivalent 1H'(C; F)
when I use any two filtering systems of covers of C weakly cofinal in the category of all
covers to define it. Recall ^ is weakly cofinal in the category of all covers if each cover
has a refinement in ja^. In particular, IH'(C; F) depends on the topos C~, and not on
the choice of a particular site C, as covers of X in the site are weakly cofinal in covers
of X in the topos, and conversely. Thus the Cech hypercohomology of the etale site
and of the restricted etale site of 1.2 and 1. 3 agree.

DEFINITION 1.23. - For C a site, the canonical HT(C; F) is IHl'(j^; F) for the following
canonical direct system of covers of C. Let {^, ^eA} be the set of all covers of C in
the universe. Let ^ be the directed system of finite subsets of A. For
a={?4, \^ . . ., ^}, the \, distinct, define ̂ , independent of the order of the X,, up to
isomorphism, by

(1.15) ^^x^^'" x^n

If a^a' in ^, ^^^, is the map of covers induced by the obvious projections, or
equivalently by the maps of covers X -> ̂  for X in a' — a.

Clearly s/ is weakly cofinal in the category of all covers.
This H' (C; F) is weak homotopy equivalent to the version using the direct system of

sieves by 1.22, so 1.15 and the spectral sequence of 1.16 are valid for it.
The canonical H* (C; F) is functorial in C, while the sieve version is only functorial up

to homotopy. I will now elaborate on this point.

1.24. Recall ([SGA 4], III 1, IV 4.9, or [3], 114. 5) that a morphism of sites /: C -> D
is a functor /*: D -^ C (backwards!) which preserves finite limits and sends covers of
any object D to covers of/*D. Given a presheaf F on C, there is an induced presheaf
f^ F on D with (/, F) (V) = F (/ * V).

CONSTRUCTION 1.25. - Let /: C -> D be a morphism of sites, F a presheaf on C, V an
object of D, and ̂  = { V , -> V } a cover. Let/* -T = {/* V, ->f* V } be the induced cover
of/*V in C. Then there is a natural isomorphism (1.16) induced by the isomorphism
of cosimplicial fibrant spectra (1.17):

(1 .16) HI* (^f,¥)^H9 (f*^; F).
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(/«F)^ Ft (/»F) (V.o) ̂  n (/»F) (Vfo x V.i)^ -
I'O («0. «l) v "*'

( 1 . 1 7 ) ^ I I HZ

(F)^ nF(/*V,^)^n F(/*V,<. x/*V,,)=£...
t'O (*0. *l) /*V

If ^ is a filtering system of covers Y^ of the terminal object of D, let /* ̂  be
the filtering system of covers /* ̂  of the terminal object in C. There is then an
isomorphism

(1.18) H-(^;/,F)^H-(/*^;F).

If ^ is the canonical filtering system of covers of D as in 1.23, then /* s^ is a
subsystem of the canonical filtering system of covers of C. This inclusion induces a
morphism of the filtering colimit of Cech complexes 1.8. Applying holim along A to
this morphism and composing with the isomorphism (1.18) yields a natural map (1.19)

(1.19) FnC^F^H^CF).

Thus Cech hypercohomology is functorial in the usual way with respect to sites and
presheaves of fibrant spectra on them.

1.26. Given /: C -> D a morphism of sites as above and G a presheaf of fibrant
spectra on D, define f^G by

(1.20) (/ff G) (U) = lim G(V).
(W )°P

Here (U//)015 is the opposite of the category U//whose objects are objects V of D together
with a morphism U-^/*V. The morphisms of U//are morphisms in D that preserve
the given maps U-^/*(V). As D is a site and/* preserves fibres products, it is easy
to see that (U//)01" is a filtering category. Thus by 5. 5, f^G is a fibrant spectrum, and
the functor /ff preserves products, fibrations, weak homotopy equivalences, and homotopy
fibre sequences. As Kq commutes with filtering colimits, Kqf^G is the usual pullback of
the presheaf T^G, namely f^UqG. The functor/< is right adjoint to/* by the usual
calculation.

1.27. Before constructing sheaf hypercohomology, it is necessary to recall some facts
about the points of a topos from [SGA 4], IV, § 6. The category of points of a topos C~
is the category of morphisms from the topos which is the category of sets to the
topos C^. This category is equivalent to the opposite category of the category of
functors /*: C~ -^ Sets such that /* preserves colimits and finite limits. For such an /*
has a right adjoint /+, and the pair (/*, /*) is a morphism of topoi.

Let /* be a point of C~. There is a filtering diagram Nbd(/) in the opposite
category C^ of the site. An object of Nbd(/) is a U in C with a lift of the point/*
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from C~ to C^/U. A morphism in Nbd^)015 is a morphism in C that respects the lifted
points. One has for any sheaf F in C~ the isomorphism

(1.21) /"(F)^ lim F(U).
U e Nbd ( f )

If F is a presheaf, the direct limit in (1.21) is isomorphic to /* of the sheafification F
of F. Consult [SGA 4], IV 6.8 for details.

For F a set and/* a point, the sheaf /*(F) in C^ is a product of copies of F indexed
by the elements of/*(U)

(1.22) (/,(F))(U)= ft F.
/* (U)

For it is easy to see this /* is right adjoint to /*.
Since the category of fibrant spectra is closed under products and filtering colimits

(see 5.5), the functors/* and /* given by (1.21) and (1.22) preserve fibrant
spectra. They also commute with the homotopy group functors Kq in that
V*=/*7i,,etc.

Example 1.28. — Let X be a sober topological space; e. g., a Hausdorff space, or a
scheme with the Zariski topology. Let C~ be its category of sheaves. Then the usual
points of X are exactly the points of C~, with xeX corresponding to the functor/* that
sends a sheaf F to its stalk at x, F^. The category Nbd(/) is the poset of open
neighborhoods of x. The functor /* sends a set F to the corresponding skyscraper sheaf
at x. For details, see [SGA 4], IV 7.1.

Example 1.29. — Let X be a scheme, and consider the topos of sheaves on the etale
site Et/X of 1.2. Then by [SGA4], VIII 7.9 the isomorphism classes of the points
of Et/X ~ correspond bijectively to the points of the scheme X in the usual
sense. For xeX, let k (x) be the residue field of X at x, and let k (x) be some separably
closed field containing k (x). Let /: Spec(k (x)) -> X be the map to X factoring through
Spec (k (x)). The topos Et/fe (x) ~ is the category of sets, so /: Et/k (x) ~ -> Et/X ~ is a
point of Et/X~. The category Nbd(/) is the opposite of the category of schemes U
etale over X with a distinguished point Spec(fe(x)) -^ U. The inverse limit of this
diagram of schemes is the scheme Spec(^ „), where ^h ^ is the strict local henselization
of X at x. Let g: Spec^, ^) -> X be the canonical map. By [SGA 4], VIII 4. 8 there
is an isomorphism of/*F with (g*¥)((P^ x) for a^ presheaf F on Et/X. If F is conti-
nuous in the sense of 1.42 below, (g* F) (^ x)ls J^t F (^ x ) as explained in 1.44. See
[SGA 4], VIII, § 3, 4 and 7, for more details about stalks in the etale topology.

1.30. A topos C~ is said to have enough points if it satisfies the condition that if a
morphism y of C~ is such that /*(y) is an isomorphism for each point/, then y is an
isomorphism in C~. If C~ has enough points, then a morphism y in C~ is a monomor-
phism or epimorphism respectively if and only if/*(y) is such for every point/ See
[SGA4], IV 6.4.
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The topological topoi of 1.28 and the etale topos of a scheme of 1.29 have enough
points by [SGA4], IV 7.1.6 and VIII 3.5. Most topoi of interest in topology or
algebraic geometry have enough points. Some topoi arising from logic don't have
enough points, and Deligne's measure-theoretic topos has no points at all
([SGA4], IV 7.4).

CONSTRUCTION 1.31. — Let C^ be a topos with enough points. Let ^ be the set of
points of C~, and let P~ be the product of the category of sets with one copy for every
point in .̂ Then P~ is the coproduct of the topos of sets indexed by .̂ The points
induce a map of topoi p:V ->C~ consisting of an adjoint pair of functors/?* and/?*.

In the factor of P~ indexed by the point/, the projection of/?*(F) is/*F. If the
object G of P~ consists of the set Gy in the factor indexed by / then /?* G is the product
Tlf^(Gf). (To avoid set-theoretic problems, one must fix a site C for C~, and then
work in a universe in which C is small. Let ^ be the set of points of C, as in [SGA 4],
IV 6. 3. By [SGA4], IV 6. 5, ^ is a conservative family; i.e., enough points, for the
topos C~ in any bigger universe. Choose a bigger universe in which SP is small.)

Let T be the functor /?*/?* from C~ to C~. Thus TF is given by the formula (1.23)
for U in C

(1.23) TF(U)= n C/*/*F)(U)= n n f^'
fe^ / e ^ / * ( U )

The adjunction morphisms r|:Id -> /?*/?*, £ ' ' p * p * -> Id induce natural transformations
T| : Id -> T, u: TT -> T with [i=p^ £/?*. The Godement complex is the cosimplicial sheaf

(1. 24) r F=TFSTTF^TTTFJ|...

The sheaf in codimension n is Tn+l1F. The coface map d1: T"^1 F -^T^^F is
T T|T" +1 -1. The codegeneracy s1: T" +1 F -> T" F is T1 ̂ P -1. The simplicial identities
5.12 follow from the adjunction identities and naturality of T, as in [46], Appendix. The
map T| induces a canonical augmentation T| : F -> T* F.
ULet g: C' -> C be a morphism of sites 1.24. Let g^: C'~ -> C~ be the induced map
of topoi. If/*: Sets -^ C'~ is a point of C', then g^f^ is a point of C~. Thus g induces
a function g ' : ^ ->^ on the sets of points, and a morphism ^:P'~ ->P^ of topoi
compatible with g^ under /?* and /?*. The isomorphism g ^ p ^ p ^ g ^ ^ p ^ g ^ g ^ p * and
the adjunction maps of the pairs g*-\g* and g'*-\g^ induce a map

T îc ==/?*/?* g ^ - > p ^ g ^ g / * p * g ^ ^ g ^ p ^ p / * g * g ^ - ^ g ^ p ^ p / * = g ^ T
and so a cosimplicial map
(1.25) T-(^F)^^T-(F).

1.32. If F is a presheaf on C, p * F still makes sense and equals p * F of the
sheafification F by 1.27. Thus (1.24) gives a cosimplicial presheaf T* F which depends
only on the sheafification F of F: T' F -> T* F is an isomorphism.
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If F is a presheaf of fibrant spectra, or of fibrant group spectra, (1.23) and the last
paragraph of 1.27 show that TF is a presheaf of fibrant spectra or of fibrant group
spectra respectively. The complex T' F is then a cosimplicial presheaf of fibrant
spectra. The functor T* clearly preserves finite limits, weak homotopy equivalences,
fibrations, and homotopy fibre sequences, since in each cosimplicial codimension it's a
composite of functors that preserve these. Also one has the formula for homotopy
groups:
(1.26) 7i,(T-F)=r(7i,F).

DEFINITION 1. 33. — Let F be a presheaf of fibrant spectra on a site C. Suppose the
topos of sheaves on C has enough points. Then the sheaf hypercohomology spectrum
of C with coefficients in F is the homotopy limit along A of the cosimplicial fibrant
spectrum (T* F) (X). This is the Godement complex of presheaves 1. 32 evaluated at the
terminal object X.
(1.27) 1HT (C; F) = holim T' F (X) = H' (A; T" F (X)).

A

If g : C -> C' is a morphism of sites, the induced map

(1.28) H-(C';g,F)-^H-(C;F),

is holim along A of the map of Godement complexes (1.25). Thus H* ( ; ) is a contrava-
riant functor on the category of sites with enough points and with presheaves of fibrant
spectra.

There is a natural augmentation T| : F(X) -> D-O* (C; F).

1.34. The hypothesis that C has enough points may be dropped by replacing the
Godement resolution with the flabby resolution obtained by Barr for more general
topoi. See [7] or [57], 8.20. I won't need this however.

LEMMA 1.35. — Let C be a site mth enough points. Then H' (C; ) on the category
of presheaves of fibrant spectra preserves products, fibrations, \veak homotopy equivalences,
and homotopy fibre sequences.

Proof. - Immediate from 1. 32 and 5. 8, 5.9, 5.11, 5.12; i. e. the usual.

PROPOSITION 1. 36. — Let ¥ be a presheaf of fibrant spectra on a site C. Suppose the
topos of C has enough points 1. 30. There is a hypercohomology spectral sequence

(1.29) E^^H^Ci^F) => TI^H'(C;F),
p^Q, co>q> — oo.

The indexing is funny so differentials dy have bidegree (r, r— 1).
The E^ term is the sheaf cohomology of the topos C~ \vith coefficients in the sheafification

of the presheaf Ky F.
The spectral sequence converges strongly if either there is an N such that TT^F=O for

^>N or ifC has bounded cohomological dimension for the sheaves TI*F. In general, the
discussion of convergence in 5.44-5.48 applies to these spectral sequences.
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Proof. — The spectral sequence is the spectral sequence of 5.13 for TI* of holim
along A. Everything follows from 5.13 except the identification of E^' q. By 5.31,
Ey is the cohomology of the chain complex corresponding to the cosimplicial abelian
group T^T'F(X). By (1.26), this is isomorphic to the cosimplicial abelian group
T'(T^F)(X). By 1.32, this is isomorphic to T*(^F)(X), for Uq¥ the sheafification of
Tiq F. Let p : P " ->C^ be as in 1.31. The cosimplicial abelian group p * T ' ( U q ¥ ) has
an extra codegeneracy s~1, induced by p * T T ^ = p * p ^ p * T n -^p*^. By the dual of 5.21,

this extra codengeneracy gives a cosimplicial homotopy contraction of p* T* (Uq F) to the
augmentation of p* Kq F. Thus the chain complex p * T' Kq F is an exact resolution of
p * K q ¥ . As C~ has enough points, p* is conservative, so T'TT^F is an exact resolution
of Kq F. Any sheaf in P~ is flabby, as P~ is the coproduct of flabby topoi Sets, so/?*

of any sheaf in P^ is a flabby sheaf in C~, by [SGA 4], V4.9. Thus T' ̂  F is a flabby
resolution of TT^F, in fact it's the canonical Godement resolution of [SGA4], XVII 4.2,
[46], or [57], §8.1. As sheaf cohomology may be computed by flabby resolutions, the
cohomology of the global sections of the flabby resolution, T'(TT^F)(X) is H*(C; TT^F)
as required.

LEMMA 1.37. — Let F { n } be a tower of fibrations in the category of presheaves of
fibrant spectra, with inverse limit F=l imF{n}. Then if C has enough points,

n

B-O' (C; F { n}) is a tower of fibrations. Suppose that for all q there exists an N such that
Kq¥ —> Kq¥ [n] is an isomorphism for all n>N. Then the canonical map is a weak
homotopy equivalence.

(1 . 30) H* (C; F) ̂  lim H' (C; F { n}).
n

Proof. — The first statement follows from 1.35. As holim along A commutes with
homotopy inverse limits, the second statement reduces to showing that T^T is weak
homotopy equivalent to lim T"1 F { n}. It suffices to show that Kq T^* F = 7^ T^* F { n } for

n

^>N. But this follows from the hypothesis, (1.26), and 1. 32.
^ Remark 1.38. — For C with enough points, Cech cohomology may be computed as
H (j^; F) for ^ the direct system of pointed covers of C. A pointed cover is a collection
{U^|/e^} indexed by the points of C, together with a lift of the point/to Up i.e.
together with an element of /*(U^). Let T^ be p ^ p * for? the map of topoi
LJ C/U7 -> CT. Then the Cech complex F^ of 1. 8 is the complex T^F. The lift of
the points provides a map to the Godement complex, lim T^F-^T'F. Applying

holim along A to this provides the canonical map from Cech to sheaf hypercohomology.
H' (C; F) -^ H' (C; F). I will not use this remark below.
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PROPOSITION 1. 39. — Let C be a site consisting of coherent objects and with a terminal
object, so that C~ is a coherent topos in the sense o/[SGA4], VI 2. 3, VII . 13. Let F^
be a filtering system of presheaves of fibrant spectra on C, with colimit lim F,=F.

Suppose either that C^ has bounded cohomological dimension for all the sheaves 5rF^,
so there is an N such that I-P(C~; 7i^FJ=0 for all /?>N and all q and a, or else suppose
that there is an N such that 7^F^=0/or all a and all ^>N. Then the natural map (1.31)
is a weak homotopy equivalence

( 1 . 3 1 ) lim [H1'(C; FJ^H'(C; lim FJ.
a a

See 1.40 for a simpler statement in the case of schemes.
Proof. — By [SGA 4], VI 5.2, coherence yields the isomorphism

(1.32) hm^H^C; 7C,F,)^H^(C; Ti ,( lmFJ~).
a

The left-hand side of (1.32) is the E^ term of the direct limit spectral sequence of 1.36,
which by 5.50 and the uniform bound on cohomological dimension or on q for non-
zero Kq F^ converges strongly to TC* lim H(C; FJ. The right-hand side of (1.32) is

the E^ term of the strongly convergent spectral sequence of 1. 36. The spectral sequence
comparison theorem shows (1.31) induces an isomorphism on Ti^e, and so is a weak
homotopy equivalence.

COROLLAIRE 1.40. — Let X be a noetherian separated scheme with either the Zariski or
etale topology. Suppose X has bounded cohomological dimension for all Kq¥y or else
suppose that there exists an N such that for all a and all ^>N that Kq¥^=0. Then the
natural map is a weak homotopy equivalence

(1. 33) lim H* (X; FJ ̂  [HI' (X; lim FJ.
a

Proof. - The etale and Zariski sites of X are coherent by [SGA 4], VI 1.6.2, VI 1.22,
VI 3.10. It is easy in this case to prove (1.32) directly as direct limits are exact and
commute with finite products, and the assumptions on X allow cohomology to be
computed by finite Cech covers and finite hypercovers, whose complexes involve only
finite products. See [3], II 5.4. Of course, this direct proof is really the same argument
as in [SGA 4], VI. For the Zariski case, one can consult [51], III 2.9.

PROPOSITION 1.41. — Let CQ( be an inverse or co filtering system of sites. Suppose each
C^ is coherent, and the bonding maps of the system f^ :C^ ->C^ are coherent morphisms
of topoi in the sense o/[SGA4], VI 3.1. Let F, be a presheaf of fibrant spectra on C^
and suppose there is a compatible family of maps Fp-^/^F, or equivalently f\^ Vy, -> Fp
over the bonding maps f^. Let C be the inverse limit of the sites C ,̂ and /„: C -> C^ the
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projections. (As a category C is the direct limit of the C^, as maps of sites are backwards,
cf. 1.24.) Let F= lim /^F^ be the presheaf of fibrant spectra on C induced by the F^

on €„. Suppose finally either that there is an N such that for p>~N and all q and a
I-P(C^; TT^FJ=O, or else suppose there exists an N such that for all a and all ^>N that
TT^F^=O. Then C or KqF satisfies the same condition, and the natural map (1.34) is a
weak homotopy equivalence.

(1.34) lim H'(C^F,)^H'(C;F).
a

See 1.45 for a simpler statement in the case of schemes.
Proof. - As in 1.39, the strongly converging spectral sequences 1.36, the uniform

bound on p or q, and 5. 50, reduce this to proving (1. 35) is an isomorphism

(1 .35) hm^H^C;; ̂ F^H^C; TT.F).
a

But this is given by [SGA 4], VI 8. 7.4.

DEFINITION 1.42. — Let F be a presheaf of fibrant spectra on the category of
schemes. Let X,, be an inverse or cofiltering system of schemes with affine bonding
maps /ap:X^->Xp. Then the inverse limit scheme X exists by [EGA], IV 8.2. 3. If
X^ = Spec (AJ for a direct system of rings A,. Then X = Spec ( lim AJ.

One says F is continuous or is a finitely presented functor in the sense of Grothendieck
if for any such system X,, the natural map is a weak homotopy equivalence

(1.36) lim F(XJ^F(X).

If one restricts F to a subcategory of the category of schemes, one has F is continuous
on this subcategory if (1. 36) holds for inverse systems X^ in this subcategory.

Example 1.43. - The K-theory spectra K( ), K/F( ), K/F( )[P-1], K( )^ of
Appendix A are all continuous by [97], I, § 2 and the fact smash products of spectra
preserve colimits. Similary the G-theory spectra G( ), G/F( ), G/F( )[P~1] and
G( )ic are continuous on the category of schemes etale over a fixed X, or on any
subcategory of schemes in which all morphisms are flat, so that G( ) is a presheaf. The
/-adic spectra K( )?~l]l\ K( )i\ G( ),", G( HP'^ are not continuous, for the
inverse limits used to define them do not commute with direct limits.

1.44. Let F be a presheaf of fibrant spectra on the category of schemes, which is
continuous on the etale site Et/X. Let/be a point of the topos Et/X~ corresponding
toxeX. The category Nbdt/)01" of 1.29 has a cofinal subcategory of affine
schemes. Interpreting (1.21) in light of the continuity condition (1.36) and 1.29, one
sees that the stalk of F at/is the value of F at the strict local henselization of X at x,

(1.37) f*F^F(Spec(^1,))-
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Similarly, the stalk /* F at a point of the Zariski topos of a scheme X corresponding
t o x e X is the value F(Spec(^x, x)) of F at the local "̂  of x in x' provided F is
continuous on the Zariski site.

COROLLARY 1.45. — Let ¥ be a presheaf offibrant spectra on the category of schemes
which is continuous as in 1.42. Let X, be an inverse system of schemes with affine bonding
maps X, -» Xp. Suppose each X, is noetherian and separated. Let X be the inverse limit
scheme. Suppose either that the X, have uniformly bounded Zariski (or etale) cohomologi-
cal dimension for the sheaves n^¥, or else suppose there is an N such that for all ^>N,
7i^F==0. Then the natural map is a weak homotopy equivalence of Zariski (or etale) sheaf
hypercohomology spectra
(1. 38) lim H' (X,; F) ̂  H" (X; F).

a

Proof. — This is a special case of 1.41. It may be proved as 1.41 with appeal to
[SGA 4], VI 8. 7.4 replaced by the more pedestrian [SGA 4], VIII 5. 7, or [3], III 3.9.

THEOREM 1.46. — Let ^ be a filtering system of covers ̂  of a site C. Let ¥ be a
presheaf of fibrant spectra on C. Suppose that the topos C~ has enough points. Suppose
either that there exists an N such that 7^F=0 for ^>N or else that there exists an N
such that for all q and for U=X and all U in covers ̂  in the system^/ that
H^C/U^^OI/T^N.

Then the local sites C/U have enough points and 1H1*(C/U; F) is a presheaf of fibrant
spectra as U varies over C.

The natural map (1. 39) is a weak homotopy equivalence, so HI" (C/ ; F) has hypercohomo-
logical descent:

(1. 39) H' (C; F) ̂  H- (^; H- (C/ ; F)).

Proof. — The topos C~/U has enough points as it is an exact subcategory of C~, see
[SGA 4], IV 6. 7. 3 if you don't believe me.

The significant statement is (1.39). The first step in the proof is devissage to the
case of F a presheaf of Eilenberg-MacLane spectra. To accomplish this, consider the
Postnikov tower F < n > of 5.51. Let H ' ( C / ; F ) { n } be the tower of fibrations
H'(C/ ; F<n». If 7^F=0 for ^>N the spectral sequence 1.36 shows [H1'(C/ ; F) is
weak homotopy equivalent to !H*(C/ ; F ) { n } for n^N. If N is a uniform bound on
the cohomological dimension of the U, the spectral sequence 1.36 shows
Kq H' (C/ ; F > n <) = 0 for n > q 4- N. Here F > n < is the inverse Postnikov tower of 5. 53,
so F > n < is the homotopy fibre of F -> F < n >. It follows that
KqH'(C/ ; F) ->KqH'(C/ ; F) {n} is an isomorphism if n>^+N. The hypotheses
of 1.37 and 1.18 are thus satisfied, and one gets weak homotopy equivalences
(1.40) H* (C; F) ^lim H' (C; F < n »,

n

(1.41) IS' (.a/; H' (C/ ; F)) ̂ lim H' (̂ ; H' (C/ ; F < n »).
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The spectral sequences 1.36 and 1.16 show that the nth term in the towers of
fibration in (1.40) and (1.41) has trivial homotopy groups in degrees above n. The
hypercohomology functors preserve homotopy fibre sequences by 1.15 and 1.35. The
tower comparison Lemma of 5.55 then shows it suffices to prove (1.39) is a weak
equivalence for F such that T^F=O if q^n. By 5. 52, the homotopy category of such F
is equivalent to the category of presheaves of abelian groups on C. The presheaf of
abelian groups A corresponds to the canonical Eilenberg-MacLane spectrum
K(A, n). This accomplishes the divissage.

For F a presheaf of chain complexes, (1.39) is the classical Cartan-Leray descent
spectral sequence. I will prove it from scratch however. Define functors on the category
of presheaves of abelian groups A by

(1.42) D^(A)=^_,H-(C;K(A,n)) ,
(1.43) E^(A)=^_^H- (^; H-(C/ ; K(A, n))).

Short exact sequences of presheaves A induce homotopy fibre sequences of K( , n)'s,
which are preserved by the hypercohomology constructions, and thus yield long exact
sequences of homotopy groups. Thus E* and D* are cohomological ^-functors on the
category of presheaves.

If A is a presheaf whose sheafification A is 0, the spectral sequence 1.36 shows that
E*(A)=0 and D*(A)=0. Thus E* and D* are cohomological ^-functors on the cate-
gory of sheaves of abelian groups. The spectral sequences 1.36 and 1.16 also show
that EP==DP=Q for p<0, and that if A is an injective sheaf, hence acyclic for Cecil and
sheaf cohomology, then EP(A)=DP(A)=0 for/?>0 and EO(A)=DO(A)=HO(C; A). A
standard argument shows that D* and E* are both the right derived functor of H°(C; ),
and so the map D* —> E* is an isomorphism. Thus (1. 39) is a weak homotopy equiva-
lence, as required.

COROLLARY 1.47. — Let X be a noetherian scheme of finite Krull dimension. Let F be
a presheaf of fibrant spectra on the Zariski site ofX. Consider the presheaf that sends
an open subscheme U to the Zariski hypercohomology spectrum Hlzar(U» F). Then for
any Zariski cover ^ or filtering system of Zariski covers ^ one has a weak homotopy
equivalence

(1.44) Hzar(X; F) ̂  H- (̂ ; H^( ; F)).

Proof. — Each open U has Krull dimension at most that of X. By [49], III 3.6. 5 or
[51], III 2.7, the Zariski cohomological dimension of the U's is uniformly bounded by
the Krull dimension of X. Thus the hypotheses of 1.46 are met.

COROLLARY 1.48. — Let X be a separated noetherian scheme of finite Krull
dimension. Let ¥ be a presheaf of fibrant spectra on the etale site of X such that either
TT* F is a sheaf of rational vector spaces, or else is a sheaf of l-torsion abelian groups for a
fixed prime 1. In the latter case, suppose there is a uniform bound M on the etale
cohomological dimension of the residue field k (x) with respect to l-torsion sheaves for all
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points x ofX, including the non-closed points. For example, let X be a scheme of finite
type over an algebraically closed field, or over the ring of Gaussian integers Z [f], or over J.
with 1^2. Then for any filtering system ^ ofetale covers ofX, one has a weak homotopy
equivalence of etale hypercohomology spectra

(1.45) H:,(X;F)^H'(^; H:,( ;F)) .
Similarly, ifX is a separated noetherian scheme of finite Krull dimension, and ifF is a

presheaf of fibrant spectra on the etale site ofX such that there is an N such that ^F=0
for ^>N, then (1.45) is a weak homotopy equivalence.

Proof. — If U is etale over X, its Krull dimension is at most that of X. For any
point yG\J, k (y) is a finite algebraic extension of k (x) for the image x of y in X, so k (y)
has /-torsion etale cohomological dimension at most M, by the usual Shapiro's lemma
argument of [102], I, Prop. 14, or [104], III, Prop. 15. Thus U inherits the hypotheses
on X. Any closed subscheme of U has residue fields which are among the residue fields
of U, and any henselization of a closed subscheme has residue fields which are direct
limits of finite algebraic extensions of the residue fields of U. All these fields have l-
torsion cohomological dimension at most M, and Q-module cohomological
dimension 0. The induction argument of [SGA4], X4.1, with (p(x) given b y M + 1
times the Krull dimension of the closure of x gives a uniform bound on the /-torsion or
rational etale cohomological dimension of U etale over X. Thus the hypotheses of 1.46
are satisfied. The list of examples is justified by [SGA 4], X.

Example 1.49. — Let X be a separated noetherian scheme of finite Krull
dimension. Let U and V be Zariski open subsets of X, and let ̂  = {U, V} be the cover
of U U V. Choose either the Zariski or etale site of X, and let F be a presheaf of fibrant
spectra, satisfying the hypotheses of 1.48 if the etale site was chosen. Then for Zariski
or etale hypercohomology respectively, there is a weak homotopy equivalence (1.46)
by 1.47 or 1.48 applied to the direct system consisting of the single cover ^:

(1.46) H ' (UUV; F)^[H1'(^; tHT( ; F)).

As U x U = U U U = U and V x V = V , the Cech complex K q H ' ( ; F)^ is highly
degenerate. By [EGA], III 11. 8, or [119], VIII, Application b of Lemma 1, this complex
has the same cohomology as the ordered Cech complex

(1.47) ^H•(U;F)®^H•(V;F) d —l7l ,H•(UnV;F)^0^0^. . .

In the spectral sequence 1.16 for Cech hypercohomology one has therefore
£^=ker(^°-rf1), E^ = coker (d° - d1), and E^ '^=0 i f / ? > l . This spectral sequence
then collapses with E;,=E^. The filtration of T^IH](UUV; F) by E^' q and E^' q+l

splices to yield the long exact Mayer-Vietoris sequence

(1.48) . . . -^^H'(UnV;F)^7C,H'(UUV;F)

-^H'(U; F)®TI,H'(V; F) ^^H'(UnV; F) -̂  . . .
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It follows that the square (1.49) is homotopy cartesian

H'(UUV;F)->H-(V;F)
(1.49) ^ ^

H ' (U;F)^H ' (UHV;F)
Example 1.50. — Let 1//L be a finite Galois extension of fields with Galois

group G. Consider the etale cover of Spec (L):^=={ Spec (I/) -^Spec(L)}. The fibre
product of Spec (I/) with itself over Spec(L) is Spec (I/(x) I/). There is a canonical
isomorphism

(1.50) K: U(SU^Y\L\
L G

The projection of K on the factor indexed by geG sends l^®^ to li-g^r To see K ls

an isomorphism, write L' = L [T]// for an irreducible polynomial / over L. Then
U ®L' is L'[T]//. The polynomial/splits into linear factors T—^a over L', with a a

L

chosen root and g ranging over G. The Chinese remainder theorem then shows (1. 50)
is an isomorphism. More generally, there is the isomorphism (1.51)

n+lK: oL'^n^
(1.51) L G"

Proj(^, ̂  . . ., ̂ )°K(/o®^®. . . ®U =^1/1 ^1^2. . . . •fei . . . ̂ .K.

Let now F be a presheaf of fibrant spectra on the etale site of L, and suppose F takes
finite coproducts of schemes to homotopy products of spectra. This is true for the K-
theory spectra and for any presheaf of the form H^( ; F). Then applying F to Spec(K)
one deduces weak homotopy equivalence of the Cech complex F^ of the cover ^ with
the Bousfield-Kan cosimplicial complex for computing the homotopy limit of the action
o fGonF^) as in [16], XI, § 5

(1.52) F^n^n^P^')))-
G"

This induces weak homotopy equivalences.

H(^; F^holimF^holimtnF^^To^n F(L'))
A A G ^

(1.53) ,,

H'(G;¥(U))

by 5.8 and 5.25. The cosimplicial fibrant spectrum n1^1-') satisfies the hypothesis
G-

of 5.28 by [16], XI 5. 3. The equivalence (1. 53) identifies the spectral sequences of 1.16
and 5.13, so that one has

(1.54) E^H^GaHLVL);^^)) => ^_,H- (^; F).
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In particular, if L has bounded etale cohomological dimension for J-torsion sheaves and
7i * F is J-torsion, 1.48 gives a weak homotopy equivalence and a spectral sequence

(1.55) H- (Gal(LVL); H^L'; F))^H-^(L; F)
(1.56) H^(Gal(L7L); ̂ (I/; F)) => ^_,H;,(L; F).

Suppose now L, is a filtering system of finite Galois extensions of L indexed by
s^. Let L^limL,. For ja/ the system of covers { Spec (Ly) -> Spec (L) }=^a, the

above argument gives a weak homotopy equivalence

(1.57) H-(^; F)^Tot(limnF(L,)).
a ^

Let G=limG^=limGal(La/L) be the profinite Galois group of L' over L. Then the

spectral sequence 1.16 is identified to the profinite group cohomology spectral sequence

(1.58) H^G; _lim^F(L,)) => Ti^oT^; F).
a

If F is a continuous presheaf 1.42, T^F(L')= lim TI^F(L^).
a

Under reasonable hypotheses, the above observations, 1.48, and 1.45 combine to give
a weak homotopy equivalence and a spectral sequence like (1.55) and (1.56) for the
profinite Galois group. This holds if F and X =Spec(L) satisfy 2.1.

Now let L be the separable algebraic closure of L. Take ^ to be the direct system of
all subfields L^ of L which are finite Galois extensions of L. Then ^ is weakly cofinal
1.14 in the category of all etale covers of L. Further, L is a strict local hensel ring as
rings etale overt are products of copies of L. Thus 1H^(L; F)=F(L). From these
remarks, 1.22, 1.48, and the profinite group analogue of (1.55), under reasonable
hypotheses like 2.1, there are weak homotopy equivalences

(1.59) H:,(L; F)^H;^^(Gal(L/L); F(L))^H-(^; F)^(L; F).

One may consult [SGA 4], VIII, § 2, for more details.

1.51. One says a presheaf of fibrant spectra F on a site C has cohomological descent
if for all U in C the augmentation

(1.60) n: F(U)^M'(C/U~;F),

is a weak homotopy equivalence. If T^F=O for ^>N or if everything has uniformly
bounded cohomological dimension, then 1.46 shows that such an F has the property
that for any cover or direct system of covers ^ of U in C, the augmentation is a weak
homotopy equivalence

(L61) r|: F(U)^H'(^; F).
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Under the usual hypotheses of 1.46, for any F, the presheaf 0-0' (C/ ; F) has cohomologi-
cal descent. The argument of 1.46 proves this. I like to think of presheaves with
cohomological descent as "sheaves of homotopy types" and the functor sending F to
0-0' (C/ ; F) as a "sheafification" functor. Lemma 1. 35 then says that "sheafification"
"is exact". However, one can get into trouble by carrying this too far.

It will be convenient to know that frequently etale sheaf hypercohomology can be
computed by Cech covers. I begin with some preliminaries.

DEFINITION 1.52. — Let C be a site with finite coproducts; e. g. the etale site
Et/X. Let F be a presheaf of abelian groups on C. One says F is additive if for
all coproducts U V in C, the canonical map from F(ULJV) to F(U)xF(V) is an
isomorphism. A presheaf of fibrant spectra is additive if for all U and V, the map
(1.62) is a weak homotopy equivalence

(1.62) F(UUV)^F(U)xF(V).

The K-theory spectra are additive on the category of schemes. If F is additive, so is
7i* F. Any sheaf of abelian groups is additive.

PROPOSITION 1. 53 (Artin, [4]). — Let X be a scheme quasiprojective over some noetherian
ring. Let F be an additive presheaf of abelian groups on the etale site ofX. Let F be
the sheafification o/F. Then the canonical map from the Cech cohomology of¥ to the
sheaf cohomology of¥ is an isomorphism

(1.63) Hf , (X;F)^H^(X;F) .

Proof. — Under the hypotheses, I may work in the restricted etale site of 1.3. For
every cover in the full site is refined by one in the restricted site, so the Cech cohomology
and the category of sheaves is not changed by restriction.

If F is additive, so is the presheaf of Cech cohomology groups, if*(F). Suppose
if°(F)=0. This condition is equivalent to the condition that for every U and every
xeF(U) there is a finite cover of U, {W, -^U} such that x restricts to zero in each
F(W,.). If F is additive and W= LJW,, then x restricts to 0 in F(W) =]"] F(W,). With
these observations, one sees that the argument of [4], Cor. 4.2, shows that if F is additive
and Jf°(F) =0, then for all p, H^X; F) =0.

Now suppose F is an additive presheaf whose sheafification F is 0. Then
Jf°(Jf°(F))=F isO. But Jf°(F) is a separated presheaf, and so it injects into
Jf°(Jf°(F))=0. Thus Jf°(F)=0, and by the above H*(X; F)=0. The reader may
consult [SGA 4], V 2.4. 5, II 3.2 or [3], II, § 1 and 2 for details on JT° and sheafification,
if required.

Now let F be any additive presheaf. Let K, I, C, be the kernal, image, and cokernal
presheaves of the canonical map F -> F. There are short exact sequences of presheaves

(1.64) 0-^K-^F-^I-^O,
0->l-,F-^C-^0.
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These induce long exact sequences of Cech cohomology

. . . -^H^X; K^H^X; F^H^X; I^H^^X; K)-> . . .,
(1.65) , ,

. . . -.H^^C^H^X; I^H^X; F)-.fP(X; C ) - > . . .

Sheafification is exact, and converts F -> F into an isomorphism. Thus K = 0, C = 0,
and T=F. The presheaves K, I, C are additive as F and F are, so H*(X;C)=0,
H* (X; K) =0. Then the long exact sequences (1.65) yield isomorphisms.

(1.66) H^X; F^H^X; I^H^X; F).

Finally, Artin's Theorem [4], 4.2 yields an isomorphism

(1.67) FP(X;F)^H^(X;F).

Combining (1. 66) and (1.67) yields the result.

PROPOSITION 1.54. — Let X be a scheme quasiprojective over some noetherian ring of
finite Krull dimension. Then X is noetherian, separated, and has finite Krull
dimension. Suppose F is an additive presheaf of fibrant spectra as in 1. 52.

Then there is a natural chain of weak homotopy equivalences between Cech and sheaf
hypercohomology

(1.68) H^(X;F)^^H;t (X;F) .

Proof. — Let s^ be the cofinal direct system of Cech covers as in 1.23. Let F < n > be
the nth stage of the Postnikov tower, as in 5. 51. Consider the diagram of augmentations

(1.69)

H'(X;F<n»=H'(^;F<n»-^H-(^; H;t( ; F<n»)

t

H;,(X;F<n»

If one takes the inverse limit over n, the upper left and lower right hand corners
of (1.69) are identified to the two sides of (1.68) by 1.18 and 1.37. As homotopy
inverse limits or inverse limits along towers of fibrations preserve weak homotopy
equivalences, it suffices to prove for each n that the maps in (1.69) are weak homotopy
equivalences.

The vertical map of (1.69) is a weak equivalence by 1.46, as n^ F < n > = 0 if q > n.
Consider the horizontal map of (1.69). It induces a map of spectral sequences 1.16

for the two sides of the map. The spectral sequences converge strongly as Kq F < n > ==0
and Ky H'et( » F < n » =0 for q>n. Thus it suffices to show the map induces an isomor-
phism of E^ terms of the spectral sequences. By Artin's theorem 1.53, this map is
identified to

(1-70) H^(X,fc ,F<n>)^H^(X,i t^( ; F<n»).
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This map will be an isomorphism if the map of coefficient sheaves (1.71) is an isomor-
phism

(^l) ^ F < n > ^ 7 c » H ] ^ ( ; F<n» .

As the etale site has enough points, by 1.29 it suffices to show (1.71) induces an
isomorphism on the stalks at each point /* of Et/X. As in 1.29, /* n^ F < n > is
identified to n*(^F<n» (^h,) for g : Spec(^) ->X a strict local henselization
ofX. This Spec(^^) is the inverse limit along Nbd(/)°P of schemes etale
over X. The continuity of H^( ; F < n » given by 1.41 or 1.45 shows as in 1.44 that
there is an isomorphism

(1.72) (^H:,( ;F<n») (^ h J^^H^(^ h , ; ^F<n» .

By 1.29, the left side of (1.72) is/* of the right side of (1. 71). With these identifications,
it suffices to prove the top horizontal arrow of (1.73) is an isomorphism.

7i* (̂  F < n »(^h x) ̂  ̂  C (^ x; g' F < n »)
(1.73) [ _ \ _

7l^F<r.>=7c^F<n>(fe(x))-^^H:,(fe(x);/ l tF<n»

Here k ( x ) is the separably closed residue field of (9$ ^ as in 1.29. We've already
seen the left vertical map of (1.73) is an isomorphism. The right vertical map is an
isomorphism by comparison of spectral sequences 1.36 using the acyclicity of k (x) and
of ^,x provided by [SGA 4], VIII 4. 7, 4.8. The bottom horizontal map of (1.73) is
also an isomorphism by 1.36 as the etale topos of k (x) is the trivial topos, the category
of sets. [Thus H^(/c(x); 7t*/*F<n» vanishes for p>0, and takes global sections of
the presheaf 7 i* /*F<n> if p=0.] These remarks show the top horizontal arrow of
(1. 73) is an isomorphism as required.

At the referee's request, I include the following:

DEFINITION 1.55. — Let /: C -> D be a morphism of sites with enough points. Let F
be a presheaf of fibrant spectra on C. Define (R'/(F) to be the presheaf of fibrant
spectra on D given by
(1 • 74) R' /(F) (U) = H- (C//* U; F).

THEOREM 1.56 (Cartan-Leray). - Let f: C-^D be a morphism of sites and suppose
the topoi C, 6 have enough points. Let ¥ be a presheaf of fibrant spectra on C. Suppose
either that there exists an N such that Kq F=0 for <?>N, or else that there exists an N
such that for all objects U in D, and for all q that H^C//*!;; 7^F)=0 ifp>1^. Then
the natural map (1. 75) is a \veak homotopy equivalence

(1.75) H"(C; F)^IHT(D; IR/'(F)).

Proof. - Exactly as in the proof of 1.46 replacing 1H1'(^; ) with (HT(D; ), and
H" (C/ ; F) with R /' (F), 1.16 with 1.36, 1.15 with 1. 35, etc.
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1. 57. — The Theorem 1. 56 applies to the map of etale sites /: X^ -> Y^ for any two
schemes satisfying the hypotheses of 1.48.

2. Etale cohomological descent for algebraic K-theory

In this section, I prove the key descent theorems for algebraic K-theory. The proof
begins by showing that etale cohomological descent on a scheme X follows from descent
on all of its local rings. This reduction results from Zariski cohomological descent for
K-theory, which follows from the Mayer-Vietoris property by a theorem of Brown and
Gersten. The next step shows that descent on a ring follows from descent on all its
residue fields. This reduction results from induction on the Krull dimension, the localiza-
tion sequence for K-theory, and the fact that etale cohomological descent implies Cech
cohomological descent for all filtering systems of etale covers. One might expect to
make this reduction by comparing the localization sequence with the Gysin sequence for
etale cohomology. However, this Gysin sequence is not available at this stage of the
argument, as one does not yet know that the etale sheaf £/J*[p~1] is locally constant,
nor that the required absolute cohomological purity Theorem holds in full
generality. This step in the argument is the key point in proving the general cohomologi-
cal purity theorem of [130].

The field case of descent is handled by an argument that interrelates cohomological
descent and homological induction. First some general facts about homological induc-
tion and the hypertransfer are developed, and then the proof of descent on fields is
given. The key point is the form of Hubert's Theorem 90 which relates the units in a
field L with etale cohomology by the isomorphism

(2.1) Ki(L)®Z/r^H,\(L;Z/r(l)).

The machinery amplifies this connection so that its influence extends over K/F(L) [P~1].
This proof of descent was suggested to me by a construction of Gillet. It differs from

the proof in the first edition of this paper, which depended on Karoubi periodicity, also
a form of Hubert's Theorem 90. A sketch of the Karoubi periodicity proof may be
found in [128]. The new proof is more conceptual, does not rely on irksome calculation
of higher order homotopy operations, and also avoids the difficulties in deducing descent
for profinite Galois extensions from descent for finite Galois extensions. This last point
was handled incorrectly in the first edition, and resolved by a gruesome argument in the
erratum.

Usual general hypotheses 2.1. — Let X be a separated noetherian scheme of finite
Krull dimension. Let F be a presheaf of fibrant spectra on the etale site of X. Suppose
that F extends to a continuous presheaf of fibrant spectra on the category of schemes
which are inverse limits along inverse systems with affine bonding maps of schemes
finitely presented and etale over X. Here continuity is as defined in 1.42. (Techniques
of [EGA], IV, §8, show that any F defined on finitely presented etale schemes over X
extends to a unique continuous F as above.) Suppose that F is additive in the sense of
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1. 52. Fix a set of primes J such that TT* F is a presheaf of modules over the localization
Z(j) of the ring of integers Z by inverting the primes not in J. Suppose there is a uniform
bound on the etale cohomological dimension of all residue fields of X with respect to l-
torsion sheaves for all primes I in J. Then there is a uniform bound on the etale
cohomological dimension of everything in sight with respect to TI* F, as in 1.48. This
long list of hypotheses is in fact satisfied in every decent situation. In particular, they
hold for the K-theory spectra K/F( )[P~1], G/F( )[P-1] of Appendix A if X is an
algebraic variety over an algebraically closed field of characteristic not /, or if X is
separated and of finite type over ^-[l~1] and (7^2, or if X is separated and of finite type
over the Gaussian integers with 2 inverted, and in many other cases too numerous to
mention. In all these cases, F( )=[1-C( ; K/F( )[P~1]) also satisfies the hypotheses
by the results of paragraph 1.

DEFINITION 2.2. — A presheaf F on the Zariski site of X has the Mayer-Vietoris
property if for all Zariski open subschemes U and V of X, the square (2.2) is homotopy
cartesian.

F(UUV)-^F(U)
(2.2) ^ 1

F(V)^F(UUV)

For example, the presheaves G( ), G/F( ), G/F( )[P~1] of Appendix A all have
the Mayer-Vietoris property. For G( ) does by [97], §7.3.5, and the others are
formed from G( ) by processes which preserve homotopy cartesian squares. For X a
regular scheme, the presheaves K( ), K/F( ), K/F( )[P-1] all have the Mayer-
Vietoris property, as they are weak homotopy equivalent to the corresponding G-theory
presheaves by the resolution theorem, as in [97], §7.1. For these examples I assume
that X is separated and noetherian.

For X and F satisfying the usual hypotheses 2.1, (H]^( ; F) has the Mayer-Vietoris
property by 1.49.

PROPOSITION 2.3. — Let X be a separated noetherian scheme of finite Krull
dimension. Let T | : F — ^ G be a map of presheaves of fibrant spectra on the Zariski site
ofX. Suppose both F and G have the Mayer-Vietoris property 2.2. For each point x
in X, let f: Spec(k (x)) -> X denote the associated inclusion. Suppose for each point x, T|
induces a v^eak homotopy equivalence of the stalks at x, T|:/*F^>/*G. Then r\ is a
\veak homotopy equivalence of presheaves: T| (U): F(U) —> G(U) is a \veak homotopy equiva-
lence for all Zariski open U in X.

Proof. — It suffices to show T| (X) is a weak homotopy equivalence, as the local site
Zar/U inherits all the hypotheses, and so T| will then be a weak equivalence on its
terminal object U.

By a theorem of Brown and Gersten [20], Thms. 3 and 4, or by exercice 2.5 below,
for F with the Mayer-Vietoris property there is a strongly convergent spectral sequence

(2.3) E^=H^(X;^F) => T^F(X).
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The hypothesis on the stalks of T| shows that T| induces an isomorphism on the Zariski

sheaves associated to the presheaves of homotopy groups, T| : TC* F ̂  TT* G. The spectral
sequence comparison theorem then shows that T| : TI*F(X) -> n*G(X) is an
isomorphism. (The reader may review stalks in 1.28, 1.29, 1. 31 if required).

COROLLARY 2.4. - Let X and F satisfy the usual hypotheses 2.1. Suppose F has the
Mayer-Vietoris property on the Zariski site ofX. Suppose that for all local rings (9^ ^
ofX, the augmentation is a weak homotopy equivalence

(2.4) T| : F(Spec(^x, x)) ̂  C(Spec(^x, .); F).

Then the augmentation is a weak homotopy equivalence for X
(2.5) T|(X):F(X)^C(X;F).

proof. — This is a special case of 2.3. The continuity of F allows one to formulate
the hypothesis on stalks in terms of the evaluation of T| at local rings of X by 1.44.
H'^( ; F) is continuous and has the Mayer-Vietoris property by 1.45 and 1.49.

Exercise 2.5 (Optional). — Prove the theorem of Brown and Gersten. Show for a
noetherian scheme X of finite Krull dimension, and for F a presheaf of fibrant spectra
on the Zariski site of X such that F has the Mayer-Vietoris property, then the augmenta-
tion is a weak homotopy equivalence (2.6). Get the spectral sequence from 1. 36.

(2.6) r |(X):F(X)^H'^(X;F).

Hint. — The puzzling thing is how Mayer-Vietoris, a Cech cohomology condition,
leads to a sheaf cohomology result. The answer is that it gives an excision condition
that allows one to set up the local cohomology machine to build a Cousin resolution.

Step 1. — For Y closed in X, define FyF to be the homotopy fibre for each open U.

(2.7) rYF(U)^F(U)^F(U-(YHU)) .

If F has the Mayer-Vietoris property, and Y = Y P| V is locally closed, define Fy F as
the homotopy fibre

(2.8) rYF(u)-^F(unv)-^F(unv-Ynunv) .
The Mayer-Vietoris property is as usual equivalent to an excision condition that says
different choices of open V such that Y = Y Pi V yield weak homotopy equivalent
FyF. To make a canonical functorial choice, take the direct limit of the equivalent
FY F over all such V.

Step 2. — If F has Mayer-Vietoris and Z is closed in Y, show there is a homotopy
fibre sequence

(2.9) rzF^ryF^rv.zF.
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Consider (2.10) where all rows and columns except possibly the top are homotopy fibre
sequences by instances of 2.8

J:zF(U) ——. rYF(U) ————. lY_zF(U)

^ • ^ \
(2.10) JzF(U)——— F(UUV) ——^ F(UnV-Z)

^ ^ ^
*—————- F(UHV-Y) ^ F(UnV-Y)

Then the top row of (2.10) is a homotopy fibre sequence by the usual Quetzalcoati
Lemma, e. g. [5], 1.2.

Step 3. — For/? a non-negative integer, define S^F by

Sp¥= lim ryF,
Y

where the direct limit is taken over the direct system of closed subschemes Y of X of
codimension at least p. Note SP F is a point if p is greater than the dimension of X. If
yeX is a point of codimension/?, with closure y, show that (2.11) is a homotopy fibre
sequence

(2.11) S^^-F^I^-F-^F.

Show that the presheaf TC* Fy F is a skyscraper sheaf supported at y, and so is flabby
for the Zariski topology.

Conclude that for each p there is a homotopy fibre sequence

(2.12) S^F-^F-^ v r F,
y —

where the wedge of spectra is taken over the points y of codimension p. Show the
presheaf (2.13) is a flabby sheaf.

(2.13) 7i*vr,F^©7^F.
y -^ y ^

Step 4. — Show by descending induction on p that the augmentation

S^F(X)-^H^(X;S^F),

is a weak homotopy equivalence. For p greater than the Krull dimension of X, both
sides are contractible. For the flabby V y F y F in place of S^F, the augmentation is a
weak equivalence by collapse of the spectral sequence 1. 36. The 5-lemma and the fibre
sequence (2.12) then yield the induction step. For/?=0, this yields the result claimed.

For extra credit. - Compare this with [50], IV and the construction of Quillen's
spectral sequence in [97], § 7, 5.8. Note as Quillen works in an abelian category, he
needs Gersten's conjecture to provide a short exact sequence of homotopy groups to
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play the role of the fibre sequence (2.12). Our more general context makes Gersten's
conjecture irrelevant; the machine is quite happy with just (2.12) or its associated long
exact sequence of homotopy groups.

DEFINITION 2.6. — Let X and F satisfy the usual hypotheses 2.1. Then F has the
localization property if F extends to a contravariant functor on a subcategory of the
category of schemes over X which includes all inverse limits along systems with affine
bonding maps of schemes etale and finitely presented over X as in 2.1, and also includes
all closed subschemes of such schemes. The subcategory must include all etale maps of
schemes over X between schemes it contains, but need not include all maps of schemes
over X. The main requirement is that if Z is a closed subscheme of Y with the reduced
induced subscheme structure, and with open complement Y — Z , there is a Gysin map t
and a homotopy fibre sequence

(2.14) F(Z)^F(Y)^F(Y-Z).

The sequence (2.14) is required to be natural in that if Y' -> Y is etale, and T is the
pullback of Z to Y', then (2.15) is weak homotopy equivalent to a strictly commuting
diagram of strict fibre sequences, and in particular homotopy commutes

F(Z)-^F(Y)-^F(Y-Z)

(2.15) \ \ \
F(Z /)-^F(Y /)^F(Y /-Z')

Note Z' is etale over Z, and so is reduced. It is a closed subscheme of Y'.
F is said to have the localization property for regular schemes if the above properties

hold when Y and Z are required also to be regular schemes.
If F has the localization property, (2.15) with Y = U U V , Z=Z / =UUV-U, and

Y'=V yields enough excision to conclude (2.2) is homotopy cartesian. Thus F has the
Mayer-Vietoris property. But if F has the localization property for regular schemes, it
need not have Mayer-Vietoris. Note Z==U U V — V might not be regular.

Example 2.7. — The G-theory spectrum G( ) has the localization property by
Quillen's localization theorem. The fibre sequence (2.14) is provided by [97], § 7, 3.2,
and the naturality (2.15) follows from [97], § 7, 2.11 and the fact etale maps are flat
and unramified. The other G-theory spectra of Appendix A, G|lv( ), G/F( )[P~1],
G( )(x)Q, G( )^, etc., are formed from G( ) by processes which preserve homotopy
fibre sequences, so they inherit the localization property.

The K-theory spectra, K( ), K/F( ), K/F( )[|3-1], K( )®Q, K( )^, etc., are
weak homotopy equivalent to the corresponding G-theory spectra on regular schemes,
by [97], § 7,1, so the K-theory spectra have the localization property for regular schemes.

PROPOSITION 2.8. — Let X and F satisfy the usual hypotheses 2.1. Let F have the
Mayer-Vietoris property 2.2. Suppose F has the localization property 2.6, or respectively,
that X is regular and that F has the localization property for regular schemes. Suppose
that for every L a field or Artin local ring that is etale over a residue field or Artin local
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ring which is a localization ofX (resp., for every field L etale over a residue field ofX)
that r\ (L) is a weak homotopy equivalence
(2.16) TI(L): F(L)^(L;F).

Then F has etale cohomological descent on X: for every U etale and finitely presented
over X
(2.17) n(U): F(U)^H:,(U;F),
is a weak homotopy equivalence.

Proof. — Note U as above satisfies 2.1 and the other hypotheses of the proposition,
and its Krull dimension is at most that of X. Thus it suffices to prove T|(X) is a weak
homotopy equivalence. I do this by induction on the Krull dimension of X.

Suppose X has Krull dimension 0. Then its local rings (^x, x are Artin local rings. If
X is regular, these are residue fields. By 2.4, T| (X) is a weak homotopy equivalence if
each r|(^x, x) ls- ^ut ̂ is hypothesis holds by (2.16). Thus T|(X) is a weak homotopy
equivalence.

To do the induction step, suppose X has Krull dimension N and the proposition is
known for schemes of lower Krull dimension. By Corollary 2.4, T| (X) will be a weak
equivalence if r|(^x, x) ls ^or a^ local rings ^x, x of ^' Let R=^x, x ^e suc^ a local
ring. If R has Krull dimension less than N, T| (R) is a weak homotopy equivalence by
induction hypothesis. It remains to consider the case where R has Krull
dimension N. Let Y=Spec(R), let Z=Spec(^c(x)) be the closed point of Y, and let
U = Y — Z be the open complement. Let i: Z -> Y, j: U -> Y be the immersions. As Z
is the unique closed point of the local ring Y, U has Krull dimension N — l . Note
that Y, U, and Z are quasiprojective over the noetherian ring R, and so H^Y; F) is
weak equivalent to HI" (s/', F) for ^ a direct system of etale covers of Y by
Proposition 1.54.

The localization property (2.14) and (2.15) yields a homotopy fibre sequence of
presheaves of fibrant spectra on Et/Y.

t
f.F^F^,F.

By 1.15 and 1.25, there is an induced diagram where all rows are homotopy fibre
sequences

F(Z) ———— F(Y) ————- F(U)
I I I I I I

,.F(Y) ———— F(Y) —————7,F(Y)

(2.18) m2) noo n(")

fi]'(^,i,F) — ^'(^;F) — fi!"(^;j,F)

I I I I I I

H'(i*^;F) -^ H'(^;F) — H'O-*.^; F)
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By the 5-Lemma, to show r|(^x, ̂ ^(^ ls a ^ak homotopy equivalence, it suffices
to show T| (Z) and T| (U) are. By the induction hypothesis, F has etale cohomological
descent on the etale sites of Z and U, as these schemes have Krull dimension strictly less
than N. Then by 1. 51, F has descent for the direct systems of covers i*^, j* s/ of Z
and U. Thus T| (Z) and r| (U), and so T| (Y) are weak homotopy equivalences. This
completes the induction step.

Exercise 2.9 (Optional). — Show for any closed immersion i: Z -> Y and any presheaf
of fibrant spectra F that there is a weak homotopy equivalence.

(2.19) H:,(Z;F)^^(Y;f,F).

Hint. — Use 1.37 to reduce to case F = F < n >, then appeal to the spectral sequence
1.36, and[SGA4], VIII 5. 5.

On the other hand, if i is an open immersion, the map is not in general a weak
equivalence. In terms of the spectral sequence 1. 36 two things go wrong. First, for A
a sheaf on the open Z, H*(Z; A) is not isomorphic to H*(Y, 4 A). Instead there is a
Cartan-Leray spectral sequence.

E^' ^H^Y; R^4A) ==> H^-^Z; A).

Second, for A a presheaf, the sheaf ifications on Y and Z may differ; 4 A is not ^A. If
F has descent, there is in fact a spectral sequence which is the sheafification of the
presheaf of descent spectral sequences.

E^=R^4(^F) => 7^-^F.

Show that if F has etale cohomological descent, these two problems exactly cancel each
other.

LEMMA 2.10. — Let L be an Artin local ring with residue field k. Let F' be any of the
algebraic G-theory presheaves, G( ), G/F( ), G/F( )[P~1], G( )^, G( )®Q, and
let F be the corresponding K-theory presheaf, K( ), K/F( ), K/F( )[P~1], K( )^
K( )®Q, respectively. Then there is a commutative diagram where the vertical maps
are weak homotopy equivalences

F'O^H^F')
t? t<

F(fe)-H:,(fc;F)
n

Thus to verify hypothesis (2. 16) of 2. 8 for G-theory presheaves on Artin local rings, it
suffices to verify (2.16) for the corresponding 1^-theory presheaves at residue fields.

Proof. — Let R be a ring etale over L. Then R is an Artinian ring, and R modulo
its nilpotent nil radical is R(X)^. By [97], § 7, 3.1 the transfer map is a weak homotopy

L
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equivalence for F' = G
F^RCx^-.F^R).

L

The other G-theory spectra inherit this property.
On the other hand [SGA4], VIII 1.1, shows that the functor sending R to R(x)fe is an

L

equivalence of the restricted etale sites of R and fe. Finally, R(x)fc is etale over a field
L

and so is regular, so the resolution theorem shows F'(R®fe) and F(R®^c) are weak
L L

equivalent.
Combining these facts readily yields 2.10.

2.11. Proposition 2. 8 reduces the general etale cohomological descent problem to the
case where X =Spec(L) for L a field, or at least an Artin local ring. I assume the usual
hypotheses 2.1. Since L is a noetherian ring, 1.54 allows one to dispense with sheaf
hypercohomology, and work with Cech hypercohomology. If L is a field, Example 1. 50
shows how the etale sheaf of Cech hypercohomology may be reinterpreted as profinite
group hypercohomology for the Galois group of the separable closure of L over L. If
L is an Artin local ring, [SGA 4], VIII 1.1 identifies its restricted etale site to that of its
residue field fe, so etale hypercohomology of L is reinterpreted as Galois hypercohomo-
logy of k.

Henceforth, I will write as if L is a field to fix ideas. By 2.10, I need only consider
K-theory and not G-theory.

DEFINITION 2.12. — A presheaf of fibrant spectra F on the etale site of a field (or
Artin local ring) L has the weak transfer property if for every finite and etale morphism
^: Li -> L^ of rings etale over L there is a morphism ^*: F(L^) -> F(L^) in addition to
the usual ^*:F(Li) ->¥(L^). The assignment of of ̂  to ^ is to make F a co variant
functor on the category of schemes etale over Spec(L) with the finite etale maps of
schemes as morphisms (or equivalently, a contravariant functor on the category of rings
etale over L with finite etale morphisms) with values in the stable homotopy category.

The presheaf F is required also to be continuous 1.42 and additive 1. 52. If L^ is a
product L^xL^, and 'k:L^ ->L^ decomposes as X/x^/', then it is required that (2.20)
commute in the stable homotopy category (an additive category)

Given morphisms X: Li-^L^ and a: L^->L^ both finite and etale, the Mackey
diagram (2.21) is required to commute in the stable homotopy category
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(1®^)*
F(L3®L2) —————- F(L3)

LI

(2t21) Oi®i)*t )u*

F^) —————————- F(L,)
^*

If ^: Li -> L^ is an isomorphism, it is required that (2.22) holds in the stable homotopy
category

(2.22) ^^-^^(L^FCLi).

Finally, if ' k : L^ —»• L^ is etale and finite of degree n, it is required that in the stable
homotopy category that X* ̂ *: F(Li) -^ F(Li) is multiplication by n.

The reader familiar with Mackey functors (cf. [28], [25]) may reinterpret (2.20), (2.21),
(2.22) as saying that the continuous presheaf F is a Mackey functor on the category of
finite G-sets for G the profinite Galois group of L, with values in the stable homotopy
category. The last requirement on ̂  A-* is special. I won't use the language of Mackey
functors however.

The G-theory presheaf G( ) has the weak transfer property by [97], § 7,2. The last
requirement follows from the projection formula of [97], § 7,2 and [77] 2.3, and the fact
that 1.2 is a free module of rank n over the local ring L^. The presheaves G/lv( ),
G/F( )[P~1], G( )^, G( )®Q all inherit the weak transfer property. If L is a field,
so all the L^ and L^ are products of fields and so are regular, the weakly equivalent
corresponding K-theory presheaves all have the weak transfer property.

LEMMA 2.13. — If F has the \veak transfer property 2.12 and K: L^ -> L^ is a finite
etale Galois extension of rings etale over L, then in the stable homotopy category

(2.23) ^^=$>*:F(L2)^F(L2).
G

Here the sum is over elements g of the Galois group GaUL^/L^).
Proof. — Apply (2.21) with L^=L^ and u=X. The isomorphism (1.50) allows a

reinterpretation of (2.21), as (2.24)

(l(x)^)*.K*=n^*

(2.24)
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Using (2.22) (K*)~1 =K* and (2.20), the map on the top of (2.24) is identified to the
sum over g of the maps which project f]1^1-^) on tne factor ¥(L^) indexed by g and

G
them map it to ¥(L^) by g^. Composed with the diagonal, this map is £g*. Appealing
to (2.22) again, the map is also ̂ (g'^^g*.

PROPOSITION 2. 14. — Let L be a field, or more generally an Artin local ring, and let F
be a presheaf of fibrant spectra on the etale site ofL which has the weak transfer property,
2.12. Suppose that F is Q-local, i.e., that n^¥ is a presheaf of vector spaces over the
rationals. Then F has etale cohomological descent, so the augmentation is a weak homotopy
equivalence

(2.25) T|: F(L)^H:,(L;F).

Proof. - Let £ be the separable algebraic closure of L, and let L, be a subring of L
with ^: L -> L, a finite etale Galois extension, which has degree n. Then
X* ̂ *: F(L) -> F(L) is multiplication by n by 2.12, and this is a weak homotopy equiva-
lence as F is Q-local. The map ^*A,*: F(LJ-^F(LJ is the sum over the Galois
group ofL, overL, ^g*, by 2.13. As F is Q-local, one has a map
(l/n)^*^:F(LJ -^F(L,). On the homotopy groups TI*F(LJ this induces the projec-
tion on the summand fixed by the Galois group. Thus the map X,* induces an isomor-
phism (2.26), with inverse induced by the restriction of (1/n)^*

(2.26) ^F(L) ̂ [^(L^^H^GaHL^/L); ^F(LJ).

As Gal(L,/L) is a finite group and TI*F(L,) is a vector space over Q, the higher
cohomology groups vanish by the classical transfer argument. Taking the limit as L,
runs over the direct system of all etale finite Galois extensions of L in L, and considering
1. 50, one gets isomorphisms

(2.27)
^F(L)^H°(Gal(L/L); ^F(L))^H^(L; 71* F),

0 = lim H^ (Gal (L,/L); n^ F (LJ) = H^ (L; TI* F) for p > 0.

These isomorphisms and the spectral sequence 1. 36 or (1. 56) show that (2.25) induces
an isomorphism on homotopy groups, and so is a weak equivalence.

THEOREM 2.15. — Let X be a separated noetherian scheme of finite Krull dimension
(respectively, which is also regular). Then the presheaf of rational G-theory G( )®Q
[respectively, K( )®Q] has etale cohomological descent. The augmentation is a weak
homotopy equivalence

(2.28)
TI:G(X)®Q^H;,(X;G®Q)

[resp. TI: K(X)(x)Q ̂  H'^(X; K®Q)].
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Proof. — This follows by combining the successive reductions 2.4, 2.8, and 2.14.

COROLLARY 2.16. — Let X be a separated noetherian scheme of finite Krull dimension
(resp., which is regular). Let ^ be a direct system of etale covers ̂ , such that for each a
and each U^ —> X in ̂ , U\- is noetherian, or equivalently, finitely presented over X. Then
the augmentation is a weak equivalence

T|: G(X)®Q ̂  H- (̂ ; G®Q)
( ' ) [resp. r|: K(X)®Q -> H' (^; K®Q)].

Proof. — This results from 2.15 and 1.46, as in 1. 51.

COROLLARY 2.17. — In the situation of 2.15, 2.16 ^r^ are spectral sequences

E^=H^(X;G,( )®Q) => G,^(X)®Q
[resp.E^ ^=H^(X., K,( )®Q) ^K^(X)®Q];

(2.30)

E^=H^;G,( )®Q) => G,_^(X)®Q
[resp.E§' ̂ H^; K,( )®Q) ^K,_^(X)®Q].

(2.31)

The indexing is funny, as in 1.16, etc. The spectral sequences (2. 30) converge strongly,
and the spectral sequences (2.31) do if there is an N such that E^*=0/or/?>N.

Proof. - This follows from 2.15 and 2.16 by 1.36 and 1.16.

Exercise 2.18 (Optional). — Combine the proof of 2.14 with the etale sheafification
of Quillen's construction of a Brown-Gersten type spectral sequence in [97], § 7, 5 to
conclude for regular X of finite type over a field, there is an isomorphism

(2.32) H^(X;G,( )®Q)^H^(X;G,( )®Q),

identifying (2. 30) to the Brown-Gersten spectral sequence.
2.19. To get descent theorems for K/F( )[P~1], one needs a more sophisticated

understanding of the transfer. I proceed to develop this.

LEMMA 2.20. — (Shapiro's Lemma) Let F be an additive presheaf 1.52 of fibrant
spectra on the etale site of a field U. Let L be a field, and ^: L -» L' a finite etale map,
also denoted ^: Spec(L') -^Spec(L). Let ^F be the induced presheaf of fibrant spectra
on the etale site of L, as in \. 24. Let L" be a possibly infinite etale Galois extension
of U, which is also Galois over L.

Then there is a natural weak homotopy equivalence of pro finite Galois hypercohomology
spectra 1.50:

(2. 33) H* (U'/L, X, F) ̂  H' (L'VL'; F).

In particular, taking L" to be the separable algebraic alosure ofU, and so also ofL,
one sees that the natural map (1.28) is a weak homotopy equivalence

(2.34) H:,(L;^F)^C(L';F).
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Proof. — If R is a ring etale over L, 1.24 gives the formula

(^F)(R)=F(R(x)I/)=F(Spec(R) x Spec (I/)).
L Spec(L)

Let ^ be the direct system of etale covers of L by subfields L^ of L" which are finite
and etale over L. The left side of (2. 33) is IH1'(^; ^F) by definition. Similarly, let ^
be the direct system of etale covers of L' by subfields Lp of L" which are finite, etale,
and Galois over I/. Then the right side of (2.33) is HI" (^; F). As \ is finite and etale,
the systems ^* ̂  and ̂  are weakly cofinal in each other in the sense of
Lemma 1.22. For every cover of U by Lp is refined by a cover by Lp^L'; and any

L
cover L^OL' of L' is refined by Lp, where Lp is the composite of the Galois conjugates

L

of the finite extensions of U occuring in the product of fields L^L'. These remarks,
L

Lemma 1.22, and (1.18) combine to show (2.33) is a weak homotopy equivalence.
If L" is taken to be the separable algebraic closure of U and L, the two sides of (2. 33)

are identified to etale Cech hypercohomology of L and L', as the systems ^ and ̂  are
weakly cofinal in the category of etale covers of L and U respectively. The weak
equivalence of sheaf hypercohomology (2.34) results from (2.33) and 1.54. In this
case, 1. 54 may be replaced by a more elementary lemma generalizing [SGA 4], VIII 2. 5
as 1. 54 generalizes Artin's Theorem 1. 53.

This completes the proof. Compare with [102], 12.5 or [104], Thm. 8 of II, § 2 in
light of 1.50 to see why this is the usual Shapiro's Lemma for cohomology.

2.21. The study of the transfer also requires group hyperhomology and Shapiro's
Lemma for homology. Let G be a group, acting on a spectrum or
prespectrum F. Consider G as a category with one object and whose morphisms are
the elements of G. Then consider F as a functor from this category G into the category
of prespectra. Specializing the results of 5.15-5.20 to this case, one gets a group
hyperhomology prespectrum

(2. 35) HI. (G; F) = hocolim F.
G

It preserves weak homotopy equivalences and homotopy fibre sequences in F. There
is a convergent spectral sequence 5.17

(2.36) E^=H^(G;TI,F) => 7i^,H.(G; F).

The homotopy colimit [H1.(G;F) has a useful universal mapping property, as discussed
in 5.15.

Unfortunately, H. (G; F) is in general a prespectrum and not a fibrant spectrum, even
when F is a fibrant spectrum. When it is inserted as a coefficient into a hypercohomo-
logy construction that requires fibrant spectra as coefficients, H. (G; F) must be converted
into a weak equivalent fibrant spectrum by the functorial process Q of 5.2 and [14]. If
H. (G; F) occurs in a diagram of coefficients, one should apply Q to the entire
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diagram. As hypercohomology preserves weak equivalences of fibrant spectra, this
process doesn't significantly change hypercohomology spectra which already had fibrant
coefficients. Henceforth, I will abuse notation and treat D-0, (G; F) as if it were fibrant
spectrum, suppressing all the Q's.

LEMMA 2.22 (Shapiro's Lemma for homology). — Let G be a group with subgroup
H. Let ¥ be a prespectrum on which H acts, and let v F be the induced

G/H
prespectrum. The latter is a wedge of copies of¥ indexed by the cosets G/H. Let {a^}
be a set of coset representatives. Then G acts on v F with g e G sending the factor F

G/H

indexed by a^ to that indexed by CT, via h: F -> F ifg<ji=<jjh with heH.
The inclusions H —> G and F —> v F as the factor indexed by the coset representative 1

G/H
induce a weak homotopy equivalence

(2.37) H.(H; F)^H1.(G; v F).
G/H

Proof. — It suffices to prove (2.37) induces an isomorphism of the E2 terms of the
converging spectral sequences 5.17:

H^(H;7r,F)^H^(G; ©TI,F).
G/H

But this follows by the usual Shapiro's Lemma, as ® Kq¥ is the usual induced module
G/H

^ [G] ® (Kq F). If need be, consult [19], III 6.2.
Z[H]

COROLLARY 2.23. — Let X==Spec(L) be a field and let ¥ be a presheaf of fibrant
spectra satisfying the usual hypotheses 2.1. Let L"/L be a separable algebraic extension
of fields, and let U/L be a finite Galois subextension with Galois group Gal(L7L). Then
f/Gal(L7L) acts on ¥ ( U ' S)^) via its action on the right factor L', there is a chain of

L
weak homotopy equivalences

(2. 38) F (L") ̂  <^ (HI. (Gal (L'/L); F (L" ® L')).
L

Proof. — By the Chinese remainder Theorem, as in 1. 50, there is an isomorphism

K:u'0u^ n L">
\ z " ^ - 7 ) L Gal(L'/L)

K(r(X)0=(r.^Gal(L'/L,

As F is additive in the sense of 1.52 by 2.1, K induces a weak equivalence of
F(L" (g) L') with the induced spectrum

(2.40) v ¥ ( U ' ) ^ ]~[ F^^F^'^L').
Gal (L'/L) Gal (L'/L) L
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The corollary now results from 2.22. There is in fact a weak equivalence from the
left side of (2. 38) to the right induced by the insertion of L" as a summand in (2. 39).

This weak equivalence is natural with respect to Gal (L7L'). It is natural up to
homotopy for Gal (L7L), with the appropriate action of this group on the right side
of (2. 38).

PROPOSITION 2.24 (Tate's appendix to [102]). - Let X=Spec(L) be afield and F a
presheaf of fibrant spectra satisfying the usual hypotheses 2.1. Let L7L be an infinite
Galois extension ofL so that the pro finite Galois group Gal (L7L) has bounded cohomologi-
cal dimension for ^^-modules, "where J is the set of primes in 2.1. Let I//L be a finite
Galois subextension. Then there is a natural weak homotopy equivalence

H. (Gal (L7L); H'(L7L; F^'®!/)))c(2.41)
H'(L7L; H. (Gal (L7L); F(L-® I/)))

L

[Here Gal(L7L) acts on F(I/' 00 L') via the right I/, and Gal (L7L) acts via the left U'
L

only, leaving the right U fixed].
Proof. — The first step is to construct the map using the universal mapping property

of homotopy colimits discussed in 5.15. Let M:n-^Gal(L//L) be a functor as
in 5.15. Define f(u)

(2.42) f(u): H9 (L7L; F (L" (x) L')) tx A [n] -. H- (L7L; H] (Gal (L7L); F (L" ® L'))),
L ' L

to be the composite of the canonical map deduced from the universal mapping property
of homotopy limits

(2.43) H' (L7L; ¥ ( U ' ® U)) x A [n] -> H' (L7L; F(L" (g) L') b< A [n])
L L

and the map obtained by applying H'(L7L; ) to the universal map

(2.44) j (u): F (L" (g) U) tx A [n] -> H. (Gal (L7L); F (L" ® L')).
L L

The maps/(M) satisfy the conditions of 5.15, and so induce a map (2.41).
Next, I show that (2.41) is a weak homotopy equivalence if the modules TI^F^")

have cohomological dimension zero for all closed subgroups of the profinite group
Gal (L7L). Then TI+F^') also has cohomological dimension zero for the subgroup
Gal (L7L'). Shapiro's Lemma 2.20 and the spectral sequence 1.36 then yield isomor-
phisms.

(2.45) TC* H' (L7L, F (L" ® L')) = H° (L7L-, n^ F (L")).
L

By Tate's appendix [102], Lemma 1, p. 1-82 or [101], IX, § 5, Thm. 8, the theory of Tate
cohomology and the dimension zero hypothesis yield the results in (2.46).
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H^Gal(LVL); 7^H'(L7L; F^" ® LO))=O, /?>0,
(2.46) L

Ho(Gal(L7L); 7i*H"(L7L; F(L" ® L^H^L'VL; 71,, F (I/')).
L

Thus the spectral sequence (2.36) for the top of (2.41) collapses to

(2.47) 7i* tH. (Gal (L'/L); H' (L'VL; F (L" ® L'))) = H° (L'VL; n^ F (L")).
L

The homology Shapiro's Lemma of 2.22 and 2.23 and the spectral sequence 1.36
with the cohomological dimension zero hypothesis yield

(2.48) 7i* HI' (L'VL; H. (Gal (L'/L); F (L" ® L')) = H° (I/'/L; T^ F (L")).
L

It is left to the conscientious reader to verify that the map (2.41) indeed induces the
isomorphism between (2.47) and (2.48). Since Tate's appendix works in terms of the
transfer, it will be easier to verify this after reading 2.26 below. First do the case with
appropriate hypertransfers, and then reformulate in terms of the equivalence of Shapiro's
Lemma using the relation (2. 52), and 2.28.

Finally, I prove the general case by induction on the maximum of the cohomological
dimension of K ^ ¥ ( U ' ) over all closed subgroups of Gal(L7L). This maximum is
bounded by the cohomological dimension of Gal(L7L) tor J-^ modules by
hypotheses 2.1 and the usual results on cohomological dimension of closed subgroups
(e. g., [102], 13. 3 or [104], III, § 1). Let F be such that TI* F(L") has maximum cohomolo-
gical dimension N, and that (2.41) is known to be a weak homotopy equivalence for
maximum cohomological dimension less than N. Let \ F be the induced presheaf with
X^F(A)=F(A ® L"). If L"= lim L,, L, finite Galois over L, the additivity and conti-

L ——>

nuity of F yield isomorphisms

(2.49) 7i* F (L" ® L") ̂  lim TC* F (L" ® LJ ̂  lim ]~[ 7C* F (L//)-
L ~^ L "̂  Gal (La/L)

Thus ^(^F^L") is the usual induced module, and has maximum cohomological
dimension zero by the usual Shapiro's Lemma, [102], I, Prop. 10, [104], II, §2, or 2.20
applied to the appropriate Eilenberg-MacLane spectrum.

The map L -> L" induces a natural F -> ̂  F. Let H be the homotopy cofibre. The
long exact sequence of homotopy groups of this homotopy fibre sequence splits into
short exact sequences

(2.50) 0 ̂  7i* F (L") -> n^ F (L" ® L") -. n^ H (L") -. 0.
L

This is because the map induced by multiplication L'^L" -> L" splits the map on the
left as a map of abelian groups. It follows that T^E^L") has maximum cohomological
dimension N — l .
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Consider the homotopy fibre sequence F -> ̂  F -> H and the map (2.41) of the induced
homotopy fibre sequences of the sources and targets of (2.41). The map (2.41) is a
weak homotopy equivalence for ̂  F and for H by induction hypothesis. Hence it is
for F by the 5-Lemma. This completes the induction step and the proof of the Theorem.

DEFINITION 2.25. — Let F be a presheaf of fibrant spectra on the etale site of a
field. F is said to have a hypertransfer if for all finite Galois extensions L'/L in the site
and all algebras A over L, there is a map of prespectra

(2.51) T: H.(Gal(L7L); F(A ® L')) -> F(A).
L

These maps must satisfy several conditions. First, the map must be natural
in A. Second, whenever A = L" is a separable algebraic field extension of L which
contains I/ as a subextension, there is a homotopy commutative diagram (2. 52), formed
from (2. 51) and the maps of Shapiro's Lemma 2.23:

H.(Gal(L'/L); F^'^L'))

^ L ^
H.(Gal(L7L); [I F(L")) F(L")

(2 . 52) Gal (L'/L)

t> /
H.(Gal(L7L); v F(L"))

Gal (L'/L)

It follows from (2. 52) and 2.23 that in this case T is a weak homotopy equivalence, the
homotopy inverse to the equivalence of Shapiro's Lemma 2.23.

Finally, diagram (2. 53) commutes.

M (Li/L; T)
(].(Gal(Li/L); H.(Gal(L2/L); F(A ® L, ® L^))) —————^ H.(Gal(Li/L); F(A®Li))

L L L

(2..53)
Zll F(A),

T T

H. (Gal (L^/L); H. (Gal (L^/L); F (A ® L, ® L^))) ———————^ H. (Gal (L^/L); F (A ® L^))
L L H (L2/L; T) L

Here the isomorphism on the left of (2. 53) is provided by 5.16.
Remark 2.26. — The diagram (2.52) of weak homotopy equivalences and the naturality

condition of 2.25 show that the weak equivalence of Shapiro's Lemma 2.23 is in fact
GaUL'VL) equivariant in the homotopy category. It takes a bit of work to show this
directly. Thus it is often more transparently natural to formulate Shapiro's Lemma in
terms of the hypertransfer T being a weak homotopy equivalence in (2. 52). Even if F
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does not admit a general hypertransfer, in the situation of 2.23 the folding map (2. 54)
which adds all summands is Gal(LyL) invariant, and so by the universal mapping
property induces a diagram of weak homotopy equivalences (2. 55) just like (2.52)

(2.54) v F(L")^F(L"),
Gal (L'/L)

H. (Gal (L'/L); vF(L")) -̂  F(L")
G

^
(2.55) H.(Gal(L7L);nF(L"))

G

it
HI. (Gal (L'/L); F(L"®L'))

L

Remark 2.27. - In (2. 53) with L^ =L" containing L^ =L' as a subextension, Shapiro's
Lemma shows that the top horizontal map is a weak homotopy equivalence, which by
abuse of notation is the Lyndon-Hochschild-Serre equivalence
(2.56) H. (Gal (L'/L); H.(Gal(L"/L'); F(L")))^H.(Gal(L"/L); F(L")).

Then (2. 53) becomes

H. (Gal (L'/L); H.(Gal(L"/L'); F(L")))^H.(Gal(L"/L); F(L"))

(2-57) J H (Gal(L7L);T) J ^

H. (Gal (L'/L); F(L')) ———————^——————^ F(L)

The abuse of notation consists of the fact that Gal (L'/L) does not act on
0-tl.(Gal(L"/L'); F(L")), except up to coherent homotopy, but rather acts on a weak
homotopy equivalent spectrum, IH.(Gal(L"/L); F(L"®L')).

L

Remark 2.28. — If F has a hypertransfer and also satisfies the conditions of
Proposition 2.24, the weak homotopy equivalence (2.41) and the hypertransfer variant
of the weak homotopy equivalence of Shapiro's Lemma (2. 52) combine to yield the
bottom horizontal map in a diagram (2. 58) where the vertical maps are induced by the
augmentations

TH. (Gal (L'/L); F(L')) ————————-——————^ F(L)
H.(G,TI) J I n(2.58)

H.(Gal(L'/L); H-(L"/L; F(L"®L'))) ———^ H-(L"/L; F(L"))
L

By abuse and Shapiro's Lemma, the bottom map may be considered as a weak
homotopy equivalence yielding the spectral sequence of Tate's appendix to [102]:

(2. 59) H. (Gal (L'/L); H- (L"/L'; F (L"))) ̂  H- (L"/L; F (L")).
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When F has no hypertransfer, 2.24, Shapiro's Lemma, (2. 56), and abuse still provide
a weak homotopy equivalence between the two sides of (2.59), which is a sort of
hypertransfer up to homotopy natural in F.

Exercise 2.29 (Optional). - The stable homotopy category is an additive category,
but the category of spectra is not additive before passing to the homotopy
category. Show that if the category of spectra were additive, the contorted constructions
of 2.24-2.28 would simplify to the usual ones.

Example 2. 30. - The presheaf of K-theory prespectra K( ) admits a hypertransfer,
so the discussion of 2.25-2.28 applies to it. Similarly, the presheaves K( )®Q,
K/r( ) ,K/F( HP-^andK^ )„ all inherit a hypertransfer.

For F=K, the hypertransfer map (2.51) is determined by the universal mapping
property of 5.15. The algebra A ® I/ is a free A-module of rank [I/:L], so finitely

generated free or projective A (x) L'-modules are finitely generated projective A-modules
L

by neglect of structure. The forgetful functor induces the required map
f(u): K (A (g) I/) -^ K (A) for the unique u: 0 -> Gal (L'/L). A functor u: 1 -> Gal (L//L)

corresponds to an element geGa\(U/L). The action of g on K(A ® U) is induced by
L

the automorphism of the category of finitely generated projective modules over A (x) L'
L

sending P to

g*P=(A®Ug) ® P.
L A®L'

L

Here A (x) Ug is A ® L' as a right A ® U module via A (x) g.
L L L L

There is a natural isomorphism of A-modules A(Sg:P-> g * p . As K(A) is the
spectrum associated to the symmetric monoidal category K(A) of finitely generated
projective A-modules and isomorphisms, this natural isomorphism induces the required
homotopy f(u)\ K(A®I/) o<A[l] -^K(A), e.g. by [125], 2.9, Appendix. Similarly, a
functor u: n->Gal(L7L) is a sequence of elements (g^ ..., g^) o/Gal(L7L), inducing a
sequence of natural isomorphisms (A®^, ..., A®^,), and so a homotopy
f(u): K(A®I/) KA[n]^K(A) by [125], 2.9. If a sequence v=(g^ ..., g^) is produced
from a sequence u=(g^ ..., g^) by inserting Fs and performing various compositions,
i.e., if u = M ( p for some (p :k-^n , the sequence of natural isomorphisms
(A®gi, ..., A(Sgk) is produced from (A®^i, ..., A®^) by inserting 1's and performing
compositions in the same pattern, i. e.,

(A®gi, ..., A®^)=(A®^, .... A®^). l®q>.

It follows then from [125], 2.9, 3.1, 3.2 that the compatibility conditions of 5.15 hold
on the induced homotopies, i. e.,

/(^.((^(O)-!...^) txA[fe])=/(M).(l KA[(p]).
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Thus by 5.15, this system of homotopies f(u): K(A®I/) txA[n] -> K(A) for each
M : n-^Gal(L7L) determines a map T: H.(Gal(L7L); K(A®I/)) -> K(A) as
in (2. 51). Clearly T is natural in A.

To verify condition (2.53), one first notes that if one has elements ^eGal(Li/L) and
heGal(L2/L), then the natural isomorphisms 1®^®1 and I® l®h commute with each
other: 100^001.1®1®^=1®^®^=1®1®^. 1®^®1: P^l x^* xh*P. So given
u: n -> Gal (Li/L) and v: m -> Gal (L^/L) one obtains a commutative n x m grid of symme-
tric monoidal natural isomorphisms of functors K(A®Li®L2) -^K(A). By [125] 2.9,
Appendix, this induces a map/(M, v): K^AOOLiOOL^) ixA[n] o<A[m]^K(A). As each
isomorphism l®l®^i is linear over A®Li, the grid of natural isomorphisms factors
as K(A®Li®L2) xnxm-) -K(A®Li) xn-^K(A) . This induces a factorization of the
induced f(u, v) as

K(A®Li®L^) ix A [n] kA[m]-^K(A®Li) ixA[n]-^ K(A).

Fixing u and n, and applying 5.15 to the system of homotopies as v and m vary, one
obtains an induced factorization

H.(Gal(L2/L); K ( A ® L i ® L 2 ) ) «xA[n] -^K(A®Li) (xA[n]-^K(A).

The first map in this factorization is T ^ A [n] for the hypertransfer T of L^/L, and the
second map is the f(u) which induces the hypertransfer for Li/L. Hence applying 5.15
to this system of homotopies as u and n vary yields the top half of (2.53). Similarly,
on reversing the order of treating u and v, one obtains the bottom half of (2. 53). Thus
the top and bottom arrows of (2. 53) are universal with respect to the same double
system of homotopies f(u, v), and so they agree as claimed.

To verify (2.52) one translates the hypertransfer T via the homotopy equivalences to
H.(Gal(L7L), vF^')), and then checks it is the homotopy inverse to the Shapiro's
Lemma equivalence. For the first step in translation, consider the isomorphism
of (2. 39) K: I/' ® 1/^IIL/', where the product is indexed by Gal(L7L). The action of

L
Gal(I//L) on L"®!/ translates via K to the permutation action on TIL". Hence the
action on I^L"®!/) translates via the equivalence induced by K to the permutation
action on HK (L"). The forgetful functor K (L"®!/) -> K (L") translates into the functor
HI^I/') ^K(L'Q sending (Pi, .... Pg) to Pi®... ©P^. The natural isomorphism from
the forgetful functor to the forgetful functor composed with g* translates into the
canonical natural isomorphism between Pi®...©P^ and the sum of the Ps after
permuting the order by action of g. By [125], the summation functor Pi®...®P^
and permutation natural isomorphisms determine a system of homotopies
f'(u): IIK^L") xA[n]-^K(L") that is the translation via the homotopy equivalence
induced by K of the system of homotopies f(u). By 5.15, the/'(M)'s determine a

T: H.(Gal(L7L); IIK^)) ^K(L"),

that is the translation of T via K. The /' (u) may be restricted along the homotopy
equivalence v K(L") -^nK^L"). This yields a system of homotopies
^(u): v K^L") xAM-^K^L") and a T": [Hl.(Gal(L7L); v K(L'7)) -^(L'O. T, T,
and T" are compatible under the vertical homotopy equivalences in (2.52). To check
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that (2.52) homotopy commutes, it suffices to show T' is the homotopy inverse to the
indicated Shapiro's Lemma homotopy equivalence. By 2.22, the Shapiro's Lemma
equivalence K(L") ̂  H. (Gal (L7L); v K(L")) is the composite of insertion as the sum-
mand indexed by Ie Gal (L7L), K(U')-> v K(L"), and the canonical map of 5.15
// (0): v K (L") -. [HI. (Gal (L7L); v K (L")). As T' composed with // (0) is the summa-
tion map/'^O): v K(L") -^(L"), and/'^O) composed with insertion is the identity
map K(L") -> K(L"), the composite of T" with the Shapiro's Lemma equivalence is the
identity map. Hence T' is the homotopy inverse, as required. This completes the
verification of (2. 52).

Hence the map T constructed above is a hypertransfer for K( ).

The other K-theory spectra of Appendix A, namely K ( ) (x) Q, K/F ( ), K/r ( ) [p -1],
K( )K are all formed from K( ) by smashing with a spectrum or by taking direct
limits along a canonical directed system as in (A. 9). As (Hl.(Gal(L7L); ) commutes
with both these processes by 5.20 and 5.16, these other K-theory presheaves inherit a
hypertransfer.

LEMMA 2.31 (Projection formula). — The pairing of algebraic K-theory spectra induces
a commutative diagram for U/L a finite Galois extension of fields and A and B algebras
over L

K (B) A H. (Gal (L7L); K (A ® L-)) -̂  H. (Gal (L7L); K (B ® A ® L-))
L L L

(2.60) » A T ^ I ^

K ( B ) A K ( A ) -————————————^ K(B®A)
L

In particular, if A=B is a commutative algebra, T 15 a morphism of module spectra for
the ring spectrum K (A). A diagram like (2.60) commutes for any induced pairing between
any two of the K-theory spectra K( )^, K ( ) (x) Q, K/lv ( ), K/F ( ) [p -1].

Proof. - The top horizontal map of (2.60) is the composite of the isomorphism (5.9)
and the map of hyperhomology spectra induced by the pairing

K(B) A K(A®L') -> K^B^AOL').

The usual projection formula (A. 2) and various forms of naturality give the commutati-
vity of (2.60). If A=B is commutative, multiplication is a ring map and so induces a
map of spectra K(A(x)A) -> K(A). Adjoining the obvious commutative square induced
by this to the right of (2.60) shows T is a module map. The last statment follows in
the usual way.

PROPOSITION 2.32 (Tate). - Let U ' / L be an infinite Galois extension of fields whose
profinite Galois group has cohomological dimension one for l-torsion sheaves. Let U/L be
a finite Galois subextension. There is a spectral sequence of homological type

(2.61) ^,=H^G^(U/L);Hl-^L-/U;Z/lv(\)) ^ H -̂̂ /L; Z/r(l)).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



484 R. W. THOMASON

E^ q=0 if q^O, 1. The spectral sequence converges strongly with E3=EOO. There is
a long exact sequence

(2.62) H^ (Gal (L'/L); H1 (I/'/I/; Z/F (1)))

4Ho(Gal(L7L); H^L^/L-; Z/F(1)))
^ H°(I/7L; Z/r(l)) ̂  Hi (Gal(LVL); H1 (L7L'; Z/r(l))) ̂  0.

Proof. — The spectral sequence is given by Theorem 1 of Tate's appendix to
[102]. Alternatively, it can be deduced from 2.24 in the form (2.59). Let ^v be the
functor which sends a ring to the group of F-th roots of unity. Let F be the presheaf
of Eilenberg-MacLane spectra

(2.63) F(R)=K(^v(R), 1).

Assume I is not 0 in L and that L" contains all F-th roots of unity, so that the assertions
of the proposition make sense. Then n^ F(L") =Z/r(l). The spectral sequence of 1. 36
interpreted as in 1. 50 collapses as 7ipF=0 for p^ 1, to yield

(2.64)
^•(L'VI-/; F^^H^^L'VL'; z/r(i)),
7i,H-(L7L; F^^H^a^/L; Z/r(l)).

When these values are inserted into the spectral sequence for hyperhomology 5.17 or
(2.36), and the abutment interpreted by (2.59), the desired spectral sequence (2.61)
results. The cohomological dimension one hypothesis is inherited by U'/U and yields
E^, q=° for ^^0» 1 and the collapsing E^E00. The long exact sequence (2.62) results
from the collapsing spectral sequence via (2.65)

0 ̂  E?, i -̂  H°(L7L; Z/r(l)) ̂  E?, o ̂  0

(2.65) E^ E ^ , o

I I
coker d^

One could also get the spectral sequence by considering F=K(^v, 2), and relabeling
the various homotopy groups to account for the degree shift.

COROLLARY 2. 33. — Under the hypotheses of 2. 32, there are isomorphisms

(2.66) Ho(Gal(L7L); H^L-'/L-; Z/rO^H^L'yL; Z/F(1)),
(2.67) d,: H^,(G^(U/L);Hl(L-/L/;Z/lv(\)))

^ H^(Gal(L7L); H^L'VL'; Z/F(1))), p^L
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Proof. — These result from the collapse of the spectral sequence (2.61) at E3==E(X),
andE^,=Ofor /?+^^0, 1; q^O, 1.

DEFINITION 2.34. — Let F be a presheaf of fibrant spectra on the etale site of a
field. Suppose F has a hypertransfer as in 2.25. Let L'7L be a possibly infinite Galois
extension of fields in the domain of F. A family of inductors for xeji^F(L) is a family
of elements
(2.68) Ind (x, L,/L) e ̂  H. (Gal (L,/L); F (LJ);

for every finite Galois subextension LJL of L^/L. If

T (L,/L) : H. (Gal (L,/L); F (LJ) -^ F (L)

is the hypertransfer, one requires that

(2.69) T (L,/L) (Ind (x, L^/L)) = x.

If LJL is a Galois subextension of the finite Galois subextension Lp/L of L'7L, one
requires that in the instance of (2. 57) that

(2.70) H. (Gal(LJL); T(Lp/LJ) (Ind(x, Lp/L)) = Ind (x, L,/L).

2. 35. Note that condition (2.70) and (2. 57) show that it suffices to define Ind(x, Lp/L)
for a system of Lp cofinal in the direct system of finite Galois subextensions
of L'yL. For then (2.70) uniquely determines Ind(x, LJ for all Ly This is indepen-
dent of the choice of Lp by (2. 70) in the cofinal system of Lp. Condition (2.69) is met
for L, by (2.69) for Lp and (2.70) with (2. 57).

LEMMA 2.36. — Let L be a field of etale cohomological dimension one for l-torsion
sheaves. Suppose I is not the characteristic o/L, and that L contains primitive Fth roots
of 1. Let L" be the separable closure ofL. Then there is a family of inductors in the
sense of 2. 34 for the Bott element peK/^(L) of Appendix A.

Proof. — Let L^ run over the direct system of finite Galois extensions of L. Then
each LQ( has cohomological dimension 1 for f-torsion sheaves. As L,^L contains a
primitive lv-th root of 1, there is an isomorphism

(2.71) H^L'VL,; z/r(i))=H,°(L,; z/r(i))=^v(Lj^z/r(i).
Hilbert's Theorem 90 and the Kummer sequence yield Kummer's isomorphism

(2. 72) H,\ (L,; Z/F (1)) = L?®Z/r ̂  K/l\ (LJ.

Consider for now only those L, whose degree over L is divisible by /v. Then the
image of the restriction of the norm map

Norm: ^v(LJ-^v(L),

is 0, as the norm of any element of |^v(LJ is its [L,:L] power, and so 1. In Tate's
spectral sequence (2.62), the image of Ho(Gal(L^/L); H°(L^ Z/FQ)) in H°(L; Z/F(1))
is the image of the norm or transfer map from H°(L^ Z//^!)), and so is 0. Thus for
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our L,, in (2.62) d^ is surjective, and there is an isomorphism resulting from (2.62)
interpreted via (2.72) and (2.71)

H^(L; Z/r(l))=Hi(Gal(L,/L); K/^(LJ)
(2.73)

ML)

Let the generator p or e2^ of the left side of (2.73) correspond to an element P(a)
in the right side. Consider now the spectral sequence (2.36) for
n*H.(Gal(L,/L);K/r(L,)). The class P( a) in E^=Hi(Gal(L,/L); K/l\ (LJ) is a
permanent cycle for dimension reasons, and defines an element of
7i2 H.(Gal(L,/L); K/F(LJ) unique up to indeterminacy from the bottom filtration Eg^.

The group E^ is a quotient of E^ = Ho (Gal (L,/L); K/^ (LJ). I claim this indetermi-
nacy E^2 is zero. As L^ has /-torsion cohomological dimension at most 1, one has

(2 •74) 0 = H^ (L,; Z/F (1)) = F-torsion subgroup of Br (LJ.

By a theorem of Tate, [121], 4.4, 4.5, or by the theorem of Merkurjev and Suslin ([81],
[115], Thm. 1), this implies that

(2-75) K^LJ^Z/^O.

Thus the universal coefficient sequence (A. 6) yields

(2.76) K/^ (LJ = F-torsion subgroup of Ki (LJ = ̂ v (LJ = Z/F (1).

Now using (2.80) below to compare the spectral sequence (2.36) for
7i* H. (Gal (L,/L); K/F (L,)) with the Tate spectral sequence of 2. 32, one gets the commuta-
tive diagram

H2(Gal(L,/L); K/^(LJ)=H2(Gal(L./L); H^L.; Z/F(1)))

(/2 I | d2

(2 • 77) Ho (Gal (L,/L); K/r, (LJ) = Ho (Gal (L,/L); H° (L,; Z/F (1)))

Ho(Gal(L./L); ^v)

The horizontal isomorphisms are induced by (2.72) and (2. 76). The right d^ was shown
to be surjective, and (2.77) shows the left ̂  must be surjective. Thus E^=E^=0,
and the indeterminacy vanishes as claimed.

Thus P(a)(=E^ determines a unique element of ^ IHl.(Gal(L,/L); K/r(LJ). These
elements are the members Ind(P, L,/L) of inductors of the Bott element. To verify this,
the conditions (2.69) and (2.70) must be checked.
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Under the isomorphism (2.72), the elements P(a) are a family of elements in
Hi(Gal(L,/L); H^L,; Z/r(l))) which modulo vanishing indeterminany E(^=O
determine elements of n^ H.(Gal(L,/L); uT(L,; K(Z/F(1), 2))). Under the weak homo-
topy equivalence of Tate 2.24, interpreted as a hypertransfer up to homotopy as in 2.27:

(2.78) T: H.(Gal(L,/L); H-(L,; K(Z/r(l), 2)))^H-(L; K(Z/r(l), 2)),

these elements P(a) correspond to the generator p of
H^ (L; Z/r (1)) = 7^2 H' (L; K (Z/F (1), 2)). Indeed, they were defined by this condition in
(2.73). Thus this second family of P(a) satisfies (2.69) to be a family of inductors of P
with respect to the "hypertransfers" (2.78). As these "hypertransfers" are weak homo-
topy equivalences, (2.69) and compatibility (2.57) imply that the family of P(a) also
satisfy (2.70).

The first family of elements Ind(P, L,/L) corresponds to the second family of
elements P(a) under the zigzag of maps induced by applying H.(Gal(L,/L); ) to the
zigzag (2.79)

(2.79) K/F (LJ ̂  H- (L,; K/F (L")) ̂  H- (L,; K/F (L-) > 1 <)
I

H•(L, ; (K/ r (L / / )> l<)<2»
/I

H-(L,;K(Z/r(l),2))

Here the first map T| is the natural augmentation. The next two maps of (2.79) are
canonical maps of the Postnikov stages as in 5.51 and 5.53. By 5.52,
(K/r^I/') > 1 <) < 2 > is naturally weak homotopy equivalent to an Eilenberg-MacLane
spectrum K(K/W\ 2), which is K(Z/r(l), 2) by (2. 76). This yields the last equiva-
lence of (2.79). One notes that (2.79) induces the isomorphism (2.72) on n^ and
the composite of isomorphisms (2.76) and (2.71) on n^. It follows that the families
Ind(P, LJL) and P(a) correspond on the induced zigzag of group
hypercohomologies. If Lp/L is a finite Galois extension with L" ̂  Lp ̂  L^, (2.79) induces
the horizontal maps of a zigzag (2. 80)

H.(Gal(Lp/L); K/r(Lp)) -̂ @ ^—— @^ H.(Gal(Lp/L); H'(Lp; K(Z/r(l), 2)))

^ H (Gal(L«/L);T) ^ ^ J H (Gal(L./L);T)

V V

H.(Gal(L./L); K/r(LJ) -^@-—— @^ H.(Gal(L./L); H'(L.; K(Z/r(l), 2)))

F ^ \ \ ^
K/F(L) ———n——^^)^——@ ————^ H'(L; K(Z/F(1), 2))

The commutativity of the first column of (2.80) results from (2.58). The other
columns commute by naturality of the homotopy transfers (2.59) with respect to maps
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of the coefficient systems F. As the maps in (2.79^ induce isomorphisms on n^ and n^
by the above calculations, the horizontal maps of (2.80) induce isomorphisms on the
EJ,i, E^i, E^ terms of the homological induction spectral sequences (2.36). Except
for the right-to-left arrow, the maps in (2.79) also induce isomorphisms on KQ. Hence
the left-to-right arrows in (2. 80) induce isomorphisms on Ejo. The d^ differential is
the only one affecting the terms in this corner of the spectral sequence. Applying d2 to
these isomorphisms, one sees that the left-to-right arrows in (2.80) induce isomorphisms
on E^=E^i and on E^^E^. Hence the left-to-right arrows induce isomorphisms
on the bottom two layers of the induction spectral sequence filtration of 713 where the
family P(a) lives. Transporting the P(a) from the right to the left of (2.80) along the
inverses of the left-to-right isomorphisms and along the right-to-left arrow in the middle
column yields corresponding families in all columns of (2.80). The Ind(P, L,/L) form
the corresponding family in the left column. After (2. 78), it was proved that the P(a)'s
satisfied the equations (2.69) and (2.70) in the right column. Hence their homomorphic
images, the Ind(P, L,/L) in the left column, also satisfy equations (2.69)
and (2.70). Thus the Ind(P, L,/L) form the required family of inductors of p.

Strictly speaking, (2.80) must be replaced by a homotppy equivalent diagram that
reforms the abuses of 2.27 and 2.28. This is left as an easy exercice for the conscientious
reader.

The above argument proves that there is a family of inductors Ind(P, LJL) for those
L,, whose degree over L, [L,: L], is divisible by F. By 2. 35, this family extends uniquely
to a family of inductors of P for all L,. To apply 2. 35, one must verify that each finite
Galois extension of L is contained in an L^ with [L,: L] divisible by F. It suffices to
show that any finite separable field extension of L is contained in a finite separable
extension I/ of L with Horn (Gal (L'VI/); ^/l)=Hl(U; Z/Q^O. For then Galois theory
yields a degree I extension of L'. Its splitting field is a finite Galois extension of L of
degree divisible by I, and which contains L'. Iterating this procedure v times yields
an L^ with the required properties. Thus it suffices to show every finite separable
extension L^ of L is contained in a finite separable extension L'/L with
H^I/; Z/0^0. But if this failed, passage to the limit would show H^L'; Z/0=0 for
any separable extension U of L^, in particular for the fixed field of an (-Sylow subgroup
of Gal(L7Li). Then [102], I, § 4, Prop. 21 and I, § 3, Prop. 14, or [104], III, Prop. 14,
19, and Thm. 12 would show that L^ and even L have (-torsion cohomological
dimension 0, contradicting the hypothesis that L has (-cohomological dimension 1. Thus
there is an U with H1 (L'; Z/Q^O, and so the required L, exists.

2.37. The key points in the above argument are the Kummer isomorphism (2.72)
which comes from Hilbert's Theorem 90, and Tate's spectral sequence. Tate shows P is
inducted by H^(L^; Z/r(l)), and Kummer identifies this etale cohomology group to
K/^ (LJ. One realizes Tate's spectral sequence as a weak equivalence of hyperhomology
and hypercohomology constructions, which can be compared to a hypertransfer on all
of K-theory. Using the Kummer isomorphism and the low cohomological dimension
of L,, one sees that the lower K-groups are the same as the etale cohomology groups in
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Tate's spectral sequence, and the higher K-groups can't interfere to prevent the induction
of P in K-theory.

To handle induction of P over L a number field is necessary to prove the descent
theorem in arithmetically interesting situations. However, the higher cohomological
dimension mangles the identification of lower K-groups with etale cohomology. For
example, the F-torsion subgroup ofBr(L), H^(L; Z/r(l)), should be in K/^(L), but
instead arrives late as H^(L; Z/F(2)) in K/f; (L). The spectral sequences also get wilder
because of the increased cohomological dimension, and the mysterious higher K-groups
get new opportunites to interfere. A technical Lemma 2. 38 and many auxiliary spectra
with various bad homotopy groups zeroed out are needed to handle this case in 2. 39. A
reader interested only in schemes over algebraically closed fields might prefer to skip
ahead to 2.40.

LEMMA 2. 38. — Let G be a group acting on a fibrant spectrum F. Then the natural
map of Postnikov stages of 5. 51 and 5. 53 induces a weak homotopy equivalence/or any n

(2.81) H . ( G ; F > n < ) > n < ^ H . ( G ; F > n < ) .

Consequently, if¥ is a presheaf and admits a hypertransfer as in 2.25 or hypertransfer
up-to-homotopy as in2.2S, then¥)n( also admits a hypertransfer up-to-homotopy as
in (2. 82), which is compatible with the original in that (2. 82) commutes.

H. (Gal (L'/L); F (A ® L') > n <)
L "^-^

t'
H. (Gal (1//L); F(A <g) I/) > n <) > n < \

(2.S2) ^ L ^

H. (Gal (L'/L); F (A ® L')) > n < —^——^ F (A) > n <
L

H.(Gal(L7L);F(A®L')) ————T————^ F(A)
L

Here the vertical arrows are natural Postnikov maps and the dotted hypertransfer is only
defined up to homotopy.

Similarly, for any fibrant spectrum on which G acts, the natural map is a weak homotopy
equivalence (2. 83)

(2.83) H.(G;F)<n>^H.(G;F<n»<n>.

// F is a presheaf with hypertransfer up-to-homotopy, there is an induced hypertransfer
up-to-homotopy (2. 84)
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IHl.(Gal(L7L); F(A®L'))
L

^ F(A)

(2.84)

H. (Gal (L'/L); F (A ® LQ) < n >

^'\
H. (Gal (L'/L); F (A (g) L') < n » < n > / /

L /
/

/
/

F(A)<n>

^(GaHLVL^AOL'Xn))
L

/

Proof. — As 7 ^ F > n < = 0 for <?^n, the spectral sequence (2.36) reveals that
7t,H.(G; F > n < ) = 0 forq^n. Thus n^ IH].(G; F > n < ) < n > = 0 . But by 5.53, this
H.(G; F > n < ) < n > is the stable cofibre of (2.81), so (2.81) must be a weak homotopy
equivalence. Then (2.82) follows by naturality.

By 5. 53 and the fact 5.19 that IH.(G; ) preserves homotopy fibre sequences, one sees
that H. (G; F > n <) is the homotopy fibre of (2. 85)

(2.85) H.(G; F)-^H.(G; F<n».

Thus the above vanishing result shows (2.85) induces an isomorphism on Kq for q^n,
and then that (2. 83) induces an isomorphism on all Uq.

LEMMA 2.39. — Let L be a field of characteristic not I, and which contains primitive
P-th roots o/l. Suppose that v^2 if'1=2. Let L" be the cyclotomic extension ofL
obtained by adjoining all l-po\ver roots of\: L"=L(^oo). Suppose that L" has etale
cohomological dimension at most 1 for l-torsion sheaves. Then the extension I/'/L has a
family of inductors of the Bott element peK/^(L).

Proof. — The cases not trivial or covered by 2.36 are those where L" and L have
l-torsion etale cohomological dimension exactly 1 and 2 respectively, and where
Gal(L7L)=Z/\ Let LJL be the Galois subextension of degree F. Let L'" be the
separable closure of L.

Let p: H00 S2 -> K/r(L) be the map from the sphere spectrum shifted up two degrees
that represents the Bott element. Smashing this with the mod /v Moore spectrum S°°/r,
using the pairing S^/r A K/r(L)-^K/r(L), and composing with K/r(L) ^K/J^L'),
one produces a natural map for any U over L:

(2.86) p: s^/r s2 -> K/r (L) -> K/r (LQ.
One has as low degree stable homotopy groups the values

(2.87) TifS^/rS^O, f<2,
Ti^/rs^z/r.
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The choice of a primitive F-th root of 1 in defining P fixes an isomorphism

p: z/r^z/r(i).
Consider the diagram (2. 88):

1 (̂1/74; z/rs2). "i
s^/r s2 <- z^/r s2 > o < - H' (1/74; z°°/r s2) > o <

/4 ( (

(2 88) ^^"^^(^^^'(^^K/rO/Q)^

\
H'(U'/L^K/r'(L")(2y))0(

\
H'a/'yL^K/^L"^))^

II/

H:.(L,;K/r<2»>0<

As L"/LB has profinite Galois group of cohomological dimension 1, (2.87) and the
spectral sequences of 1.50 yield

^g9) n^H'(L"/L„^/lvS2)=0, Kl,
nlH•(L"/L^I.CO/lvS2)=Hl(L"/L„Z/lv).

Thus the natural map H" (L"/L,; Z^/F S2) > 0 < -> IHT (L"/L^, ̂ 11* S2) is a weak homo-
topy equivalence as indicated in (2.88).

By Tate's Theorem interpreted as in 2.28, there is a weak homotopy equivalence

(2.90) T: H. (Gal (L,/L); H' (L"/L,; E°°/r S2)) ̂  H' (L'VL; £°°/r S2).

The canonical element P in ^N'(1/71.; S^/rs2) thus has a family of inductors in the
extension I/'/L. This family yields a family of inductors of P in all the functors on the
right hand side of (2.88) by naturality of the homotopy hypertransfer of 2.28 and
Lemma 2.38 which allows chopping down to > 0 <• Considering the hyperhomology
spectral sequence (2.36) in light of (2.89), one sees that the inductors of p must
lie in the bottom two layers E(^ and E^i of filtration of
it2H.(Gal(L,/L); H'(L"/L,; 2°°/rS2)). By naturality of the spectral sequence (2.36),
the same is true for every functor on the right side of (2.88).
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As I/" is separably closed, I/^OZ/F^O, so K/^ (I/^O. As in (2.76),
K/^ (I/") = Z/F (1). These values and the spectral sequences of 1. 50 yield

i ^.H•(L//7L„; K/rtI/'^)) >()<=(); f90 2,
(2.91) ) ^H•(L//7L„; K/rO/'^^O^H^L,.; Z/r(l)),

^^'(^74; K/ro/'^^o^H^L,; z^i^z/ro).
The map (2.92) induced by (2. 88) and (2.91)

K/l\ (4) ̂  K/F (4) > 0 < ̂ n, H- (L'74; K/F (L-) < 2 » > 0 <
(2.92) ? 1 1

He\(4; z/r(i))
is the isomorphism of Hilbert's Theorem 90. Thus comparing the spectral
sequences (2. 36) for

H. (Gal (L,/L); K/r (4) > 0 <) and H. (Gal (L,/L); H:, (4; K/F < 2 » > 0 <),

one sees that the E^ i terms are the same. As for s^O,
Ej+5 _ 5=0 in both spectral sequences because )0< cuts off 71̂  for n^O, no non-zero
differentials can enter or leave E^ i.

Thus the E^ i=E^\ terms are isomorphic for the two spectral sequences. For n^v
an argument similar to that establishing (2.73) shows E^=0 in the spectral sequence
for HI. (Gal (4/L); H^ (4; K/F < 2 » > 0 <). Thus the map from

7i2H.(Gal(4/L); K/r(L^)>0<)t07i2H.(Gal(LJL); H^(L,; K / r < 2 » > 0 < )
is surjective on the bottom two layers of the filtration where the family of inductors of P
lives. Thus these elements may be lifted to ^ lH.(Gal(L^/L); K/r(IJ>0<) with the
lifting uniquely defined module indeterminacy E^. For the cofinal system of L^
with n^v, the indeterminacy is in fact all of E(^. By 2.35, one need only consider
these cofinal values of n.

It remains to be shown that one can choose the liftings so that (2.69) and (2.70)
hold, so that the lifted elements form a family of inductors of P. As they are lifted
from a family of inductors of P, the elements satisfy (2.70) modulo indeterminacy E^
and satisfy (2.69) modulo the kernal of
(2.93) 7i, K/F (L) > 0 < ̂  7i, H' (I/7L; K/F (L-) < 2 » > 0 <.

The calculation (2.91) identifies (2.93) to the right map of the short exact universal
coefficient sequence (2.94) for L=L()=L,,
(2.94) o ̂  K^ (U(g)Z/r ̂  K/r^ (4) ̂  z/r (i) ̂  o.
Thus (2.69) holds modulo K^L^Z/F^K^Lo^Z/r.

For n^v, an argument similar to that establishing (2.73) and (2.77) shows that the
Ho(Gal(4/L); Z/r(l)) quotient of the E^ term Ho(Gal(4/L); K/l^(L^)) is hit by
the d^ differential modulo the image of Ho(Gal(L^/L); K^L^Z/D. Thus the inde-
terminacy Eo°2 is a quotient of K^L^OZ/F via the surjection

K2(4)®Z/r ̂  Ho(Gal(4/L); K^L^^Z/F).
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Thus it will follow that the liftings can be chosen so that (2. 69) and (2.70) hold provided
the hypertransfers induce surjections on indeterminacy, which in turn follows if for all
m^n^O, the transfer map (2.95) is a surjection

(2.95) T: K2(LJ®Z/r^K2(4)(x)Z/r.

The Theorem of Merkurjev and Suslin ([81], [115]) identifies (2.95) to the transfer on
etale cohomology (2.96)

(2.96) T: H,2, (L,; Z/r (2)) - H,2, (4; Z/F (2)),

(For the most important cases where L is finite over Q or Q^, one may also consult the
paper of Tate [121].) As L^ and L^ have /-torsion etale cohomological dimension 2,
this map is the transfer in the top dimension, and so is surjective by [102], I, §3.3,
Lemma 4. Thus the hypertransfer induces a surjection on indeterminacies, and by
induction on n one may choose liftings of the family of inductors to
7i2[Hl.(Gal(LJL); K/r(4)>0<) so that (2.69) and (2.70) are satisfied. The liftings
form a family of inductors of P. The image of this family in
7C2 lH.(Gal(L^/L); K/F(L^)) is the family of inductors of P claimed by the statement of
this Lemma. This completes the proof.

PROPOSITION 2.40. — Let L be a field of characteristic not I. Let U ' / L be an infinite
Galois extension. Suppose L contains a subfield M which contains primitive lv-th roots
of\. Suppose U'^LM" for a Galois extension IVT'/M, and that M / / ^L=M, so that
Gal(L'7L) is isomorphic to GaUNT'/M) via restriction. Suppose that either M has l-
torsion etale cohomological dimension 1 and M" is the separable closure of M, or else that
M'^Md^oo) is the cyclotomic extension ofM and that M" has l-torsion etale cohomologi-
cal dimension at most one. If 1=2, suppose v^2.

Let A be an algebra over L, and xeK/^(A). Then there is a family of inductors for
P U xeK/^+2 (A) in the extension U ' / L .

Proof. - By 2.37 or 2.39, peK/^(M) has a family of inductors in the
extension M7M. As Gsi\(M///M)=G!i\(U//L), Galois theory shows that fields L,
between L" and L are induced by fields M, between M" and M. Then by naturality of
the hypertransfer, the inductors Ind(P, MJM) map to a family of inductors Ind(P, LJL)
for P in the extension U ' / L .

The projection formula 2.31 shows that xUInd(P, L,/L) is a family of inductors
for x in L^/L.

2.41. We shall see later that for the most interesting fields L, the extension of L to its
separable closure may be filtered by subextensions with each step of the type 2.40.

Thus 2.40 yields surjectivity of the hypertransfer after inverting P for enough finite
field extensions to allow one to deduce surjectivity of the hypertransfer after inverting P
for a fairly general finite Galois extension. One should be able to dualize in some sense
to get injectivity after inverting P for the augmentation from K/F (L) into hypercohomo-
logy (HT(Gal(L7L); K/r(L')). In fact, this works much better than one first suspects.
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PROPOSITION 2.42. — Let L be afield of characteristic not I, and which contains primitive
f-th roots of\. Let v=2 if 1=2. Let I/'/L be an infinite Galois extension induced
by M'VM as in 2.40. Then for any L-algebra A there is a homotopy commutative diagram
offibrant spectra

^K/f^A) ————n———». ^H^I/VL; K/r(A®L"))

(2.97) u p f ^^A) f u p

K/r(A)——————————^ H'(L7L; K/r(A®L"))
^ L

If 1=2 or 3, P may be replaced by any of the x ' s of A. 11 provided ft2 fs replaced by an
appropriate O", xeK/^(L).

77î  diagram (2.97) may ^i^n te considered as a homotopy commutative diagram in the
homotopy category of strict functors from the category of L-algebras to that offibrant
spectra. That is, the maps in the diagram (2.97) and the homotopies that make it
homotopy commute may be chosen to be strictly natural in the algebra A.

Proof. — First one does the case where K/r has a natural associative ring structure, so
assume that either ?>3, or that lv is divisible by 9, or that lv is divisible by 16. (Consult
Appendix A.)

Let L, run over the directed system of finite Galois extensions of L contained
in L". Then by 1.17 and 1.18 with F { n } = F < n > , interpreted as in 1.50, there is a
weak equivalence (2.98)

(2.98) H' (I/7L; K/F (A (g) L")) ̂  holim lim H' (L,/L; K/F (A ® L") < n ».
L <- ———> Ln a.

There is a dualizing map (2.99) into the mapping spectrum of 5.34

(2.99) K/F (A ® LJ -. Map* (K/F (L,), K/F (A)) (Gillet duality).
L

Under the adjunction (5.25), the map (2.99) corresponds to the map (2.100).

(2.100) K/r (A ® LJ A K/r (LJ ̂  K/r (A ® L,) ̂  K/r (A).
L L

Here X* is the transfer map. If A is a commutative ring, K/F(A) is a homotopy
associative ring spectrum, and (2.99) and (2.100) are K/^(A) module maps by associati-
vity and the projection formula of A. 3 for X*. For general A, (2.100) and (2.99)
respect the pairing with K/F(B) into K/r(A(g)B) in the obvious sense. The maps (2.100)
and (2.99) are strictly natural in A. They fail to be Gal (L,/L)-equi variant only because
the transfer map X,* is not strictly equivariant. As the construction of the hypertransfer T
in 2. 30 shows that the transfer ^* =/(0) is equivariant up to a coherent system of higher
homotopies, the maps (2.99) and (2.100) are Gal (L,/L)-equivariant up to a coherent
system of higher homotopies. The reader who wishes an explanation of this concept
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may consult [132]. The usual rectification techniques allow one to replace (2.100)
naturally by a weak equivalent diagram of strictly equivariant maps.

As K/r(L,) is a connective spectrum, (2.100) and (2.99) induce maps of Postnikov
stages

(2.101) K/r (A 0 LJ < n > A K/F (LJ ̂  K/F (A) < n >,
L

(2.102) K/F (A (g) IJ < n > -^ Map* (K/F (LJ, K/F (A) < n >).
L

Justification is provided by an argument like 2.38, with the Atiyah-Hirzebruch spectral
sequence for spectra of [I], HI, § 7, replacing the spectral sequence (2.36).

The map (2.102) is Gal (L,/L)-equi variant up to coherent homotopy, and so induces
a map on homotopy limits

(2.103) lim lim H' (L,/L; K/F (A ® LJ < n »
n a

^ Urn lim H' (LJL; Map (K/F (LJ, K/J" (A) < n »).
n a

There is a "universal coefficient" weak homotopy equivalence given by 5.35

(2.104) Imi Um^ H- (L,/L; Map* (K/F (LJ, K/F (A) < n »
n o ^|

lim lim Map*(H.(Gal(L,/L); K/r(LJ), K/r(A)<n».
n a

The inductors of P give a homotopy compatible family of maps

(2.105) Ind(P, L,/L): £00 S2 ̂  H. (Gal(L,/L); K/r(L^).

These maps are strictly natural in A, since they have nothing to do with A.
Evaluation on Ind(P, L,/L) induces a natural map

Imi hn^Map*(H.(Gal(L,/L); K/r(LJ), K/r (A)<n»
n a

(2.106) t
lim Map* (5:00 S2; K/r(A) < n »^limft2 K/F(A) < n > c^n2 K/F(A)

n n

The composition of (2.98), (2.103), (2.104), and (2.106) is the required map
(p(I/7L; A) of (2.97). The map (p(L7L; A) is strictly natural in A. If A is commuta-
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tive, it is a map of K/F (A) modules up to homotopy. If A is not commutative, the
diagram (2.107) homotopy commutes.

H'(L7L; K/r(A®L")) A K/F(B) —^ H'(I/7L; K/F(B ®A ® I/'))
L L L

(2-107) ^(A).I ^ ^B.A)

Q2 K/J^A) A K/F(B) ——^ Q2 K/r(B (x) A)
L

The next step is to check that the left triangle of (2.97) commutes. As (p. T| is natural
in A, and is a map of K/r(A)-modules or at least respects the pairing as in (2.107), the
map (p.r| sends a = a U l to (p.r|(a)=a U (p.'n(l). Thus (p.r| is cup product with
(p. T| (1). I claim that cp. T| (1) is the Bott element P. By naturality, it suffices to do this
for A=L. By (2.100) the element 1 in K/^(L) goes to the transfer map ̂  in
7ioMap*(K/r(LJ, K/r(L)) under the composition of the map X* : K/r(L) ->K/r(LJ
followed by the duality map K/F (LJ -> Map* (K/F (IJ, K/F (L)) of (2.99). I generalize
this, taking Galois equivariance up to coherent homotopy into account. The map ?i*
and its homotopies induce the augmentation T| : K/F(L) -> H'(LJL; K/F(LJ).

Composing this T| with 1HT(L,/L; ) of the duality map (2.99) and following this with
the universal coefficient equivalence (2.104) yields a map

K/r(L)^Map*(H.(Gal(L,/L); K/F(L,)); K/F(L)).

Just as 1 goes to the transfer ^ above, here 1 goes to the map
H. (Gal(L^L); K/F(LJ) -> K/r(L) induced by ̂  and its coherent system of equivariance
homotopies, that is, to the hypertransfer T. (This may be verified in detail by chasing
the universal mapping properties of homotopy limits and colimits like H'(Gal(L,/L); )
and [H].(Gal(L^/L); ) as given in [16], XI, 3.4 and 5.15, or by using the techniques of
[125] and [128] to build categorical models and analogs for the above constructions and
applying the calculus of 2-categories to produce the system of homotopies.) As r|(l)
goes to the hypertransfer T, (2.98)-(2.106) shows that cpr|(l) is the result of evaluating
the hypertransfer T on the inductors of P (2.105). By definition, this result is P=(pr| (1),
as claimed. Thus cpr| is cup product with P as required.

To check that the right triangle of (2.97) commutes, let A, be the cosimplicial algebra

(2.108) A,=A ® L,=^ A ® L, ® L,^A ® L, ® L, ® L,^...
L L L L L L —^

For A=L, Spec of (2.108) is the simplicial Cech complex of the etale cover
^a= { Spec(LJ -> Spec(L) }. Thus by 1. 50, there is a weak homotopy equivalence

(2.109) holim lim F(A,)^holim lim F^^H'(L7L; F(A® )).
A > A ^ a L

a a
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By strict naturality of (p with respect to A, there is a cosimplicial (p(A^). Naturality
and the homotopy commutativity of the left triangle of (2.97) yield a homotopy commuta-
tive diagram (2.110) induced by (p and augmentations

^K/^A) holim lim ^K/^A,)

holim (p

(2.110) UP H^I/VL; K/r(A ® I/')) —^
L

holim lim H^L'VL; K/r(A,))

UP

K/r(A) holim lim K/F(A,)

?1

1H1'(L'7L; K/r(A®L")
L

The two indicated maps are weak homotopy equivalences as hypercohomology has
cohomological descent, i. e., by 1.46 with C the classifying topos of the profinite Galois
group of I/VL and ^ the cofinal system of covers of L by L^. The details are similar to
those of the proof of 1. 54. Note Gal(I/7L) has /-torsion cohomological dimension 1 by
hypothesis.

When one identifies the weak equivalent spectra in (2.110), it collapses to the required
diagram (2.97).

It is clear that P may be replaced in the above argument by any element x in K//*(L)
which has a family of inductors in I/'/L. By 2.40, this is true for any x which is divisible
by P, and in particular for those x of A. 8, which are powers of P.

Finally, if I = 2 or 3, and F is only divisible by 4 or 3 respectively, the non-associativity
of the ring spectrum K/r(L) may prevent cpr| from being a map of K/r(L)
modules. This causes a problem in proving that (p'n is cup product with P. However,
the maps composed to get (p are maps of K(L) modules and respect the pairing with
K(A). This is enough to construct a homotopy commutative diagram (2.111)

(2.111) (pd/VLiA)

H^I/VLiK^A®!/')
L

?-?--
It is easy to verify that (pr| is cup product with (pr| (1)=P. Then (2.111) may be
smashed with the mod F-Moore spectrum Z^/r, and composed with the pairing
2:°°/r A Q2 K/r(A) -> Q2 K/F(A). This yields the left triangle of (2.97). The proof is
then completed as above.
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THEOREM 2.43. — Let L be a field of characteristic not 1. Let L" be the separable
closure ofL. Suppose there is a sequence of sub fields (a Tate-Tsen filtration)

(2.112) L / /==L„3L„_^.. .3L^Lo=L,

such that Li/Lo is the cyclotomic extension ofL with Li==L(ujoo) and for f ^ l , L^.+i/L, is
a Galois extension induced as in 2.40 by M^/M' with M" the separable closure of the field
M" ofl-torsion etale cohomological dimension at most 1.

Let A be a algebra over L. IfI ==2, let V be divisible by 4 and assume L contains a
primitive square root of — 1.

Then the augmentation is a weak homotopy equivalence

^K/^Anp-^H^L; K/r(A® nr1])
(2.113) „

H^L^K/^A®!/')^-1])
L

Proof. — By the 5-Lemma and the Bockstein fibration sequence (A. 10) it suffices to
do the cases v= 1 for / odd and v=2 for I ==2.

Suppose / is odd and L does not contain a primitive /-th root of 1. Let L'=L(nj) so
[L' : L]=l—l. Then the transfer gives a commutative diagram

K/r(A)[P-1] ———n(A) - H'et^K/^A® )[P-1])
L

(2.114) /_, ( K/r(A®I/)[P-1] 11(A0L)^ H:,(L;K/r(A®I/® )[p-1]) } /-y
L L L

\
K/r(A)[P-1] ———————^H;JL;K/r(A® )[P-1])

^(^ L

Shapiro's Lemma 2.20 gives a weak equivalence

(2.115) H^(L; K/r(A(g)L'(x) )[P-1])^H^(L /; K/rCA^L'® )[p-1]).
L L L L'

This equivalence identifies the middle map of (2.114) to T| (A® L'). As multiplication
L

by the mod / unit / — l ^ L ' r L j i s an isomorphism on K/r(A)[P~1], T|(A) is a retract
of r^A^L"). Hence it suffices to show that T|(A®L') is a weak homotopy

L L
equivalence. Thus one may replace L by L', and assume that L contains a primitive
?-th root of 1 if (is odd. For 1=2, L contains a primitive 4-th root of one by hypothesis.

Now for each f==0, 1, . . ., n—1, I claim that the map (2.116) is a weak homotopy
equivalence.
(2.116) r|(L,^/L,®A) : K/4A®L,)[P-1] ̂  H:,(L,^/L,; K/;(A® L,^)[P-1]).et\

L L
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In the case where Gal(L;+i/Lf) has /-torsion etale cohomological dimension 0,
Gal(L,+i/L,) is pro /-torsion free by [102], I, 3.3, Cor. 2 to Lemma 4 or [104], III, § 1,
Prop. 16. Thus L^+i/L, is a direct limit of finite subextensions L'/L, of degree [I/ : LJ
prime to /. Then by a transfer argument as above the natural map of r|(Lf+i/L,®A)
to r|(Lf.n/I/®A) is split by [I/ : LJ'1 times the transfer from I/ to L;. Thus
T| (L,+i/Lf®A) is a retract of T| (L^+i/I/OA), and even of the limit of the T| (L.+i/I/OOA)
as U goes to L^+i . By 1.41 this limit is n^i+i/^+i®^ which is the obvious weak
equivalence :

(2.117) K//(A®L,^)[p- l]=H•(Gal(L,^/L,^)={l};K/;(A(8)L,^)[P- l]).
L L

Thus r|(L,+i/Lfg)A) is a retract of a weak homotopy equivalence, and so is a weak
equivalence.

In the remaining case where Gal(L,+i/Lf) has /-torsion etale cohomological
dimension 1, 2.42 says that (2.116) is a weak homotopy equivalence with homotopy
inverse P~1 . (p(L;+i/L,; A®Lf). Note that H^^i+i/^ ) commutes with direct limits,
e. g., by 1. 39. Thus the direct limit (A. 9) that inverts P may be taken inside or outside
Het(L,^/L,; ).

In both cases of (2.116), K// should be replaced by K/4 if 1=2, and P should be
replaced by that power x of P that lifts to the associative and commutative rings K/16
and K/9 if I =2 or 3 respectively. This is as in Appendix A.

Using (2.116), one proves by descending induction on i, starting from i=n -1, that
(2.118) is a weak homotopy equivalence

(2.118)

r|:K//(A(g)L,)[p-1] -^ H:,(L,;K//(A®L,® )[p-1])
L L,

Zl

H:,(4/L,;K/f(A(2)LJ[p-1])
L

For (2.118) for i and f + 1 fit into a commutative diagram with the weak equivalences
(2.116) and (1.39) or (1.55), where the bottom map is an equivalence by induction
hypothesis

K//(A (g) L,) [P-1] ———————————^ IHet(Lp K/?(A ® LJ [P-1])

,t ^
Het(L^i/L,;K/;(A®L^)[P-1]) -^ H:t(L^i/L,; C(L^i; K/;(A ® 4)[P-1]))

L L

For f=0, (2.118) is (2.113) for v=l (or v= 2 if 1=2). This is the weak equivalence
required above. This completes the proof.

COROLLARY 2.44. - Let L be afield a/characteristic not 1. If 1=2, suppose that L
contains a square root of — 1. Suppose L has finite transcendence degree over a field k,
where either k is separably closed, or has l-torsion etale cohomological dimension at most
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one, or fe=Q, or k=Qp for some prime p possibly equal to I, or fe=Fp, Fp(0, or
Fp((Q). Then for any algebra A over L, the augmentation is a weak homotopy
equivalence (2.113).

Proof. — In all these cases, one may construct a sequence of subfields like (2.112) in
the separable closure L" of L. Let L' denote the algebraic closure of a field L'. If L is
algebraic over k (t^ . . ., t^ with k separably closed, let L^ be the subfield of L" generated
by k(t^ . . ., ti)(ti+^ ....^rW and L,_i in L", for i=l, . . . , n . Then Lo=L,
Ln=L/\ and L.+i/L^ is generated by a separable subextension of
k(t^ . . ., ti)(ti+^)/k(t^ . . ., ^)(A--n), which has /-torsion cohomological dimension 1
by Tsen's Theorem. See [102], II, 4.2 or [104], Thms. 24 and 28 of IV for more details.

If k has etale cohomological dimension 1 for /-torsion sheaves, let L^/LQ be induced
by k (Hf°o)/^, and L^/L^ be induced by k^k (^oo) for k8 the separable closure. Then find
a sequence between L" and L^ as in the above paragraph. This case includes that of
k = Fp. The case k = Fp includes the case k = Fp (Q as L of finite transcendence degree
over ^p (0 also has finite transcendence degree over Fp : this case is idiotic.

The other global field case k = Q is handled by noting that Q (^oo) has /-torsion etale
cohomological dimension one by [102] proof of Lemma 1, II, 4.4. Similarly Q^ Q^oo)
has /-torsion etale cohomological dimension 1 by [102], II, § 5, Lemma 3. For/?^/, the
/-torsion etale cohomological dimension of Qp (^oo) and of Fp ((r)) (^joo) is at most one
greater than that of Fp(^oo) by [102], II, 4. 3, Prop. 12. But an easy elementary argument
shows that Fp(^oo) has no algebraic extensions of degree /, and so has /-torsion etale
cohomological dimension 0. Thus for k=<Q, Q/\ Qp, Fp ((()), fe(|^°o) has
dimension 1. Let L^/LQ be induced by k (|^oo)/fc, and find a sequence between L" and L^
by the preceding paragraph.

THEOREM 2. 45. — Let X be a separated noetherian scheme of finite Krull dimension. Let
/v be a prime power, and suppose I is invertible in X. Suppose there is a uniform bound on
the l-torsion etale cohomological dimension of all residue fields o/X, even at the non-closed
points. Suppose that all residue fields ofX admit a sequence like (2.112), e.g., that they
are of finite transcendence degree over Q, Q^, Qp, Fp, Fp((r)), or over a field k which is
separably closed, or at least has l-torsion cohomological dimension which is at most one. If
/=2, assume that X 15 over Spec(Z [i]), for i the square root of — 1.

Finally suppose that X is regular.
Then the natural augmentation is a weak homotopy equivalence

(2.120) K/r(X) [P-1] ̂  H:,(X; K//^ ,)[P-1]).

There is a strongly convergent spectral sequence

(2.121) Er=I%(X;K/y1]) => K//^(X)[r1].

Proof. - The Theorem results from 2.2, 2.4, 2.7, 2.8, 2.43, and 2.44. Thus one
reduces to the case where X is a local ring by the Brown-Gersten spectral sequence, then
to the case where X is a field by the localisation Theorem. The hyped-up Hilberfs
Theorem 90 of 2.43 proves (2.120) in this case. The trick of A. 13 for 1=2 removes
the hypothesis that v^ 2 in 2.43.
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The spectral sequence (2.121) is deduced from (2.120) via 1. 36.

COROLLARY 2.46. — Let I be a prime, and let X be a separated regular scheme of finite
type over either Z[l~1}, Q, Qp, Q^, Fp((0), or fe, /or ^ a separably closed field of
characteristic not 1. If 1=2, assume that X is a scheme over Z|7~1, i] also. Then (2.120)
is a weak homotopy equivalence and the spectral sequence (2.121) converges. Similarly if
X is the inverse limit of a system of schemes etale over a fixed regular scheme satisfying
the above conditions.

Proof. — Obvious special case of 2.45.

THEOREM 2.47. — Let X satisfy all the hypotheses of 2.45, except that X may not be
regular. Then the augmentation which is a natural transformation of functors contravariant
for flat morphisms of schemes, is a weak homotopy equivalence

(2.122) G/^Xnp-^H^G/^ )[P-1]).

There is a strongly convergence spectral sequence, natural with respect to flat maps.

(2.123) Er=H^(X;G/^[P-1]) ^ G/^-p(X)[P-1].

In particular, any X as in 2.46, except possibly not regular, has a weak equivalence
(2.122) and a spectral sequence (1. 123).

Proof. — The proof is as in 2.45, using also 2.10 and 2.11 to pass to the case X is a
field from the case where X is an Artin local ring.

THEOREM 2.48. — Let X be as in 2.47. Let ^ be a filtering system of etale covers ̂
ofX. Then the natural augmentation is a weak equivalence

(2.124) G/rWtP-^Fn^G/^ )[P-1]),

and there is spectral sequence, "which converges strongly if^/ has finite Cech cohomological
dimension

(2.125) E^=fP(^;G/^[P-1]) => G/^(X)[P-1].

If in addition, X is regular, G/F may be replaced by K/F.
Proof. - This results from 2.45, 2.47, and 1.46 or 1.48.

2.49. The rational Theorem 2.15 and the (-adic Theorems 2.45 and 2.47 yield an
integral Theorem for the K( )^ of A. 14.

THEOREM 2. 50. — Let X be a noetherian separated scheme of finite Krull dimension. Let
J be a set of primes. Suppose there is a uniform bound on the l-torsion etale cohomological
dimension for all residue fields ofX and all primes I in J. Suppose the other conditions of
2.45 are met for all I in J.

Then for X regular, the augmentation is a weak homotopy equivalence

(2.126) K(X)K®Z(J) ̂  H^(X; K( )K®Z^).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



502 R. W. THOMASON

For X possibly singular, a similar statement is true for G-theory.
Proof. — By the arithmetic homotopy fibre square for spectra of [12], 2.9 and the

5-Lemma, it suffices to prove that (2.126) induces equivalences on the Q-localization
and the /?-adic completion for all primes p.

The hypotheses on cohomological dimension and the arguments of [SGA4], X show
that X has finite cohomological dimension for J.^ modules. Then by 1. 39 or 1.40, the
direct limit process that inverts all integers commutes with H'et(^» )• 011 tne other
hand, K( )K®Q =K( )OOQ by A. 14. Thus the Q-localization of (2.126) is identified
to the weak equivalence (2.28).

The /?-adic completion of (2.126) is the homotopy inverse limit over v of (2.126)
smashed with a modp^ Moore spectrum. For p not in J, both sides of (2.126) are
uniquely /^-divisible, and so smashing mod/^ produces 0. For l=p in J, the J.^ localiza-
tion is irrelevant modF, and the modF smash of (2.126) is identified with the weak
equivalence (2.120), using A. 14.

Thus (2.126) is a weak homotopy equivalence as required.

3. The etale sheaf of coefficients £/ftjc [P ~1]

THEOREM 3.1. — Let X be a regular noetherian scheme in which I is invertible, and
which satisfies the other hypotheses of 2.45. Then the sheaf of localized algebraic
K-groups in the etale topos ofX is given by (3.1) and (3.2)

w'lT ^,2"
(3.2) K/^P-^WP, P-1], degp=2.

See remark 3. 34.
The proof of 3.1 occupies the entire section. The basic idea is to reglobalize it to an

assertion about K() of algebraic simplicial complexes over a strict local hensel ring, and
then to prove this assertion by the splitting principle for algebraic vector bundles.

3.2. The element P1 defines a map Z/l^i) -^IC/^[P~1]. To prove 3.1 it suffices to
show this map is an isomorphism and that the sheaf I^/^i+itP"1] is 0. It suffices to
check this at stalks by 1. 30. By 1.29, it suffices to prove 3.3.

THEOREM 3.3. — Let R be a regular noetherian strict local hensel ring in which I is
invertible, and which satisfies the other hypotheses of 2.45. Then
(3.3) K/^Rnp-^Z/np.P-1].

LEMMA 3.4 (Snaith). — Let R be a strict local hensel ring which is noetherian and in
which I is invertible. Then R contains all l-power roots of\. Consider the construction
of A. 4 and A. 7. Then
(3.4) T^Z^BGL^R)^)^-1]^/^, b~1].

Note R is not assumed to be regular.
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Proof. — As R is strict local hensel and / is invertible, GL^ (R) is the sum of the /-
torsion group of /-power roots of unity i^oo^Q/Z^, and a uniquely /-divisible group of
units. Hence by [16], VI, 5.1 one has weak homotopy equivalences of /-adic completions
of spaces

(3.5) BGL^R)^ ^(B^oo)^ ^(BQ/Z^ ^K(Z, 2)f ̂ CP^.

Under the equivalences (3.5), the element b of A. 7 corresponds to the generator of
7t2CP00, as one sees by applying H^ ; Z/F) to the maps (3. 5) and using the mod/
Hurewicz Theorem.

For any nilpotent space Z, the map Z-^Z^ induces an isomorphism on mod/
homology. Hence £°° (Z U ^) -> S00 (Z^ LJ ^) induces an isomorphism on mod / homol-
ogy, and Z^/^ZU^) -^^(Z^U ^) induces an isomorphism on integral homology
and so is a weak homotopy equivalence. Combining this and (3. 5), one gets weak
homotopy equivalences

(3.6) ZO O / /v(BGLl(R)U^)^- l]

^2:oo//v(BGLl(R),AU3»c)?- l]^2:oo//v(CPOOU^)[b~ l].

Snaith has proved that the inclusion C P°° -> BU(1) -> BU of spaces induces an equiva-
lence of spectra ([108], or [107])

(3.7) ^(CP^Lj^nfc'^BU.

The homotopy groups of BU are known by Bott periodicity, one has
7i* BU/r = Z/r [p, p -1]. Combining this with (3.6) and the smash of (3.7) with a mod F
Moore spectrum yields (3.4).

LEMMA 3.5 (Dwyer, Friedlander, Snaith, Thomason). — For R as in 3.3, the map y
o/A.4 and the D\vyer-Friedlander map p o/[31], [35], § 2, [30] have a \veak homotopy
equivalence as a composite py. Thus Z//* [p, P"1] splits offK/l^ (R) [?"1]. To prove 3. 3,
it suffices to sho\v that TI* y is surjective.

(3.8) ^//'(BGL^R)^)^-1]

BU/^
Proof. — As the strict local hensel ring R has the etale homotopy type of a point, its

Dwyer-Friedlander topological K-theory spectrum is that of a point. Thus
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j^/jvTop (R)^ BU/F. The composite of this equivalence with py is the composite of
equivalences (3.6) and (3.7). Hence py is a weak equivalence. For more details, one
may consult [31].

3.6. To show that TC* y is surjective one reduces to the splitting principle for Kg. The
reduction requires development of excision properties and Mayer-Vietoris spectral sequen-
ces for closed covers. This is applied to certain algebraic simplicial complexes. I pause
to develop these subjects. In the discussion 3.7-3.29 R will be a regular noetherian
ring in which I is invertible, and which satisfies the other hypotheses of 2.45. For now,
R need not be henselian.

3.7. Let M be a finite simplicial complex with vertices XQ, . . ., x^. Then M has a
poset of faces M, whose objects CT are the non-degenerate simplices of M, and which has
a map CT -> o' iff a" is a face of a. There is an algebra M of R-valued polynomials in
the barycentric co-ordinates of M. This is given as

(3.9) ^==R[xo, Xi, . . ., xj/(xo+ . . . +x^—l , certain monomials),

where a monomial x^ . . . x^ is in the ideal if and only if the vertices x^, . . ., x^ do
not span a simplex of M. Let M' be the affine scheme Spec(e^). Then M' is a union
of linear subspaces in A^'1'1 that meet in the cofiguration M.

The constructions are all functorial in the simplicial complex M.
The proof of [23], 4.8 shows that M is the limit along M of the functor from M to

the category of R-algebras that sends a simplex <j to the ring of barycentric co-ordinates
on CT. It also results from the proof of [23], 4.8 in the work of Dayton and Weibel
that if N c^ M is any subcomplex, then M -> ^V is surjective and a GL fibration. If M
is formed from N by attaching a simplex, this follows immediately from the last
paragraph of the proof of [23], 4.8. The obvious induction then proves it for general
subcomplexes. This is the key step in setting up the Mayer-Vietoris spectral sequence
of [23], 4.8 for the KV-theory of M'. The observations of this paragraph will allow
one to recover their theorem from 3.17 below.

DEFINITION 3.8. — Consider a class of squares of schemes and immersions (3.10)

X —^ Z
(3.10) ^ p

Y —^ Wi

A contravariant functor F into the category of fibrant spectra has the Mayer-Vietoris
property for the class if each square is in the domain of F and if the induced square of
fibrant spectra (3.11) is homotopy cartesian

(3.11)
F(W) -^ F(Z)

\ ° I
F(Y) —^ F(X)
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F has the connective Mayer-Vietoris property for the class if the map from F(W) into
the homotopy pullback of F(Z) and F(Y) over F(X) induces an isomorphism on 71̂  at
least for fe^O.

Example 3 . 9 . — For the class of squares (3.10) with Y and Z Zariski open subschemes
of W = Y U Z , and with X = Y n Z , this is the Mayer-Vietoris property of 2.2. For
this section, the interest is in squares (3.10) where the immersions are closed, not open.

Example 3.10. — Let R be a regular noetherian scheme. Consider the class of
squares (3.10) corresponding to a square of simplicial complexes as in 3.7. Suppose
that Y and Z are subcomplexes of the finite complex W. Suppose Y U Z = W and
Y O Z = X . Then by 3.7 the corresponding maps of rings are surjections and GL
fibrations ̂  -> ̂ , 2f -> 3£. Further, W is the pullback of ^ and ^ over °K. Thus by
[59], [60], Appendice 7, or [39], 2.10, Karoubi-Villamayor K-theory has the Mayer-
Vietoris property.

Example 3.11. '— Consider the class of squares (3.10) which consist of closed immer-
sions of affine schemes corresponding to a pullback square of rings. Suppose I is
invertible in these rings. As the immersions are closed, the corresponding maps of rings
are surjective. A Theorem of Weibel, [139], 1. 3 says that K/F has the connective Mayer-
Vietoris property for this class of squares. It follows that K/r[p~1] has the full Mayer-
Vietoris property for this class.

Note that as the maps of rings are surjective, the assertion that the ring (9^ is the
pull-back of (9^ and (9^ over (9^ is just the assertion that the sequence (3.12) of
(9^-mod\x\es is exact

(3.12) 0 -> (9^ -> ̂ ©^z -^ ^x -^ 0.

This condition is preserved by tensoring over (9^ with any flat ^w-algebra. Thus if
W -> W is affine and flat, e. g., affine and etale, the pullback to W from W of any
square (3.10) in this class is also in this class.

Example 3.12. — Let (3.10) be a square for which K/r[P~1] has the Mayer-Vietoris
property. Let e be a vector bundle on W and consider the induced square of projective
space bundles P(e). Suppose W is quasicompact. Then K/r[p~1] has the Mayer-
Vietoris property for the square of projective space bundles. For by [97], §8, 2.1,
K/r(P(e)) [P~1] is the product of rank e copies of K/r[p~1] of the base.

3.13. As complete flag bundles can be built by successive construction of projective
space bundles as in [SGA 6], VI, 3.1, a result like 3.12 holds for them.

LEMMA 3.14. — Let (3.10) be a diagram of closed immersions. Let W be a separated
noetherian scheme. Let F be such that for every affine W etale over W, F has the Mayer-
Vietoris property for the pull-back of (3.10) to W. Then tHl^( '•> F) has the Mayer-
Vietoris property for the original square. That is, (3.13) is homotopy cartesian:

H:t(W;F)^^(Z;F)

H:,(Y;F)^H:,(X;F)
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Proof. — By hypothesis, there is a homotopy cartesian square of presheaves of fibrant
spectra on the restricted etale sites

F — — 7 , F
(3.14) \ \

^F-^j^F

Applying H'et(W; ) to (3.14) yields a homotopy cartesian square. By (2.19), the
resulting diagram is weak equivalent to (3.13).

PROPOSITION 3.15. — Let M" be a scheme associated to a finite simplicial complex M
as in 3.7. Let F have the M ay er-Vietoris property (resp., the connective Mayer-Vietoris
property) for squares (3.10) of simplicial subcomplexes of M with W=Y(JZ and
X =Y H Z. F restricts to a functor from the category of simplicies M to that of fibrant
spectra. Then the natural augmentation is a weak homotopy equivalence (resp., induces
an isomorphism on n^ /or ^ ̂  0)

(3.15) F(M /)^H•(M; F)=holimF.
M

There is a spectral sequence which converges strongly (resp., to those K^for which k^O)

(3.16) E^H^M^F) => ^.^(NT).

If Kq F is a constant functor, the E^ term is isomorphic to cohomology of the simplicial
complex M with coefficients in Kq F

(3.17) H^M; T^F^H^M; T^F).

Proof. — First suppose that M is a simplex A [n\. Then the top cell is an initial object
of the category M. The inverse limit along M is given by evaluation at this initial
object. Hence lim is exact, and its right derived functors H^ (M; ) vanish for p > 0. The
spectral sequence of 5.13 collapses for M, yielding (3.15).

To prove (3.15) for more general M, one inducts on the number of simplices in M. To
do the induction step, let M be formed from a subcomplex N by attaching a simplex
A [n] along <9A [n] = A [n] C\ N. One then appeals to the 5-Lemma and the diagram (3.18),
in which the left column is a homotopy fibre sequence by the Mayer-Vietoris hypothesis
and the right column is by Lemma 3.16 below.

• F(NT) ———————^ (HT(M; F)

} +
(3.18) F(A[n])xF(N') ^-^H'(A[n]; F)xH'(N; F)

^ \
F(BA[n]) ——^——^ H'(BA[n]; F)

The spectral sequence (3.16) is just the spectral sequence of 5.13 interpreted in light
of (3.15). Note that as M is a finite poset the canonical complex of [16], XI, 6.2 for
computing H* (M; ) has a finite complex as its noncodegenerate subcomplex. Thus M
has finite cohomological dimension.
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The statement (3.17) results from the fact that the canonical complex of [16], XI, 6.2
for computing H* (M; Kq F) is isomorphic to the canonical complex for computing
cohomology with coefficients in T^F of the simplicial nerve of M, NM. But this
simplicial set is just the barycentric subdivision of the simplicial complex M. The reader
may also consult [38], App. II, 3. 3, or [97], § 1.

LEMMA 3.16. — Let (3. 19) be a cartesian square of categories. Suppose that i and j
are fully faithful embeddings of subcategories which are cosieves: that is, suppose any
morphism Y -> W in W mth source Y in Y is in fact a morphism in the subcategory Y,
and similarly for Zg=W. Suppose that any object o/W is either in Y or in Z.

v r lt ^X c—^ Z
(3.19) ,^ ^j

Y <—*- W

For example, let (3. 19) be the square of posets of simplices of a square of simplicial
complexes satisfying the hypotheses of 3.15.

Then the square (3.20) is homotopy cartesian for any functor F from W into the category
offibrant spectra

|H]-(W; F)-^H'(Z; F)
(3.20) ^ ^

H-(Y;F)-^H-(X;F)

Proof. — Consider the canonical cosimplicial fibrant spectrum whose Tot is
IHT(W; F), as in [16], XI, § 5. This cosimplicial spectrum is

(3.21) n*F, (rM^ n F(WO).
W W WQ <- ... <- Wn

The spectrum in codimension n is a product indexed by the set of n-simplices of the
nerve of W, i. e., by the set of sequences of morphisms Wo <- Wi <- W2 < - . . . < - W^
in W. Under the hypotheses, such a sequence lies entirely in Y or in Z, depending on
whether W^ lies in Y or Z. As X=Y 0 Z is also a cosieve in W, the sequence lies in X
if and only if W^ does. Thus the indexing set of n-simplices of the nerve of W is the
union of the sets of M-simplices of Y and Z, with intersection the set of n-simplices
of X. It follows that the square (3.22) is a pullback square of cosimplicial fibrant
spectra

n^F-^F

(3•22) nip-njiF
Further, the maps in (3.22) may easily be checked to be fibrations of cosimplicial fibrant
objects in the sense of [16], X, §4.6. Applying Tot to (3.22) yields (3.20), which is a
homotopy cartesian square by [16], X.

An alternate proof is to use the devissage technique of 5.52. As H'(K; ) commutes
with holims along Postnikov towers by 5.7, one reduces first to the case F = F < n > ,
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and then to the case where F is a presheaf of Eilenberg-MacLane spectra K(TT, n) as
in 5.52. Then the spectral sequence 5.13 shows that (3.20) is homotopy cartesian if
and only if the usual Mayer-Vietoris theorem holds for the cohomology of the
square (3.19) with coefficients in the presheaf of abelian groups n. This may be proved
by considering canonical resolutions as above, or by citing [64], § 1.

Example 3.17 (Dayton, Weibel [23]). — Let R be a regular noetherian ring, and let
M' be the scheme over Spec(R) associated to a finite simplicial complex as in 3. 7. Then
Karoubi-Villamayor K-th^ory, KV, satisfies the hypotheses of 3.15 by 3.10.

Recall that for any ^ring A, KVo(A) is the usual Ko(A). As R is regular,
KVJR[ti, . ... ^])=KV^(R) is Quillen's K^(R) for all q. Thus the spectral
sequence (3.16) may be interpreted via (3.15) as a spectral sequence

(3.23) ; ^FP(M;K,(R)) => KV^^M').

Let M be a n-sphere S". As a point is a retract of S", the spectral sequence (3.23)
for M a point splits off the spectral sequence for M=S". Thus the latter spectral
sequence collapses to yield

(3.24) Ko(Sn)=KVo(Sn)=Ko(R)eK„(R).

This allows one to shift problems about higher K-theory to problems about the
classical KQ.

Example 3.18. — With R a regular noetherian ring containing I/?, combining 3.15
with 3.11 as above yields isomorphisms:

(3.25) K/^S^K/WeK/^^R), /^O,
(3.26) K/^(Sn)[p- l]=K/^(R)[p- l]eK/^^(R)[p- l] all/?.

Example 3.19. — Let M be a modF Moore complex; i.e., the cofibre of a map of
degree lv from S" to S". Then for any spectrum Z one has weak equivalent homotopy
fibre sequences

Map+(M, Z) -^ Map*(S", Z) -^ Map*(S", Z)
(3-27) ^ ^ ^

Q^^Z/F) ——- ft"Z -'—— O^Z
Thus 7ioMap*(M, Z) is 7^+1 Z/F.
On the other hand, if Z is regarded as a constant functor from M to the category of

fibrant spectra, the formulae of [16], XI simplify to show that the homotopy limit
O-O* (M; Z) is the spectrum of unbased maps from the nerve of M to Z. As the nerve of
M is the barycentric subdivision of M, one has a weak homotopy equivalence

(3.28) H" (M; Z) ̂  Map* (MLJ^, Z) ̂  Z x Map* (M, Z).

There is an isomorphism
(3.29) ^H-(M; Z)=K,Z@K^,Z/I\
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In fact the spectral sequence (3.16) yields the universal coefficient sequence

(3.30) 0-^Hn + l(M;7^,^^Z)-7^^,^Z/^V^HM(M;^^Z)^0
II II

(^^iZ)®Z/r Tor^^^Z, Z/F)

(^;;.z)^z/r

The identifications in (3.30) result from the long exact cohomology sequence of the
cofibre sequence S" -> S" -> M.

Combining these remarks with 3.17 and 3.18, one obtains isomorphisms

(3.31) ^(M^K^R)®!^^),
(3.32) K//;(M /)=K/;;(R)®7l^^l(2:oo/^AK/^(R))

=K/^(R)®(K/^^^(R)®Z/r)©(K/^^(R)^Z/r)

=K//;(R)®K/^^i(R)®K/^(R) for p^O and v^2 if 1=2.
(3.33) K/;;(M /)[P- l]=K/?;(R)[P- l]©K/^^^(R)[r l]©K/^;^(R)[P- l]

for all p, and with v ̂  2 if / = 2.

PROPOSITION 3.20. — Let R be a regular noetherian ring in which I is invertible, and
which satisfies the other hypotheses of2. 45. Let M be a finite simplicial complex, and
M' the associated scheme over R as in 3. 7. Let p : P ->W be the projective space bundle
P (e) or complete flag bundle Flag (e) of a vector bundle £ on M'. Even though P is not
usually regular, the natural augmentation will be a weak equivalence

(3.34) K/^PnP-^H^P.K/^ )[P-1]).

The map (3.34) is similarly a weak equivalence for any P built up from P(e) by
successively taking projective space bundles.

proof. — Let F be the contravariant functor from the category of subcomplexes of M
to that of fibrant spectra given by F (N) = K/F (p -1 (N)) [P -1]. Let

^(N)^^-^);!^ )[P-1]).

Then both F and F' have the Mayer-Vietoris property for certain squares of subcomplexes
by 3.12, 3.13, 3.11, and 3.14. Then by 3.15, the vertical arrows in (3. 35) are weak
equivalences.

K/r(P)[p-1]——^H^P.K//^ )[P-1])

(3.35) F(M) ————————^ F'(M)

^ ^
H' (M; F) —————^ H' (M; F')
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If CT is a simplex of M, corresponding to a hyperplane A^ in M', then
P~1(^)=P~1^'R) is regular and satisfies all the other conditions of 2.45. Thus by
Theorem 2.45, F ( p ~ 1 (o)) -> F' (p~1 (a)) is a weak homotopy equivalence. By 5. 8, the
bottom horizontal map of (3. 35) is then a weak equivalence. Thus the top horizontal
map of (3. 35) is also a weak equivalence, as claimed.

I will need some constructions to control the line bundles into which I shall split the
problem.

CONSTRUCTION 3.21. - For X a scheme, let BGL^ be the presheaf of fibrant spaces
on the restricted etale site of X, 1.3, that sends an affine U=Spec(A) to the classifying
space of the group of units of A. There is a natural map from BGLi to the zeroth
space of E°°(BGLiU^).

One may form H[t(X; BGL^), a fibrant space by the methods of paragraph 1. If one
considers BGL^ as the zeroth space of an Eilenberg-MacLane spectrum, IH'e^^ BGL^)
as a space is the zeroth space of the etale hypercohomology spectrum. From 1. 36, one
calculates homotopy groups

(3.36)
7ioH'et(X; BGL,)=H,\(X; GLi)=Pic(X),

7ii^(X;BGLi)=H^(X;GLi),
7T,H'et(X; BGLi)=0 for q>\.

The natural map from BGL^ to the zeroth space of £°°(BGLi ^) induces natural
maps of spectra

f ^(^(X; BGL,)LJ^H:,(X; ^(BGL.U^)),
IS^/W^H; BGLi)U^^(X; S^BGLiU^)).

CONSTRUCTION 3.22. — For X a scheme, let Div(X) be the classifying space of the
category of line bundles on X and their isomorphisms. Then Div( ) is a presheaf of
fibrant spaces on any scheme. It is the zeroth space of a generalized Eilenberg-MacLane
spectrum, K (Pic ( ), 0) x K (GL^ ( ), 1).

On the category of affine schemes there is a natural map BGL^ ( ) -> Div( ), which
identifies BGL^ to the classifying space of the subcategory of trivial line bundles and
their isomorphisms. If every line bundle on X is trivial; e. g., if X is a local ring, then
this map is a weak equivalence. As both functors BGL^ ( ) and Div( ) are continuous,
1.29, 1. 30, 1.45, 1.44, and 1. 36 show that the induced map of hypercohomology spaces
is a weak equivalence

(3. 38) H;,(X; BGLi) ̂  H'^(X; Div).

Combining (3. 38), the calculation of homotopy groups (3.36), and a similar calculation
for Div( ), one sees that the augmentation is a weak homotopy equivalence of spaces

(3.39) Div(X)^[H]^(X; Div).
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There is a natural map from Div(X) to the zeroth space of the K-theory spectrum
K(X)
(3.40) Div(X)->K(X).

For X affine, the zeroth space of K(X) is the group completion of the E^ space which
is the disjoint union over all isomorphism classes of finitely generated projective modules
P of BAut(P). Div(X) is the disjoint union over those P of rank 1, and (3.40) is the
inclusion followed by the canonical group completion map.

For general schemes X, the zeroth space of K(X) is the loop space of the classifying
space of Quillen's Q category of the exact category of vector bundles on X. By adjoint-
ness of loops and suspension, to give (3.40) is equivalent to giving a map from EDiv(X)
to the classifying space of the Q-category. But SDiv(X) is the classifying space of the
suspension of the category of line bundles and isomorphisms. This suspended category
has as objects 0 and the line bundles L. The morphisms are the isomorphisms of line
bundles and two special morphisms for each L, 0 «- L in the northern hemisphere and
0 >-> L in the south. These morphisms go from 0 to L. This category includes into
the Q-category in the obvious way, inducing the desired map.

The map (3.40) induces a function Pic (X) -> Ko (X) on taking Tio. This function
sends a isomorphism class of line bundles L to the class [L] of the rank 1 vector bundle L
inKo(X).

LEMMA 3.23. — The constructions and maps o/A.4, A. 7, 3.21, and 3.22 combine to
yield a commutative diagram of spaces (3.41), natural in X for any separated noetherian
scheme X. The indicated maps are weak homotopy equivalence:

Div(X) ——-^K(X) ————————————^ K/F(X)[P-1]c \ <
(3.41) H:t(X; Div) _^H^(X; K) —————————^ H;,(X; K/F( )[P-1])

t' t. h
H:,(X; BGLi)-^H:,(X; Z°°(BGLiU ^)) ——^Xt(X; S-^BGL, U ^) [b-1])

Proof. — Combine 3.21, 3.22 and obvious naturality statements.

3.24. The last preliminaries are to construct topological K-theory and to prove the
splitting principle.

For X a separated noetherian scheme in which / is invertible, define K/lvJOP(X)
by (3.42)

(3.42) K/lvrTOP(X)=H^(X; S^BGLiU^-1]).

By 3.4, 1.36, and 1.44, there is a spectral sequence (3.43) which converges strongly
if X has finite etale cohomological dimension

<3-43' ^ H;?^=2• } ̂ -'Kra
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The map y of A. 4 and 3. 5 induces a map

y:H:,(X; ^^(BGL^U ̂ -^-^(X; K/HP-1])

(3.44) j]

K/r^x)
The map py is a weak equivalence of K/r^^X) with the Dwyer-Friedlander topologi-

cal K-theory spectrum of X by [31].

LEMMA 3.25. — Let X be a separated noetherian scheme in which I is invertible. Suppose
there is a uniform bound on the l-torsion etale cohomological dimension of all schemes etale
over X; e.g., that X satisfies the hypotheses 0/2.1 or 2.47. Let £ be a vector bundle of
rank n on X, and P(s) the associated projective space bundle. Let [^(—1)] be the image
in KQ K/F Top (P (e)) of the class of (9 (-1) in Pic (P (e)) under the map of (3.41). Assume
that if1=2, then either X is over Z[l/2, / — I ] or else v=2. Then cup product with
([^]—[^(—1)])1 for f=0, 1, . . ., n—l defines a weak homotopy equivalence

n

(3.45) v K/r ̂ P (X) ̂  K/F Top (P (e)).
1

Proof. — Consider the map of presheaves of fibrant spectra on the etale site of X,
n

which for U etale over X maps v K/r'^U) to K/l^^^^V)) as in
i

(3.45). Applying IH^ (X; ) to this map of presheaves gives (3.45) up to weak equivalence
by (3.42) and the descent theorem 1.48, 1. 56, 1. 57.

By 1. 36, it suffices to show that this map of presheaves induces an isomorphism on
sheaves of homotopy groups to deduce that (Hl'et(X; ) of it, and so (3.45), is a weak
equivalence. It suffices to check this on stalks by 1.30. By 1.41 and 1.44, this
amounts to showing that (3.45) is a weak equivalence if X is a noetherian strict local
hensel ring.

If X=Spec(R), R a noetherian strict local hensel ring with /-1, then £ is a trivial
vector bundle, and P(e) is P£~1. The standard calculation, [SGA5], VII, 2 .2 .2 shows
that

(3.46) H,*(p;r1, z/r^z/rm/T",
where T has degree 2, and is the Chern class of [^]—[^(—1)]. The spectral
sequence (3.43) for P£~1 thus collapses as everything is in even bidegree. The E°° term,
and thus K/l^^-1) is a free module over Z/F[P, P-^K/^^R) with basis
T=([^]-[^(-l)])1' for i=0, 1, . . . . n-1. Thus (3.45) is a weak equivalence in this
case. This completes the proof of the Theorem.

LEMMA 3.26 (Quillen). — Let X be a separated noetherian scheme. Let e be a vector
bundle of rank n on X. If 1=2, assume that either v=2 or else that X is over Z[ /—I] .
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Then cup product with the classes ([^]-[^(-1)])1 for i=0, 1, . . ., n-1 defines weak
homotopy equivalences

VK(X)^K(P(£) ) ,
i

n

(3.47) < vK/r(X)^K/r(P(e)),
1

n

vK/^Xnp-^K/rWemP-1].
i

Proof. — The first equivalence results from an easy change of basis and [97], § 8,
2.1. The others follow immediately.

LEMMA 3.27 (Splitting principle). — Let R be a regular noetherian ring of finite Krull
dimension in which I is invertible, and which satisfies the other hypotheses of 2.45. Let
M be a finite simplicial complex, and M' the associated scheme over R as in 3.7. Let
P -> NT be a scheme quasiprojective over M' which is built by iteratively taking the associated
projective space bundles of vector bundles. Let £ be a vector bundle on P, and let
P' = p (e) -» p be the associated projective space bundle.

In diagram (3.48), the indicated maps are weak homotopy equivalences. The vertical
arrows are monomorphisms, which split naturally with respect to the horizontal arrows. In
particular coker 7i*y(P) maps to coker ^^(P') by a split monomorphism.

K/JvTop(p.) J^l^ H^(P';K/r( )[P-1])^- K/lWtP-1]

(3.48) ( ^ ^

K/r^P) Y(p) . H:t(P;K/r( )[P-1]) ^— K/r(P)[P-1]
.̂

Proof. — The left horizontal maps of (3.48) are weak equivalences by 3.20.
The left and right vertical arrows are inclusions of the summand indexed by
[^]=1=([^]-[^(-1)])° by 3.25 and 3.26, and so are split by the projections off the
summands indexed by W]—[(P(— I)])1 for i= 1, 2, . . ., n— 1. The map y is natural with
respect to this splitting as y preserves the classes of the line bundles [(9} and [^(—1)]
by 3.23.

COROLLARY 3.28. — Let R be a regular noetherian ring satisfying the other hypotheses
of 2.45. Let M be a finite simplicial complex, and M" the associated scheme over R as
in 3. 7. Let £ be a vector bundle on M', and let p : Flag(e) -> M' be the complete flag
bundle. Then p* e has a canonical filtration by subbundles, with canonical line bundles as
filtration quotients. Thus p* [e] in Ko(Flag(e)) is a sum of line bundle classes.

Further, the left and right vertical maps in (3.49) are monomorphisms which split
naturally with respect toy. Thus p* induces a monomorphism of coker ^^(M') into
coker 7r*y(Flag(e)).
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K/r^Flag^)) ̂  H:,(Flag(e); K/F( )[p-1]) ̂  K/r(Flag(e)) [p-1]
(3.49) ^ ^ ^

K/r^M') ^ H^M^K/rC )[p-1]) — K/r(M')[p-1]

Proof. - The fact that p* [e] splits is standard, for example see [SGA 6], VI, 4.7. It
is also standard that Flag(c) is built up from NT by iteratively taking projective space
bundles of vector bundles, see [SGA 6], VI, 4.2. Thus the assertions about (3.49) follow
from an easy induction using 3.27.

LEMMA 3.29. — Let R be a regular noetherian ring in which I is invertible, and which
satisfies the other hypotheses of 2.45. Then the map y of3.24 is a surjection

K/l^(R) ——————y——————*-K/^(R)[P-1]
(3-50) ^|| ^

7i*H^(Spec(R); 2:°°/r(BGLiU ̂ -1]) ̂ 71^ (Spec (R); K/F( )[p-1])

Proof. — Let x be an element of n* K/F(R) [P~1]. I will show that it is in the image
of y. As f o = P is a unit on both sides of (3. 50), I may clear denominators from x and
assume x is in the image of 7i^K/r(R). Multiplying by P again, I may assume that
n^2. Let M be the mapping cone of a degree F map from S"~1 to S"~1. Then M is
a mod F Moore space. Let M' be the corresponding scheme over R, as in 3. 7. Under
the isomorphism (3.31), x in K/^(R) corresponds to an element x in K^M'). Under
the isomorphism (3. 33) and the canonical map K() (M') -^ KQ K/r(M') [p~1],
x corresponds to x in the summand K/^(R) [p-1] of T^K/T^M') [p-1]. TioK/r^M')
decomposes like T^K/J^M') [p~1] in (3.33). This follows as in 3.17 from 3.15 with
F=K/^TOP. K/F^P has the required Mayer-Vietoris property by 3.14. The map y
respects the decompositions (3.33). Thus to show x is in the image of y in (3.50), it
suffices to show x in 7ioK/r(M') [p-1] is in the image of T^K/r^M') under y.

Let the element in Ko(M') corresponding to x be [e]—^"], c a vector bundle. Let
p : Flag(e) -^M' be the complete flag bundle corresponding toe. Then p * ( x ) in
Ko(Flag(e)) is a sum of line bundles. Thus p * ( x ) in 7ioK/r(Flag(£)) [p~1] is a sum of
elements in the image of Pic (Flag (e)). By the commutative diagram of 3.23, p * ( x ) is
thus • a sum of elements in the image of y, and so /?* (x) is in the image of
TCoK/r^Flag^)) under y. By the splitting principle 3.28, it follows that x in
TioK/^M') [P~1] is in the image of y. This completes the proof.

3.30. The proof of 3.1 is now easily completed. By 3. 3 and 3. 5, it suffices to show
7i* y is surjective if R is a strict local hensel ring satisfying the hypotheses of 2.45. This
is done by 3.29.

3.31. The rough idea of the splitting principle has more applications than the particular
incarnation above. The rough idea is this. Suppose one has a natural transformation
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y* : F* -^ K* which one wishes to prove surjective. Here K* is some kind of K-theory
or something like it. By Mayer-Vietoris for F* and K*, one reduces surjectivity of
y : F*(R)-^K*(R) to proving that y hits a given element x in K^M'), for some
construction M'. One reduces to the case where x is the class of a vector bundle e
under a canonical map from the classical K()(M') to the given Ko(M'). One proves a
splitting principle to reduce the problem to Ko(Flag(e)), and x a sum of line
bundles. Then one is done if the canonical function Pic -> Kg -> Kg factors through y.

Exercise 3. 32. — Let R be a regular noetherian ring in which I is invertible, and which
satisfies the other hypotheses of 2.45. Represent the modF Adams map A of A. 14 by
a simplicial map of mod (v Moore spaces

A . S^^-DA
(3.51) PO^S^'^-^PI -———S2^"1^-1^^-.. .

Form the corresponding inverse system of schemes over R as in 3.7. For I odd,
use A. 14 to show that

(3.52) K/J^RHP-1^ lim KO^'^-^P.VK^R),

where the maps in the direct system are induced by A. This requires that P() be chosen
to have dimension congruent to ^modF"1 (<—!).

Use (3. 52) to reinterpret Theorem 4.11 in terms of an equivalence (3. 53)

(3.53) lim Ko(2:lJV-l(J-l)P,)/Ko(R)^K/rJOP(Spec(R)).

Note that P( over Spec(R) is induced by base-change from a universal one over
Spec(Z). Use this to interpret P^ as a modF suspension of Spec(R). Interpret (3.53)
as saying that topological K-theory is to algebraic K-theory as stable homotopy theory
is to homotopy theory. Argue for the slogan: stable algebraic geometry is determined
by topology.

Exercise 3.33 (Optional). — Let F be a functor from the category of noetherian
schemes to that of spectra. Suppose that F satisfies the Mayer-Vietoris property for
regular schemes, and satisfies the projective space bundle property 3.26. Suppose also
that F/r satisfies Mayer-Vietoris for the closed covers of 3.10, 3.11. Suppose finally
that there is a natural transformation F( )->K( ) such that for R a regular local
ring Tti F(R) -^ n^ K(R) =R* and TCo F(R) -> n^ K(R) ==Z are isomorphisms.

(a) Note by 2. 5 that F has Zariski cohomological descent.
(b) Show the map (3.40) factors Div ( ) -^ F ( ) -^ K ( ).

Note that the analogs of (3.38) and (3. 39) for (Hl^,( , ) are true.
(c) Replacing IHl^t by H^ in the argument of paragraph 3, show that

F/^(R) -. K//i(R) is surjective for R regular.
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(d) Use the fact that the image of Milnor K-theory in algebraic K-theory is a proper
sub-group for a general field to refute the common expectation that there is a global
theory F which extends Milnor K-theory of local rings and which has the good properties
of algebraic K-theory.

Remark 3.34. — While I was finishing this paper, a stronger version of Theorem 3.1
was proved by combining results of Suslin, Gabber, Gillet, and myself. The end results
are that by Suslin ([117], [118]), the groups K/^(fe) of a separably closed field of
characteristic not / are Z/r(f) if n=2f^0 , and 0 for other n. By unpublished work of
Gabber, or by Gillet-Thomason [45] in the geometric case, the groups K/^(R) of a strict
local Hensel ring R in which I is a unit are equal to the K/^ (fe) of its separably closed
residue field. Thus Theorem 3.1 is true in non-negative degrees without inverting P.

It follows that inverting P has no effect on H^(X; K/;? for q^O. Hence (2.120)
and (2.126) may be rephrased as the existence of spectral sequences

fEr=H^(X;K,) ^ K,_,(X)K, q-P^O,
( ' ) \ E^=H^(X; K/;p => K/^_,(X)[P-1], q-p=Q.

Thus inverting P is the cheapest possible price to pay to get etale cohomological
descent.

Unfortunately, to get this in the non-geometric cases requires the general rigidity
theorem of Gabber for Hensel pairs in mixed characteristic, and it seems unlikely that
Gabber will ever write this up. (In proof: see Gabber's letter to Karoubi.)

4. Main results and examples of calculations;
applications to zeta functions,

Riemann-Roch, and cohomological purity

As a result of the labor in the other sections, I obtain:

THEOREM 4.1. — Let X be a separated noetherian regular scheme of finite Krull
dimension. Let F be a prime power, and suppose I is invertible in X. Suppose there is a
uniform bound on the l-torsion etale cohomological dimension of all residue fields ofX,
even at the non-closed points. Suppose that all residue fields of X admit a sequence of
subfields like (2.112), e.g., that they are of finite transcendence degree over a local, global,
or separably closed field. If 1=2, assume that X contains a square root of — 1.

Then there is a strongly convergent spectral sequence (4.1) with differentials dy of
bidegree (r, r — 1 )

(4.1) ^..-{H^•?„Z/;^•<-2•} - K/^(X)[r-].

Proof. - Combine 2.45 and 3.1.
Remark 4.2. — The hypotheses of 4.1 are met if X is any separated regular scheme

of finite type over Z[\/l], or Q, or F^, with p^l, or Fp[[r]] with/?^, or Fp((Q) withjr?^;,
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or Zp with p^l, or Qp, or over K a separably closed field of characteristic not /. If
1=2, one must add the requirement that — 1 has a square root in (9^.

Remark 4.3. — In the spectral sequence (4.1), E^^O implies that q is even. Hence
only for oddr can be differential ^ be non-zero. Thus the spectral sequence (4.1)
collapses if X has cohomological dimension at most 2, or if X has cohomology only in
even dimensions.

Considering the action of the Adams operations on algebraic K-theory in a manner
parallel to Soule's paper [114], 3.2-3.3, one finds an integer M(d) depending only on
the etale cohomological dimension of X such that M(d)d^=0 for all r. Thus the
spectral sequence (4.1) degenerates modulo torsion of bounded order independent of /
and v. Thus in situations where the J-adic cohomology in the sense of [SGA 5] is defined
and is torsion free, the (-adic variant of (4.1) collapses, and hence so does (4.1).

Example 4.4. — Let k be a separably closed field of characteristic not I. Let C be a
connected, proper, and smooth curve over K of genus g. Then

/-Z/reZ/r, neven,
(4.2) K/^Cnp-1]^ ^

I- ® Z/F, n odd.

If C" is such a curve minus k +1 closed points, then

r Z/r, n even,
(4.3) K/^cnr1]^2^

(- ® Z/F, nodd,

Proof. — This follows from the collapsing spectral sequence (4.1) and standard
calculations of the etale cohomology of a curve, e. g., [SGA 4], IX, 4. 7.

Example 4.5. — Let R be the ring of integers in a number field. Assume that R
contains primitive F-th roots of 1, and a square root of -1 if 1= 2. Let k be the number
of distinct primes of R lying over I. Then

(4.4)

K/^Rr1])^-1^ (Pic(R r^Z/QeeZ/r, n even,
(GLi (R [F ̂ OZ/Qer-torsion in Pic(R [l~1]), n odd,

Proof. - This follows from the collapse of the spectral sequence (4.1) and the
calculations of Artin and Verdier in [6]. Here GL, is the group of units and Re is the
ideal class group. The F-torsion in the Brauer group of R[F1] accounts for k-1 of
the Z/r factors for n even.

Remark 4.6. - To compute K//*( )[p-1] for a curve C over ^ or for a general
ring of integers in a number field, one adjoins all roots of unity, applies 4.4 or 4. 5 to
this cyclotomic extension, and then cuts down to the original case by the cohomological
descent spectral sequence 2.48 with ^ the direct system of cyclotomic
subextensions. The E^ term of this spectral sequence is given by Galois cohomology of
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the cyclotomic Galois group acting on the groups K/<*( )[P~1] of the
extension. Information about this action is often contained in an L-function. In particu-
lar, one has:

Example 4.7. — Let X be a geometrically connected smooth curve over F^, with (
prime to q. If 1=2, assume 4 divides q-\. Let X=X(x)F^ The cohomology of the

¥q

group Z" =Gal(F^/F^) acting on the finite modules K/ft(X)[p~1] is the same as the
cohomology of Z by [102], 1-15. Fitting the canonical two step resolution for computing
the cohomology of Z ([21], X, 5) into the cohomological descent spectral sequence 2.48
yields a long exact sequence (4. 5):

(4.5) . . . ̂ ^^(^[P-^^K/J^^tP-^-^K/J^^X)^-1]^ . . .

Here (p is the arithmetic Frobenius, the generator of Gal(F^/F^).
By 4.4, the groups K/^(X)[p~1] are finite. Hence so are the groups K/^(X)[p~1].
Thus the Mittag-Leffler condition is satisfied, and one may obtain an exact sequence

of /-adic groups by taking inverse limits in (4. 5) and appealing to (A. 12).
Suppose now that X is a ring of integers in a function field, i.e., an affine curve

satisfying the above conditions.
Then by the Riemann Hypothesis as proved by Weil for curves, 1 — (p is injective for

n^2 in the /-adic version of (4. 5), and so it breaks up into short exact sequences

f O-K^^Xnp-1]^ i^K^^Xnp-1]^ -.lUXHP-1]^ -0,

Thus for n^2, the order of K,,(X)[P~1]/' is the determinant of l — q > as a number in
Z/\ On the other hand, Grothendieck's formula for the L-function of X gives it as a
ratio of determinants of 1—^F, where F is the geometric frobenius acting on etale
cohomology with compact supports. Comparing these by Poincare duality,
Theorem 4.1 linking K/I*( )[P~1] with etale cohomology, and the relations between
arithmetic and geometric frobenii yields the equality of J-adic valuations of the ratio of
orders of K-groups and a value of the zeta function of X

(4.7)
ttK^^xnp-1]/- I IA

^i-iWWV
= | ^ ( X , l - O h , ^2.

i

Example 4.8. - Let I be an odd prime. As K//*(F^)=0 for ^>0 by [96],
K/^F^P-^O. Then the localization sequence shows that K/ft(Z)[p-1] and
K/!* (Z [l~1]) [P~1] are isomorphic. These groups are given in terms of etale cohomology
by the collapsing spectral sequence (4.1). The orders of certain of these cohomology
groups are given in terms of the zeta function by the Main Conjecture proved by Mazur
and Wiles. For partial results and more details one can consult the published works of
Soule, Coates, and Lichtenbaum, e.g. ([112], [113], [114], [65], [66]). The end result of
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this analysis is that for i even and greater than 1, the groups K^^WIP"1]/' and
K^f-iCZnP"1]/' are finite. The ratio of their orders is given by the zeta function and
the f-th Bernoulli number B;

(4.8) ^-^W-1}^^ ^ B,
^2i-i(Wy ' ' i i

for f ^ 2 even, / odd.
Since the groups K*(Z) are finitely generated, the surjectivity result of [30] and the

equivalences (A. 16) imply that there is an isomorphism for ; odd and n^O:

(4-9) ^nmWV^nWKW.

Here K( )^ is the Bousfield localization of A. 14. Thus modulo powers of 2, one has

( A 10^ ^J^I^WK y (-77 i .x . ^ ^t4 • lu) ._,——_— = ̂  (Z, 1 -;), i^ 2, even.
"^i-lWK

As K( )^ is rationally the same as K( ) by (A. 16), the groups K*( )^ give the
same higher regulators ([8], [9]) as the K groups. The torsion in K*( )^ is related to
etale cohomology and values of the zeta function in a reasonable way. And K* ( )^
inherits most of the formal properties of K*( ). It appears that K( )^ is a more
amenable replacement for K( ) in its conjectural role in number theory.

Example 4.9. - Let K be a separably closed field of characteristic not/. Let
X ̂  Pf^ be a smooth hypersurface of degree d and dimension m. Then if m is even

w+l (d-l)[(d-l)m+l+l}/d

-IIA=J e zfA® ® ^A' neven'(4.ii) luxury
If m is odd

0, n odd.

w + l
© Z^, n even,{ w ^ - i , n even,

(4.12) KJXHP-1]^ (.-DK.-D-I-I]/.
© Z^, nodd.

Proo/. — By [SGA 7], XI, 1.6, the /-adic etale cohomology of a complete intersection
such as X is torsion-free. Thus as in 4. 3, the spectral sequence (4.1) collapses. Thus
for X a complete intersection, K*(X)[p~1]^ is a direct sum of as many Z^ as in the
sum of the /-adic cohomology groups of X of the same parity as ^. This rank is
invariant under smooth deformation of X by smooth and proper base change. One
deforms X until it lifts to characteristic 0, and by another appeal to smooth proper base
change one reduces the computation of the rank to the case where X is over the complex
numbers. The ranks are then given in terms of Hodge numbers of X. Appealing to
the formulas of Hirzebruch for these ([54], 22.1.1, [SGA7], XI, 2.3) and specializing
them to our case yields the result.

Remark 4.10. - The method of 4.9 yields a calculation of K*(X)[P~1]^ for any
smooth complete intersection over K.
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THEOREM 4.11. - Let X be as in 4. 1. Let K/r^X) A?no^ ̂  topological or
"etale9' K-theory spectrum of D\vyer and Friedlander ([30], [31], [34], [35]). Then the
Dwyer-Friedlander map is a weak homotopy equivalence

(4.13) p : K/F(X) [P-1] ̂  K/r^X).

Proof. — For X a strict local hensel ring as in 4.1, the map p is a weak equivalence
by 3.1 and 3.5. Thus on the etale site of a general X satisfying 4.1, p induces an
isomorphism of sheaves of homotopy groups (4.14) by 1.44 and 1.30

(4.14) p : K//K HP-^W0^ ).

This deduction requires that the functor K/l^'TOP( ) is continuous on the etale site of X
in the sense of 1.42. But the hypotheses of 4.1 and [SGA 4], X give a uniform bound
on the J-torsion etale cohomological dimension of schemes etale over X. The continuity
of K/^iTOP( ) is then proved using the uniformly converging Atiyah-Hirzebruch spectral
sequence of [30] as in the proof of 1.41 above.

Now consider the diagram (4.15)

K/F(X)[P-1] —————p————^ K/r^X)
(4.15) ^ Z|

H:,(X;K/r( )[P-1])————-^ H;,(X; K/F^ ))
Met (x; P7

The bottom map of (4.15) is a weak equivalence by (4.14) and the strongly converging
spectral sequence of 1.36. The left vertical map is a weak equivalence by 4.1. The
right vertical map should be a weak equivalence just because cohomology theories have
cohomological descent. Technicalities force a slightly more complex proof of this, given
in [31], Thm. 9.

From these facts, it follows that the top map of (4.15) is a weak equivalence as
required.

Remark 4.12. — The Theorem concerns the non-connective version of topological K-
theory, and not the truncated version sometimes considered.

In early versions of [30], K/r101^) and the map p were defined only for quasiprojective
schemes over some base, or for affine schemes. The diagram (4.15) can be used to
define these quantities in general given them on the affine schemes of the restricted etale
site of X as in 1. 3.

Remark 4.13. — For X an algebraic variety over the complex numbers, K/r^^X) is
equivalent to the classical mod F topological K-theory spectrum of X as a space with
the analytic topology, as implicit in [34], [35], or explicit in [36], 13.10.

Example 4.14. - Let k be a separably closed field of characteristic not J. Let G be
a semisimple and simply connected algebraic group over £ Let G have rank r.
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Let A* [fci, . . ., foj be the Z/F exterior algebra on r generators of degree 1 correspond-
ing to basic representations as in [55]. Consider this as a Z/2-graded algebra with parts
of even and odd degrees. Then

(4.16) wom-^^19 •••^r' "even9
[ A* [b^ . . . , b,]^ n odd,

y-l

(4.17) K/^(G)[P-1]^ © Z/F all n.

Proof. - By 4.1, [SGA4], XVI, 1.6 = Lefschetz's principle for etale cohomology, and
the not-quite-proper base change Theorem of [37], Thm. 1 or [36], 8.8, one reduces to
the case where K is the complex numbers. By 4.13 and 4.11, it suffices to show
that (4.16) gives the values of the topological K-groups of G. As the other factors in
the Iwasawa decomposition of G are contractible, G is homotopy equivalent to its
maximal compact subgroup. The result follows from Hodgkin's calculation of the K-
theory of such a compact Lie group in [55]. Note as Hodgkin points out, the Atiyah-
Hirzebruch spectral sequence does not always collapse in this case.

Remark 4.15. - Suppose X is not necessarily regular, but otherwise satisfies the
hypotheses of 4.1. The functor G/F( )[P~1] on such X has etale cohomological
descent by 2.47. By [97], § 7, ft 2 augmented by [43], 4.1, G/F and so G/F( ) [p-1] is
a covariant functor up to homotopy with respect to proper maps. One might expect
then that G/F ( ) [p ~1] is a sort of generalized Borel-Moore homology theory. However,
there is no known definition of homology for such a broad class of schemes. Homology
is defined in terms of cohomology and either Alexander duality or trivial duality with
respect to cohomology with compact supports. These definitions require fixing a regular
base scheme S and considering only schemes separated and of finite type over S. Under
these circumstances, one has the expected comparison theorem. For example, see [127]
and 4.16.

Remark 4.16. — Let X be a not necessarily regular scheme that satisfies the other
hypotheses of 4.1. Let X <^ Y be a closed immersion, where Y is regular and satisfies
the hypotheses of 4.1. Then one has a homotopy commutative diagram (4.18). The
indicated maps are homotopy equivalences by 4.11. The first two rows are homotopy
fibre sequences by Quillen's localization theorem. The last row is a fibre sequence by
definition of K/^^Y)

G/r(X) —————- G/F(Y) —————^ G/F(Y-X)4 '*
K/r(Y) —————- K/r(Y-X)

(4.18) , . ( (

G/r(X)[p-1]——-K/r(Y)[P-1] ——^ K/F(Y-X)[p-1]

\ ^ ^
KytY) ——-ic/r^Y) ——^ K/r^^Y-x)
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By the 5-Lemma, the lower left hand map is a weak homotopy equivalence

(4.19) G/^Xnp-^K/x^Y).

This proves the claim of [127], 1.6. In [127], it was shown that K/x^Y) was
independent of the choice of Y smooth over an affine base S satisfying 4.1, provided
that all schemes considered are quasi-projective over S. On the category of such schemes,
[127] shows that K/xTOP(Y)=G/rTOP(X) is a reasonable definition of topological
K-homology theory by Alexander duality. If S is the complex numbers, this is equivalent
to the classical theory with "locally compact supports".

Remark 4.17. — For /: X -> Y any proper map of schemes that are not necessarily
regular, but otherwise satisfy the hypotheses of 4.1, one has the trivially homotopy
commutative diagram (4.20)

G/F(X) —^ G/^v(X)W-l]=G/lvTOP(X)

(4.20) ^ (/JP-11 \^
G/r(Y) —^ G/r^YHp-^G/r^Y)

For general X, we take G/F(X) [P-1] as the definition of G/F^X). If X is regular,
this is the usual K/lv(X)W~l]^K/lvTOP(X). For many singular X the definition is
justified by [127] and 4.16, and in general has the expected formal properties.

This trivially commutative diagram is the Riemann-Roch theorem. The Riemann-
Roch theorems of Gillet and of Shekhtman ([42], [106]) for the map from G/J* to etale
cohomology may be easily deduced by purely topological calculations of the behavior of
Chern classes under topological Gysin maps as in [32], I. D. 2. In reasonable situations
where one has an alternative definition of G/^'TOP( ) and of the Gysin map, [127] shows
that they agree with the current one.

The central application of the Riemann-Roch Theorem is to calculate Euler characteris-
tics of coherent modules on X. This proceeds by taking Y a point and/the projection
and noting that /* sends the Go class of a module to its Euler characteristic. Thus one
wants to calculate /* : Go(X) -> Go(Y) =Z. It suffices to do this mod F for all v. As
Z/r=G//o(Y) injects into G/^^Y) for Y any field, it suffices to calculate
/* : G/lvQTOP(X) -^G/^^Y). But this can be done, essentially because the groups can
be calculated in terms of topological information. This kind of application does not
require comparison of /* with any classical topological Gysin map a priori. Thus 4.1
without [127] gives a solution to the Riemann-Roch problem of calculating Euler charac-
teristics of coherent modules in topological terms. In fact, the link between algebraic
geometry and algebraic topology provided by 4.1 is both stronger and deeper than
classical Theorems of Riemann-Roch type.
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Remark 4.18. — If X and Y are regular schemes as in 4.1, and X -^Y is a closed
immersion, then 4.11 or 4.1 and Quillen's localization Theorem for algebraic K-theory
yields a homotopy fibre sequence

(4.21) K/r Top (X) -> K/F Top (Y) -^ K/FrTOP (X - Y).

This yields the long exact Gysin sequence for topological K-theory. This does not
require the usual hypothesis that X and Y are a smooth pair over some base
scheme S. Thus it is an absolute cohomological purity result for topological K-
theory. By Q^ degeneration of the Atiyah-Hirzebruch spectral sequence as in 4. 3, this
yields a proof of Grothendieck's absolute cohomological purity conjecture for Q^-etale
cohomology of schemes satisfying the hypotheses of 4.1. (See [130] for more details.)

5. Homotopy limits and homotopy colimits for spectra

In this section, I recount some basic results about spectra in the simplicial setting, and
extend the results of Bousfield and Kan [16] to homotopy limits and colimits of diagrams
of spectra. The results presented here are easy extensions of results in the references. I
will assume the reader has some familiarity with simplicial homotopy theory and homo-
topy limits and colimits of simplicial sets as developed in Part II of [16].

I begin by recalling from Bousfield and Friedlander [14] some notions concerning
spectra. Let S" be the standard simplicial n-sphere, defined as an n-simplex with its
boundary collapsed to a point for n^l, and as two points for n=0. Let Map*(X, Y)
be the function complex of based maps X -> Y for pointed simplicial sets X
and Y. Map(X, Y) will be the function complex of all maps.

For X a pointed simplicial set, let £X be S1 AX, and OX be Map*(S1, X). I: is left
adjoint to Q. If X is fibrant so is OX, and then it is weak equivalent to the loop space
onX.

DEFINITION 5.1. - A prespectrum X is a sequence of pointed simplicial sets X^ for
non-negative integers n, together with structure maps £ X^ -> X^+1. A map of prespectra
is a sequence of maps/^ : X^-^Y^ such that the obvious diagram involving £ /„,/„+!,
and the two structure maps commutes on the nose.

The structure maps SX^-^X^+i may be equally well described by their adjoints
X^QX^i.

The category of prespectra is just what Bousfield and Friedlander call the category of
spectra. They show it is a closed model category. Using their "stable" closed model
category structure, one shows that all the usual results about topological prespectra can
be translated into this simplicial setting. In particular, the homotopy category is the
usual stable category. There are infinite loop space machines which take symmetric
monoidal categories and manufacture spectra, just as in the topological case.

There is a particularly nice class of prespectra.
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DEFINITION 5.2. — A fibrant spectrum is a prespectrum such that each X^ is a fibrant
simplicial set, and the structure maps X^ -> QX^+i are weak equivalences.

These objects are the fibrant Q-spectra of [14]. There is a functor that associates to
every prespectrum X a fibrant spectrum QX and a natural weak equivalence
X -> QX. One version of Q replaces X^ by the direct limit of Kan complexes
lim Q^Ex^ X^+fc . Thus prespectra may be replaced by equivalent fibrant spectra.

k

5.3. The homotopy groups of a prespectrum are given for all integers k as a direct
limit of homotopy groups of the component simplicial sets

(5.1) 7i,X=lim7^X,.
n

The direct limit is over the system of bounding maps (5.2)

(5-2) Kk+nxn->^k+n^xn+l->^k+n+lxn+l. H + fc ̂  0.

If X is a fibrant spectrum, T^X is isomorphic to the homotopy group of the zeroth
space T^XO, provided k is non-negative. For k negative, TT^X is Uk+n^ for any n so
that k + n is non-negative: still assuming that X is a fibrant spectrum.

5.4. A map /: X -> Y of prespectra is a weak (homotopy) equivalence if it induces an
isomorphism on homotopy groups. A map of fibrant spectra is a weak equivalence if
each /„ is a weak equivalence of simplicial sets. For a map between connective fibrant
spectra (those with 0 homotopy in negative degrees), this is the same as requiring that fo
be a weak equivalance. A map/of fibrant spectra is a fibration if each/, is a fibration
of simplicial sets. A prespectrum is cofibrant if each structure map £ X ^ - > X ^ + i is a
monomorphism of simplicial sets.

LEMMA 5.5. — The category of fibrant spectra is closed under filtering colimits; e.g.,
direct limits. A filtering colimit offibrations is a fibration; of\veak equivalences is a \veak
equivalence.

Proof. - ^=Map*(S1, ) commutes with filtering colimits as S1 is finite. The
filtering colimit of fibrations or of weak equivalences of simplicial sets is a fibration or
weak equivalence respectively. The homotopy groups of a filtering colimit of simplicial
sets are the filtering colimits of the homotopy groups of the simplicial sets. With these
observations, the proof is easy.

5.6. Let F be a functor from a small category K to the category of fibrant
spectra. For each non-negative integer n, one has a diagram of n-th spaces of the
spectra, F^. For each object K of K, FJK) is a fibrant simplicial set. Following
Bousfield and Kan ([16], XI, 3.2) one forms the homotopy limit of this diagram,
holim F^. By [16], XI, 5, holim F^ is a fibrant simplicial set. Using the definition of
holim as an end, i.e., as a function space of a diagram ([16], XI, 3.1, 3.3), and the
definition of Q as Map*(S1, ), one easily shows that there is a natural isomorphism
(5. 3) holim Q F^ ̂  Q holim F^.

K K
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Using the fact that Q preserves fibrant simplicial sets and [16], XI, 5.6, one sees that the

weak equivalences F^ ̂  QF^+i induce weak equivalences

(5.4) holim F^ ̂  holim 0 F^ +1 ̂  ̂  holim F^ +1.
K K K

Thus the holing together with the structure maps (5.4) form a fibrant spectrum,
holim F. This spectrum is the homotopy limit of the diagram of spectra F. I also
denote it by (HT (K; F), and think of it as a fibrant spectrum valued hypercohomology of
K with coefficients in the functor F. It is a covariant functor of F, and is contravariant
in K. It inherits all the basic properties of holim for simplicial sets, including the
universal mapping property [16], XI, 3.4. (The reader may consult Gray, [48] for a
discussion of this mapping property.) These basic properties may be checked on each
component simplicial set holim F„ of the spectrum, using [16]. In particular, one has
the following.

LEMMA 5 . 7 . — Let ¥ be a functor from I x J into the category of fibrant spectra. Then
there are natural isomorphisms:

holim (J -> holim (I -^ F(I, J))) ̂  holim F ̂  holim (I -^ holim (J -^ F(I, J))).
J I I x j I J

Proof. - [16], XI, 4. 3, or the Fubini theorem for ends [48], [68], IX, 8.

LEMMA 5.8. — Let F —> G be a natural transformation of functors from K into the
category of fibrant spectra. Suppose that for each K in K, the map F(K) ->G(K) is a
\veak equivalence. Then the induced map holim F -> holim G is a weak equivalence.

Proof. - [16], XI, 5.6.

LEMMA 5.9. — Let F -> G be a natural transformation of functors from K into the
category of fibrant spectra. Suppose each F(K)-^G(K) is a fibration. Then
holim F -> holim G is a fibration.

Proof. - [16], XI, 5. 5.

5.10. For any diagram F of prespectra, one may form a prespectrum holim F with
structure maps (5.4). If F is not a diagram of fibrant spectra, Lemma 5.8 may
fail. The important Proposition 5.13 may also fail. However, Lemma 5. 7 remains
true for such F. One also has:

LEMMA 5.11. — For any fixed K, holim considered as a functor from the category of
diagrams of prespectra to the category of prespectra preserves limits. In particular, it
preserves products, pullbacks, and kernals. Further holim preserves cotensors: if X is any
based simplicial set and Map*(X, ?) is the prespectrum of maps from X to a prespectrum ?
([95], II, 1.3, Def. 3; [29], I, 2.1), then there is a natural isomorphism

(5.5) Map* (X, holim F) ̂  holim Map* (X, F).
K , K
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Proof. — This reduces immediately to proving the analogue for diagrams of simplicial
sets. Then it is an easy calculation from the definition of holim as an end; the essential
point being that the function space, limit, and end constructions in the definition of
holim all preserve limits and cotensors. Alternatively, one can use the universal mapping
property of holims, [16], XI, 3.4, or [48]. The cotensor statement is the first remark of
[16], XI, 7.6, this much requires no fibrancy.

LEMMA 5.12. — Let G->H be a natural transformation of functors from K into the
category offibrant spectra. Suppose that for each K in K, G(K) -^H(K) is a fibration
with fibre ¥ (K). Then holim F is the fibre of the fibration holim G -^ holim H. Thus,
holim preserves fibre sequences, and even homotopy fibre sequences offibrant spectra.

Proof. - F(K) is a fibrant spectrum as G(K)^F(K) is a fibration of fibrant
spectra. The last statement follows from the rest by 5.8. The rest follows by 5.9
and 5.11.

The next proposition justifies thinking of holim F=H'(K; F) as hypercohomology.

PROPOSITION 5.13. — Let F be a functor from K to the category offibrant spectra. Then
there is a natural spectral sequence abutting to the homotopy groups of
holim F=H'(K; F)

E^4 => ^H-(K;F).

Here E^q=HP(K; T^F), p^O, —co<q<co is the cohomology of the category K with
coefficients in the functor Kq F. The groups E^'q with p < 0 are zero. The r-th differential
is

d,: E^-^E^^-1.

(Note that this indexing is abnormal; the differentials don't go to the usual place!) The
convergence of this spectral sequence is discussed below in 5.44-5.48. It converges strongly
ifK has finite cohomological dimension or if there is an N such that T^F=O for ^>N.

Proof. — This spectral sequence is the direct limit of the spectral sequences for holim F^
produced by Bousfield and Kan in [16], XI, § 7. The direct limit is over the system (5.4)
with induced system of homotopy groups (5.2). There is a fringe effect and trouble
with non-abelian low degree homotopy groups in the spectral sequence of [16], XI, § 7;
in the direct system these troubles move progressively lower in degree and disappear in
our limit. (See [20], § 3, Thm. 5, Remark 1.) Alternatively, one may derive the spectral
sequence from a tower of fibrations of fibrant spectra as below, mimicking the construc-
tion in [16]. There is no fringe effect as the long exact sequence of homotopy groups
associated to a fibre sequence of spectra can be continued into negative dimensional
homotopy groups. These two approaches clearly yield the same spectral
sequence. Proof of the convergence statments is deferred till 5.48.

5.14. The homology and cohomology of a category with coefficients in a functor F
are the derived functors of inductive and projective limits evaluated at F. This general-
izes the notion of the homology and cohomology of a group with coefficients in a
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module. The reader may consult [16], XI, 6, [97], § 1, p. 91, [SGA4], [53], XI, 6, [63],
[99], [136], if she is curious.

5.15. Let F be a functor from a small category K to the category of
prespectra. Following Bousfield and Kan, [16], XII, § 2, one may form the homotopy
colimit of the diagram of n-th spaces, hocolim F .̂ One shows that suspension commutes
with formation of homotopy colimits, so that there is an isomorphism

(5.6) £ hocolim F^ ̂  hocolim £ F^.
K K

The hocolim F^ and the structure maps (5.7) form a prespectrum, hocolim F:

(5.7) £ hocolim F,, ̂  hocolim £ F^ -> hocolim F^ +1.
K K K

I also denote the prespectrum hocolim F by H. (K; F) and think of it as the prespectrum
valued hyperhomology of K with coefficients in F. This construction is covariant as a
functor in K and in F. It has a universal mapping property. Let n be the category with
objects 0, 1, 2, . . ., n, and with a unique morphism i ->j if i^j. A functor u : n -> K is
equivalent to a string of n composible morphisms in K, u(0) ->u(l) -> . . . ->u(n). A
compatible family of morphisms is a system of maps of prespectra

f(u): F(u(0))KA[n]^Z,

indexed by all non-negative integers n and all functors u : n -+ K. The maps of prespectra
must satisfy the condition that for all functors (p : k -> n,

/(u).F(u(O)) KA[(p]=/(M(p).F(M(0-^(p(0))) KA[fe].

There is a universal compatible family j (u) into hocolim F, and maps of prespectra
K

/: hocolim F-^Z corresponding bijectively to compatible families f(u) in such a way
K

that/(u)=/.;(u).

The reader may consult [125] for details. This reference contains many basic facts
about homotopy colimits and shows how to build categorical models for them.

LEMMA 5.16. — Let F be a functor from I x J into the category of prespectra. Then
there are natural isomorphisms:

hocolim (J ̂  hocolim F (I, J)) ̂ hocolim F^ hocolim (I -> hocolim F(I, J)).
J I I x J I j

Proof. - [16], XII, 3.3, or [125], 3.5.

PROPOSITION 5.17. — Let F be a functor from K to the category of prespectra. Let
E^ be a homology theory. Then there is natural spectral sequence

E^=H^K;E,F) => E^H.(K;F), p^O, -oo<^<oo.
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The r-th differential is
^r '- ^q-^^p-r^q+r-l-

The spectral sequence always converges completely, in that the E^4 are filtration quotients
of an exhaustive complete Hausdorff filtration of Ep+^H.(K; F). To get strong conver-
gence with filiations of finite length, it suffices that K have finite homological dimension
or that there is an N such that Eq F = 0 for q < N.

Proof. — The spectral sequence is the direct limit over the system (5.7) of the spectral
sequences of [16], XII, 5.7. Note as H*(K; ) is the left derived functor of colimit
along K and direct limit is an exact functor on the category of abelian groups; H* (K; )
commutes with direct limits. Thus one has an isomorphism

(5.8) Hm^H^K; E^F^H^K; Hrn^ E^FJ^H^K; E,F).

This justifies the description of the E2 term. The convergence statements result from
those of [16] and [10].

LEMMA 5.18. — Let F -> G be a natural transform of functors from K into the category
of prespectra. Suppose that for each K in K, that F(K) -> G(K) is a weak equivalence of
prespectra, i. e., it induces an isomorphism on homotopy groups. Then the map
hocolim F -> hocolim G is a weak equivalence.

Proof. — First note that the maps F^(K) -^G^(K) needn't be homotopy equivalences
until one passes to the limit in n, so this Lemma can't be deduced from the analogous
Lemma for simplicial sets.

However if there is an N such that for all K, T^F(K)=O and T^G(K)=O for all
^<N, the claimed result follows from comparison of the strongly convergent spectral
sequences for stable homotopy given by Proposition 5.17 with E*=TI*.

The connective Postnikov tower of 5.53 below, shows that F-^G is the direct limit
as N goes to —oo of weak equivalences of prespectra satisfying the above condition,
F > N < - ^ G > N < . The general result follows from the special case above by passage
to the limit, using 5.16 and the fact that direct limits are homotopy colimits (e.g., [16],
XII, 3.5, or [125], 3.8) to show hocolim commutes with direct limits.

LEMMA 5.19. — Let F — ^ G — ^ H be a sequence of natural transformations of functors
from K into the category of prespectra. Suppose for each K, F(K) —> G(K) -> H(K) is a
homotopy fibre or cofibre sequence naturally in K, i. e., there is a natural transformation
from F into the homotopy fibre of G —> H or from H into the homotopy cofibre of F —> G
which is a weak equivalence for each K. Then hocolim F -> hocolim G -»• hocolim H is a
homotopy fibre and cofibre sequence.

Proof. — By Lemma 5.16, hocolim commutes with formation of the canonical homo-
topy cofibre, as this is a homotopy colimit (e.g., [125], 3.7). Then by 5.17, hocolim
preserves homotopy cofibre sequences. It also preserves homotopy fibre sequences, as
these are the same as homotopy cofibre sequences for prespectra (e. g. [I], Part III, 3.10).
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LEMMA 5.20. — Let F be a functor from K into the category of prespectra. Let Z be
a prespectrum. Then there is a natural isomorphism (5.9)

(5.9) Z A hocolim F ̂  hocolim Z A F.
K K

Proof. - Use the fact that the functor Z A ? is left adjoint to Map* (Z, ?) and the
universal mapping property of hocolim, 5.15 or [125] 3.13, to show that the two sides
of (5.9) have the same universal mapping property, and so are isomorphic.

5.21. Let A011 be the category whose diagrams are simplicial objects; i. e., the opposite
category of the skeletal category of finite ordered sets n= {0, 1, 2, . . ., n ] . Let F be a
simplicial prespectrum; i. e., a functor from A011 into the category of prespectra. Then
each F^ is a simplicial set, and has a diagonalization | F^ |. These fit together to form a
prespectrum as n varies, |F|. By [16], XII, 3.4, there is a natural weak equivalence of
prespectra

(5.10) hocolim F^> |F | .
A°P

Let ^+op be the opposite category of the skeletal category of based finite total orders
n= { —1, 0, 1, . . ., n} for n= —1, 0, 1, . . . The set n has basepoint —1. There is a
canonical inclusion A013 -> ^+op sending n to n. A functor F from A4'013 to the category of
prespectra consists of a simplicial prespectrum { F(n), n^O} augmented to a prespectrum
F(—l) , and with extra degeneracies s_i that exhibit F ( — l ) as a simplicial deformation
retract of the simplicial prespectrum. In this case there is an augmentation which is a
weak equivalence of prespectra

(5.11) hocolim F^|F|^F(-1).
A°P

This follows for instance from the spectral sequence 5.17. The homology
H* (A011; Kq F) is the homology of a chain complex corresponding to the simplicial abelian
group Kq F by [16], XII, 5.6, and [71], § 22. The extra degeneracies 5_i combine with
the usual ones to give a simplicial homotopy that contracts this chain complex to
T^F(-I). Then in the spectral sequence of 5.17, B^=0 if p^O, while
E^ ^=7i^F(—l) . The spectral collapses, and so converges strongly by 5.17.

Alternatively, one may show that the simplicial deformation retraction of F down to
F ( — l ) induces a deformation retraction of |F| down to F(—l) , as in [73], 11.10.

For an explicit description of ^+op see [125], pp. 1597-1598. The formula for the
deformation retraction in the notation of [125] and [73], 9.1 is hi=(s_^i+l (do)1.

5.22. The other construction I want to steal from [16] is that of the total spectrum of
a cosimplicial fibrant spectrum. Let A be the skeletal category of finite ordered sets
and monotone maps. A cosimplicial object in a category is a functor from A to that
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category. Equivalently, a cosimplicial object is a sequence of objects X" for each
n=0, 1, 2, . . . in A, with coface and codegeneracy maps

d 1 : X^^X", s1: X^-^X", O^i^n.

These must satisfy the cosimplicial identities:

^d^d1^-1, f</,
d^-\ f<7,

(5.12) s^d^ 1, f= j , j+ l ,
d1-1^ f> j+l ,

s^W-1^', f>j.

DEFINITION 5.23. — A cosimplicial prespectrum is a cosimplicial fibrant spectrum if
each X1 is a fibrant spectrum. It is a fibrant cosimplicial fibrant spectrum if in addition
each cosimplicial n-th space X^ is a fibrant cosimplicial simplicial set in the sense
of [16], X, 4.6.

DEFINITION 5.24. — For X a cosimplicial prespectrum, the total prespectrum Tot X is
the prespectrum whose n-th space is the Bousfield-Kan total complex of the cosimplicial
space X^, (see [16], X, 3). The structure maps are the composites of the maps induced
by X,, ->• QX^+i and the canonical isomorphism

(5.13) Tot(QX^)=Tot(Map*(S1, X^))^Map*(S1, TotX^i)=nTotX^i.

A map X -> Y of cosimplicial fibrant spectra is a fibration if for each n, X^ -> ¥„ is a
fibration of cosimplicial spaces in the sense of [16], X, 4.6. A map of cosimplicial
fibrant spectra is a weak equivalence if each X,, -^ ¥„ is a weak equivalence in the sense
of [16], that is, if each Xj, -> Yj, is a weak equivalence of simplicial sets. This condition
is equivalent to each X1 -> Y1 being a weak equivalence of fibrant spectra.

LEMMA 5.25. — For X a cosimplicial prespectrum, there is a natural map of prespectra

(5.14) TotX -^ holimX = 1HT (A? X).
A

IfX is a fibrant cosimplicial fibrant spectrum, this map is a weak equivalence.
Proof. - [16], XI, 4.4.

5.26. An augmentation of a cosimplicial prespectrum X is a prespectrum Z and a
map e : Z -> X° such that d°G=d1 e. Equivalently, one may regard Z as a cosimplicial
prespectrum where all s1 and d1 are identity maps, then an augmentation is a cosimplicial
map e : Z -> X. Then Z=TotZ and the map (5.14) with Tote induces an augmentation

(5.15) Z=TotZ-^TotX-^holimX.
A

LEMMA 5.27. — The functor Tot preserves limits. Further Tot preserves the cotensor
Map* (X, ) for any space X.
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Proof. — This immediately reduces to the analogous properties of Tot on the category
of cosimplicial simplicial sets. These follow from the definition in [16] of Tot as an end
or function space, as in Lemma 5.11.

LEMMA 5.28. — Let X** be a bicosimplicial prespectrum. Then there is a natural
isomorphism

Tot(p -^ Toi(q -^ Xpq))^Toi(q -> Tot(p -> X^)).

Proof. — Ends commute ([68], IX, 8) and Tot preserves cotensors. The result follows
from these observations and the construction of Tot in [16].

PROPOSITION 5.29. — Let X be a fibrant cosimplicial flbrant spectrum. Then there is
a natural half-plane spectral sequence abutting to n^ Tot X

E?'4 => 71̂  Tot X.

The groups TC^X* form a cosimplicial abelian group, and the E^ term is given by

f^X^nkers0 Pikers^.. . Ukers^-1 for p^O,i-j i "̂  \
\ 0, p<0.

The indexing is peculiar, so differentials run

A • Fp.4_).Fp+»' .4+»'- i
Uy . Gy ———> Sly

Convergence is discussed below in 5.44-5.48. If there exists an N such that 7^X^=0 for
<?>N, then the spectral sequence converges strongly.

Proof. — As does 5.13, this follows from the analogous Theorems in [16], especially
[16],X,§6.

5.30. The spectral sequence of 5.29 specializes to that of 5.13 under "cosimplicial
replacement of diagrams", as in [16], XI 7, XI 5. On the other hand, it may be deduced
from the spectral sequence of a tower of fibrations 5.43, as in [16], X, 6.1.

LEMMA 5. 31. — In the spectral sequence of 5. 29, E^'4 is the p-th cohomology group of
the cochain complex

8 8 8

.^ ^x^^x2^...,(5.16) ^X^^X^^X2

where

8 : n.X^n.X^1 is Z(-iy\(^).
1=0

This is also true for the E^ term of the spectral sequence of 5. 13 for holim along A.
Proof. - This in none other than [16], X, 7.2. The equivalence of the cohomology

of the normalized and unnormalized chain complexes of [16], X, 7.1 is obtained
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from [71], 22.3 applied to simplicial objects in the opposite category of abelian groups,
then dualized to a statement about cosimplicial abelian groups. Recall that dualizing
an abelian category converts sums to intersections and images to kernals.

The last statement follows by compatibility of the two spectral sequences, [16],
XI, 7.5. (Note it is not necessary to assume that X is a fibrant cosimplicial fibrant
spectrum to apply the last statement of Lemma 5. 31 to 5.13.)

Scholium of Great Enlightenment 5.32. — The category of simplicial abelian groups
and simplicial homomorphisms is equivalent to the category of non-negatively graded
chain complexes as was proved by Kan and Dold ([26], [61], [22], 5.3, [71], 22.4). (Here
chain complex means topologist's and not algebraic geometer's chain complex, so 8
lowers degrees by 1.) Under this equivalence a simplicial abelian group A* corresponds
to the chain complex (5.17)

do-d^+d^-d^ do-d^+d^ dQ-d^
(5.17) . . . ——————^A^/imso+imsi————»-Ai/im5o——> A().

The homotopy groups of the simplicial abelian group correspond to the homology groups
of the chain complex ([71], 22.3). A simplicial abelian group may be delooped by
applying the bar construction, yielding another simplicial abelian group. Thus a simpli-
cial abelian group gives rise to a connective spectrum of simplicial abelian groups. Note
that simplicial groups are always fibrant, and Q preserves products, and so preserves
simplicial abelian groups. The category of spectra of simplicial abelian groups and
homomorphisms is equivalent to the category of chain complexes which are not
necessarily 0 in negative degrees. Up to homotopy, looping and delooping an abelian
group spectrum corresponds to shifting the gradings of the chain complex up or
down. The homotopy groups of the abelian group spectrum are isomorphic to the
homology groups of the corresponding chain complex. The homotopy category formed
by inverting the weak equivalences of abelian group spectra is the category formed by
inverting homology isomorphisms of chain complexes. This is the derived category of
abelian groups, the natural home of homological algebra as formulated by Verdier. This
category is treated in [93], [50], [SGA 41/2] C.D., and is used extensively by Grothendieck
and his school. Quillen was led to the idea of a closed model category [95] in developing
an analogous formalism for unstable homotopy theory, with the intent to develop a
homotopy theory for commutative algebras for use in deformation theory [56].

By Lemmas 5.11 and 5.27 holim and Tot preserve products and zero, and so
preserve abelian group spectra. A simplicial abelian group is always fibrant; similarly a
cosimplicial abelian group spectrum is always a fibrant cosimplicial fibrant spectrum by
[16], X, 4.9. It is natural to ask what the constructions holim and Tot become when
restricted to the derived category.

For K a small category, a functor F from K into the category of abelian group spectra
is a functor from K into the category of chain complexes. Then holim F=IHT(K; F) is
the chain complex which is the evaluation at F of the total right derived functor of the
limit along K. The fe-th homotopy group of H'(K; F) is the —k hypercohomology
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group of K with coefficients in the system F. The spectral sequence of 5.13 is a
reindexing of the hypercohomology spectral sequence. This is usually written as

(5.18) EI-^H^K; H^(F)) => H^(K;F),

with H*(F) the cohomology of F considered as a cochain complex by reindexing. In
terms of the homology of the chain complex this is

(5.19) H-^(F)=H,(F)=7r,(F).

Under this identification, the differentials and grading in the spectral sequence 5.13
translate into the usual form for the hypercohomology spectral sequence.

In particular, for K=G a group, F is a chain complex on which G acts, n* [HT(G; F)
is the hypercohomology of G with coefficients in F, and 5.13 is the usual group hyperco-
homology spectral sequence.

The situation with respect to Tot is similar. Dually to the theorem that the category
of simplicial objects in an abelian category is equivalent to the category of non-negative
chain complexes there, one has that the category of cosimplicial objects is equivalent to
that of non-negative cochain complexes. The category of cosimplicial abelian group
spectra is equivalent to a category of bicomplexes. The functor Tot corresponds to a
functor sending a bicomplex to its total complex. The spectral sequence 5.29 becomes
the usual spectral sequence for the homology of a bicomplex.

The homotopy colimit along K is up to homotopy taking hyperhomology of K. The
details of the correspondence here are a bit awkward.

Thus holim, Tot, and hocolim in the category of prespectra are generalizations of the
fundamental constructions of homological algebra in the category of abelian
spectra. The properties I have noted above are generalizations of the fundamental results
of homological algebra. This generalization of homology theory for chain complexes to
homotopy theory for spectra allows one to use homological ideas in algebraic K-
theory. The possibility of using homotopy theory as a substitute for homological
techniques in K-theory was the reason algebraic topology was introduced into algebraic
K-theory by Swan and Quillen ([120], [97]) when chain complex techniques failed to yield
reasonable higher K-groups. This point of view was anticipated by Dold and Puppe [27].

The homotopy category of spectra is a triangulated category ([92], [93], [52]), in fact it
was the original example of a triangulated category given by Puppe. Because much of
the Verdier treatment of homological algebra works in any triangulated category, it
applies directly to the stable category. Using [14] and [16], one may show holims and
hocolims induce the appropriate total right and left derived functors on the stable
category. This shows such derived functors exist, which is the only thing in
[SGA41/2] C.D. that may fail for a general triangulated category. This captures the
substance of homological algebra. The long exact homotopy sequence of a homotopy
fibre sequence and the spectral sequences 5.13, 5.17, and 5.29 allow one to display this
substance in its usual clothing of abelian categories and exact sequences.
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LEMMA 5. 33 (Diagonalization Lemma). — Let F : A x A -)• Spectra be a bicosimplicial
fibrant spectrum. Let d : A -> A x A be the diagonal, and let diag F be the cosimplicial
fibrant spectrum F d. Then d induces a natural weak equivalence

(5.20) holim F ̂  holim (diag F).
A x A A

Combined with 5. 7, this yields a natural weak equivalence

(5.21) holim (p ̂  holim (q -> F (p, q))) ̂  holim (p -^ F (/?, /?)).
A A A

Proo/. — As usual, the result will follow once the analogue for cosimplicial fibrant
simplicial sets is proved. By appeal to [16], XI, 9.2, it suffices to show that d : A -> A x A
is left cofinal in the sense of [16]. This is, I must show that for each object (p, q) of
A x A that the comma category d / ( p , q) of d objects over (/?, q) is contractible. An
object of this category is an n in A and a pair of morphisms n-^p, n->q in A. A
morphism in the comma category is a morphism m -^ n is A compatible with the maps
to p and q. The objects may be identified to maps A[n]-^Ajj?] xA[g]; i.e., to the
simplices of A[p] xA[^]. A morphism is a simplicial operator carrying one simplex to
another. Thus d / ( p , q) is the category of simplices of A[/?]xA[<?]. By a Theorem of
Quillen, [56], V, 3.3, the nerve of this category is weak equivalent to A[p]xA[^], and
so is contractible. Alternatively, in the terminology of [123], d / ( p , q) is the Grothendieck

construction A015 G, where G : A015 -^ Cat sends n to the category with only identity

maps and whose objects are the n-simplices of A[7?]xA[^]. Then the nerve NG(n) is
the constant simplicial set with one vertex for each n-simplex of
A [p] x A [q\. By [123], 1.2 and [16], XII, 4. 3 there are weak equivalences

/ r \
(5.22) N ( d / ( p , q)) ̂  N A015 G ^ hocolim NG ̂  diag NG ̂  A [p] x A [q] ̂  ^.

\ J / A°P

5.34. I need certain facts about mapping spectra. For X a prespectrum and N an
integer, then X [N] is the shifted prespectrum whose n-th space is

(5.23) X[NL=XN^,

together with the obvious structure maps. The prespectrum X [N] is weak equivalent to
0-^X and ^X for any integer N. For X, Y prespectra let Map*(X, Y) be the
prespectrum whose n-th space is the Bousfield-Friedlander simplicial set of maps of
prespectra ([14], 2.1), Map*(X, Y[n]). A /^-simplex of this simplicial set is a map of
prespectra X A (A [p] LJ ̂ ) -> Y [n]. The structure maps

(5.24) Map* (X, Y [n]) -^ Q Map* (X, Y [n +1]),

are induced by the obvious weak equivalences of prespectra Y[n] -^OY[n+l]. The
mapping prespectrum Map*(X, Y) is a covariant functor of Y and a contravariant
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functor of X. If Z is a based simplicial set, there is a natural enriched adjunction
isomorphism

(5.25) Map* (X A Z, Y) ̂  Map* (X, Map* (Z, Y)).

If X is a cofibrant prespectrum and Y is a fibrant spectrum, then Map*(X, Y) is a
fibrant spectrum whose KQ is the set of maps from X to Y in the stable category. All
these assertions are easy consequences of the corresponding results for simplicial mapping
spaces of prespectra in [14].

PROPOSITION 5.35 (Universal coefficient Theorem). — Let ¥ be a functor from the
small category K to the category of cofibrant prespectra. Let Z be a prespectrum. There
is a natural isomorphism of prespectra, which are fibrant spectra ifZ is:

(5.26) Map*(H. (K; F), Z) ̂  H' (K°P, Map* (F; Z)).

Proof. — This follows by comparing the universal mapping property of a homotopy
limit to the dual universal mapping property of a homotopy colimit in light of the
adjointness of A F and Map*(F, ). Alternatively, it follows by adapting the proof of
the analogous theorem for simplicial sets, [16], XII, 4.1.

5.36. In the Lemmas on Tot, the hypothesis that X is a fibrant cosimplicial fibrant
spectrum occurs repeatedly. Tot does not have good homotopy properties for X not
satisfying this condition. I'll now show how to get X that do satisfy it.

LEMMA 5. 37. — IfX is a group object in the category of cosimplicial fibrant spectra, it
is a fibrant cosimplicial fibrant spectrum. If f:X->\ is a homomorphism of group
objects, and for each k and n the map of simplicial groups X^ —> Y^ is a surjection, then f
is a fibration of cosimplicial fibrant spectra.

Proof. - This follows from [16], X, 4.9.

LEMMA 5. 38. — There is a functor which associates to each fibrant spectrum X a group
object in the category of spectra X'. There is a sequence of functors and natural weak
equivalences of fibrant spectra connecting X to X'.

Proof. — The corresponding result in Kan's category of simplicial spectra was proved
by Kan as Corollary 5.6 in [62]. The Lemma follows using the chain of equivalences
between the Bousfield-Friedlander category of prespectra and Kan's category,
[14], 2.5. As right adjoint functors preserve products and the terminal object, they
preserve group objects. Geometric realization also preserves finite products and the
terminal object, so it preserves group objects. Thus the functors of [14] take a group
object in Kan's category to a group object in the Bousfield-Friedlander category of
prespectra. As all the adjunction maps in [14], 2. 5 are weak equivalences in the stable
sense of 5.4, if one takes a prespectrum X, pushes it into Kan's category, converts it
into a group spectrum, and then brings it back, the end result is connected to the original
X by a chain of prespectra and natural weak equivalences. If all the original n-th spaces
X^ are fibrant, so are all the n-th spaces in the chain. Some of the prespectra Y in the
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chain might not be fibrant spectra because Y ^ ^ O Y ^ + i might fail to be a weak
equivalence. To avoid this, replace all Y in the chain with Y',

(5.27) Y^Um^Y^,
k

with the maps in the system given by the structure maps. This is the simplicial analogue
of [72], Thm. 6. As the homotopy groups of a direct limit of simplicial sets are the
direct limits of the homotopy groups, the resulting Y' is a spectrum which is a weak
equivalent to the original prespectrum Y. If all Y^ are fibrant, Y' is a fibrant spectrum,
and it is a group object if Y is. This replacement yields the chain of weak equivalences
of fibrant spectra that is sought.

5.39. The naturality in 5.38 allows one to replace diagrams of fibrant spectra by
weak equivalent diagrams of fibrant group spectra. In particular, a cosimplicial fibrant
spectrum may be replaced by a weak equivalent cosimplicial group spectrum, which
by 5.37 is a fibrant cosimplicial fibrant spectrum.

Note also by 5.11 and 5.27 that holim and Tot preserve group spectra, and so
preserve this guarantee of fibrancy.

5.40. The last results collected in this section concern towers of fibrations, Postnikov
towers, the spectral sequence of a tower, and the convergence problem for such spectral
sequences.

A tower of fibrations is a sequence of fibrations of fibrant spectra X (n),

(5.28) . . . - .X(n)-^X(n- l ) -^ . . . ^X(l)->X(0) ^X(-l)=^.

An extended tower continues the sequence with X (n) for negative n, requiring lim X (n)
to be contractible in place of X ( — 1).

The sequence of fe-th spaces X^( ) of a tower is a tower of fibrations in the sense
of [16], IX. Let X be the fibrant spectrum limX(n); it is weak equivalent to the holim
of the inverse system.

LEMMA 5.41. — For X( ) a tower of fibrations and all fe, there is a natural short
exact Milnor sequence

0 -»• lim17ik+1 X (n) -> n^ (lim X (n)) -> lim n^ X (n) -> 0.
n n n

Proof. - This follows from [16], IX, 3.1, or from [10], 2.2.
Recall that if 7^+iX(n) satisfies the Mittag-Leffler condition as n varies, then lim1

vanishes.

5.42. Let F(n) be the fibre of X(n) -^X(n-l). There is a long exact sequence of
homotopy groups

(5.29) . . . ^7CfcF(n)^7CfcX(n)^7CfcX(n-l)^7tfc_iF(n)-^ . ..
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Arguing as in [16], IX, § 4, one may produce an exact couple from these sequences for
various n, and then a spectral sequence by the usual techniques. Because the exact
sequence (5.29) is not amputated at KQ but extends to ̂  for fe<0, and because all the
Ttfc are abelian groups, this spectral sequence does not have the fringe troubles afflicting
the analogous spectral sequence for spaces of Bousfield and Kan ([16], IX, 4). This is
why it is simpler to do K-theory with spectra rather than with spaces.

These observations prove
LEMMA 5.43. - For a tower of fibrations X( ) with fibres F( ) as in 5.42, there is

a spectral sequence mth
\^-^{P\ /^O,
^ 0, p<0.

Wl=

The differentials run
d ' VP^ __v vp+r'fq+r~l
Uy . Cly ———> £Ly

The differential dy is induced by P. (a'"1)"1. y in terms of the maps in (5.29). In particu-
lar, d,=^y.

The spectral sequence abuts to TC* lim X (n).

E?'' => 7i,-^imX(n).

Convergence is discussed below 5.44-5.48. There is a similar spectral sequence for
extended towers of fibrations in which p is allowed to be negative.

5.44. The spectral sequence for Tot of 5.29 is the spectral sequence of the tower (5. 30)
as in [16], X, 6.1

(5.30) ... ^Tot^(X)^ToUX)-^... -^Toto(X)^.

The spectral sequence of 5.13 for holim is obtained from that of 5.29 by cosimplicial
replacement of diagrams as in [16], XI, 7.1. Thus the spectral sequence of 5.43 encom-
passes those of 5.13 and 5.29, and it suffices to discuss convergence for it.

The theory of convergence of such spectral sequences is due to Boardman, and his
treatment has finally appeared in type [10]. Another briefer treatment is [34],
Appendix. I follow the treatment of Bousfield and Kan in [16], IX, 5.

5.45. Let X (n) be a tower of fibrations, with X = lim X (n). Define

(5.31) ^ X (n)^ = image [̂  X (n 4- r) -> ̂  X (n)],
Q^ Tifc X = image [7^ X -> n^ X (n)].

There are natural maps Q^ ̂  X -> Q^ _ i ̂  X, Q^ ̂  X -> n^ X (n)00. Define

(5.32) ^^kerrQ^X-.Q^^X].
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In the spectral sequence of 5.43, note E^.^=ker^. is a subobject of E^4 if p<r, as
g p - r . q + r + i ^ Q for/?-r<0. Let E^4 be the inverse limit of the system (5.33)
( ^ IT\ cF^'^c: cpp.4 cup.qr
V3 - -3^ • • • ^^r ^ • • • ^^p^^^^p+r

Then using 5.41 and [16], IX, 2.2; IX, 3.4, one shows that the natural maps induce
isomorphisms for all r

(5. 34) lim Q^ Tifc X ̂  lim n^ X (n)^.

The natural maps also induce an inclusion (5.35) as follows from the description of
E?^ in terms of the nq-pX(p)(r) in [16], IX

(5.35) ^p+fcgES^'.

It is in this sense that the spectral sequence abuts to TI*X: the Q^TI^X are the cokernals
of a filtration of TI*X, and the filtration quotients e** are subobjects of E^*.

DEFINITION 5.46. — For any k, the spectral sequence converges completely to K^ X if:
(i) lim^+^^O.

(ii) ^^^E^-^ for all/?.
The spectral sequence converges completely if these conditions hold for all k.

The spectral sequence converges strongly if in addition:
(iii) For each (/?, q) there exists an r with E^'^E^4.
(iv) For each fe, E^^^O except for finitely many p.
Note condition (i) implies by 5.41 and (5. 34) with r=0 that

(5.36) 7ifcX=limQ^7i,X,
n

so that the filtration of n^X is complete and Hausdorff.

PROPOSITION 5.47 (Boardman). — In the spectral sequence of a tower offibrations, for
each k the condition

(5.37) lin^E^-^O for all p,
r

is equivalent to the combination of the two conditions

lin^TifcX^)^,
(5.38) ^

^p+fc^E^-^ for all p.
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In particular, if

(5.39) Im^E^-^O^m^Ef'^^1 for all p,

then the spectral sequence converges completely to TI^X.

Proof. — See [16], IX, 5.4, or for a more detailed proof, either [34], Appendix,
or[10],9.3.

LEMMA 5.48. — Ifdy=0for all r^N in the spectral sequence, then E?;*=E^* and the
spectral sequence converges completely. The spectral sequence converges strongly if one
has either

(i) 3 a, E^ = 0 for all q unless 0 ̂ p ̂  a;
(ii) 3 b, E^ q = 0 for all p unless q^b (and p ^ 0).

The filtration ofn^X has length at most a in case (i) and at most b—k in case (ii).
Proof. — The first statement follows immediately from 5.47. If (i) or (ii) holds, the

usual calculation reveals that the dy differentials into or out of E^ are zero if r>p and
either r>b—q-\-\ or r>a—p. Thus for r large enough for p and q, E^q=Ep^q and so
lim1 E^;!fq=0. Now 5.47 yields complete convergence. Also Ep^p+k contributes a non-

r

zero filtration quotient to TC^X only if O^p^a or O^p^b—k. Thus in case (i) or (ii)
hold, convergence is strong and the filtration has bounded length.

5.49. Let X^(n) be a direct system of towers of fibrations indexed by a running over
a directed category. Then X(n)= lim X,(n) is also a tower of fibrations. As direct

a
and inverse limits do not in general commute, it will not generally be true that the
canonical map

(5.40) lim lim X, (n) -^ lim lim X, (n)
a n n v.

is a weak equivalence. The spectral sequence of the tower X (n) is the direct limit of
the spectral sequences of the towers X,(n). However, the former spectral sequence may
not converge completely even if all the sepctral sequences for the X, do, as convergence
is expressed by conditions on inverse limits which are not preserved under direct
limits. Even if the spectral sequence does converge completely, it converges to TC*X
which is not necessarily lim n^Xy. A uniform convergence condition does allow pas-

Ot

sage to the direct limit however. In particular.

LEMMA 5.50. — Let Xy(n) be a direct system of toners of fibrations with direct limit
tower X(n)= lim X,(n). Suppose there exists an a or b independent of a such that the

a
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spectral sequence of each tower X,(n) satisfies condition (i) or (ii) of Lemma 5.48. Then
the spectral sequence of the tower X (n) satisfies the same condition. All the spectral
sequences converge strongly. The map (5.40) is a weak equivalence.

Proof. - All but the last statement follows immediately from 5.48 and 5.49. As the
spectral sequence for X(n) is the direct limit of the spectral sequences for XJn), an easy
induction using (5. 32) and 5.46 (ii) shows that for all k and n

(5-41) limQ^X^Q,7r,X.
a

But for n^a+1 in case (i) and for n^b-k+1 in case (ii), (5.36), 5.48, 5.46(ii),
and (5. 32) identify the isomorphism (5.41) to an isomorphism

(5.42) lim 7i,X^7i,X.

This isomorphism shows that (5.40) is a weak equivalence.

LEMMA 5.51. — There is a functor associating to each fibrant spectrum X an extended
tower offibrations
(5.43) . . . - ^ X < 2 > - ^ X < 1 > - ^ X < 0 > - > X < - 1 > - ^ . . .

such that X = lim X < n ), Kq X —> n^ X <( n ) is an isomorphism if q ̂  n, and K X < n ) =0

if q>n. The functor X i — ^ X < n > preserves products, filtering colimits, and weak equi-
valences.

Proof. — Check that Moore's functorial construction of the Postnikov tower for fibrant
simplicial sets preserves products and filtering colimits. Details of this construction may
be found in [87], or [71], § 8. For X a fibrant spectrum, let X < n > be the prespectrum
whose k-ih space is X f c < n + A ; > , the n+^c-th stage in the functorial Postnikov tower
for Xfc. The induced map X j^^+^ - ^QX^+^n +f e + l ) is a weak equivalence, so
X < n > is a fibrant spectrum. The other assertions follow easily from the properties of
simplicial Postnikov towers.

5. 52. For X an abelian group spectrum, the X < n > are abelian group spectra. Under
the correspondence of Scholium 5. 32, the Postnikov tower is the canonical good filtration
of a chain complex, the CT not T of [50], p. 69 or the T not cr of [SGA 4], XVII, 1.1.13.

For a general fibrant spectrum X, the fibre of X^nY-^X^n—l) is an Eilenberg-
MacLane spectrum, and hence an abelian group spectrum. The Postnikov tower may
be used in devissage arguments to show that the general behavior of Tot and H'(K; )
on spectra is determined by the classical behavior on abelian groups.

To apply this devissage method, it must be shown for F a functor from K into the
category of spectra such that each F(K) has only one-zero homotopy group, TI^F(K),
then there is a natural weak equivalence from F to a functor F' from K into the category
of abelian group fibrant spectra. For K a point, this is standard, but the general case
cannot be deduced from this. Instead, one proceeds as follows.

For X^ a simplicial set, let Z®X^ be the free simplicial abelian group on X^, and ZX^
the kernal of the augmentation Z®X^ -> ~S,®pi. The homotopy groups of ZX^ are the
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reduced homology groups of the simplicial set X^. For X^ based, there is a natural map
X^-^ZX,, sending x to l (x)x—l®^. This map has an obvious universal mapping
property for maps of X into simplicial abelian groups. (See [16], I, § 2 for a similar
construction.)

For X a spectrum, let ZX be the prespectrum whose n-th space is ZX,,, and whose
structure map

(5.44) ZX^ZOX^^OZX^,,

is the simplicial abelian group homomorphism induced by applying Z to the structure
map of X and the map given by the universal mapping property applied to 0 on the
universal map X ^ + ^ ^ Z X ^ + i . Taking the direct limit over the structure maps as
in (5.27) one obtains a fibrant abelian group spectrum Z'X and a map of spectra
X - > Z ' X . The homotopy groups of Z'X are the homology groups of the spectrum X,
and the map n^ X -> n^ Z' X == H* (X) is the Hurewicz map.

The construction is strictly functorial. So if F is a functor from K to the category of
fibrant spectra, Z' F is a functor from K to the category of fibrant abelian group spectra,
and F —> Z' F is a natural transformation. If F has only one non-vanishing homotopy
group TI^F(K), the Hurewicz Theorem applied pointwise shows TI^F-^Z'F is an
isomorphism. Further, F -> (Z' F) < n > is a weak equivalence, and (Z' F) < n > is a diag-
ram of fibrant abelian group spectra as sought.

Under the equivalence of the category of fibrant abelian group spectra and the category
of chain complexes of 5.32, the fibrant abalian group spectra with non-zero homotopy
groups only in degree n correspond to chain complexes with homology only in
degree n. It is well-known that the corresponding subcategory of the derived category
of an abelian category ^ is equivalent to the category ^ via the homology
functor H^. See [50], I, 7.2 for some details.

Thus the functor n^ induces an equivalence from the homotopy category of functors
from K into the category of fibrant spectra with n^ as the only non-zero homotopy group
to the abelian category of functors from K into the category of abelian groups. The
inverse equivalence sends an abelian-group-valued functor A to the canonical Eilenberg-
MasLane spectrum K(A, n). Note this equivalence sends short exact sequences of
abelian-group-valued functors to homotopy fibre sequences of spectra.

5. 53. The dual of the Postnikov tower is sometimes useful. For X a fibrant spectrum,
let X > n < be the fibre of the map X - ^ X < n > of 5.51. Then 7^X>n<-^X is an
isomorphism if q>n, and KyX > n < =0 if q^n. X is the direct limit of the X > n < as n
goes to —oo. The functor X i — ^ X ) n < preserves products, filtering colimits, and weak
equivalences. All this is immediate from 5. 51.

5.54. Consider the spectral sequence of a tower of fibrations in 5.43,

E?'' ^ ^-^limX(n),(5.45)
A ' V P ^ < l _ . V P + r , q + r - lUy . C.y —> SLy
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Pick any s ̂  1 and set

{ cP.4 —pP + (s - l ) (4-P) .4+(s- l ) (4-P)
(5 46) ^s-l+r-^r
v ' / F P + ( s - l ) ( p - q ) , q + ( s - l ) ( p - q ) _ p p , q

°s-l+r "^r •

Then the differential d, of (5.45) is identified to a differential
ri,+,_i : £P^-^gp+^^-i^+r+s-2 ^ ̂  ̂  spectral sequence (5.45) is reindexed to a
spectral sequence

(5.47) ef^ => ^_,lmiX(n).

The spectral sequence, the filtration on 7c*limX(n), and the underlying exact couple
are all unchanged by this reindexing, only the labels and not the real objects are changed.

It will be useful to reindex 5.43 when its E^ term has the form expected of an E^
term. As an example apply B-0*(K,« ) to a Postnikov tower of functors X < n > .
H" (K; X < n » is a tower of fibrations with inverse limit H' (K; X) by 5.9 and 5.7. The
E?'4 term of the spectral sequence 5.43 for this tower is by 5.13

E^H^-^K; TT,X).
T

Reindexing this spectral sequence to begin with an E2 term yields the usual spectral
sequence 5.13.

The discussion of convergence in 5.44-5.50 remains valid for reindexed spectral
sequences, as nothing essential is changed by the reindexing. In particular, since 5.48
is valid with any Ey term replacing E^, it is valid for reindexed spectral
sequences. Similarly 5. 50 still holds.

The question of convergence of the general spectral sequence of an extended tower of
fibrations is the delicate problem of convergence of whole-plane spectral sequences as
discussed by Boardman in [10], § 10. However the vanishing of homotopy groups in a
range for the extended Postnikov tower and for many towers derived from it constrain
its spectral sequence to some half-plane. Reindexing then results in a usual half-plane
spectral sequence for which the convergence results of 5.44-5. 50 are valid.

LEMMA 5.55. — Let X(n)^X'(n) be a map between towers of fibrations. Suppose it
induces a weak equivalence of fibres 5.42 for all n : F(n) ̂  F'(n). // the towers are
extended towers, assume that for each k there is an N such that for all n<N,
Tifc X (n) = Tifc X' (n) = 0. Then the induced map lim X (n) -^ lim X' (n) is a weak equivalence.

Proof. - By induction on n, starting with n=-\ or n=N-l respectively, the long
exact sequences (5.29) and the hypothesis on F(n) imply that ^X(n) -^X^n) is an
isomorphism. The result follows by the Milnor sequence 5.41.

5.56. Lemma 5.55 is a form of the spectral sequence comparison theorem for the
spectral sequence 5.43. Amazingly, it doesn't require that the spectral sequence comple-
tely converges. See Boardman's paper [10], 8.2 for a similar phenomenon. The hypoth-
esis of 5.55 for extended towers is usually met by towers derived from a Postnikov
tower. This lemma is very useful in devissage arguments.
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APPENDIX A
K-THEORY SPECTRA AND BOTT ELEMENTS

A.I . For X a scheme, consider the Quillen Q-categories constructed from the exact
categories of vector bundles and of coherent modules on X. The direct sum operation
on the exact categories induces a symmetric monoidal structure on the Q-
categories. Feeding this input into an infinite loop space machine (e. g., [74], [100],
or [125], Appendix) one obtains a spectrum. The loops on this spectrum is denoted
K (X) for the vector bundle case, and G (X) for the coherent module case. The homotopy
groups of this spectrum are Quillen's higher K-groups and G or K'-groups of X
respectively.

If X =Spec(R) is the spectrum of a ring, the spectrum K(X) may be produced directly
by applying an infinite loop space machine to the symmetric monoidal category of
projective R-modules and isomorphisms.

Up to homotopy, the spectra obtained are independent of the choice of machine by
May's uniqueness Theorem ([76], [77], 4. 3). The two ways of constructing K(X) for X
affine agree by the infinite loop version of Quillen's OBQ= + theorem,
[125], § 5. Choose a machine so K(X) and G(X) are both fibrant spectra and cofibrant
prespectra.

A. 2. The tensor product of vector bundles and the tensor product of a vector bundle
with a coherent module are exact functors in both variables, and so induce pairings of
spectra

f K(X)AK(X)^K(X) ,
( ' } [ K(X)AG(X)->G(X).
If X is affine, K(X) is even an E^-ring spectrum. In any case K(X) is a homotopy
commutative and associative ring spectrum. See [137], [75] corrected by [78], [77], [140],
and [134] for details.

There is a map K(X)-^G(X) induced by the forgetful functor. If X is separated
and regular noetherian, this map is a weak homotopy equivalence by [57], §7.1.

A. 3. K(X) is a contravariant functor of X, so a morphism of schemes /: Y-^X
induces a map of spectra K (X) -> K (Y) which is strictly compatible with the
pairing (A. 1), and so also compatible with the pairing up to homotopy. G(X) is a
covariant functor of X with respect to finite maps of schemes, and is a functor up to
homotopy with respect to proper maps ([97], § 7, # 2, augmented by [43],
Thm. 4.1). For/: Y -> X finite, the diagram (A. 2) strictly commutes.

K ( Y ) A G ( Y ) - G ( Y )Al^
(A. 2) K ( X ) A G ( Y ) A

1 A/<N
K(X) A G(X)-^G(X)

This is the projection formula of [77], 2. 3.
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A. 4. If R is a ring, K(R)=K(Spec(R)) results from applying a machine to the
bisymmetric monoidal category of finitely generated projective R-modules. This category
has as a subcategory the free symmetric monoidal category on GL^ (R). This inclusion
is even a map of bisymmetric monoidal categories
(A. 3) y : u^xGLi(R)"^uG4(R)-^uAut(P).

n n P

It induces a map of spectra, in fact a E ̂  -ring map as y preserves tensor products as
well as sums. Using the generalized Barratt-Priddy-Quillen-Segal Theorem (e. g. [125],
Lemma 2. 5), one sees that this map is a map of ring spectra from the suspension
spectrum of BGLi (R).

(A. 4) y : ^(BGL^U^-^R).

A. 5. The modn Moore spectrum Z°°/n is the cofibre in the stable homotopy category
of multiplication by n on the sphere spectrum £°°. For any spectrum Z, one has a
cofibre or fibre sequence

n r

£°° A Z -> £°° A Z -^ ̂ /n A Z
(A. 5) ^| ^]

Z Z
The long exact homotopy sequence of (A. 5) yields the universal coefficient exact

sequence (A. 6)
(A. 6) 0 -> (KpZ)W/n -> ̂ (S°°/nA Z) -^ Tor^.i Z, Z/n) -> 0.

This sequence splits if n is odd or if 4 divides n by [2], 2. 7.
The spectrum £°°/n is a wedge of S^/r for the primary factors of n, thus we may as

well restrict n to be a prime power, (v.
Let K/F(X), G/r(X) be K^AZ00/^ G(X)A5;00/^ respectively. The homotopy

groups of these spectra are the K and G groups of X with coefficients Z/F;
K/?*(X), G/ft(X). By an easy S-duality argument, these are canonically equivalent to
the groups of homotopy classes of maps from Z^/^S* into K(X) or G(X). This
alternate definition often appears in the literature, e. g. [89].

A. 6. If />3; E00/^, and so K/F(X), is a homotopy associative and commutative ring
spectrum by [2] (or see [89], 8. 5, 8.6 and take S-duals).

If /=3, and 9 divides F; S00/^, and so K/F(X), are homotopy associative and commuta-
tive by [131], Thm. 6.

If 1=2, and 16 divides F; £°°/r and K/F(X) are homotopy associative and commutative
by [90].

The spectra S°°/3 and K/3(X) have a unital multiplication but associativity may
fail. £°°/4 and K/4(X) have a unital multiplication but associativity and commutativity
may fail. The mod 2 spectrum K/2(X) may not even have a multiplication! These
results are found in [2]. This mess at the primes 2 and 3 provides a counterexample to
the teleological argument.
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A. 7. Consider R = Z [e2^] where v = 1 i f ; > 3, v = 2 i f ; = 3, and v = 4 iH = 2. There
is a map of ring spectra

(A. 7) E^B a,v LJ^) -^ £°°/r(BGLi (R) U ^) ̂  K/r(R).

The class e2"11^ is an F torsion class in n^ (Bujv), and is the Bockstein of a unique class b
in modr^ of Ba^v. This class stabilizes to an element in ^^/^(B^vU^). Under
the ring map (A. 7), it goes to a P in K/;; (R). This is the Bott element.

The spectrum K/F^R) has a Bockstein filtration with filtration quotients
K/F (R). This gives a Bockstein spectral sequence for n^ K/l^ (R). If I > 3 so v = 1, this
is the usual Bockstein spectral sequence as in [89], § 12, [17], § 5. For ;=2, 3 it has been
modified to have coarser filtration quotients and good ring structure. The differentials
are derivations, and it follows that the r ^ ' ^ s t power of P in K/?*(R) is the reduction
of a class x in K/^(R). The class x is not well-defined, but any other such x' differs
by a class which is divisible by F. Thus multiplication by x or by x' induce the same
map on the Z/F filtration quotients of K/tf(R), and so x ' becomes a unit in
K/^(R) [x~1], and conversely. For any scheme X over Z[e2ni/lv]=R, the element x has
an image x in K/tf(X). The localization K/lf(X)[x~1] does not depend on the ambi-
guity between x and x\

Represent x by a map 5^ ̂  K/F^R). This induces a map (A. 8)

(A .8) 5^ A K/l^ (X) ̂  K/l^ (R) A K/l^ (X) ——> K/l^ (X) A K/l^ (X) ̂  K//^ (X).

Let K/r^X) [P~1] be the direct limit of the system whose bonding map is the adjoint
of(A.8):

U JC ^ (U X)

(A. 9) K/l^ (X) -> ̂  K/J^ (X) ——> 0^ K/l^ (X) -^ . . .

The result doesn't depend up to homotopy on the choice of x over x\ One gets a
canonical choice of K/r^X) [P~1] by inverting all possible choices of x in a multidimen-
sional version of (A. 9). The homotopy groups of K/r^X)^"1] are the ring of
mod l^ K-groups of X localized by inverting x.

The choices of x are compatible under reduction, so that there is a Bockstein fibration
sequence

(A. 10) K/r^-^x) [p-1] ̂  K/F^X) [p-1] ̂  K/F(X) [p-1].

A. 8. If l^ 3, R = Z [6?2m7p'] with v = 1 is a finite extension of Z of degree I -1 and group
of automorphisms over Z given by Z/l— 1. These automorphisms permute the roots of
unity, and so move b and P in K/l^ (R). An easy calculation shows that P^"1 is invariant,
for Z/ /—1 acts on P by multiplication by a unit in Z//, and these are all I—1st roots
of 1. One may choose an invariant x in K/Rie (R) that reduces to ^~1 mod / by averaging
over Z/7— 1. Then an easy transfer argument based on the fact that the degree / — 1 is a
unit in Z/F shows that x is the image of an element x in K/^(Z). See [17], §2, §3 for
details.
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Now for any scheme X and l> 3, define K/F(X) [P~1] by inverting x as in A. 7. This
agrees with the K/r(X)[p~1] already constructed when A. 7 applies as inverting P and
inverting the power P'"1 give the same result. Again, the homotopy groups of
K/r(X)[P~1] are the localization of the ring K/;*(X) by inverting x. The Bockstein
fibration sequence (A. 10) is valid here.

A. 9. If X is a scheme over Z [e2^}, the r-torsion class e2"1^ induces a class P in
K/;; (X) as in A. 7. For ; > 3, or for I = 3 and v divisible by 2, or for I = 2 and v divisible
by 4, this class reduces to the P of A. 7 in K/^X), or K^X), or K/^X)
respectively. This follows from the naturality of the universal coefficient sequence
(A. 5), (A. 6) with respect to changes in F. Thus multiplication by P on K/r(X) [P~1] is
a homotopy equivalence.

A. 10. Under the various conditions of A. 7, A. 8, A. 9, one may also localize the
module spectrum G/r(X) to get G/F(X) [P-1].

A. 11. For 1=2 or 3, given an element x in K/ft(X) one can still form K/r(X)[x~1]
by formula (A. 9). Right multiplication by x on K/F (X) induces a map on K/F (X) [x ~1]
which is an automorphism. This much does not need associativity or commutativity of
the multiplication, and suffices to allow the proofs of 2.42 and 2.43 to work. I need
only find an appropriate x to invert which has a family of inductors mod / in the situation
of 2.42. Thus I want an x in K/3*(Z) or in K/4*(Z[i]) which has reduction in
K/3* (Z [^2m73]) or in K/4* (Z [f]) which is divisible by the Bott element P of A. 7.

These elements are provided by Bockstein spectral sequence and transfer arguments as
in A. 7 and A. 8. Roughly x is a lift of some multiple product of P with itself. The
problem is that one must worry whether there is enough associativity and commutativity
left so that F-th powers are cycles for the Bockstein derivations. It turns out that this
is so, (cf. [17], 5.4). In applying Browder's theorem for 1=2 note that the Hopf map T|
goes to the class of — 1 in Ki (Z [f]), and that this class is zero mod 2 as — 1 = f2 .

A. 12. The (-adic K theory spectrum is defined as the homotopy inverse limit of the
tower of K/r spectra under the reduction maps

(A. 11)

K^Xh^holimK/^X),
v

G(X),A=holimG/^(X).

By the Milnor sequence 5.41 and [16], VI, 5.1 there are short exact sequences

(A. 12) 0^1im lK/^^l(X)^7l„(K(XhA)^lmlK/^(X)^0,
v v

(A. 13) 0-^Ext^Q/Z^, KJX)) ^^^(Xh^-Hom^Q/Z^, K^(X)) ->0

and similarly for G(X)^.
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To define K^X^?"1]/' one takes a similar inverse limit of K/r(X)[p~1], after fussing
about the compatibility of the P at different levels F. In general K/r(X) [P~1] is periodic
of period l^-l)^"1. As v goes to infinity in the tower, K(X)[P~1]^ need not be
periodic at all. If X is over a ring containing all /-power roots of 1 however,
K(X) [P"^ is periodic of period 2.

One sometimes wishes to consider the pro-system {K/^XHP"1]} instead of taking
the inverse limit. In the usual geometric situations the pro-system of homotopy groups
is Artin-Rees-Mittag-Leffler, and so this version of (-adic theory sheafifies well, and
taking stalks and other geometrically interesting direct limits works reasonably well. The
(-adic theory of the proceeding paragraph runs into trouble here because direct and
inverse limits do not commute. See [SGA 5], V and VI.

A. 13. The !-adic spectra K(X)^ and K(X) [P"^ may be formed by taking homotopy
inverse limits over the modF spectra where v is required to be divisible by any fixed
integer. In particular for 1=2, we may take the inverse limit over spectra mod powers
of 4. For any v we still have

(A. 14)
K^X^A^/r^K/^X),

^(^[p-^^AZ-yr^K/^^^ip-1],
(K (X)^ A) A S00/^ ̂  K/l^ (X).

Thus if the Dwyer-Friedlander map

(A.15) p : K|lv(X)?-l]^K/l^(X)

is a weak equivalence for a cofinal system of (v, say those divisible by 4 if 1= 2, then the
J-adic version of (A. 15) is a weak equivalence. It then follows (A. 15) is a weak equiva-
lence for all v. This is useful for 1=2, 3 in light of the mess above.

A. 14. There is a more sophisticated way to "invert P" in K(X) simultaneously for all
primes I by a Bousfield localization of the spectrum. Let K(X)^, G(X)^ denote the
localizations of the spectra K(X), G(X) with respect to topological K-homology as
in [12], [13]. The localizations may be obtained by smashing the original spectrum with
the K-localization of the sphere spectrum. One has

f K(X)K®Q^K(X)®Q,
( ) [ K(X)KA5;00/^^(K/^(X))K^K(X)A(£00/^)K^K(X)A(£00/^)[A-1].

Here A is the Adams map S00/^")-^00/^ which is a K-equivalence. For Jodd, A
has degree n=2(l-\)lv~l. For (odd and X a scheme over Z[l/r|, Dwyer and Snaith
have shown that A goes to a power of the Bott element in K/F(X). Thus
K/r(X)K^K/r(X) [P-1], and a/l^X^O/l^X) [P-1]. Consult [12] and [110], § 3 for
details. This construction is also treated by Waldhausen in [135]. I would conjecture
that the same holds for 1=2, but I have not gone through the calculations to check this.

For 1=2 and / — I in (9^, the result that A is a power of the Bott element has been
proven by Zaidiver, a student of Snaith [142], verifying my conjecture.
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